Predictable and Composable
System-on-Chip Memory Controllers

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op woensdag 24 februari 2010 om 16.00 uur

door

Benny Akesson

geboren te Saxtorp, Zweden

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. K.G.W. Goossens
en
prof.dr. H. Corporaal

A catalogue record is available from the Eindhoven Uniwgrsi Technology Library

ISBN: 978-90-386-2169-2
NUR: 959

Predictable and Composable
System-on-Chip Memory Controllers

Benny Akesson

Members of the dissertation committee:

Prof.dr. K.G.W. Goossens Eindhoven University of Techgglo (first promotor)

Prof.dr. H. Corporaal Eindhoven University of Technology second promotor)
Prof.dr.ir. C.H. van Berkel Eindhoven University of Teclhogy
ST Ericsson

Prof.dr.ir. M.J.G. Bekooij University of Twente
NXP Semiconductors

Prof.Dr.-Ing R. Ernst Technical University of Braunschwei
Prof.dr.ir. H.J. Sips Delft University of Technology
Dr.ir. P. van der Wolf Virage Logic

Prof.dr.ir. A.C.P.M. Backx Eindhoven University of Techogy (chairman)

This work was carried out at Philips Electronics & NXP Semidoctors.

Copyright 2010 Benny Akesson

All rights reserved. No part of this publication may be refarced, stored in a retrieval
system, or transmitted, in any form or by any means eleatronéchanical,
photocopying, or otherwise, without the prior written p&sion from the copyright
owner.

Cover design by Juan Manuel Martelli.

Printing by Printservice, Eindhoven University of Techom.

This thesis is dedicated to the
memory of Marianne Akesson, my
loving mother who left us much too soon.

Vi

Acknowledgements

This journey would not have been possible without the cbations from many people.
I want to thank Prof. Lambert Spaanenburg for organizinditid-trip that first brought
me to the Netherlands and resulted in my master project dipPlResearch in Eind-
hoven. | am also grateful to Prof. Jef van Meerbergen for hppodunity to become a
Ph.D. student at the Eindhoven University of Technology.

Moving abroad was a life-changing experience. Thanks téribieds in Sweden that
kept in touch after I left, most prominently Malin Davidssonalso want to thank the
International Student Network in Eindhoven, through whictuickly made many new
friends from all over the world. Special thanks to Ramestd@imibaram and Anastasia
Andreadaki, who were both here from the very beginning, ahd are still here, no
matter how hard they try not to. During my stay in EindhovedgVeloped a passion
for capoeira. Obrigado Formado Tayson and all capoeiristBdhoven for the classes
and the good times in the roda.

In the Electronic Systems group at Eindhoven University @€finology, | want to
thank my second promotor Prof. Henk Corporaal for the fulifédedback that improved
this thesis. Big thanks also to Sander Stuijk for all the écdl support over the years. |
furthermore want to recognize our dear secretaries, Riardzmlen and Marja de Mol -
Regels, who always helped with practical matters.

| always enjoyed working at Philips and NXP. | want to thankfPiKees Goossens
for being my first promotor, and a role model as mentor, siserdnd Jedi master. |
am proud to have been a part of his Athereal team. Never béihgo many people
work so hard on a project that was so cancelled. | am also happsive worked with
Prof. Marco Bekooij and his people in the Hijdra project. tther want to mention
Roelof Salters for sharing his deep knowledge about SDRANhor&s, Ad Siereveld
for his insights on memory controller architectures, anelsbieth Steffens for teaching
me about real-time arbitration. Coming to work was alwayseagure with great office
mates and fellow Ph.D. students. Thank you Aleksandar Mibwric, Tjerk Bijlsma,

Vii

viii

Maarten Wiggers, Arno Moonen and Philippe Dumont, just tmea few. Working
together is more fun than working alone. In this spirit, Irtkany students Markus
Ringhofer, Eelke Strooisma, Getachew Teshome, Willistayd4, and Winston Siauw
for their contributions to my research and for the fun we twagether.

| extend my deepest gratitude to Andreas Hansson, a greadfand house mate.
| really value our cooperation during the past decade. Naw,goiest to take over the
world continues, but on different hemispheres. Divide amubzier!

I would not be here without my family who always supported meaghout my life,
and encouraged me to follow my dreams and leave my country e opportunity
presented itself. In particular, | want to thank my pareMsrianne and Lars-Géran
Akesson, for always acting in the best interest of theirdrih. | owe it all to you!
Finally, | want to thank Maria Eugenia Martelli for being theeatest girlfriend through
the long working hours and mood swings it means to finish a PHdYe you!

