
Technical Note NXP-TN-2007-00119

Issued: 9/2007

Real-Time Scheduling of Hybrid
Systems using Credit-Controlled
Static-Priority Arbitration

Benny Åkesson, Liesbeth Steffens,

Eelke Strooisma and Kees Goossens

Unclassified

c© NXP Semiconductors 2008

NXP-TN-2007-00119 Unclassified

Authors’ address Benny Akesson benny.akesson@nxp.com

Liesbeth Steffens liesbeth.steffens@nxp.com

Eelke Strooisma eelke.strooisma@nxp.com

Kees Goossens kees.goossens@nxp.com

c© NXP SEMICONDUCTORS 2008
All rights reserved. Reproduction or dissemination in whole or in part is prohibited
without the prior written consent of the copyright holder.

ii c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Title: Real-Time Scheduling of Hybrid Systems using Credit-Controlled Static-
Priority Arbitration

Author(s): Benny Åkesson, Liesbeth Steffens,
Eelke Strooisma and Kees Goossens

Reviewer(s): Martijn Coenen, Maarten Wiggers

Technical Note: NXP-TN-2007-00119

Additional
Numbers:
Subcategory:

Project: Hijdra (2002-213), Variomatic (2006-188)

Customer: NXP Semiconductors

Keywords: CCSP, Arbitration, Scheduling, QoS, Predictability

Abstract: The convergence of application domains in new systems-on-chip results in
hybrid systems with many intellectual property components with a mix of
soft and hard real-time requirements. Resources, such as memories and in-
terconnect, are shared between requestors to reduce cost. However, resource
sharing introduces interference between the sharing components, referred to
as requestors, making it difficult to satisfy their real-time requirements. Ex-
isting arbiters do not efficiently satisfy the requirements of the requestors
in these systems, as they couple rate or allocation granularity to latency, or
cannot run at sufficiently high speeds in hardware with a low-cost implemen-
tation.

The contribution of this document is an arbiter called Credit-Controlled
Static-Priority (CCSP) consisting of a rate regulator and a static-priority
scheduler. The rate regulator isolates requestors by regulating the amount
of provided service. Regulating provided service, as opposed to regulating
requested service has two benefits: 1) the implementation of the regulator
is less complex, and 2) the amount of work associated with a particular re-
quest does not have to be known. We show that CCSP belongs to the class of
latency-rate servers and guarantees the allocated service rate within a max-
imum latency, required by hard real-time requestors. We present an imple-
mentation of the arbiter in the context of a DDR2 SDRAM controller that
has been efficiently integrated into the network interface of a network-on-
chip. The implementation supports service allocation with negligible over-
allocation, and its area is small and scales linearly with the number of re-
questors. An instance with six ports runs at 250 MHz and requires 0.0175
mm2 in CMOS090LP.

c© NXP Semiconductors 2008 iii

NXP-TN-2007-00119 Unclassified

Conclusions: In this document, we present an arbiter called Credit-Controlled Static-
Priority (CCSP) for scheduling access to resources, such as interconnect and
memories in systems-on-chip. CCSP resembles an arbiter with a rate reg-
ulator that enforces a (σ, ρ) constraint on requested service together with
a static-priority scheduler. However, instead of enforcing an upper bound
on requested service, CCSP enforces an upper bound on provided service.
Regulating provided service, as opposed to regulating requested service has
two benefits: 1) the implementation of the regulator is less complex, and
2) the amount of work associated with a particular request does not have to
be known. We show that CCSP enjoys these benefits, without increasing
worst-case latency or buffering, compared to an arbiter regulating requested
service. We furthermore show that CCSP belongs to the class of latency-rate
(LR) servers and guarantees the allocated service rate within a maximum
latency, required by hard real-time requestors.

We present an implementation of the arbiter in the context of a DDR2
SDRAM controller that has been efficiently integrated into the network in-
terface of a network-on-chip. The area of implementation is small and scales
linearly with the number of requestors. An instance with six ports runs at
250 MHz and requires 0.0175 mm2 in CMOS090LP. The efficiency of the
service allocation is demonstrated in a use-case involving an H.264 decoder,
where only 0.0294% of the resource capacity is lost due to over-allocation.

Future work involves creating a methodology to automatically derive ser-
vice allocations and find a suitable priority assignment, such that the latency
and service requirements of all requestors are met. This is a challenging prob-
lem that may require a heuristic approach, as the latency of the CCSP arbiter
is computed by a non-linear equation that does not lend itself to integer-
linear programming, and the configuration space is furthermore likely to be
too large to allow exhaustive searches.

iv c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Contents

1 Introduction 1

2 Related work 3

3 Formal model 5
3.1 Service curves . 5
3.2 Requested service model . 8
3.3 Provided service model . 9

4 Credit-Controlled Static-Priority Arbitration 11
4.1 Overview . 11
4.2 Rate regulator . 13
4.3 Scheduler . 17

5 Arbiter Analysis 19
5.1 Latency Analysis . 19
5.2 Configuration . 24
5.3 Arbiter characterization . 25

6 Extensions 29
6.1 Preemption . 29
6.2 Work conservation . 31

7 Hardware implementation 34
7.1 Discrete rate regulation . 34
7.2 Architecture . 36

8 Experimental results 40

9 Conclusions and future work 44

References 45

c© NXP Semiconductors 2008 v

Unclassified NXP-TN-2007-00119

Section 1

Introduction

Chip design is getting increasingly complex, as technological advances allow highly integrated
systems on a single piece of silicon. A contemporary multi-processor system-on-chip (SoC)
features a large number of intellectual property components (IP), such as streaming hardware
accelerators and processors with caches. Resources, such as memories and interconnects, are
shared between IPs in order to reduce system cost. Access to these resources is provided by
resource arbiters with a low-cost hardware implementation that runs at high speeds. However,
resource sharing introduces interference between IPs making it difficult to satisfy their real-time
requirements. We refer to users of the resources as requestors, which correspond, for example, to
processes or threads in the context of CPUs, or to communication channels in case of a memory
or an interconnect.

We consider resource scheduling in hybrid systems [1] that contain requestors with both soft
and hard real-time requirements. Hard real-time requestors, such as a digital-to-analog converter,
typically have predictable and regular request patterns. Their deadlines are not very tight, but
must always be met in order to guarantee the functional correctness of the SoC [1, 2, 3]. These
requestors require a guaranteed minimum service rate and a bounded maximum latency that can
be analytically verified at design-time. In contrast, a soft real-time requestor, such as a software
video decoder, is typically very bursty and has tight deadlines on a much coarser grain than their
hard real-time counterparts. These deadlines may span thousands of requests, making the worst-
case latency of a single request less interesting. Missing a soft deadline reduces the quality of
the application output, such as causing a frame skip in video playback, which may be acceptable
as long is it does not occur too frequently [1,3]. These requestors require a guaranteed minimum
service rate and a low average latency to minimize the number of missed deadlines.

Existing resource arbiters are unable to cater to the above-mentioned requirements for at
least one of the following three reasons: 1) allocation granularity is coupled to latency resulting
in long latencies or over-allocation due to discretization errors, 2) latency is coupled to rate mak-
ing the arbiter unable to provide low latency to requestors with low rate requirements without
over-allocating, or 3) they cannot run at sufficiently high speeds in hardware with a low-cost
implementation.

The contribution of this document is a novel arbiter called Credit-Controlled Static-Priority
(CCSP) consisting of a rate regulator and a static-priority scheduler. The rate regulator isolates
requestors by regulating the amount of provided service in a way that decouples allocation granu-
larity and latency. The static-priority scheduler decouples latency and rate, such that low latency
can be provided to any requestor, regardless of the allocated rate. We show that CCSP belongs to
the class of latency-rate (LR) servers and provides a minimum amount of service within a maxi-

c© NXP Semiconductors 2008 1

NXP-TN-2007-00119 Unclassified

mum latency, required by hard real-time requestors. We present an implementation of the arbiter
in the context of a DDR2 SDRAM controller that has been efficiently integrated into the network
interface of a network-on-chip. The implementation supports service allocation with negligible
over-allocation, and its area is small and scales linearly with the number of requestors.

This document is organized as follows. In Section 2, we review related work and discuss
why existing arbiters do not satisfy the requirements of hybrid systems in SoCs. We introduce
a formal model in Section 3 and show how service curves are used to describe the interaction
between requestors and the arbiter. We introduce the CCSP arbiter in Section 4 and have ex-
plain the operation of the rate regulator and static-priority arbiter. We analyze the arbiter in
Section 5, to derive a service guarantee and to prove that CCSP belongs to the class of LR
servers. In Section 6, we show how to extend the arbiter and analysis to cover preemption
and work-conservation. An efficient hardware implementation is presented in Section 7 before
studying experimental results for a hybrid system running an H.264 decoder in Section 8. Lastly,
conclusions and future work are presented in Section 9.

2 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Section 2

Related work

Many arbiters have been proposed in the context of communication networks. Several of these
are based on the Round-Robin algorithm because it is simple and starvation-free. Weighted
Round-Robin [4] and Deficit Round-Robin [5] (DRR) are extensions that guarantee each re-
questor a minimum service, proportional to an allocated rate, in a frame of fixed size. This type
of frame-based arbitration suffers from a coupling between allocation granularity and latency,
where the allocation granularity is inversely proportional to the frame size [6]. Larger frame
sizes result in finer allocation granularities, reducing over-allocation, at the cost of increased
latencies for all requestors. This granularity issue is addressed in [7,8,9] with hierarchical fram-
ing strategies and in [10], where tracking debits and credits accomplishes exact allocation over
multiple frames. It is shown in [10] that fine-grained allocation in certain cases allows sys-
tems with a large number of requestors to achieve 100% increase in utilization of the resource
compared to regular frame-based approaches. The above-mentioned algorithms, as well as the
family of Fair Queuing algorithms [6], are unable to distinguish different latency requirements,
as the rate is the only parameter affecting scheduling. This results in an unwanted coupling be-
tween latency and rate where latency, in the best case, is inversely proportional to the allocated
rate. Requestors with low rate requirements hence suffer from high latency unless their rates are
increased, reducing resource utilization.

Scheduling of hybrid systems is previously considered in [1, 11]. Hard real-time requestors
are scheduled in [1] by an earliest-deadline-first (EDF) scheduler, while a constant-bandwidth
server is used for soft real-time requestors. This approach is not immediately applicable to
resource arbiters in SoCs, as it is difficult to provide a low-cost hardware implementation of an
EDF scheduler that runs at sufficiently high speeds. The implementation of an EDF scheduler
in [12] uses a tree of comparators to compare deadlines in the priority queue, which is too slow
for our considered resources. A more scalable implementation is provided in [13]. However,
this implementation requires double-ported SRAM memory, which is too expensive for many
resource arbiters in a SoC. The scheduling approach in [11] employs a static-priority arbiter with
a simple implementation. High priority is assigned to soft real-time requestors to achieve low
average latency. Rate regulation is used to protect the lower priority hard real-time requestors,
such that a bounded worst-case latency can be provided. The approach of scheduling hybrid
systems using a static-priority arbiter has the benefit of being cheap to implement in hardware.
However, the proposed arbiter has significant short-comings, as the rate regulator is frame-based
and couples allocation granularity, latency and rate, despite the use of priorities.

To efficiently employ the ideas of [11], a static-priority scheduler that decouples latency, rate
and allocation granularity, isolates requestors, and has a low-cost hardware implementation is

c© NXP Semiconductors 2008 3

NXP-TN-2007-00119 Unclassified

required. Two implementations of static-priority arbiters with rate regulation are provided in [14,
15], none of which meets these requirements. Rate-Controlled Static-Priority [14] controls rate
by holding requests until certain constraints on minimum and average inter-arrival times between
requests from a requestor are satisfied. This requires a potentially large number of time-stamps
to be stored in the arbiter, which is not feasible for a resource arbiter in a SoC. ALG [15], is
an asynchronous scheduling discipline that uses priorities and has an efficient implementation.
Service is allocated in discrete chunks, the size of which depends on the priority of the requestor
and the total number of requestors sharing the resource. This couples allocation granularity
and rate. The authors claim that this is solved by virtually increasing the number of requestors
sharing the resource, and assigning multiple chunks per requestor. However, the efficiency of
this extension and its implications on latency and ordering of requests are not straight-forward
and are not discussed in the paper. Moreover, at most 84% of the resource capacity can be used
for guaranteed service.

We propose Credit-Controlled Static-Priority arbitration for scheduling access to resources,
such as interconnect and memories in SoCs. CCSP resembles an arbiter with a rate regulator
that enforces a (σ, ρ) constraint [16]1 on requested service together with a static-priority sched-
uler, a combination we refer to as SRSP in this document. Similarly to SRSP, the CCSP rate
regulator replenishes the service available to a requestor incrementally, instead of basing it on
frames, decoupling allocation granularity and latency. Both arbiters furthermore use priorities to
decouple latency and rate. However, instead of enforcing an upper bound on requested service,
CCSP enforces an upper bound on provided service. Regulating provided service reduces the
complexity of the hardware implementation, and allows the arbiter to efficiently handle requests
with unknown sizes. We furthermore show that CCSP has a low-cost implementation that runs
in high speeds.

1Different from a (σ, ρ)-regulator presented in the same document, since that regulator does not actually enforce
the constraint.

4 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Section 3

Formal model

In this section, we introduce the formal model used in this document. We explain how service
curves are used to model the interaction between the requestors and the resource in Section 3.1.
We proceed by discussing the models used to bound requested service and provided service in
Section 3.2 and Section 3.3, respectively. Table 3.1 lists the notation conventions that are used
throughout this document. We use subscripts to disambiguate between variables belonging to
different requestors, although for clarity these subscripts are omitted when they are not required.
We use N to denote the set of non-negative integers, and N+ to denote the set of positive integers.

To emphasize the generality of our approach, and its applicability to a wide range of re-
sources, we abstract from a particular target resource, such as memories or (multi-hop) inter-
connects. We adopt an abstract resource view, where a service unit corresponds to the access
granularity of the resource. A time unit, referred to as a cycle, is defined as the time required to
serve such a service unit. Time is discrete and counting from zero.

3.1 Service curves

We use service curves [17] to model the interaction between the resource and the requestors.
These service curves are typically cumulative and monotonically non-decreasing in time. We
start by defining a an operator for retrieving the value of a service curve in Definition 1. We
use closed discrete time intervals throughout this document. The interval [τ, t] hence includes
all cycles in the set {τ, τ + 1, ..., t − 1, t}. Definition 2 defines notation for expressing the
difference in values between the endpoints of such an interval.

Definition 1. ξ(t) denotes the value of a service curve ξ at the beginning of a cycle t.

Definition 2. ξ(τ, t) denotes the difference in values between the endpoints of the closed interval
[τ, t], where t ≥ τ , and is defined as ξ(τ, t) = ξ(t + 1) − ξ(τ).

Table 3.1: The notation used throughout this document.
Description Example

Capital letter denotes a set A
Hat denotes an upper bound â

Check denotes a lower bound ǎ
Bar denotes an average value ā

c© NXP Semiconductors 2008 5

NXP-TN-2007-00119 Unclassified

The resource is shared between a set of requestors, as stated in Definition 3. A requestor
generates service requests of variable but bounded size, as defined in Definition 4, Definition 5,
and Definition 6.

Definition 3 (Set of requestors). The set of requestors sharing the resource is denoted R.

Definition 4 (Set of requests). The set of requests from a requestor r ∈ R is denoted Ωr.

Definition 5 (Request). The k:th request (k ∈ N) from a requestor r ∈ R is denoted ωk
r ∈ Ωr.

Definition 6 (Request size). The size of a request ωk
r is denoted s(ωk

r) : Ωr → N+.

Requests arrive at the resource according to Definition 7. For clarity, it is assumed that only
a single request arrives per requestor in a particular cycle, as stated in Assumption 1, although
this is easy to generalize. A request is considered to arrive as an impulse when it is ready to
be served by the resource, which for instance in the case of a memory controller is upon arrival
of the last bit of the request. This is captured by the requested service curve, w, defined in
Definition 8. Note that Definition 7 and Definition 8 state that a requested service curve at time
t + 1 accounts for a request with arrival time t + 1.