Abstract

Predictable and Composable System-on-Chip Memory Controfirs

Contemporary System-on-Chip (SoC) become more and mor@lemmas increasing
integration results in a larger number of concurrently exieg applications. These ap-
plications consist of tasks that are mapped on heterogeneaiti-processor platforms
with distributed memory hierarchies, where SRAMs and SDRAVE shared by a vari-
ety of arbiters. Some applications haeal-time requirementgneaning that they must
perform a particular computation before a deadline to guamfunctional correctness,
or to prevent quality degradation. Mapping the application the platform such that all
real-time requirements are satisfied is very challenginige fumber of possible map-
pings of tasks to processing elements and data structuresrwries may be large, and
appropriate configuration settings must be determined threceapping is chosen. Ver-
ifying that a particular mapping satisfies all applicati@yuirements is typically done
by system-level simulation. However, resource sharingesinterference between ap-
plications, making their temporal behaviors inter-depsmdAll concurrently executing
applications must hence be verified together, causing thicadion complexity of the
system toincrease exponentiallwith the number of applications. Together these fac-
tors contribute to making the integration and verificationgess a dominant part of SoC
development, both in terms of time and money.

Predictableandcomposablesystems are proposed to manage the increasing verifica-
tion complexity. Predictable systems provide lower boumspplication performance,
while applications in composable systems are completelgtied and cannot affect each
other’s temporal behavior by even a single clock cycle. etable systems enable for-
mal verification that covers all possible interactions wittle platform. However, this
assumes that the behavior of an application is captured @nfarmance model, which is
not the case for many applications. Composability offeremmlementary verification
approach by letting these applications be verified indepethgl by simulation with lin-
ear verification complexity. A limitation of current pretible and composable systems

iX

is that there are no memory controllers supporting the qaisde a general way. Current
SRAM controllers can be shared in a predictable way with &taof arbiters, but are
only composable if statically scheduled or shared using-ifivision multiplexing. Ex-
isting SDRAM controllers are not composable, and are eitheredictable or limited to
applications that are statically scheduled.

This thesis addresses the limitations of current predietabd composable systems
by proposinga general predictable and composable memory contrplikereby ad-
dressing the mapping and verification problem in embeddstesys. The proposed
memory controller is divided into &ont-endand aback-end The back-end is spe-
cific for DDR2/DDR3 SDRAM and makes the memory behave in aiptabdle manner
using precomputed memory patterns that are dynamicallybgwed at run time. The
front-end contains buffering and an arbiter in the class atehcy-Rate {R) servers,
which is a class with many well-known predictable arbitéi&e extend this class with a
Credit-Controlled Static-Priority (CCSP) arbiter thatisveloped specifically for shared
resources with latency-critical requestors and high Ipadsh as memories. Three key
features of CCSP are: 1) It accommodates latency-critgcplestors with low bandwidth
requirements without wasting bandwidth. 2) Over-alloddiendwidth due to discretiza-
tion can be made negligible at an increased area cost, wittifmeting latency. 3) It has
a small implementation that runs fast enough to keep up withtidDR2/DDR3 memo-
ries. The proposed front-end is general and can be used thigh predictable resources,
such as SRAM controllers. The proposed memory controllecéesupports multiple
arbiter and memory types, thus addressing the diversityddem SoCs. The combina-
tion of front-end and predictable memory behaves lik&faserver, which is thehared
resource abstractiomised in this work. In essence &R server guarantees a requestor
a minimum bandwidth and a maximum latency, enabling forreaffication of real-time
requirements. Th&€R server model is compatible with several commonly used férma
analysis frameworks, such as network calculus and dataaft@lysis. Our memory con-
troller hence allowsny combinatiorof predictable memory andR arbiter to be used
transparently for formal verification of applications wihy of these frameworks.

Sharing a predictable memory at run-time results in interfee between requestors,
making the memory controller non-composable. This is asidreé by adding a Delay
Block to the front-end that delays all signals sent from ttmt-end to a requestor to
always emulate worst-case interference. This makes reargesnable to affect each
other’s temporal behavior, which is sufficient to guarargemposability on the level of
applications. Our predictable memory controller hencersfitomposable service with
a variety of memory and arbiter types, which widely exterfds ¢cope of composable
platforms. Another benefit of this approach is that it enslogl@mposable service to be
dynamically enabled and disabled, enabling requestotsdthaot require composable
service to use slack bandwidth to improve performance.

The predictable and composable memory controller is sup@day a configuration
flow thatautomatically computes memory patterns and arbiter sgdtio satisfy given
bandwidth and latency requirements. The flow uses absiratdiseparate the configu-
ration of the memory and the arbiter, enabling settings todmputed in a streamlined
fashion for all supported memories and arbiters.

Contents

Introduction

1.1 Trends in embedded system design
1.2 Problem statement
1.3 Requirements
1.4 Contributions
15 Outline
1.6 Summary

Proposed solution
2.1 Predictability
2.2 Abstraction

2.3 Composability

2.4 Automation

25 Summary

SDRAM memories and controllers
3.1 Introduction to SDRAM
3.2 Formal model
3.3 Memory efficiency

3.4 Memory controllers
35 Summary

Predictable SDRAM back-end
4.1 Overview of predictable SDRAM controller
4.2 Memory patterns
4.3 Memory efficiency bound

Xii

4.4 Latency bound
4.5 Memory pattern generation
4.6 Architecture and synthesis
4.7 Experimental results
4.8 Summary

5 Credit-Controlled Static-Priority arbitration
5.1 Arbiter requirements
5.2 Formal model
5.3 Definition of CCSP arbitration
5.4 Arbiter analysis
55 LR server
5.6 Hardware implementation
5.7 Architecture and synthesis
5.8 Experimental results
5.9 Summary

6 Composable resource front-end
6.1 Overview of approach
6.2 Formal model
6.3 Timing analysis
6.4 Architecture and synthesis
6.5 Experiments
6.6 Summary

7 Configuration

7.1 Formal model
7.2 Memory pattern generation
7.3 Normalization of requirements
7.4 Arbiter configuration
7.5 Denormalization of allocation
7.6 Requirement verification
7.7 Experimental results
7.8 Summary

8 Related work

8.1 Resource arbitration
8.2 SDRAM controllers
8.3 Composable service

Bibliography

Conclusions and future work
9.1 Conclusions
9.2 Future work

CONTENTS

CONTENTS Xiii

A Glossary 209
A.l Listofabbreviations, 0
A.2 Listofsymbols 210

B System XML specification 215
B.1 Architecture specification L. 215
B.2 Use-case specification. 172

C About the author 219

D List of publications 221

Xiv CONTENTS

List of Figures

11

1.2
13
14
15
1.6
1.7
18

1.9
1.10

1.11

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9

Example design flow comprised of a partitioning, platfaxploration,
mapping, and a verificationstage.
A JPEG decoder application consisting of three tasks.
Starting and stopping applications causes use-casstioas.

The design productivitygap.

The platform template considered in this thesis.

Processing element and resource communicating vmdamaprotocol.
Multiple processing elements sharing aresource.
Tasks are mapped to processing elements, data stsittungemories,
and communication channels to the interconnect as a pdreohapping
PrOCESS. '« o v v v e e e e e
The SDRAM architecture consists of banks, rows, andapfu
Four systems demonstrating all combinations of thdigtability and

composability properties. L L

The proposed predictable and composable memory dentra

Overview of predictable memory controller.
The behaviors of some important SDRAM commands. -
Read pattern and write patterns with burst length 8 fob&P-400. . .
Mapping from requests to patterns to SDRAM bursts.
Overview of the predictable SDRAM back-end. .

Example of coupling between allocation granulantyeﬂay, and aIIo—

cated bandwidth.

Overview of a CCSP arbiter with two requestors. e
A predictable SDRAM controller supporting two requesto.

TheLR server abstraction.

13

19
20

26
27
29
29
30

XVi

LIST OF FIGURES

2.10 LR arbiters are a subset of predictable arbiters. 34
2.11 An instance of a predictable and composable SDRAM obaty sup-

porting two requestors. e 37
2.12 Simplified overview of the automated configuration flaw. 38

3.1 The SDRAM architecture. 43
3.2 Example of SDRAM timing constraints. 44
3.3 Two bursts of 8 words are required to read or write 8 wohdg are
misaligned. 49
3.4 The most important building blocks of a general SDRAMtoalfer. . . 51
3.5 lllustration of a continuous memory map. 53
3.6 Best case for a requestor reading sequential addresagsawontmuous
MEMOry Map. o ottt e e e 54
3.7 Worst-case for a requestor reading sequential addrassgy a continu-
OUSMEMOIY MAP. . « « v v v e e e e e e e e e e e e e e 54
3.8 Worst-case command sequence for a request consistifayiobursts
using a continuous memory map.o e 55
3.9 lllustration of an interleaved memory map. . . 55
3.10 A requestor reading sequential addresses usmg aiemted memory