Definition 7 (Arrival time). The arrival time of a request ωk
r from a requestor r ∈ R is denoted

ta(ω
k
r) : Ωr → N+, and corresponds to the cycle in which the last bit of ωk

r arrives.

Assumption 1. It holds that ∀k ∈ N+, ∀r ∈ R. ta(ω
k
r) > ta(ω

k−1
r) > 0.

Definition 8 (Requested service curve). The requested service curve of a requestor r ∈ R is
denoted wr(t) : N → N, and is defined as

wr(t + 1) =

{

wr(t) + s(ωk
r) ∃ωk

r . ta(ω
k
r) = t + 1

wr(t) @ωk
r . ta(ω

k
r) = t + 1

where wr(0) = 0.

The scheduler in the resource arbiter attempts to schedule a requestor every cycle according
to its particular scheduling policy. The scheduled requestor is denoted according to Definition 9.
The first cycle in which a request ωk is scheduled is referred to as its starting time, ts(ω

k),
defined in Definition 10. A request cannot be scheduled until is has arrived, as stated in As-
sumption 2.

Definition 9 (Scheduled requestor). The scheduled requestor at a time t is denoted γ(t) : N →
R ∪ {∅}.

Definition 10 (Starting time of a request). The starting time of a request ωk
r is denoted ts(ω

k
r) :

Ωr → N, and is defined as the smallest t at which ωk
r is scheduled.

Assumption 2. It holds that ∀r ∈ R, ωk
r ∈ Ωr. ts(ω

k
r) ≥ ta(ω

k
r)

The provided service curve, w′, defined in Definition 11, reflects the amount of service units
provided by the resource to a requestor. A service unit takes one cycle to serve. This is reflected
in that provided service is increased at t+1, if a requestor is scheduled at t. A request leaves the
resource when the last service unit of the request has been served, corresponding to when the
last bit is read or written in case of a memory controller. An illustration of a requested service
curve and a provided service curve is provided in Figure 3.1. For reasons of clarity, the curves in
the figure are drawn as continuous functions, although their values are only defined at discrete
points in time.

6 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

A
cc

um
ul

at
ed

se
rv

ic
e

Time [cycles]

w

w′

q(tf(ω
k))

s(ωk)

δ(ωk) tf(ω
k)

ts(ω
k)ta(ωk)

Figure 3.1: A requested service curve, a provided service curve and representations of the sur-
rounding concepts.

Definition 11 (Provided service curve). The provided service curve of a requestor r ∈ R is
denoted w′

r(t) : N → N, and is defined as

w′
r(t + 1) =

{

w′
r(t) + 1 γ(t) = r

w′
r(t) γ(t) 6= r

where w′
r(0) = 0.

Corollary 1. It follows from Assumption 2 that w(t) ≥ w′(t).

The finishing time of a request corresponds to the first cycle in which a request is completely
served, as defined in Definition 12. We initially consider a non-preemptive scheduler, which
means that a requestor is scheduled during s(ωk) consecutive cycles after service of ωk is started
at ts(ω

k). This is formally expressed in Definition 13. This allows us to express the finishing
time of a request in a non-preemptive scheduler, as shown in Corollary 2. We extend the model
to cover preemptive scheduling in Section 6.1.

Definition 12 (Finishing time of a request). The finishing time of a request ωk
r is denoted

tf(ω
k
r) : Ωr → N, and is defined as tf(ω

k
r) = min({t | t ∈ N ∧ w′

r(t) = w′
r(ts(ω

k
r)) + s(ωk

r)}).

Definition 13 (Non-preemption). A non-preemptive scheduler is defined such that ∀r ∈ R, k ∈
N. w′

r(ts(ω
k
r) + s(ωk

r)) = w′
r(ts(ω

k
r)) + s(ωk

r).

Corollary 2. The finishing time of a request ωk
r in a non-preemptive arbiter is denoted tnp

f (ωk
r) :

Ωr → N. It follows from Definition 12 and Definition 13 that tnp
f (ωk

r) = ts(ω
k
r) + s(ωk

r).

We are now ready to define the concepts of backlog and delay. The backlog of a requestor,
defined in Definition 14, corresponds to the amount of requested service that has not yet been
served at a particular time. The set of requestors that are backlogged at a particular time is
defined in Definition 15. The delay of a request is the time from the arrival of the request until
it begins receiving service, as stated in Definition 16. The graphical interpretations of backlog
and delay are shown in Figure 3.1.

Definition 14 (Backlog). The backlog of a requestor r ∈ R at a time t is denoted qr(t) : N → N,
and is defined as qr(t) = wr(t) − w′

r(t).

c© NXP Semiconductors 2008 7

NXP-TN-2007-00119 Unclassified

Definition 15 (Set of backlogged requestors). The set of requestors that are backlogged at t is
defined as Rq

t = {r | ∀r ∈ R ∧ qr(t) > 0}.

Definition 16 (Delay). The delay of a request ωk
r is denoted δ(ωk

r) : Ωr → N, and is defined as
δ(ωk

r) = ts(ω
k
r) − ta(ω

k
r)

In order to work with service curves analytically, abstraction is provided through a variety of
traffic models that characterize the behavior of the curves. This abstraction has the benefit that
analytical results can be derived without exact knowledge of a service curve, as long as it can
be accurately characterized [6]. Characterizations that bound the requested and provided service
curves are required to provide upper bounds on backlog and delay, which are needed to satisfy
the requirements of hard real-time requestors.

3.2 Requested service model

We use the (σ, ρ) model [16] to characterize the requested service curve. The model uses a linear
function to express a burstiness constraint, and is frequently used in literature to upper bound the
requested service curve in an interval. The bounding function is determined by two parameters,
σ and ρ, corresponding to burstiness and average request rate, respectively. The definition of
a (σ, ρ)-constrained service curve is found in Definition 17, and its graphical interpretation is
shown in Figure 3.2.

A
cc

um
ul

at
ed

se
rv

ic
e

Time [cycles]

ŵ

w

Θ

σ = σ
′

w
′

ρ = ρ
′

w̌
′

Figure 3.2: A requested service curve and a provided service curve along with their correspond-
ing bounds.

Definition 17 ((σ, ρ) constraint). A service curve, ξ, is defined to be (σ, ρ) constrained in an
interval [τ, t] if ξ̂(τ, t) = σ + ρ · (t − τ + 1).

Hard real-time requestors typically correspond to hardware IPs with regular and predictable
access patterns that lend themselves to characterization. Soft real-time requestors, however,
are typically burstier than their hard real-time counterparts, and may hence have a σ that is very
large. Soft real-time requestors may additionally be very difficult to characterize, as applications
become more dynamic and input dependent. However, in this document, we assume that all
requestors have been accurately characterized, according to Definition 18.

Definition 18 (Requestor). A requestor r ∈ R is characterized by a tuple ((σr, ρr), ŝr), where
(σr, ρr) is a (σ, ρ) constraint on wr, and ŝr = max∀k∈N s(ωk

r). It holds that σr, ρr ∈ R+ and
ρ < 1.

8 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

3.3 Provided service model

The purpose of the provided service model is to provide a lower bound on the provided service
curve based on the service allocation of a requestor. The service allocated to a requestor in our
model depends on two parameters, as defined in Definition 19. These are the allocated service
rate, ρ′, and allocated burstiness, σ′, respectively. The definition states three constraints that must
be satisfied in order for a configuration to be valid: 1) the allocated service rate must be at least
equal to the average request rate, ρ, to satisfy the service requirement of the requestor, and to get
finite buffers, 2) it is not possible to allocate more service to the requestors than what is offered
by the resource, and 3) the allocated burstiness must be sufficiently large to accommodate a
maximally sized request. The last constraint will be further discussed in Section 5.2, along with
additional guidelines on how to allocate burstiness.

Definition 19 (Allocated service). The service allocation of a requestor r ∈ R is defined as
(σ′

r, ρ
′
r), where σ′, ρ′ ∈ R+. For a valid allocation it holds that ∀r ∈ R. ρ′r ≥ ρr,

∑

∀r∈R ρ′r ≤
1, and ∀r ∈ R. σ′

r ≥ ŝr.

Our provided service model is based on the notion of active periods, defined in Definition 20.
The definition states that a requestor is active at t if it is either live at t (Definition 21), back-
logged at t, or both. Active periods hence depend on both w and w ′. Definition 21 states that
a requestor must have requested service according to its allocated rate, on average, since the
start of the latest active period to be considered live at a time t. The requested service in this
interval is expressed as wr(τ1 − 1, t− 1), where τ1 is the start of the last active period. Note that
τ1 − 1 is used in the expression since w(τ1) accounts for requests that arrived at τ1, according
to Definition 8. The sets of requestors that are active and live at a particular time are defined in
Definition 22 and Definition 23, respectively.

Definition 20 (Active period). An active period of a requestor r ∈ R is defined as a maximum
interval [τ1, τ2], such that ∀t ∈ [τ1, τ2]. wr(τ1 − 1, t − 1) ≥ ρ′r · (t − τ1 + 1) ∨ qr(t) > 0.

Definition 21 (Live requestor). A requestor r ∈ R is defined as live at a time t during an active
period [τ1, τ2] if wr(τ1 − 1, t − 1) ≥ ρ′r · (t − τ1 + 1).

Definition 22 (Set of active requestors). The set of requestors that are active at t is defined as
Ra

t = {r | ∀r ∈ R ∧ r active at t}.

Definition 23 (Set of live requestors). The set of requestors that are live at t is defined as
Rl

t = {r | ∀r ∈ R ∧ r live at t}.

Corollary 3. It follows from Definitions 20-23 that Ra
t = Rq

t ∪ Rl
t.

Figure 3.3 illustrates the relation between being live, backlogged and active. Three requests
arrive starting from τ1. The relation between size and inter-arrival time of these request is suffi-
cient to keep the requestor live until τ3, considering its allocated rate. The requestor is initially
both live and backlogged, but the provided service curve catches up with the requested service
curve at τ2, as the third request finishes receiving service. This requestor is hence in a live and
not backlogged state until τ3. The requestor is not live nor backlogged between τ3 and τ4, as no
additional requests arrive at the resource. The requestor becomes live and backlogged again at
τ4, since two additional requests arrive within a small period of time. The requestor stays in this
state until τ5, since the requests keep the requestor live until this point, and not enough service

c© NXP Semiconductors 2008 9

NXP-TN-2007-00119 Unclassified

is provided to remove the backlog. The requestor is hence backlogged but not live at τ5, and re-
mains such until τ6. The requestor in Figure 3.3 is active between τ1 and τ3 and between τ4 and
τ6, according to Definition 20. Note from this example that a live requestor is not necessarily
backlogged, nor vice versa.

A
cc

um
ul

at
ed

se
rv

ic
e

live
backlogged

active

x x x
x x x
x x xx

Time [cycles]
τ1 τ3 τ4 τ5τ2

w

τ6

w
′

Figure 3.3: Example requested service curve and provided service curve that illustrate the rela-
tion between being live, backlogged and active.

The service provided to a requestor is defined by two parameters Θ and ρ′, being latency
and allocated rate, respectively. To disambiguate, we refer to Θ, defined in Definition 24, as
service latency throughout this document. The definition states that service is provided to an
active requestor according to the allocated rate, ρ′, after an initial latency, Θ. This means that ρ′

and Θ defines a lower bound, w̌′, on the provided service curve, as shown in Figure 3.2.

Definition 24 (Service latency). The service latency of a requestor r ∈ R is defined as the
minimum Θr ∈ N, such that during any active period [τ1, τ2] it holds that ∀t ∈ [τ1, τ2].
w̌′

r(τ1, t) = max(0, ρ′r · (t − τ1 + 1 − Θr)).

We show in Section 5 that CCSP belongs to the class of LR servers [18], which are a
general frame-work for analyzing scheduling algorithms. The lower bound on provided service
in Definition 24 is a key characteristic of LR servers. The authors of [18] use this bound to
derive general bounds on buffering and delay that are valid for any combination of LR servers
in sequence. They furthermore show that many well-known schedulers, such as Generalized
Processor Sharing [19], DRR [5], and several varieties of Fair Queuing [6] belong to the class.
The LR server model was conceived in the context of packet switched networks, and is intended
for analysis using Network Calculus [16]. Recent work has shown a link between the LR server
model and data-flow analysis. In [20], it is shown that that a LR server can be modeled as
a cyclo-static data-flow graph. This allows the arbiter to be used also in data-flow analysis,
which has the added benefit that the presence of flow control can be accurately modeled, and
that application-level throughput constraints can be satisfied. This is, however, outside the scope
of this document.

10 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Section 4

Credit-Controlled Static-Priority
Arbitration

In this section, we present the CCSP arbiter. A CCSP arbiter consists of a rate regulator and
a scheduler, following the decomposition from [14]. This partitioning provides a separation of
concerns, but also emphasizes the modularity and re-usability of the components. We start in
Section 4.1 by providing an overview of the main idea, before discussing the rate regulator and
scheduler separately in Sections 4.2 and 4.3, respectively.

4.1 Overview

A rate regulator provides accounting and enforcement and thus determines which requests that
are eligible for scheduling at a particular time, considering their allocated service. There are
two types of enforcement, as an arbiter is either work-conserving, or non-work-conserving. A
work-conserving arbiter uses weak enforcement and is never idle when there is a backlogged
requestor. A rate regulator in a non-work-conserving arbiter, however, does not schedule a re-
quest until it becomes eligible, even though the resource may be idle. This is referred to as strict
enforcement. A non-work-conserving arbiter clearly leads to a lower resource utilization, but is
beneficial for networks of servers, as it limits the increase in burstiness of the provided service
at their respective outputs [16, 14, 18]. It hence allows trading lower resource utilization for
smaller buffers in a network. We consider both types of enforcement throughout this document,
although for clarity we initially assume a non-work-conserving arbiter. We extend the model in
Section 6.2 to also cover the work-conserving case.

The purpose of a rate regulator is to isolate requestors from each other and to protect re-
questors that do not ask for more service than they are allocated from the ones that do. This
form of protection is a key property in providing guaranteed service to requestors with timing
constraints [6]. A rate regulator protects requestors by enforcing burstiness constraints on either
requested service or provided service. When enforcing an upper bound on requested service, re-
quests are delayed until a particular burstiness constraint, such as a minimum inter-arrival time,
is met before releasing them into the request buffers. All requests in the request buffers are con-
sidered eligible, and are scheduled according to the policy of the particular scheduler. Examples
of this kind of regulators are found in [16,14]. Figure 4.1 shows an arbiter that enforces an upper
bound on requested service. The rate regulator is positioned before the request buffers, allowing
it to regulate the arriving requests by buffering them until the burstiness constraint is satisfied.
Note that there is no communication between the scheduler and the rate regulator. A rate regu-

c© NXP Semiconductors 2008 11

NXP-TN-2007-00119 Unclassified

buffers
Request

Scheduler
Rate

regulator
w

′

r0
(t)

w
′

r1
(t)

wr0
(t)

wr1
(t)

Figure 4.1: An arbiter with a rate regulator that enforces an upper bound on requested service.

lator that enforces an upper bound on provided service, such as those in [4, 5, 11] and the CCSP
rate regulator, is shown in Figure 4.2. As seen in the figure, the rate regulator is positioned after
the request buffers. It is hence only aware of requests at the heads of the buffers, and cannot
constrain arrivals of requests in any way. The scheduler communicates the id of the scheduled
requestor, γ(t), back to the rate regulator every cycle. The regulator uses this information to
update the accounting mechanism. This type of rate regulator operates by simply determining if
the request at the head of each request buffer is eligible for scheduling.

buffers
Request

regulator
Rate

Scheduler

γ(t)

wr0
(t)

wr1
(t)

w′

r0
(t)

w′

r1
(t)

Figure 4.2: An arbiter with a rate regulator that enforces an upper bound on provided service.

Enforcing an upper bound on provided service has two benefits: 1) the implementation of
the regulator is less complex, and 2) the amount of work associated with a particular request
does not have to be known. We proceed by discussing these benefits in more detail.

A regulator that enforces an upper bound on provided service only requires knowledge about
the size of the request at the head of each request queue. A regulator that enforces an upper
bound on requested service, on the other hand, needs to know the sizes of all requests that arrive
during a cycle. This incurs additional complexity in a hardware implementation, especially if
requests can arrive with higher frequency than they are parsed.

A difficulty in resource arbitration is that the amount of work associated with a particular
request is not always known before it has been served. For instance, the amount of time required
to decode a video frame on a processor is not known when the work is scheduled. Similarly,
the time required by most SDRAM controllers to serve a request of a particular size depends
on the state of the memory. This in turn is predominantly determined by the previous requests,
such as which SDRAM banks that were accessed, the request size, and if it was a read or a
write access. These situations cannot be handled if requested service is regulated, unless worst-
case assumptions are used to estimate the amount of work. This approach, however, is very
inefficient if the variance in the amount of work is large, as in the examples mentioned above.
This is efficiently handled when regulating provided service by charging for a single service unit
at a time. This allows a preemptive scheduler to interrupt a requestor that runs out of budget and
schedule another one.

We show in Section 5.3 that CCSP enjoys both these benefits, without increasing worst-case
latency or buffering, compared to SRSP. CCSP furthermore uses incremental replenishment of
service, in contrast to the frame-based provided service regulators in [4, 5, 11]. We show in

12 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Section 7 that this decouples allocation granularity and latency.

4.2 Rate regulator

The CCSP rate regulator enforces an upper bound on provided service, as explained in Sec-
tion 4.1. We regulate provided service based on active periods, and define the upper bound on
provided service according to Definition 25. The intuition behind the definition is that the upper
bound on provided service of an active requestor increases according to the allocated rate ev-
ery cycle. Conversely for an inactive requestor, the bound is limited to w ′(t) + σ′, a value that
depends on the allocated burstiness. This prevents a requestor from becoming inactive for an ex-
tended period of time and increase the bound, possibly resulting in starvation of other requestors
once it becomes active again. Note that this implies that the upper bound on provided service
is not necessarily monotonically non-decreasing in time, as shown in Figure 4.3. The requestor
in the figure is live until τ1, but remains active until τ2 where w′ catches up to w. According to
Definition 25, this results in ŵ′(τ2 + 1) < ŵ′(τ2), since ŵ′(τ2) > w′(τ2) + σ′. The requestor
starts a new active period at τ3, causing ŵ′ to increase again.

Definition 25 (Provided service bound). The enforced upper bound on provided service of a
requestor r ∈ R is denoted ŵ′

r(t) : N → R+, and is defined according to

ŵ′
r(t + 1) =

{

ŵ′
r(t) + ρ′r r ∈ Ra

t

w′
r(t) + σ′

r r /∈ Ra
t

(4.1)

where ŵ′
r(0) = σ′

r.

A
cc

um
ul

at
ed

se
rv

ic
e

Time [cycles]τ2τ1

ŵ
′

w̌
′

σ
′

τ3

Figure 4.3: The upper bound on provided service is not necessarily monotonically non-
decreasing.

It is not possible to perform accounting and enforcement in hardware based on ŵ ′, since
limt→∞ ŵ′(t) = ∞. Instead, the accounting mechanism in the rate regulator is based on the
potential of a requestor, as defined in Definition 26. We show in Section 5.3 that the potential of
a requestor is bounded since the arbiter guarantees a lower bound on provided service. The ac-
counting is updated every cycle, according to Definition 27. Lemma 1 shows that the accounting
mechanism in Definition 27 corresponds to a recursive definition of potential.

Definition 26 (Potential). The potential of a requestor r ∈ R is denoted πr(t) : N → R, and is
defined as πr(t) = ŵ′

r(t) − w′
r(t).

Definition 27 (Accounting). The accounted potential of a requestor r ∈ R is denoted π∗
r (t) :

N → R, and is defined according to

c© NXP Semiconductors 2008 13

NXP-TN-2007-00119 Unclassified

π∗
r (t + 1) =











π∗
r (t) + ρ′r − 1 r ∈ Ra

t ∧ γ(t) = r

π∗
r (t) + ρ′r r ∈ Ra

t ∧ γ(t) 6= r

σ′
r r /∈ Ra

t ∧ γ(t) 6= r

where π∗
r (0) = σ′

r.

Lemma 1. ∀t ∈ N. π(t) = π∗(t).

Proof. We prove the lemma by induction.
Base case: The lemma holds when t = 0, since π(0) = ŵ′(0) − w′(0) = π∗(0), according to
Definition 11, Definition 25 and Definition 27.
Inductive step: For the inductive step, we prove that if the lemma holds at a time t then it
also holds for t + 1. According to Definition 26, potential at t + 1 is defined as πr(t + 1) =
ŵ′

r(t + 1) − w′
r(t + 1). We substitute ŵ′

r(t + 1) and w′
r(t + 1), according to the recursive

definitions in Definition 25 and Definition 11, respectively. Definition 11 has two cases and
depends on whether the requestor is scheduled or not. Similarly, Definition 25 has two cases
depending on if the requestor is active or not. The resulting equation, shown in Equation (4.2),
is hence supposed to have four cases. However, one case is eliminated since r /∈ Ra

t implies
γ(t) 6= r.

ŵ′(t + 1) − w′(t + 1) =











(ŵ′(t) + ρ′) − (w′(t) + 1) r ∈ Ra
t ∧ γ(t) = r

(ŵ′(t) + ρ′) − w′(t) r ∈ Ra
t ∧ γ(t) 6= r

(w′(t) + σ′) − w′(t) r /∈ Ra
t ∧ γ(t) 6= r

(4.2)

Finally, we substitute π(t) = ŵ′(t) − w′(t), in accordance with Definition 26, after which
we arrive at the the accounting mechanism in Definition 27.

Enforcement in the rate regulator is performed by determining if a request from a requestor
is eligible for scheduling. A request becomes eligible at its eligibility time, defined in Defini-
tion 28. The definition states that three conditions must be satisfied for a request at the eligibility
time in a non-preemptive arbiter: 1) all previous requests from the requestor must have been
served, as they are served in FIFO order, 2) the considered request must have arrived, and 3)
the requestor must have enough potential to serve the complete request. The last condition is
required to satisfy the definition of a non-preemptive system in Definition 13. The eligibility
criterion for a requestor in a non-preemptive arbiter is formally defined in Definition 29. We
proceed by defining the set of requestors that is eligible at a particular time in Definition 30.

Definition 28 (Eligibility time). The eligibility time of a request ωk
r from a requestor r ∈ R

in a non-preemptive arbiter is denoted tnp
e (ωk

r), and is defined as the smallest t for which the
following conditions apply:

1. ∀i < k. t ≥ tf(ω
i
r), and

2. wr(t) ≥ w′
r(t) + s(ωk

r), and

3. πr(t) ≥ s(ωk
r) − ρ′r(t)

Definition 29 (Eligible requestor). r is defined as eligible in a non-preemptive arbiter ∀k ∈
N, t ∈ [tnp

e (ωk
r), tf(ω

k
r) − 1].

14 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Definition 30 (Set of eligible requestors). The set of requestors that are eligible for scheduling
at t is defined as Re

t = {r | ∀r ∈ R ∧ r eligible at t}.

The rest of this section contain lemmas that prove general properties of the rate regulator.
These properties are used in the arbiter analysis in Section 5 and in the hardware implementation,
presented in Section 7. We start in Lemma 2 by showing that an eligible requestor is backlogged
and hence active. Note, however, that the reverse relation does not hold since an active requestor
does not necessarily have enough potential to be eligible.

Lemma 2. r ∈ Re
t ⇒ qr(t) > 0 ⇒ r ∈ Ra

t

Proof. According to the eligibility criterion in Definition 29, a requestor is eligible for schedul-
ing of ωk

r in the interval [tnp
e (ωk

r), tf(ω
k
r) − 1]. The second rule of Definition 28 states that

qr(t
np
e (ωk

r)) ≥ s(ωk
r). From this, Definition 11 and Definitions 13-14 give us that ∀t ∈

[tnp
e (ωk

r), tf(ω
k
r) − 1]. qr(t) > 0. This concludes the proof, since Definition 20 states that

qr(t) > 0 is a sufficient condition for a requestor to be active.

We show in Lemma 3 that ŵ′ is truly an upper bound for w′, given the accounting mecha-
nism in Definition 27 and enforcement strategy in Definition 29. The intuition behind the lemma
is that the eligibility criterion asserts that the requestor has enough potential already at the eligi-
bility time for the bound never to be exceeded.

Lemma 3. It holds that ∀t. ŵ′(t) ≥ w′(t).

Proof. According to Lemma 1, proving this lemma is equivalent to showing that ∀t. π(t) ≥ 0.
This holds at t = 0, since Definition 27 defines π(0) = σ′. The accounting mechanism in
Definition 27 additionally states that if π(t) ≤ σ′ then π(t + 1) < π(t) only if the requestor is
scheduled at t. It is hence sufficient to show that ∀t ∈ [ts(ω

k), tf(ω
k)]. π(t) ≥ 0.

In a non-preemptive arbiter, ωk can only be scheduled after becoming eligible at tnp
e (ωk) ≤

ts(ω
k). We know from Definition 29 that π(tnp

e (ωk)) ≥ s(ωk)−ρ′. According to Definition 27,
it holds that ∀t ∈ [tnp

e (ωk), ts(ω
k) − 1]. π(t + 1) ≥ π(t), since the requestor is eligible, and

hence active (Lemma 2, and not scheduled in the interval. We hence know that

π(ts(ω
k)) ≥ π(tnp

e (ωk)) ≥ s(ωk) − ρ′ ≥ 0

According to Definition 13 and Definition 12, we get that w′(tf(ω
k)) = w′(ts(ω

k))+s(ωk).
From Definition 13 and Definition 27, we additionally get that ŵ′(tf(ω

k)) = ŵ′(ts(ω
k)) +

s(ωk) · ρ′. Combining these results with the definition of potential in Definition 26 results in a
potential at tf(ω

k) according to

π(tf(ω
k)) = π(tnp

e (ωk)) + ρ′ · s(ωk) − s(ωk) ≥ (s(ωk) − 1) · ρ′ ≥ 0

Lemma 4 shows some important relations between the requested service curve and the pro-
vided service curve at the start of an active period. These are used for substitutions in other
lemmas.

Lemma 4. If τ1 is the start of an active period then w(τ1) > w(τ1 − 1) = w′(τ1) = w′(τ1 − 1).

c© NXP Semiconductors 2008 15

NXP-TN-2007-00119 Unclassified

Proof. According to Definition 20, if τ1 starts an active period then the requestor was inactive
at τ1 − 1 and hence q(τ1 − 1) = 0. We know from Definition 14 that if q(τ1 − 1) = 0 then
w(τ1 − 1) = w′(τ1 − 1). This implies that the requestor cannot be scheduled at τ1 − 1, which
according to Definition 11 results in that w′(τ1) = w′(τ1 − 1). Definition 20 states that if an
active period starts at τ1 then q(τ1) > 0 or w(τ1 − 1, τ1 − 1) ≥ ρ′. These cases all imply
w(τ1) > w(τ1 − 1).

Lemma 5 shows how to express the potential of a requestor at any time during an active
period. This is used in Lemma 6 to establish a relation between potential and provided service.

Lemma 5. During an active period [τ1, τ2], it holds that

∀t ∈ [τ1, τ2]. π(t) = ŵ′(τ1) − w′(τ1) + ŵ′(τ1, t − 1) − w′(τ1, t − 1) (4.3)

Proof. Rewriting the right hand side according to Definition 2 yields ŵ ′(τ1)−w′(τ1)+ŵ′(t−1+
1)− ŵ′(τ1)− (w′(t−1+1)−w′(τ1)). According to the definition of potential in Definition 26,
this is equivalent to π(τ1) + π(t) − π(τ1) = π(t).

Lemma 6. During an active period [τ1, τ2], it holds that ∀t ∈ [τ1, τ2]. π(t) ≤ σ′ − ρ′ ⇐⇒
w′(τ1, t − 1) ≥ ρ′ · (t − τ1 + 1).

Proof. We know from Lemma 5 that Equation (4.3) holds during an active period [τ1, τ2]. Defi-
nition 25 and the fact that the requestor is inactive at τ1 − 1 results in ŵ′(τ1)−w′(τ1) = σ′, and
ŵ′(τ1, t − 1) = (t − τ1) · ρ

′. Substituting these results into Equation (4.3) yields

π(t) = σ′ + (t − τ1) · ρ
′ − w′(τ1, t − 1) ≤ σ′ − ρ′

The proof is concluded by solving for w′(τ1, t − 1).

We proceed by showing that there is a relation between the potential and being live for
non-backlogged requestors in Lemma 7. Lastly, we bound the increase in the upper bound on
provided service during an interval in Lemma 8.

Lemma 7. For a requestor r ∈ R during an active period [τ1, τ2], it holds that ∀t ∈ [τ1, τ2], qr(t) =
0. πr(t) ≤ σ′

r − ρ′r ⇐⇒ w(τ1 − 1, t − 1) ≥ ρ′ · (t − τ1 + 1).

Proof. According to Lemma 6, we know w′
r(t)−w′

r(τ1) ≥ ρ′r·(t−τ1+1) ⇐⇒ πr(t) ≤ σ′
r−ρ′r.

Definition 14 states that w′
r(t) = wr(t) since qr(t) = 0. From Lemma 4, we additionally know

that w′
r(τ1) = wr(τ1−1). We conclude the proof by substituting these results into the expression

from Lemma 6.

Lemma 8. It holds that ŵ′
r(τ, t) ≤ ρ′ · (t − τ + 1).

Proof. We prove the lemma by showing that ŵ′
r(τ, t) is maximized if τ, t ∈ [τ1, τ2], where

[τ1, τ2] is an active period. This in turn is proven by showing that the first rule of Equation (4.1)
implies ŵ′

r(t + 1) > ŵ′
r(t), while the second rule implies ŵ′

r(t + 1) ≤ ŵ′
r(t).

The first rule in Equation (4.1) implies that ŵ′
r(t + 1) > ŵ′

r(t), since it follows from Defi-
nition 17 and Definition 19 that ρ′r ≥ 0.

We split the analysis of the second rule in Equation (4.1) into two cases. In the first case, the
requestor is inactive at both t − 1 and t, corresponding to multiple cycles of inactivity. In the
second case, the requestor is active at t−1 and inactive at t, meaning it is ending its active period.

16 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Case 1: r /∈ Ra
t−1 ∧ r /∈ Ra

t

From the second rule in Equation (4.1), we get that ŵ′
r(t + 1) = w′

r(t) + σ′
r. Since an inac-

tive requestor cannot be scheduled, it must hold that w′
r(t) = w′

r(t − 1). It hence follows that
ŵ′

r(t + 1) = ŵ′
r(t) if r /∈ Ra

t−1 ∧ r /∈ Ra
t

Case 2: r ∈ Ra
t−1 ∧ r /∈ Ra

t

We proceed by showing that ŵ′
r(t + 1) < ŵ′

r(t) if r ∈ Ra
t−1 ∧ r /∈ Ra

t . Let t = τ2 + 1, where
[τ1, τ2] defines an active period. We must hence show that

ŵ′
r(τ2 + 2) < ŵ′

r(τ2 + 1) (4.4)

According to Definition 2, ŵ′
r(τ2+1) = ŵ′

r(τ1)+ŵ′
r(τ1, τ2). From Lemma 4 and the second

rule in Equation (4.1), we get that ŵ′
r(τ1) = w′

r(τ1 − 1) + σ′
r = w′

r(τ1) + σ′
r, since r /∈ Ra

τ1−1.
We furthermore know from the first rule in Equation (4.1) that ŵ′

r(τ1, τ2) = ρ′r · (τ2 − τ1 + 1),
since ∀t ∈ [τ1, τ2]. r ∈ Ra

t . This results in

ŵ′
r(τ2 + 1) = w′

r(τ1) + σ′
r + ρ′r · (τ2 − τ1 + 1) (4.5)

The second rule in Equation (4.1) states that ŵ′
r(τ2 +2) = w′

r(τ2 +1)+σ′ since r /∈ Ra
τ2+1.

Rewriting this using Definition 2 results in ŵ′
r(τ2 + 2) = w′

r(τ1) + w′
r(τ1, τ2) + σ′

r. From
Definition 20 and Lemma 4, we know that r /∈ Ra

τ2+1 ⇒ w′
r(τ1 − 1, τ2) = wr(τ1 − 1, τ2) <

ρ′r · (τ2 − τ1 + 1), as the requestor is neither live nor backlogged at τ2 + 1. Putting these results
together gives us

ŵ′
r(τ2 + 2) < w′

r(τ1) + σ′
r + ρ′r · (τ2 − τ1 + 1) (4.6)

By substituting Equation (4.5) and Equation (4.6) into Equation (4.4), we see that ŵ ′
r(τ2 +

2) < ŵ′
r(τ2 + 1).

We hence conclude that ŵ′
r(τ, t) is maximized if τ, t ∈ [τ1, τ2], where [τ1, τ2] is an active

period. According to the first rule of Definition 27, this implies that ŵ′
r(τ, t) ≤ ρ′·(t−τ+1).

4.3 Scheduler

A scheduler controls the latency of requestors by controlling the order in which they access the
resource. A scheduler is either preemptive or non-preemptive depending on the nature of the
resource. A preemptive scheduler can interrupt a request in progress to make a new scheduling
decision. A non-preemptive scheduler, however, must finish serving a scheduled request before
a new decision is made. In this document, we consider both preemptive and non-preemptive
scheduling. We initially assume a non-preemptive scheduler, but return to discuss preemptive
scheduling in Section 6.1.

The CCSP arbiter uses a static-priority scheduler. A static-priority scheduler has three im-
portant features: 1) it decouples latency and rate, 2) it is cheap to implement in hardware, and
3) it is convenient to analyze. Each requestor is assigned a priority level, p, as stated in Def-
inition 31, where a lower level indicates higher priority. We do not allow requestors to share
priority levels. Sharing priorities, as done in [14], results in a situation where equal priority re-
questors must assume that they all have to wait for each other in the worst-case, resulting in less
tight bounds. Alternatively, a second-level arbiter, such as round-robin, is required to break ties,
at the cost of increased area and reduced clock speed of the implementation. We use the priority

c© NXP Semiconductors 2008 17

NXP-TN-2007-00119 Unclassified

level to define the set of requestors that have higher priority and lower priority than a particular
requestor in Definition 32 and Definition 33, respectively.

Definition 31 (Priority level). A requestor r ∈ R has a priority level pr, such that ∀ri, rj ∈ R.
pri

6= prj
.

Definition 32 (Set of higher priority requestors). The set of requestors with higher priority
than ri ∈ R is denoted R+

ri
, and is defined as R+

ri
= {rj | ∀rj ∈ R ∧ pri

> prj
}.

Definition 33 (Set of lower priority requestors). The set of requestors with lower priority than
ri ∈ R is denoted R−

ri
, and is defined as R−

ri
= {rj | ∀rj ∈ R ∧ pri

< prj
}.

An idle non-preemptive non-work-conserving static-priority scheduler operates by picking
the highest priority requestor that is eligible for scheduling. Once a request is chosen by the
scheduler, it is scheduled every cycle until its finishing time, as stated in Definition 13. No
requestor is scheduled if there are no eligible requestors, causing the resource to idle, even
though there may be backlogged requestors. The operation of a non-preemptive (np) non-work-
conserving (nwc) static-priority scheduler is formally defined in Definition 34. We examine
the case of work conservation in Section 6.2. The scheduled requestor is uniquely defined,
even though a set notation is used in the first two cases in Equation (4.7). In the first case, the
uniqueness stems from that only a single request can be in progress of receiving service in a
non-preemptive arbiter, according to Definition 13, and in the second case because Definition 31
states that there can be only one eligible requestor with the lowest priority.

Definition 34 (Non-preemptive non-work-conserving static-priority scheduler). The sched-
uled requestor at a time t in a non-preemptive non-work-conserving static-priority scheduler is
denoted γnwc

np (t) : N → Re
t ∪ {∅}, and is defined as

γnwc
np (t) =











{ri | ∃k ∈ N. ts(ω
k
ri

) < t < tf(ω
k
ri

)} ∃ωk
ri

. ts(ω
k
ri

) < t < tf(ω
k
ri

) ∧ Re
t 6= ∅

{ri | ri ∈ Re
t ∧ @rj ∈ Re

t . prj
< pri

} @ωk
ri

. ts(ω
k
ri

) < t < tf(ω
k
r) ∧ Re

t 6= ∅

∅ Re
t = ∅

(4.7)

18 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Section 5

Arbiter Analysis

In this section, we derive analytical properties of the CCSP arbiter. We begin in Section 5.1 by
upper bounding interference in an interval. We use this result to derive the service guarantee
of CCSP, and to prove that CCSP belongs to the class of LR servers. The interference bound,
and hence the service guarantee depends on the service allocation of the requestors, which is
discussed in Section 5.2. Lastly, we show in Section 5.3 that active period rate regulation does
not result in a burstier characterization of w′, nor requires additional request buffering or increase
maximum delay, compared to enforcing a (σ, ρ) constraint on the requested service.

5.1 Latency Analysis

In order to perform a latency analysis, we require interference to be defined and bounded. In-
terference in a CCSP arbiter consists of two parts. The first part is interference due to blocking
that accounts for interference from lower priority requestors that occurs if the arbiter is non-
preemptive. The second part is interference due to preemption, accounting for interference from
higher priority requestors.

We start by defining blocking in Definition 35. We then proceed by defining the aggre-
gate potential of a set of requestors in Definition 36, as this is required for our definition of
preemption in Definition 37. After defining blocking and preemption, we define interference
in Definition 38. Our definitions of blocking and interference make an assumption about the
eligibility of requestors. We discuss how to allocate service to deliver on this assumption in
Section 5.2.

Definition 35 (Blocking). Blocking of a requestor ri ∈ R in a non-preemptive non-work-
conserving arbiter during any interval [τ1, τ2], for which it holds that ∀t ∈ [τ1, τ2]. ri ∈ Re

t , is
denoted bnwc

ri
: R → N, and is defined as the number of interfering service units provided to a

requestor rj ∈ R−
ri

.

Definition 36 (Aggregate potential). The aggregate potential of a set of requestors R′ ⊆ R is
defined according to

∑

∀r∈R′

πr(t) =
∑

∀r∈R′

ŵ′
r(t) −

∑

∀r∈R′

w′
r(t)

c© NXP Semiconductors 2008 19

NXP-TN-2007-00119 Unclassified

Definition 37 (Preemption). Preemption of a requestor ri ∈ R in an interval [τ1, τ2] is denoted
φri

(τ1, τ2) : N × N → R, and is defined as

φri
(τ1, τ2) =

∑

∀rj∈R+
ri

πrj
(τ1) + ŵ′

rj
(τ1, τ2) (5.1)

Definition 38 (Interference). The interference of a requestor r ∈ R during an interval [τ1, τ2],
for which it holds that ∀t ∈ [τ1, τ2]. r ∈ Re

t , is denoted ir(τ1, τ2) : N × N → R, and is defined
as ir(τ1, τ2) = br + φr(τ1, τ2).

Having defined interference, we proceed with the latency analysis by upper bounding it.
Bounding interference is accomplished by deriving upper bounds on each of its two parts. We
start by deriving an upper bound on blocking in Lemma 9.

Lemma 9. A requestor ri ∈ R in a non-preemptive non-work-conserving arbiter can maximally
be blocked during any interval [τ1, τ2], for which it holds that ∀t ∈ [τ1, τ2]. ri ∈ Re

t , according
to

b̂nwc
ri

= max
∀rj∈R−

ri

ŝrj
− 1 (5.2)

Proof. The maximum blocking of a requestor ri ∈ R in a non-preemptive non-work-conserving
arbiter occurs when a request, ωk

ri
, becomes eligible at tnp

e (ωk
ri

) = τ1, and a maximally sized
request from the lower priority requestor with the largest request size was scheduled at tnp

e (ωk
ri

)−
1. In this case, ri may be blocked by up to max∀rj∈R−

ri

ŝrj
− 1 service units by a lower priority

requestor.

Before deriving an upper bound on preemption, we require some additional lemmas that
relate the active, backlogged and eligible states using potential.

Lemma 10. For a requestor r ∈ R, it holds that ∀t ∈ N, qr(t) = 0. πr(t) > σ′
r−ρ′r ⇒ r /∈ Ra

t .

Proof. We get from Lemma 7 that qr(t) = 0 and πr(t) > σ′
r−ρ′r implies that wr(τ1−1, t−1) <

ρ′r · (t − τ1 + 1), where τ1 is the start of the last active period. By negating Definition 20, we
know that r /∈ Ra

t iff qr(t) = 0 and wr(τ1 − 1, t − 1) < ρ′r · (t + 1 − τ1).

Lemma 11. For a requestor r ∈ Ra
t . πr(t) > σ′

r − ρ′r ⇒ qr(t) > 0.

Proof. We prove the lemma by contradiction. We know that r ∈ Ra
t and πr(t) > σ′

r − ρ′r.
Lemma 10 states that if qr(t) = 0 then r /∈ Ra

t , which is a contradiction. Hence, it must hold
that qr(t) > 0

Lemma 12. For a requestor r ∈ Ra
t . πr(t) > σ′

r − ρ′r ⇒ r ∈ Re
t .

Proof. We must show that for a requestor r ∈ Ra
t . πr(t) > σ′

r − ρ′r implies that the eligibility
criterion in Definition 29 is satisfied. This results in two cases in a non-preemptive non-work-
conserving arbiter depending on whether a request is in progress of receiving service or not.

Case 1: ∃ωk
r . ts(ω

k
r) < t < tf(ω

k
r).

This case is in itself a sufficient for r to be eligible at t since ts(ω
k
r) ≥ tnp

e (ωk
r) in a non-work-

conserving arbiter and Definition 29 states that ∀t ∈ [tnp
e (ωk

r), tf(ω
k
r) − 1]. r ∈ Re

t .

20 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Case 2: @ωk
r . ts(ω

k
r) < t < tf(ω

k
r).

In this case the requestor is not eligible unless tnp
e (ωk

r) ≤ t < ts(ω
k
r), which requires the three

conditions in Definition 28 to be satisfied. The first condition is satisfied since the definition of
the second case states that @ωk

r . ts(ω
k
r) < t < tf(ω

k
r). We know from Lemma 11 that r ∈ Ra

t

and πr(t) > σ′
r − ρ′r implies qr(t) > 0. This satisfies the second condition since Definition 8

states that a request is not accounted for until it is completely arrived. The third condition is
satisfied since πr(t) > σ′

r − ρ′r ≥ ŝr − ρ′r, according to Definition 19.

Lemma 13 is a key element in our analysis, as it shows that the aggregate potential of a set
of requestors cannot increase, as long as a requestor in the set is scheduled every cycle. This
result allows us to derive an upper bound on aggregate potential of higher priority requestors
in Lemma 14, which is essential when bounding preemption in Lemma 15. Lemma 14 and
Lemma 15 both consider a preemptive arbiter and does not take blocking into account. We ac-
count for the extra aggregate potential that is built up during blocking when bounding maximum
interference in Lemma 16.

Lemma 13. For a set of requestors R′ ⊆ R, it holds that

∃rk ∈ R′. γ(t) = rk ⇒
∑

∀r∈R′

πr(t + 1) ≤
∑

∀r∈R′

πr(t)

Proof. According to Definition 2 and the definition of aggregate potential in Definition 36
∑

∀r∈R′

πr(t + 1) =
∑

∀r∈R′

πr(t) +
∑

∀r∈R′

ŵ′
r(t, t) −

∑

∀r∈R′

w′
r(t, t)

According to Lemma 8,
∑

∀r∈R′ ŵ′(t, t) ≤
∑

∀r∈R′ ρ′r, where equality is reached if all re-
questors are active at t. From Definition 11, we also get that

∑

∀r∈R′ w′
r(t, t) = 1 if a requestor

in R′ is scheduled at t. Hence, if ∀r ∈ R′. r ∈ Ra
t and ∃rk ∈ R′. γ(t) = rk, then

∑

∀r∈R′

πr(t + 1) ≤
∑

∀r∈R′

πr(t) +
∑

∀r∈R′

ρ′r − 1

The proof is concluded by observing that
∑

∀r∈R′ ρ′r ≤ 1, according to Definition 19.

Lemma 14. For a requestor ri ∈ R in a preemptive arbiter, it holds that ∀t ∈ N.
∑

∀rj∈R+
ri

πrj
(t) ≤

∑

∀rj∈R+
ri

σ′
rj

. The maximum value occurs at any time t for which ∀rj ∈ R+
ri

. rj /∈ Ra
t−1.

Proof. We prove the lemma by induction on t.
Base case: The lemma holds at t = 0, since Definition 27 states that ∀r ∈ R. πr(0) = σ′

r.

Inductive step: For the inductive step, we prove that if the lemma holds at a time t then it
also holds for t + 1. We examine two different cases for cycle t. In the first case there exists a
higher priority eligible requestor, and in the second case there does not.
Case 1: (R+

ri
∩ Re

t) 6= ∅
This case implies that ∃rk ∈ Re

t . γ(t) = rk. Since a static-priority scheduler schedules the
highest priority eligible requestor, according to Definition 34, it follows that rk ∈ R+

ri
. Apply-

ing Lemma 13 hence gives us
∑

∀rj∈R+
ri

πrj
(t + 1) ≤

∑

∀rj∈R+
ri

πrj
(t) ≤

∑

∀rj∈R+
ri

σ′
rj

c© NXP Semiconductors 2008 21

NXP-TN-2007-00119 Unclassified

The equation shows that if the lemma holds at t, then it also holds at t+1, proving the first case.
Case 2: (R+

ri
∩ Re

t) = ∅
No higher priority requestor is eligible in this case. We will show that this implies that π(t+1) ≤
σ′ both for requestors with π(t) > σ′ − ρ′ and π(t) ≤ σ′ − ρ′.

According to Lemma 12, it must hold that ∀rj ∈ R+
ri

, πrj
(t) > σ′

rj
−ρ′rj

. rj /∈ Ra
t . The third

rule of Definition 27 hence states that ∀rj ∈ R+
ri

, πrj
(t) > σ′

rj
−ρ′rj

. πrj
(t+1) = σ′

rj
. It further-

more follows from Definition 27 that ∀rj ∈ R+
ri

, πrj
(t) ≤ σ′

rj
− ρ′rj

. πrj
(t + 1) ≤ σ′

rj
. It hence

holds that ∀rj ∈ R+
ri

. πrj
(t + 1) ≤ σ′

rj
. This means that

∑

∀rj∈R+
ri

πrj
(t + 1) ≤

∑

∀rj∈R+
ri

σ′
rj

,
which proves the second case.

We conclude that the aggregate potential of higher priority requestors is maximized if ∀rj ∈
R+

ri
. πrj

(t) = σ′
rj

, which occurs at any time t for which ∀rj ∈ R+
ri

. rj /∈ Ra
t−1.

Lemma 15. A requestor ri ∈ R in a preemptive arbiter can maximally be preempted for a time
φ̂ri

(τ1, τ2) during an interval [τ1, τ2], for which it holds that ∀t ∈ [τ1, τ2]. ri ∈ Re
t , according

to
φ̂ri

(τ1, τ2) =
∑

∀rj∈R+
ri

σ′
rj

+ ρ′rj
· (τ2 − τ1 + 1) (5.3)

The maximum preemption occurs when all higher priority requestors start an active period at
τ1, and remain active ∀t ∈ [τ1, τ2].

Proof. We know from Equation (5.1) that preemption is defined as φri
(τ1, τ2) =

∑

∀rj∈R+
ri

πrj
(τ1)+

ŵ′
rj

(τ1, τ2). From Lemma 14, we know that that
∑

∀rj∈R+
ri

πrj
(τ1) ≤

∑

∀rj∈R+
ri

σ′
rj

. This ex-
pression is maximized if all higher priority requestors are inactive at τ1 − 1. We furthermore
know from Lemma 8 that

∑

∀rj∈R+
ri

ŵ′
rj

(τ1, τ2) ≤
∑

∀rj∈R+
ri

ρ′rj
· (τ2 − τ1 + 1), which is maxi-

mized if ∀t ∈ [τ1, τ2]. rj ∈ Ra
t . Hence, φ̂ri

(τ1, τ2) =
∑

∀rj∈R+
ri

σ′
rj

+ ρ′rj
· (τ2 − τ1 + 1), and

the maximum occurs when all higher priority requestors start an active period at τ1, and remain
active ∀t ∈ [τ1, τ2].

After bounding blocking and preemption, we are ready to derive an upper bound on max-
imum interference in Lemma 16. Note that maximum preemption accounts for the increase in
aggregate potential while the higher priority requestors are blocked.

Lemma 16 (Maximum interference). The maximum interference experienced by a requestor
r ∈ R during an interval [τ1, τ2], for which it holds that ∀t ∈ [τ1, τ2]. ri ∈ Re

t , equals

îri
(τ1, τ2) = b̂ri

+
∑

∀rj∈R+
ri

σ′
rj

+ ρ′rj
· (τ2 − τ1 + 1) (5.4)

The maximum interference occurs when all higher priority requestors start an active period at
τ1 and remain active ∀t ∈ [τ1, τ2].

Proof. The interference in an interval [τ1, τ2] is defined as ir(τ1, τ2) = bri
+φri

(τ1, τ2), accord-
ing to Definition 38. We conclude the proof by using the bounds on blocking and preemption
from Equation (5.2) and Equation (5.3), respectively. It follows from Lemma 15 that the worst-
case occurs when all higher priority requestors start an active period at τ1, and remain active
∀t ∈ [τ1, τ2].

22 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

We are now ready to derive the service guarantee of a CCSP arbiter, and to compute its
service latency. This is done in Theorem 1.

Theorem 1 (Service guarantee). An active requestor ri ∈ R is guaranteed a minimum service
during an active period [τ1, τ2] according to ∀t ∈ [τ1, τ2]. w̌′

ri
(τ1, t) = max(0, ρ′ri

· (t − τ1 +
1 − Θri

)), where

Θri
=

b̂ri
+

∑

∀rj∈R+
ri

σ′
rj

1 −
∑

∀rj∈R+
ri

ρ′rj

(5.5)

Proof. It suffices to show that the theorem holds for intervals where τ2 − τ1 + 1 > Θri
, as these

are the only intervals for which w̌′
ri

(τ1, τ2) > 0. For these intervals, we must show that

∀t ∈ [τ1, τ2]. w̌′
ri

(τ1, t) = ρ′ri
· (t − τ1 + 1 − Θri

) (5.6)

We prove the theorem by splitting the active period in two cases. In the first case, we look at the
behavior of ri during backlogged periods within the active period, where the k:th backlogged
period is denoted [αk, βk]. Just like in Lemma 16, it is assumed that ∀t ∈ [αk, βk]. ri ∈ Re

t . In
the second case, the requestor is in a live and not backlogged state.

Case 1: ∀t ∈ [αk, βk]. ri ∈ Re
t

There are (βk − αk + 1) units of service available in the backlogged interval. An eligible
requestor in a static-priority scheduler cannot access the resource whenever it is used by higher
priority requestors, or when it is blocked. The minimum service available to ri, denoted w̌a

ri
,

can hence be expressed according to

w̌a
ri

(αk, βk) = βk − αk + 1 − îri
(αk, βk)

Since ri is continuously backlogged and eligible in the interval, it follows that w̌ ′
ri

(αk, βk) =
w̌a

ri
(αk, βk). We proceed by using the result from Lemma 16 to bound the maximum possible

interference.

w̌′
ri

(αk, βk) = w̌a
ri

(αk, βk) = βk−αk +1−
∑

∀rj∈R+
ri

σ′
rj
−

∑

∀rj∈R+
ri

ρ′rj
·(βk−αk +1)− b̂ri

(5.7)

We combine the results from Equation (5.6) and Equation (5.7), resulting in

βk − αk + 1 −
∑

∀rj∈R+
ri

σ′
rj
−

∑

∀rj∈R+
ri

ρ′rj
· (βk − αk + 1) − b̂ri

=

ρ′ri
· (βk − αk + 1 − Θri

)

We replace ρ′ri
by 1 −

∑

∀rj∈R+
ri

ρ′rj
, which is valid since 1 −

∑

∀rj∈R+
ri

ρ′rj
≥ ρ′ri

, according
to Definition 19. Solving for Θri

results in Equation (5.5), proving the first case. Case 2: ri ∈
Rl

t∧ri /∈ Rq
t According to Definition 21, ri ∈ Rl

t implies that w̌ri
(τ1−1, t−1) = ρ′ri

·(t−τ1+1).
On the other hand, Definition 14 states that ri /∈ Rq

t means that wri
(t) = w′

ri
(t). By combining

these results we get that

w̌′
ri

(τ1 − 1, t − 1) = ρ′ri
· (t − τ1 + 1) (5.8)

We know from Lemma 4 that w′
ri

(τ1 − 1) = w′
ri

(τ1). We also know from Definition 11 that
w′

ri
(t, t) ≥ 0. Substituting these results into Equation (5.8) gives us w̌ri

(τ1, t) = ρ′ri
·(t−τ1+1),

which proves the second case.

c© NXP Semiconductors 2008 23

NXP-TN-2007-00119 Unclassified

Next, we show in Theorem 2 that CCSP belongs to the class of LR servers.

Theorem 2 (LR server). A CCSP arbiter belongs to the class of LR servers, and the service
latency of a requestor ri ∈ R equals

Θri
=

b̂ri
+

∑

∀rj∈R+
ri

σ′
rj

1 −
∑

∀rj∈R+
ri

ρ′rj

Proof. According to [18], it is sufficient to show that ∀t ∈ [τ1, τ2]. r ∈ Re
t ⇒ w̌′

ri
(τ1, τ2) =

max(0, ρ′ri
· (τ2 − τ1 + 1−Θri

)). This is shown in the first case of the proof of Theorem 1.

Theorem 2 proves that CCSP belongs to the class of LR servers. Our derived service latency
is furthermore the same as that of SRSP, derived in [21]. This is the case even though the CCSP
regulator admits burstier traffic, as we will show in Section 5.3.

The service latencies of several schedulers are presented in [18]. We compare the service
latency of our arbiter to that of Packet-level GPS [19] (PGPS) and Deficit Round-Robin [5]
(DRR). These schedulers are chosen as PGPS has properties that are very typical for the Fair-
Queuing family [6] of schedulers, and DRR represents a typical frame-based scheduler. We
have translated their respective service latencies to fit with our notation. The service latency of
PGPS, shown in Equation (5.9), depends on the maximum packet size of the requestors in the
system. This reflects that a PGPS server is never more than one packet behind an ideal server
where service is infinitely divisible, such as GPS [19]. It is apparent from Equation (5.9) that
given a set of requestors, we can only reduce service latency by increasing the allocated rate.

ΘPGPS
r =

ŝr

ρ′r
+ max

∀r∈R
ŝr (5.9)

The service latency of DRR is shown in Equation (5.10), where F is the frame size of the
scheduler and φ the allocation of a requestor within a frame. From this it follows that ρ′ = φ/F .
We see in the equation that the service latency is coupled to the allocated rate, which implies
that a high allocated rate is required to provide low latency. We furthermore note that the service
latency is proportional to the frame size. A small frame size is hence required to provide low
latency, although this increases over-allocation, as we will see in Section 7.

ΘDRR
r = 3 · F − 2 · φr = F · (3 − 2 · ρ′r) (5.10)

We see in Equation (5.5) that service latency and allocated rate is decoupled in CCSP by
means of priorities. This allows us to provide low service latency to requestors with low service
requirements without over-allocating resources. This is a benefit of priority schedulers.

5.2 Configuration

In this section, we discuss how to allocate service to requestors in order to deliver on the as-
sumption on eligibility from Section 5.1.

The maximum interference bound in Lemma 16, and hence the results of Theorem 1 and
Theorem 2, are not valid for requestors that are not eligible during backlogged periods. The rea-
son for this is that a non-eligible requestor may encounter additional interference from lower pri-
ority requestors. By negating the eligibility criterion in Definition 29, we learn that non-eligible
requestors are requestors that: 1) do not have requests pending, nor have requests in progress of
being served, or 2) do not have sufficient potential for their pending requests to be served. We

24 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

are not interested in latency bounds for requests that have not arrived, and hence disregard of
the first case. The second case, however, implies that the arbiter must be configured such that
the requestor always has enough potential to serve a pending request, and is not slowed down
by the rate regulator. We get from Definition 19 that ∀r ∈ R. ρ′

r ≥ ρr. The allocated burstiness
is configured slightly differently depending on the real-time requirements of a requestor. Hard
real-time requestors require σ′ ≥ σ, to guarantee enough potential, assuming that the requestor
sticks to its characterization. We configure these requestors according to σ ′ = σ, since there is
no benefit in allocating higher burstiness than requested. Configuring σ ′ < σ causes the regula-
tor to limit the burstiness of a requestor. This is useful to protect hard real-time requestors from
bursty soft real-time requestors that are not interested in service latency bounds. Note, however,
that these requestors are still guaranteed their allocated service, although with a service latency
that is maximally s(ωk)/ρ′ longer than derived in Equation (5.5). This extra time accounts for
the maximum time required to build up sufficient potential to become eligible, required by Def-
inition 28. We return to the topic of service allocation in Section 8, as we experimentally study
its impact.

As shown in Theorem 1, the CCSP arbiter guarantees the allocated service rate within a
maximum latency. However, a structured methodology is required to derive this configuration
given a set of application requirements. This is a challenging problem that may require a heuris-
tic approach, as the latency of the CCSP arbiter, expressed by Equation (5.5), is a non-linear
equation that does not lend itself to integer-linear programming, and the configuration space is
furthermore likely to be too large to allow exhaustive searches. This topic is out of the scope of
this document and is left as future work.

5.3 Arbiter characterization

We derived the service latency of the CCSP arbiter in Section 5.1. We proceed in this section
by using this result to show that CCSP admits burstier traffic than an SRSP arbiter without
resulting in a burstier characterization of w′. We furthermore derive upper bounds on backlog
and delay. To facilitate this, we require some additional lemmas. We start by deriving the
maximum potential of a requestor in Lemma 17.

Lemma 17. The maximum potential of a requestor r ∈ R during an active period [τ1, τ2] equals

π̂r(t) = σ′
r + ρ′r · Θr

Proof. From Lemma 5, we know that Equation (4.3) holds during an active period [τ1, τ2] and
hence that ∀t ∈ [τ1, τ2]. π(t) = ŵ′(τ1)−w′(τ1) + ŵ′(τ1, t− 1)−w′(τ1, t− 1). We know from
Definition 27 and the fact that the requestor is inactive at τ1 − 1 that ŵ′

r(τ1)−w′
r(τ1) = σ′

r. We
also know from Lemma 8 that ŵ′

r(τ1, t − 1) ≤ ρ′r · (t − τ1). To get the maximum potential, we
use w̌′

r instead of w′
r in Equation (4.3), which according to Theorem 1 equals w̌′

r(τ1, t − 1) =
max(0, ρ′r · (t − τ1 − Θr)). Substituting these results into Equation (4.3) gives us

π̂r(t) ≤ σ′
r + ρ′r · (t − τ1) − ρ′r · max(0, t − τ1 − Θr)

The equation is maximized for intervals satisfying t− τ1 + 1 ≥ Θr, for which it equals π̂r(t) =
σ′

r + ρ′r · Θr.

Next, we derive a measure on how much service that can be admitted by the rate regulator.
For this purpose, we use the the eligible service curve, w∗, defined in Definition 39. The eligible

c© NXP Semiconductors 2008 25

NXP-TN-2007-00119 Unclassified

service curve represents the amount of service that has become eligible at a particular time. The
definition is consistent with the eligibility criterion in Definition 29, since we know that ŵ ′(t) ≥
w′(t) and w(t) ≥ w′(t) from Lemma 3 and Corollary 1, respectively. A (σ, ρ) characterization
of w∗ is derived in Lemma 18.

Definition 39 (Eligible service curve). The eligible service curve of a requestor r ∈ R is
denoted w∗

r(t) : N → N, and is defined as w∗
r(t) = min(ŵ′

r(t), wr(t)).

Lemma 18. w∗
r of a requestor r ∈ R is (σ, ρ) constrained with parameters (σ ′

r + ρ′r · Θr, ρ
′
r).

Proof. We calculate the upper bound on w∗
r during an active period [τ1, τ2], since an inactive

requestor is not backlogged, according to Definition 20, and hence cannot be scheduled. From
Definition 2 and Definition 39, we derive that ∀τ ′, t ∈ [τ1, τ2], τ

′ < t

w∗
r(τ

′, t) = min(ŵ′
r(t + 1), wr(t + 1)) − min(ŵ′

r(τ
′), wr(τ

′)) (5.11)

The equation is maximized at t by maximizing the first term and minimizing the second, which
happens if wr(τ

′) = w̌r(τ
′) and wr(t+1) ≥ ŵr(t+1). This results in w∗

r(τ
′, t) = ŵ′

r(t+1)−
w̌r(τ

′). We know from Definition 2 that ŵ′
r(t + 1) = ŵ′

r(τ
′) + ŵ′

r(τ
′, t), and conclude from

Corollary 1 that w̌r(τ
′) = w̌′

r(τ
′). Substituting these results into Equation (5.11) results in

ŵ∗
r(τ

′, t) = ŵ′
r(τ

′) + ŵ′
r(τ

′, t) − w̌′
r(τ

′) (5.12)

Lemma 8 gives us that ŵ′
r(τ

′, t) ≤ ρ′r · (t − τ ′ + 1). We also know from Lemma 17 that
ŵ′

r(τ
′) − w̌′

r(τ
′) ≤ σ′

r + ρ′r · Θr for an active requestor. By substitution into Equation (5.12),
we get

ŵ∗
r(τ

′, t) ≤ σ′
r + ρ′r · Θr + ρ′r · (t − τ ′ + 1)

According to Definition 17, this implies that w∗
r is (σ, ρ) constrained with parameters (σ′

r + ρ′r ·
Θr, ρ

′
r).

We continue by deriving a (σ, ρ) characterization of w′ in Lemma 19. This characterization
is useful when computing latencies in networks of servers, as the output of one server in a
network may be the input of another.

Lemma 19. w′
r of a requestor r ∈ R is (σ, ρ) constrained with parameters (σ ′

r + ρ′r ·Θr, ρ
′
r) if

the CCSP arbiter is non-work-conserving.

Proof. We calculate the upper bound on w′
r during an active period [τ1, τ2], since an inactive

requestor is not backlogged, according to Definition 20, and hence cannot be scheduled.
From Lemma 3 and the definition of a non-work-conserving static-priority scheduler in Def-

inition 34, we get that ∀τ ′, t ∈ [τ1, τ2], τ
′ < t

w′
r(τ

′, t) = w′
r(t + 1) − w′

r(τ
′) ≤ ŵ′

r(t + 1) − w̌′
r(τ

′)

According to Definition 2, this is equivalent to the right-hand side of Equation (5.12). We hence
conclude from Lemma 18 that w′

r is (σ, ρ) constrained with parameters (σ′
r + ρ′r · Θr, ρ

′
r).

Next, we combine the results from Lemma 18 and Lemma 19, to show that CCSP admits
burstier traffic than a SRSP arbiter without resulting in a burstier characterization of w ′. As-
sume that both arbiters are configured with parameters (σ ′, ρ′) for a particular requestor. A rate
regulator that enforces a (σ, ρ) constraint on requested service causes w∗

srsp to be characterized

26 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

as (σ′, ρ′), since all service in the request buffer is considered eligible. A CCSP arbiter admits
burstier traffic, since Lemma 18 states that w∗

ccsp is characterized as (σ′ + ρ′ ·Θ, ρ′). Lemma 19
shows that w′

ccsp is characterized as (σ′ + ρ′ · Θ, ρ′), which is identical to the characterization
of w′

srsp, according to [16, 18, 21]. This follows from that the service latencies of the arbiters
are identical, even though the CCSP regulator admits burstier traffic. This is possible since the
worst-case interference in an interval occurs when all interfering requestors start their active
periods simultaneously at τ1, as shown in Lemma 16. At this time π(τ1) = σ′, which is less
than π̂(t), as derived in Lemma 17. The key reason behind this is that Lemma 13 states that all
interfering requestors cannot reach their maximum potential at the same time, as their aggregate
potential cannot increase as long of one of them is scheduled.

We proceed by looking at the difference between regulating provided service based on ac-
tive periods and enforcing a (σ, ρ) constraint on the requested service curve according to Defi-
nition 17. The latter implies increasing ŵsrsp, which is equal to ŵ′

srsp for this kind of regulator,
when a requestor is in a busy period [18], defined in Definition 40. Notice that the only differ-
ence between being busy at t and being live at t, as defined in Definition 21, is that τ1 is required
to be the start of an active period in the latter case.

Definition 40 (Busy period). A busy period of a requestor r ∈ R is defined as a maximum
interval [τ1, τ2], such that ∀t ∈ [τ1, τ2]. wr(τ1 − 1, t − 1) ≥ ρ′r · (t − τ1 + 1).

Figure 5.1 illustrates the difference between the two kinds of regulation. The requestor in
the figure is not busy between τ1 and τ2, causing both ŵ′

srsp and w̌′
srsp to shift τ2 − τ1 steps to

the right when enforcing a (σ, ρ) constraint. This shift does not happen with ŵ ′
ccsp, since the

requestor is backlogged in the interval, and hence active. The requestor is busy again between
τ2 and τ4, causing ŵ′

srsp to increase in that interval. However, the requestor is not backlogged
at τ3, and is inactive until τ5, shifting ŵ′

ccsp and w̌′
ccsp τ5 − τ3 steps to the right. This example

shows that there are cases where the two methods of regulation provide different bounds on the
amount of provided service.

A
cc

um
ul

at
ed

se
rv

ic
e

x
x

x

Time [cycles]

live
backlogged

active
busy

x

x x

x
x

x
x

σ
′

τ1 τ2 τ4

w̌
′

ccsp

w̌
′

srsp

w
′

τ3

Θ

ŵ
′

ccsp

ŵ
′

srsp

w

τ5

Figure 5.1: Some differences between enforcing a (σ, ρ) constraint on requested service and
active period rate regulation.

We proceed by deriving an upper bound on backlog in Lemma 20.

c© NXP Semiconductors 2008 27

NXP-TN-2007-00119 Unclassified

Lemma 20. The maximum backlog of a requestor r ∈ R equals q̂r(t) = σr + Θr · ρr.

Proof. Definition 20 defines that qr(t) = 0 if r is inactive. The maximum backlog is hence
encountered during an active period [τ1, τ2], and is defined according to Equation (5.13). Note
that the equation accounts for that arrivals are detected in the beginning of a cycle by subtracting
one from the endpoints of the interval.

q̂r(t) = max
∀t∈[τ1−1,τ2−1]

(ŵr(τ1 − 1, t) − w̌′
r(τ1 − 1, t)) (5.13)

From Definition 17, we get that ŵr(τ1 − 1, t) = σr + ρr · (t + 1− (τ1 − 1)). We know from
Theorem 2 that w̌′

r(τ1 − 1, t) = ρ′r ·max(0, t + 1− (τ1 − 1)−Θr). We substitute these results
into Equation (5.13), yielding

q̂r(t) = (σr + ρr · (t − τ1) + 2) − (ρ′r · max(0, t − τ1 + 2 − Θr))

We substitute ρ′r with ρr and eliminate, which is possible since Definition 19 states that
ρ′r ≥ ρr. We conclude the proof by solving for intervals satisfying t − τ1 + 2 ≥ Θr, as this
maximizes the expression.

The lower bound on provided service from Theorem 2 causes us to arrive at the bound on
maximum backlog from [18] that is valid for any requestor with (σ, ρ)-constrained arrivals in
a LR server. Considering that CCSP has the same parameters and service latency bound as an
SRSP arbiter, we conclude that our approach does not require additional request buffering.

We proceed by using the bound on service latency to derive a bound on maximum delay.
The delay bound is only valid for requestors that are configured according to Section 5.2, such
that they are not slowed down by the rate regulation. According to [18], the maximum delay of
a request from a (σ, ρ)-constrained requestor r ∈ R in a LR server is guaranteed to be bounded
according to δ̂(ωk

r) = Θr + σ′
r/ρ

′
r. This is seen in Figure 3.2 as the horizontal distance between

ŵr and w̌′
r. This general bound, however, does not account for the fact that a requestor in a

static-priority scheduler is free from interference from lower priority requestors after the service
latency, as long as it does not exceed the burstiness constraint enforced by the rate regulator. It
hence receives service at a rate of 1 −

∑

∀rj∈R+
ri

ρ′rj
, rather than ρ′r, resulting in a delay bound

according to Equation (5.14).

δ̂(ωk
ri

) = Θri
+

σ′
ri

1 −
∑

∀rj∈R+
ri

ρ′rj

=
b̂ri

+
∑

∀rj∈R+
ri

σ′
rj

+ σ′
ri

1 −
∑

∀rj∈R+
ri

ρ′rj

(5.14)

The maximum delay bound in Equation (5.14) is the same as those derived for static-priority
schedulers in [16,14]. However, a benefit of our result is that we distinguish different maximum
blocking terms depending on whether or not the arbiter is preemptive, non-preemptive and non-
work-conserving, or non-preemptive and work-conserving, as opposed to just using the largest
blocking term for work-conserving arbiters. The maximum blocking for preemptive arbiters is
derived in Section 6.1, and for work-conserving arbiters in Section 6.2.

In conclusion, we showed in this section that although CCSP admits burstier traffic than
an SRSP arbiter, it still provides the same upper bounds on service latency, output burstiness,
backlog and delay.

28 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Section 6

Extensions

In this section, we extend the arbiter and its analysis to include preemption and work conserva-
tion. Preemption is first discussed in Section 6.1, followed by work conservation in Section 6.2.

6.1 Preemption

As mentioned in Section 4.1, preemption allows an arbiter that regulates provided service to ef-
ficiently handle requests without knowing their size. It furthermore allows latency to be reduced
for critical requestors. We assume that the resource is preemptive on the granularity of a single
service unit, and that there is no associated latency cost due to context switching. This allows us
to treat a request ωk with size s(ωk) > 1 as s(ωk) requests of size one.

Introducing preemption as a tool for handling unknown request sizes requires the definitions
of eligibility and eligibility time in Section 4.2 to be slightly altered, as it may no longer possible
to know if a request has completely arrived or if a requestor has enough potential to serve a
request. Definition 41 presents a definition of eligibility time that is suitable for preemptive
arbiters. The definition states that a backlog of one service unit and the potential required to
serve it is needed at the eligibility time. Changing the definition of eligibility time, according
to Definition 41, implies that a requestor is no longer considered eligible in the entire interval
[te(ω

k
r), tf(ω

k
r) − 1], as stated in Definition 29. Instead, the preemptive version in Definition 42

only considers a requestor eligible in this interval it is backlogged and has enough potential to
serve the next service unit. These changes impact the proof of Lemma 12, although it is easily
verified that the lemma still holds in both cases since π(t) > σ ′ − ρ′ > 1 − ρ′.

Definition 41 (Eligibility time). The eligibility time of a request ωk
r from a requestor r ∈ R in

a preemptive arbiter is denoted tpr
e (ωk

r), and is defined as the smallest t for which the following
conditions apply:

1. ∀i < k. t ≥ tf(ω
i
r), and

2. wr(t) > w′
r(t), and

3. πr(t) ≥ 1 − ρ′r(t)

Definition 42 (Eligible requestor). r is defined as eligible in a preemptive arbiter ∀k ∈ N, t ∈
[tpr

e (ωk
r), tf(ω

k
r) − 1]. πr(t) ≥ 1 − ρ′r(t) ∧ wr(t) > w′

r(t).

c© NXP Semiconductors 2008 29

NXP-TN-2007-00119 Unclassified

A preemptive non-work-conserving static-priority scheduler, defined in Definition 43, sched-
ules the highest priority eligible requestor. Since the scheduler is non-work-conserving, just like
in Definition 34, no requestor is scheduled if there are no eligible requestors. We examine the
case of work-conserving static-priority schedulers in Section 6.2.

Definition 43 (Preemptive non-work-conserving static-priority scheduler). The scheduled
requestor at a time t in a preemptive non-work-conserving static-priority scheduler is denoted
γnwc

pr (t) : N → Re
t ∪ {∅}, and is defined as

γnwc
pr (t) =

{

{ri | ri ∈ Re
t ∧ @rj ∈ Re

t . prj
< pri

} Re
t 6= ∅

∅ Re
t = ∅

Preemption on the granularity of a service unit eliminates blocking, as shown in Lemma 21.
This allows preemptive arbitration to offer lower latency to critical requestors.

Lemma 21. A requestor ri ∈ R in a preemptive arbiter can maximally be blocked during any
interval [τ1, τ2], for which it holds that ∀t ∈ [τ1, τ2]. ri ∈ Re

t , according to b̂pr
ri = 0.

Proof. Follows immediately from the fact that the scheduler is preemptive on a granularity of a
service unit.

We conclude this section by establishing a relation between the eligibility time and starting
time of a request in Lemma 22, which we use to derive the finishing time of a request in a
preemptive arbiter in Lemma 23. The derived finishing time assumes that the requestor is active
in the interval [tpr

e (ωk
r), tpr

f (ωk
r) − 1], and hence that the request arrives at least according to the

allocated rate after the eligibility time. Note that this requires the definitions of arrival time and
the requested service curve in Definition 7 and Definition 8 to account for each arrived service
unit separately.

Lemma 22. For a request ωk
r from a requestor r ∈ R it holds that ts(ω

k
r) ≤ te(ω

k
r) + Θr.

Proof. We know from Theorem 1 that a requestor in an active period [τ1, τ2] receives service
according to ∀t ∈ [τ1, τ2]. w′

ri
(τ1, t) ≥ ρ′r · (t − τ1 + 1 − Θr). We know from Lemma 2 that

∀t′ ∈ [te(ω
k
r), ts(ω

k
r)]. r ∈ Ra

t′ . According to Definition 2 and the definition of starting time in
Definition 10, we know that the maximum starting time of ωk

r equals the minimum t for which
it holds that w′

ri
(te(ω

k
r), t) > 0. We hence get that

ρ′r · (t − te(ω
k
r) + 1 − Θr) > 0

Solving for t results in t > te(ω
k
r) + Θr − 1, which implies that ts(ω

k
r) ≤ te(ω

k
r) + Θr.

Lemma 23. The finishing time of a request ωk
r from a requestor r ∈ R, for which it holds that

∀t ∈ [te(ω
k
r), tf(ω

k
r) − 1]. r ∈ Ra

t , is denoted tf(ω
k
r) : Ωr → N, and is defined according to

tf(ω
k
r) ≤ ts(ω

k
r) +

s(ωk
r)

ρ′r

Proof. We know from Theorem 1 that a requestor in an active period [τ1, τ2] receives service
according to ∀t ∈ [τ1, τ2]. w′

ri
(τ1, t) ≥ ρ′r · (t − τ1 + 1 − Θr). The finishing time of ωk

r equals
t + 1 for the minimum t for which it holds that w′

ri
(te(ω

k
r), t) ≥ s(ωk

r). We hence get that

ρ′r · (t − te(ω
k
r) + 1 − Θr) ≥ s(ωk

r)

Solving for t results in t ≥ te(ω
k
r)+Θr + s(ωk

r)
ρ′r

−1, which implies that tf(ω
k
r) ≤ te(ω

k
r)+Θr +

s(ωk
r)

ρ′r
. We conclude the proof by using that ts(ω

k
r) ≤ te(ω

k
r)+Θr, according to Lemma 22.

30 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

6.2 Work conservation

A work-conserving arbiter is never idle if there is a backlogged requestor, as mentioned in Sec-
tion 4.1. A work-conserving static-priority scheduler hence schedules a backlogged requestor
according to some slack management strategy if there are no eligible requestors. Any second-
level scheduler can be used to distribute the slack, as long as it does not affect the guaranteed
service. A preemptive work-conserving static-priority scheduler is presented in Definition 44,
and its non-preemptive counterpart in Definition 45.

Definition 44 (Preemptive work-conserving static-priority scheduler). The scheduled re-
questor at a time t in a preemptive work-conserving static-priority scheduler is denoted γwc

pr (t) :
N → Rq

t ∪ {∅}, and is defined as

γwc
pr (t) =











{ri | ri ∈ Re
t ∧ @rj ∈ Re

t . prj
< pri

} Re
t 6= ∅

any ri ∈ Rq
t Re

t = ∅ ∧ Rq
t 6= ∅

∅ Re
t = ∅ ∧ Rq

t = ∅

Definition 45 (Non-preemptive work-conserving static-priority scheduler). The scheduled
requestor at a time t in a non-preemptive work-conserving static-priority scheduler is denoted
γwc

np (t) : N → Rq
t ∪ {∅}, and is defined as

γwc
np (t) =























{ri | ∃k ∈ N. ts(ω
k
ri

) < t < tf(ω
k
ri

)} ∃ωk
ri

. ts(ω
k
ri

) < t < tf(ω
k
r) ∧ Re

t 6= ∅

{ri | ri ∈ Re
t ∧ @rj ∈ Re

t . prj
< pri

} @ωk
ri

. ts(ω
k
ri

) < t < tf(ω
k
r) ∧ Re

t 6= ∅

any ri ∈ Rq
t Re

t = ∅ ∧ Rq
t 6= ∅

∅ Re
t = ∅ ∧ Rq

t = ∅

To prevent the second-level scheduler from affecting the guaranteed service and to create a
separation of concerns, we propose to keep it separated from the primary static-priority sched-
uler. A logical separation is created by asserting that the second-level scheduler does not alter
the potential of any requestor. This is accomplished by adapting the provided service bound in
Definition 25. A work-conserving definition of this bound is shown in Definition 46 and the
corresponding accounting mechanism is presented in Definition 47. Note that the only differ-
ence between the work-conserving and non-work-conserving accounting mechanisms in Defi-
nition 27 and Definition 47 is that the latter is unaffected if an active but non-eligible requestor
is scheduled due to work-conservation. It is straight-forward to show that the accounting in
Definition 47 is consistent with the definition of potential in Definition 26 using the method in
Lemma 1, although no such proof is supplied here.

Definition 46 (Work-conserving provided service bound). The enforced upper bound on pro-
vided service of a requestor r ∈ R is denoted ŵ′

r(t) : N → R+, and is defined according
to

ŵ′
r(t + 1) =























ŵ′
r(t) + ρ′r r ∈ Ra

t ∧ r ∈ Re
t

ŵ′
r(t) + ρ′r r ∈ Ra

t ∧ r /∈ Re
t ∧ γ(t) 6= r

ŵ′
r(t) + ρ′r + 1 r ∈ Ra

t ∧ r /∈ Re
t ∧ γ(t) = r

w′
r(t) + σ′

r r /∈ Ra
t ∧ γ(t) 6= r

where ŵ′
r(0) = σ′

r.

c© NXP Semiconductors 2008 31

NXP-TN-2007-00119 Unclassified

Definition 47 (Work-conserving accounting). The accounted potential of a requestor r ∈ R
is denoted π∗

r (t) : N → R, and is defined according to

π∗
r (t + 1) =























π∗
r (t) + ρ′r − 1 r ∈ Ra

t ∧ r ∈ Re
t ∧ γ(t) = r

π∗
r (t) + ρ′r r ∈ Ra

t ∧ r /∈ Re
t ∧ γ(t) = r

π∗
r (t) + ρ′r r ∈ Ra

t ∧ γ(t) 6= r

σ′
r r /∈ Ra

t ∧ γ(t) 6= r

where π∗
r (0) = σ′

r.

Work conservation requires a redefinition of blocking, as stated in Lemma 24, since it allows
higher priority requestors to be scheduled without reducing their aggregate potential. Defini-
tion 48 supersedes that in Definition 35, as it is more general and covers both the non-work-
conserving and the work-conserving case. A bound on blocking for a work-conserving arbiter
is derived in Lemma 24.

Definition 48 (Blocking). Blocking of a requestor ri ∈ R in a non-preemptive arbiter during
any interval [τ1, τ2], for which it holds that ∀t ∈ [τ1, τ2]. ri ∈ Re

t , is denoted bri
: R → N, and

is defined as the number of interfering service units a requestor rj ∈ R, ri 6= rj is provided,
without reducing the aggregate potential of R+

ri
.

Lemma 24. A requestor ri ∈ R in a non-preemptive work-conserving arbiter can maximally be
blocked during any interval [τ1, τ2], for which it holds that ∀t ∈ [τ1, τ2]. ri ∈ Re

t , according to

b̂wc
ri

= max
∀rj∈R,rj 6=ri

ŝrj
− 1 (6.1)

Proof. Definition 45 states that any backlogged requestor can be scheduled if Re
t = ∅. The

maximum blocking of a requestor ri ∈ R in a non-preemptive work-conserving arbiter hence
occurs when a request, ωk

ri
, becomes eligible at tnp

e (ωk
ri

) = τ1, and a maximally sized request
from the requestor with the largest request size was scheduled at tnp

e (ωk
ri

) − 1.

Work conservation affects the characterization of w′ since the allocated rate and allocated
burstiness are no longer enforced by the rate regulator. The characterization of w ′ is instead
determined by the rate and burstiness of the requestor, defined in Definition 18, as shown in
Lemma 25. This may result in a much burstier characterization of w′, since σ may be much
larger than σ′ for soft real-time requestors. The rate, however, is unaffected since Definition 19
states that ∀r ∈ R. ρ′ ≥ ρ.

Lemma 25. w′
r of a requestor r ∈ R is (σ, ρ) constrained with parameters (σr + ρr ·Θr, ρr) if

the CCSP arbiter is work conserving.

Proof. The second case in Definition 47 states that π∗
r does not decrease at t+1 if r ∈ Ra

t ∧ r /∈
Re

t ∧ γ(t) = r. According to Definition 29, this implies that the burstiness of w′
r is constrained

by ŵr rather than ŵ′
r. The burstiness of w′

r is hence determined by the difference between ŵr

and w̌′
r. This corresponds to the maximum backlog, which equals q̂r(t) = σr+Θr ·ρr, according

to Lemma 20. The rate of w′
r is determined by ρr since Definition 18 states that this is the rate

at which ŵr increases. By combining these results with Definition 17, we get that w∗
r is (σ, ρ)

constrained with parameters (σr + ρr · Θr, ρr) if the arbiter is work conserving.

32 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

The effects of work conservation are illustrated in Figure 6.1. The figure shows a bursty soft
real-time requestor, ri ∈ R, with σ′

ri
< σri

and ρ′ri
= ρri

. The requestor does not have enough
potential to be scheduled at τ1. The requestor is, however, scheduled anyway between τ1 and τ2

due to work conservation. The requestor is active in the interval and the second-level scheduler
is not allowed to affect the potential. The potential of the requestor hence increases with a rate
ρ′ in the interval, as stated by the second case in Definition 47. The requestor is eligible at τ2

since it has enough potential to serve the next request, and is scheduled again between τ2 and τ3.
However, this time the potential of the requestor is reduced while it is receiving service, as stated
by the first case in Definition 47. If a lower priority requestor, rj ∈ R, becomes eligible between
τ1 and τ2 then it gets blocked by ri, according to Definition 35, since the aggregate potential of
R+

rj is not reduced. The figure also shows that ŵ′ approaches ŵ, as ri receives service due to
work conservation between τ1 and τ2. This illustrates that work conservation implies that the
maximum burstiness of w′ is determined by the maximum backlog, q̂, as shown in Lemma 25.

A
cc

um
ul

at
ed

se
rv

ic
e

Time [cycles]

w

ŵ

σ
′

σ

w̌
′

w
′

ŵ
′

ρ = ρ
′

Θ

τ1 τ2 τ3

q̂

Figure 6.1: A bursty soft real-time requestor that is provided service between τ1 and τ2 due to
work conservation.

c© NXP Semiconductors 2008 33

NXP-TN-2007-00119 Unclassified

Section 7

Hardware implementation

In this section, we present an efficient hardware implementation of a non-preemptive CCSP
arbiter. First, a discrete version of the rate regulator that features negligible over-allocation is
introduced in Section 7.1. We then proceed by presenting the architecture and synthesis results
of the arbiter in Section 7.2.

7.1 Discrete rate regulation

To maximize the applicability of the arbiter in the context of SoCs, the hardware implementation
requires a low-cost implementation that runs at high speeds. For this reason, we developed
a discrete implementation of the accounting and enforcement in rate regulator that has finite
precision and avoids elements like multipliers and comparators, where possible, to reduce area
and increase speed.

The accounting mechanism used by the hardware implementation of the CCSP rate regu-
lator is presented Definition 52. It is based on the mechanism presented in [22], modified to
implement a discrete version of the potential-based accounting in Definition 27. The discrete
service allocation, defined in Definition 49, tries to approximate the non-discrete allocation in
Definition 19 as closely as possible, given a particular precision. The discrete allocated rate of
a requestor, ρ′′, is expressed as a fraction of the available service capacity, as defined in Defini-
tion 50. Resource access is based on credits that are a discrete representation of the potential.
The amount of initial credits, c(0), is determined by the discrete allocated burstiness of a re-
questor, defined in Definition 51, according to c(0) = σ ′′ · d. Credits are updated at the end
of every cycle according to Definition 52. Note how the credit mechanism reduces managing
fractions to simple integer arithmetic suitable for efficient hardware implementation.

Definition 49 (Discrete service allocation). The service allocation of a requestor r ∈ R in the
discrete implementation is defined as (ρ′′r , σ

′′
r).

Definition 50 (Discrete allocated rate). The discrete allocated rate of a requestor r ∈ R in an
arbiter with a precision of β bits is denoted ρ′′r ∈ Q+, and is represented as ρ′′r = nr/dr, where
nr, dr ∈ N+ < 2β . The values of nr and dr are chosen such that ρ′′r is the minimum rate that
satisfies ρ′′r ≥ ρ′r.

Definition 51 (Discrete allocated burstiness). The discrete allocated burstiness of a requestor
r ∈ R is denoted σ′′

r ∈ R+, and is defined as σ′′
r = dσ′·dre

dr
.

34 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Definition 52 (Credits). The amount of credits of a requestor r ∈ R is denoted cr(t) : N → N,
and is defined as

cr(t + 1) =











cr(t) + nr − dr γ(t) = r

cr(t) + nr γ(t) 6= r ∧ qr(t) > 0

min(cr(t) + nr, cr(0)) γ(t) 6= r ∧ qr(t) = 0

(7.1)

where cr(0) = σ′′
r · dr.

A lower bound on the potential of an inactive requestor is derived in Lemma 26. We use
this result in Theorem 3 to prove that the credit mechanism in Definition 52 is a discrete imple-
mentation of the accounting based on potential in Definition 27 with discrete service allocations
according to Definition 49.

Lemma 26. For a requestor r /∈ Ra
t ⇒ πr(t) > σ′

r − ρ′r.

Proof. By negating Definition 20, we know that iff r /∈ Ra
t then qr(t) = 0 and wr(τ1 − 1, t −

1) < ρ′r · (t − τ1 + 1), where τ1 is the start of the last active period. From Definition 14,
we get that qr(t) = 0 implies wr(t) = w′

r(t). Substituting this into the expression results in
w′

r(τ1−1, t−1) < ρ′r ·(t−τ1+1). Lemma 4 states that w′
r(τ1−1, t−1) = w′

r(τ1, t−1), giving
us w′

r(τ1, t−1) < ρ′r ·(t−τ1+1), which according to Lemma 6 implies that πr(t) > σ′
r−ρ′r.

Theorem 3 (Discrete accounting). The accounting mechanism in Definition 52 is a discrete
implementation of Definition 27 with discrete service allocations according to Definition 49,
where it holds that ∀t. cr(t) = πr(t) · dr.

Proof. We rewrite the equation in Definition 27 by splitting the second case, where r ∈ Ra
t , in

two, according to Definition 20. In the first case qr(t) > 0 and in the other qr(t) = 0 and r ∈ Rl
t.

According to Definition 23 and Lemma 7, r ∈ Rl
t and q(t) = 0 implies that πr(t) ≤ σ′′

r − ρ′′r .
We use the results from Lemma 26 to rewrite the case where r /∈ Ra

t , resulting in

πr(t + 1) =























πr(t) + ρ′′r − 1 γ(t) = r

πr(t) + ρ′′r γ(t) 6= r ∧ qr(t) > 0

πr(t) + ρ′′r γ(t) 6= r ∧ qr(t) = 0 ∧ πr(t) ≤ σ′′
r − ρ′′r

σ′′
r γ(t) 6= r ∧ qr(t) = 0 ∧ πr(t) > σ′′

r − ρ′′r

(7.2)

Multiplying both sides of Equation (7.2) with dr and substituting cr(t) = πr(t) · dr, nr =
ρ′′r · dr and cr(0) = σ′′

r · dr, according to Definition 50 and Definition 52 yields

cr(t + 1) =























cr(t) + nr − dr γ(t) = r

cr(t) + nr γ(t) 6= r ∧ qr(t) > 0

cr(t) + nr γ(t) 6= r ∧ qr(t) = 0 ∧ cr(t) ≤ cr(0) − nr

cr(0) γ(t) 6= r ∧ qr(t) = 0 ∧ cr(t) > cr(0) − nr

(7.3)

To simplify the accounting, we merge the two last cases in Equation (7.3) into cr(t + 1) =
min(cr(t) + nr, cr(0)), where the third case in Equation (7.3) is covered by the first operand
and the fourth case by the second operand. This concludes the proof, as we have now arrived at
the accounting mechanism proposed in Definition 52.

c© NXP Semiconductors 2008 35

NXP-TN-2007-00119 Unclassified

Corollary 4. It follows from Definition 29 and Theorem 3 that a requestor r ∈ R requires
cr(t) ≥ s(ωk

r) · dr − nr to become eligible for scheduling of ωk
r at t.

We proceed by examining the over-allocation properties, defined in Definition 53. The pro-
posed accounting mechanism is effective as it has an accuracy that is limited only by the number
of bits, β, used to represent n and d. Greater precision limits the over-allocation due to dis-
cretization errors, as shown in Lemma 27. This is beneficial as high precision potentially results
in a significant increase in resource utilization if the number of requestors is large [10].

Definition 53 (Over-allocation). The over-allocation of a requestor r ∈ R in a CCSP arbiter
is denoted ε(ρ′′r , ρ

′
r) : Q+ × R+ → R, and is defined according to

ε(ρ′′r , ρ
′
r) = ρ′′r − ρ′r (7.4)

Lemma 27. The over-allocation of a requestor in a CCSP arbiter with a precision of β bits is
upper bounded according to

ε(ρ′′, ρ′) <
1

2β − 1
(7.5)

Proof. Over-allocation is defined as ε(ρ′′, ρ′) = ρ′′ − ρ′, according to Definition 53. We know
from Definition 50 that ρ′′ = n/d. The definition furthermore states that n and d are chosen such
that ρ′′ is the minimum rate satisfying ρ′′ ≥ ρ′. This means that d = 2β − 1 and n = dd · ρ′e,
unless there is another n, d pair that yields a tighter approximation. By substituting this result
into Equation (7.4) and perform basic algebraic manipulation, we hence arrive at

ε(ρ′′, ρ′) <
dd · ρ′e

d
−

d · ρ′

d
< 1/d

The proof is concluded by substituting d = 2β − 1.

Lemma 27 shows that the maximum over-allocation reduces exponentially with increasing
precision. This can be compared to the over-allocation of a DRR [5] scheduler that over-allocates
according to εDRR(ρ′′, ρ′) < 1/F , where F is the frame size of the scheduler. We note that the
maximum over-allocation of a requestor is inversely proportional to the frame size, implying that
a large frame size is required to provide an efficient allocation. However, we also know from
Equation (5.10) that the service latency is proportional to the frame size, resulting in a trade-off
between low service latency and over-allocation. The CCSP arbiter does not suffer from this
limitation.

7.2 Architecture

The proposed arbiter, shown in Figure 7.1, has been implemented in VHDL and integrated into
the Predator DDR2 SDRAM controller [23]. This controller is used in the context of a multi-
processor SoC that is interconnected using the Æthereal NoC [24]. Requests arrive at a network
interface (NI) [25] on the edge of the network, where they are buffered in separate request buffers
per requestor.

The rate regulator is implemented according to Section 7.1. A register bank contains four
registers for every requestor: n, d, c(t), and c(0). These registers are programmable using
memory mapped IO for run-time (re)configuration.

36 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

cfg

SchedulerRate regulator

request
buffers

NI

bank
R

egister

Update
state

E
ligibility test

s(ωk
r)

cr(t)

γnwc
np (t)

Figure 7.1: A non-preemptive non-work-conserving CCSP arbiter without priority switch sup-
porting three requestors.

The static-priority scheduler is implemented by a tree of multiplexers that simply grant ac-
cess to the highest priority requestor that is eligible, an operation that is faster than comparing
deadlines, as done in [12]. The scheduled requestor is output from the arbiter, but also fed back
to a unit that updates the register bank to reflect the new credit state, as discussed in Section 4.1.
Work conservation is implemented by connecting the request pending signals to another multi-
plexer tree. A final multiplexer decides to use the second tree if no eligible requestor is found
on the first, as shown in Figure 7.2. This means that static-priority scheduling is also used as
a second-level scheduler to distribute slack. Configurable priorities can be implemented in two
different ways. The intuitive way is to use a programmable priority switch that maps the re-
quest buffers to the scheduler according to its priority level. The switch is combined with a
look-up table (LUT) that remaps the index of the scheduled requestor, as shown in Figure 7.2.
Another option is to use the reconfiguration abilities of Æthereal [26] to change how the net-
work connections of the requestors are mapped to the buffers in the NI. The first option requires
additional hardware to implement the priority switch, but reconfigures faster since it does not
require network connections to be flushed, torn down, and re-setup.

cfg

LUT

request

NI Rate regulator Scheduler

buffers

bank
R

egister

P
riority sw

itch

Update
state

E
ligibility test cr(t)

s(ωk
r)

γwc
np (t)

Figure 7.2: A non-preemptive work-conserving CCSP arbiter with priority switch supporting
three requestors.

c© NXP Semiconductors 2008 37

NXP-TN-2007-00119 Unclassified

Synthesis of the arbiter in CMOS090LP with six ports using eight bits to represent each
of n, d, c(t) and c(0) results in a total area of 0.0175 mm2. This synthesized instance is non-
preemptive and non-work-conserving, and does not contain the priority switch. This instance
of the arbiter synthesizes at a frequency of 250 MHz, which is above 200 MHz required for
a DDR2-400 SDRAM device. Figure 7.3 shows how the area of the arbiter scales with and
without the switch with a speed target of 200 MHz. We see that the arbiter scales linearly with
the number of ports without the switch. The arbiter is expected to scale quadratically when the
switch is included. However, this trend is not visible in the results. A possible explanation for
this is that the switch is not large enough for this trend to be clearly visible unless the number of
ports is bigger.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

2 4 6 8 10

A
re

a
[m

m
2]

Ports

Area with switch
Area without switch

Figure 7.3: The area of the arbiter with and without the priority switch.

We experimented by varying the number of bits used to represent the values in the register
bank to show how allocation granularity is traded for area. Figure 7.4 illustrates the trade-off
between allocation granularity and area for an arbiter with six ports as the bit widths of n, d, c(t)
and c(0) are changed. Notice that the exponential reduction in maximum over-allocation from
Equation (7.5) comes at a linear increase in area.

38 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

 0

 0.01

 0.02

 0.03

 0.04

 0.05

4 6 8 10 12 14
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

A
re

a
[m

m
2]

A
llo

ca
tio

n
gr

an
ul

ar
ity

Bits

Area
Allocation granularity

Figure 7.4: The allocation granularity/area trade-off.

c© NXP Semiconductors 2008 39

NXP-TN-2007-00119 Unclassified

Section 8

Experimental results

We have experimented with SystemC simulation of a use-case involving an H.264 video decoder.
The H.264 decoder contains a number of requestors communicating through external memory.
Access to a DDR2-400 SDRAM is provided by a Predator SDRAM controller [23]. A benefit
of this controller is that the arbiter schedules memory accesses of 64 B to the requestors, as
opposed to scheduling time, which means that the amount of work associated with a request is
always known. This allows us to use the setup to experiment with both CCSP and SRSP. The
time required by the memory controller to serve a service unit corresponds to approximately 80
ns on average. An equation is presented in [23] that computes the worst-case service latency in
ns, given a number of interfering service units.

The use-case contains a file reader that reads an encoded image and stores it in external
memory. This requestor works on the granularity of 64 KB blocks. These blocks are distributed
over 1000 requests of 64 B each that are essentially issued back-to-back, making the requestor
extremely bursty. The decoder software is running on a TriMedia 3270 [27]. The TriMedia uses
separate read (TMrd) and write connections to communicate with external memory through an
L1 cache with a line size of 128 B. Finally, a display controller reads the decoded image in blocks
of 128 B and shows it on a display. For the purpose of this document, this is considered as a soft
real-time application that has deadlines on the granularity of decoded frames. We add two hard
real-time requestors (HRT1, HRT2), mimicked by traffic generators, to create a hybrid system.
These issue read and write requests of 128 B to external memory. High priority is assigned to
the soft real-time requestors and lower priorities to the hard real-time requestors, according to
the assignment strategy in [11]. The assignment within these classes is determined depending
on the criticality of the requestors. The allocation parameters (σ ′ and ρ′) of the hard real-time
requestors are chosen such that the rate regulator never slows them down and violates their
bounds on service latency. For the soft real-time requestors, ρ′ is chosen based on measurements
such that ρ′ ≥ ρ. Finding a structured methodology for deriving these parameters, such that soft
real-time requestors meet their task-level deadlines, is still an active research question that is
outside the scope of this document. Table 8.1 lists the configuration parameters of the requestors
in the use-case. A total of 600 MB/s is allocated to the requestors, corresponding to a load of
90.7% of the capacity offered by the memory controller for a 16-bit DDR2-400 device after
taking access overhead into account [23]. The total over-allocation is 0.0294%, corresponding
to a waste of mere 0.19 MB/s, when 8 bits are used to represent n and d of the requestors.
Table 8.1 presents average service latencies, Θ̄, and the maximum measured service latencies,
max Θ, for all requestors after 2 · 108 ns of simulation with both a non-work-conserving and
a work-conserving instance of CCSP. The corresponding service latency bounds, Θ̂, obtained

40 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

Table 8.1: Requestor configuration and results for use-case.
Requestor σ′ ρ′ ŝ p Θ̄nwc max Θnwc Θ̂nwc Θ̄wc max Θwc Θ̂wc

TriMedia (read) 2.0 0.151 2 0 5.29 13 N/A 1.10 11 N/A
TriMedia (write) 2.0 0.151 2 1 3.37 13 N/A 2.88 14 N/A

Display Controller 2.0 0.047 2 2 36.46 46 N/A 3.54 42 N/A
File Reader 2.0 0.077 1 3 11.26 17 N/A 2.03 14 N/A

Hard real-time 1 3.4 0.242 2 4 0.30 7 15 0.32 7 15
Hard real-time 2 3.5 0.242 2 5 2.47 10 34 2.46 11 37

using Equation (5.5), are also listed for hard real-time requestors.
We note that the average latencies of the soft real-time requestors are significantly reduced

when work-conservation allows the arbiter to distribute the 9.3% of unallocated resource capac-
ity. Hard real-time requestors do not benefit from work-conservation, since the rate regulator
is configured to give them all the service they require, as mentioned in Section 5.2. We also
observe that the implications of work-conservation on the service latency bounds of the hard
real-time requestors are very small (+1 for HRT2). This makes work-conservation an interesting
option for single servers, where an increased burstiness of the provided service does not matter.
The measured service latencies are lower than the bounds for both hard real-time requestors
with both work-conserving, and non-work-conserving arbitration, as expected. However, we
note that the difference between the maximum measured value and the bound gets larger with
lower priorities. A reason for this is that the risk of simultaneous maximum interference from
all higher priority requestors becomes increasingly unlikely with lower priorities.

We proceed by looking at how changing the service allocation, (σ ′, ρ′), affects the results.
We begin by studying the impact of changing ρ′. The non-work-conserving use-case in Ta-
ble 8.1 is used as a starting point, but HRT2 is removed from the system to free capacity, and
ρ′ of TMrd is used as a variable in the range [0.10, 0.45] in increments of 0.05. The results of
this experiment, shown in Figure 8.1, indicate that the service latency of TMrd is reduced with
approximately 40% per increment. We also see an increase in both the service latency bound and
maximum measured service latency for HRT1. The gap between these two lines become slightly
wider for larger values of ρ′, suggesting that the tightness of the bound is somewhat reduced.

 0

 5

 10

 15

 20

 25

 30

 35

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

S
er

vi
ce

 la
te

nc
y

Allocated rate TMrd

Average TMrd
Bound HRT1

Max HRT1

Figure 8.1: The average service latency of TMrd is significantly reduced as its allocated rate is
increased. This results in an increased latency bound and maximum measured latency for HRT1.

c© NXP Semiconductors 2008 41

NXP-TN-2007-00119 Unclassified

A similar experiment is conducted to examine the impact of σ ′. Again, we start from the
non-work-conserving use-case in Table 8.1 and remove HRT2. We let σ′ for TMrd be variable
in the range [2, 256] that doubles for every increment. The result of this experiment is shown in
Figure 8.2. The average latency of TMrd is slightly reduced with an average of 11% per incre-
ment. The bound on service latency for HRT1, however, increases significantly, and requires a
separate y-axis in the graph with a range that is almost two orders of magnitude larger than that
of TMrd. The maximum measured service latency is just increased from 6 to 11 in the interval,
resulting in a rapidly growing gap between the maximum service latency and the bound.

From these experiments with service allocation, we conclude that increasing ρ′ is a very
powerful way of reducing average service latency while maintaining reasonable bounds, as long
as the resource has unused capacity. We furthermore conclude that σ ′ should be fitted as tight as
possible to produce meaningful bounds. This suggests that σ ′ = σ for hard real-time requestors,
and σ′ = ŝ for soft real-time requestors may be a good burstiness allocation strategy.

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32 64 128 256
 0

 100

 200

 300

 400

 500

S
er

vi
ce

 la
te

nc
y

TM
rd

S
er

vi
ce

 la
te

nc
y

H
R

T 1
Allocated burstiness TMrd

Average TMrd
Bound HRT1

Max HRT1

Figure 8.2: Increasing the allocated burstiness of TMrd results in a slight decrease in service
latency, at the cost of a significant increase in the latency bound of HRT1.

We continue by experimenting with the allocation properties of CCSP. We create five use-
cases by permuting the allocated rates of the requestors in the use-case in Table 8.1. Figure 8.3
shows the average and maximum over-allocation for these use-cases, along with the correspond-
ing bounds, for a varying number of bits to representing n and d. We use the bound from
Equation (7.5) and multiply that with the number of requestors, in this case six, to bound the
total over-allocation. As seen in the figure, seven bits are required to get an allocation bound
below 5%, and eight bits to get below 2.5%. The maximum measured over-allocation, however,
is below 0.5% already when using six bits, demonstrating the efficiency and scalability of our
approach to service allocation. We observe that the maximum over-allocation is consistently
significantly smaller than the bound. This is because the bound assumes that d = 2β − 1 and
n = dd · ρ′e, although in most cases a fraction can be found that yields a much tighter approxi-
mation of ρ′. This indicates that it may be possible to further improve the over-allocation bound
for CCSP.

All simulations have been repeated with an SRSP arbiter, and the latency results proved to
be identical for every single request for all configurations. A possible explanation for this is that
the CCSP rate regulator admits more service than SRSP only when it is backlogged, and that
any latency benefits of admitting burstier traffic may be canceled out when the request waits for

42 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 5 6 7 8

O
ve

r-
al

lo
ca

tio
n

[%
]

Bits

Bound
Max

Average

Figure 8.3: The average and maximum over-allocation, along with the corresponding bounds,
for a varying number of bits representing n and d.

previous requests from the same requestor to be scheduled. This result, however, indicates that
CCSP has all the benefits of regulating provided service, as mentioned in Section 4.1, without
introducing additional latency, compared to an SRSP arbiter.

c© NXP Semiconductors 2008 43

NXP-TN-2007-00119 Unclassified

Section 9

Conclusions and future work

In this document, we present an arbiter called Credit-Controlled Static-Priority (CCSP) for
scheduling access to resources, such as interconnect and memories in systems-on-chip. CCSP
resembles an arbiter with a rate regulator that enforces a (σ, ρ) constraint on requested ser-
vice together with a static-priority scheduler. However, instead of enforcing an upper bound on
requested service, CCSP enforces an upper bound on provided service. Regulating provided ser-
vice, as opposed to regulating requested service has two benefits: 1) the implementation of the
regulator is less complex, and 2) the amount of work associated with a particular request does
not have to be known. We show that CCSP enjoys these benefits, without increasing worst-case
latency or buffering, compared to an arbiter regulating requested service. We furthermore show
that CCSP belongs to the class of latency-rate (LR) servers and guarantees the allocated service
rate within a maximum latency, required by hard real-time requestors.

We present an implementation of the arbiter in the context of a DDR2 SDRAM controller
that has been efficiently integrated into the network interface of a network-on-chip. The area of
implementation is small and scales linearly with the number of requestors. An instance with six
ports runs at 250 MHz and requires 0.0175 mm2 in CMOS090LP. The efficiency of the service
allocation is demonstrated in a use-case involving an H.264 decoder, where only 0.0294% of the
resource capacity is lost due to over-allocation.

Future work involves creating a methodology to automatically derive service allocations
and find a suitable priority assignment, such that the latency and service requirements of all
requestors are met. This is a challenging problem that may require a heuristic approach, as the
latency of the CCSP arbiter is computed by a non-linear equation that does not lend itself to
integer-linear programming, and the configuration space is furthermore likely to be too large to
allow exhaustive searches.

44 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems.
Real-Time Systems Symposium, 1998. Proceedings., The 19th IEEE, pages 4–13, 1998.

[2] Kees Goossens, Om Prakash Gangwal, Jens Röver, and A. P. Niranjan. Interconnect and
memory organization in SOCs for advanced set-top boxes and TV — Evolution, analy-
sis, and trends. In Jari Nurmi, Hannu Tenhunen, Jouni Isoaho, and Axel Jantsch, edi-
tors, Interconnect-Centric Design for Advanced SoC and NoC, chapter 15, pages 399–423.
Kluwer, 2004.

[3] C.M. Aras, J.F. Kurose, D.S. Reeves, and H. Schulzrinne. Real-time communication in
packet-switched networks. In Proceedings of the IEEE, volume 82, pages 122–139, Jan-
uary 1994.

[4] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round-robin cell multiplex-
ing in a general-purpose ATM switch chip. IEEE Journal on Selected Areas in Communi-
cation, 9(8):1265–1279, October 1991.

[5] M. Shreedhar and George Varghese. Efficient fair queueing using deficit round robin. In
SIGCOMM, pages 231–242, 1995.

[6] Hui Zhang. Service disciplines for guaranteed performance service in packet-switching
networks. Proceedings of the IEEE, 83(10):1374–96, October 1995.

[7] C. R. Kalmanek and H. Kanakia. Rate controlled servers for very high-speed networks.
GLOBECOM, pages 12–20, 1990.

[8] S. J. Golestani. A stop-and-go queueing framework for congestion management. In SIG-
COMM ’90: Proceedings of the ACM symposium on Communications architectures &
protocols, pages 8–18, New York, NY, USA, 1990. ACM Press.

[9] S. S. Kanhere and H. Sethu. Fair, efficient and low-latency packet scheduling using nested-
deficit round robin. High Performance Switching and Routing, 2001 IEEE Workshop on,
pages 6–10, 2001.

[10] Debanjan Saha, Sarit Mukherjee, and Satish K. Tripathi. Carry-over round robin: a simple
cell scheduling mechanism for ATM networks. IEEE/ACM Trans. Netw., 6(6):779–796,
1998.

[11] S. Hosseini-Khayat and A.D. Bovopoulos. A simple and efficient bus management scheme
that supports continuous streams. ACM Transactions on Computer Systems (TOCS),
13(2):122–140, 1995.

c© NXP Semiconductors 2008 45

NXP-TN-2007-00119 Unclassified

[12] Jennifer Rexford, John Hall, and Kang G. Shin. A router architecture for real-time point-
to-point networks. In ISCA ’96: Proceedings of the 23rd annual international symposium
on Computer architecture, pages 237–246, New York, NY, USA, 1996. ACM Press.

[13] B.K. Kim and K.G. Shin. Scalable Hardware Earliest-Deadline-First Scheduler for ATM
Switching Networks. Proceedings of the Real-time Systems Symposium, pages 210–218,
1997.

[14] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High-Speed Net-
works, 3(4):389–412, 1994.

[15] Tobias Bjerregaard and Jens Sparsø. A scheduling discipline for latency and bandwidth
guarantees in asynchronous network-on-chip. In ASYNC, pages 34–43, 2005.

[16] R.L. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE Transac-
tion on Information Theory, 37(1):114–131, 1991.

[17] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of deterministic
queuing systems for the internet. Springer-Verlag New York, Inc., New York, NY, USA,
2001.

[18] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: a general model for analysis
of traffic scheduling algorithms. IEEE/ACM Transaction on Networking, 6(5):611–624,
1998.

[19] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: the single-node case. IEEE/ACM Trans.
Netw., 1(3):344–357, 1993.

[20] Maarten H. Wiggers, Marco J. G. Bekooij, and Gerard J. M. Smit. Modelling run-time
arbitration by latency-rate servers in dataflow graphs. In SCOPES ’07: Proceedingsof the
10th international workshop on Software & compilers for embedded systems, pages 11–22,
New York, NY, USA, 2007. ACM.

[21] Rajeev Agrawal and Rajendran Rajan. Performance bounds for guaranteed and adaptive
services. Technical Report RC20649 (91385), IBM Research Division, May 1996.

[22] Clara Otero Pérez, Martijn Rutten, Jos van Eijndhoven, Liesbeth Steffens, and Paul
Stravers. Resource reservations in shared-memory multiprocessor SOCs. In Peter van der
Stok, editor, Dynamic and Robust Streaming In And Between Connected Consumer-
Electronics Devices, chapter 5, pages 109 – 137. Springer, 2005.

[23] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable sdram
memory controller. In CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, pages 251–256, New
York, NY, USA, 2007. ACM.

[24] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthereal network on chip:
Concepts, architectures, and implementations. IEEE Design and Test of Computers,
22(5):414–421, Sept-Oct 2005.

46 c© NXP Semiconductors 2008

Unclassified NXP-TN-2007-00119

[25] Andrei Rădulescu et al. An efficient on-chip network interface offering guaranteed ser-
vices, shared-memory abstraction, and flexible network programming. IEEE Transaction
on CAD of Integrated Circuits and Systems, 24(1):4–17, January 2005.

[26] Andreas Hansson, Martijn Coenen, and Kees Goossens. Undisrupted quality-of-service
during reconfiguration of multiple applications in networks on chip. In Proc. Design,
Automation and Test in Europe Conference and Exhibition (DATE), pages 954–959, April
2007.

[27] Jan-Willem van de Waerdt, Stamatis Vassiliadis, Sanjeev Das, Sebastian Mirolo, Chris Yen,
Bill Zhong, Carlos Basto, Jean-Paul van Itegem, Dinesh Amirtharaj, Kulbhushan Kalra,
Pedro Rodriguez, and Hans van Antwerpen. The TM3270 Media-Processor. In MICRO 38:
Proceedings of the 38th annual IEEE/ACM International Symposium on Microarchitecture,
pages 331–342, Washington, DC, USA, 2005. IEEE Computer Society.

c© NXP Semiconductors 2008 47