4.1 Example pattern sets illustrating the four differennittance classes. . 65
4.2 lllustration of how the dominance class of a pattern bahges asraq
isincremented ordecremented. L L 65
4.3 A sequence of patterns and corresponding bursts. 66
4.4 Refresh efficiency accounts for refresh patterns. 67
4.5 Read/write efficiency accounts for switching patterns.. 68
4.6 Bank and conflict efficiencies remove overhead withirdraad write
patterns, leaving only databursts. 69
4.7 Data efficiency accounts for data that is not useful toestprs, leaving
only requesteddatabursts. oL 70
4.8 The minimum distance between two refresh patterns. 71
4.9 Adding NOPs to the beginning of an access pattern mayedtie length
of aswitching pattern.o 74
4.10 Issuing all bursts to a bank before moving on to the nigesgnore time
between activate and reads/writes, and more time to prgehaefore

reactivating. 75
4.11 The branch and bound algorithm creates pattern by engla tree of

SDRAM commands. 77
4.12 Number of valid patterns fitting our design decision&éat = 2 for a

DDR2-400 SDRAM device. o v v i it 79
4.13 Conceptual illustration of the ASAP scheduling aljoni. 80

4.14 Prematurely scheduled activate commands result getoaccess patterns. 81
4.15 Conceptual illustration of the bank scheduling alponifor BC =1. . 82

LIST OF FIGURES XVii

4.16 Memory efficiency results for DDR2-400. 88
4.17 Memory efficiency results for DDR2-800. 89
4.18 Bank scheduling gross efficiency breakdown for DDR3-80 90
4.19 Bank scheduling gross efficiency breakdown for DDRGE16 91
4.20 Gross efficiency and gross bandwidth comparisons leetdiéferent DDR2

and DDR3memories. e 92
4.21 Bound on net bandwidth for different memories and regisiges. . . . 93
4.22 Net bandwidth plotted over time for a DDR2-400 memorynaind with-

out worst-case switches. 94
5.1 A requested service curve, a provided service curvey’, and repre-

sentations of the related concepts. 100
5.2 Service curves showing the relation between beinghiaeklogged, and

active. e 103
5.3 The upper bound on provided servidgg, is not necessarily monotoni-

callynon-decreasing. 104
5.4 lllustration of the two cases in Theorem5.1. 112
5.5 Example service curvesinfR server. 113
5.6 Relations between busy periods and active periods. 115
5.7 Example of the casesinLemma5.13. 18 1
5.8 The architecture of the CCSP arbiter. 125
5.9 Synthesis results for the CCSP arbiter. T 2
5.10 The trade-off between over-allocation and cell area.. 128
5.11 Maximum measured latency and bound, expressed wceerycles for

therequestorsintheuse-case. 2
5.12 Maximum measured latency and bound, expressed in clmbés at 200

MHz, for the requestors intheuse-case. 134
5.13 Over-allocated rate for the CRA and CBA strategies. 135
5.14 Over-allocated burstiness for the CRA and CBA strategi. 136
5.15 Successful allocations and priority assignments RA@nd CBA. . . . 136
5.16 Success rate when increasing precisionwithCRA. 137
5.17 Success rate when increasing precision with FBSP. 138
6.1 Temporally independent interfaces are created by ihgjagsponses and

flowcontrol. 143
6.2 lllustration of worst-case starting time and finishiimget in aLR server. 145
6.3 The trade-off between service latency and net bandwidth. 147
6.4 An instance of the proposed architecture supportingrégaestors. . . 149
6.5 Delay Block architecture. 150
6.6 Diverging finishing times prevented by discrete appr@tion of the

completionlatency. L 152
6.7 Synthesis results for the Atomizer. 155
6.8 Synthesis results for the Delay Block.w.. 156
6.9 Synthesis results for the Data Bus with a CCSP arblter <. ... 157

XViii LIST OF FIGURES

6.10 The first 200 requests of in the SRAM use-case. 159
6.11 Atoms finish before the computed bound, since they aneedenon-
preemptively. 160
6.12 SRAM controller behaving in a composable manner. 162
6.13 Using a work-conserving arbiter to distribute unadked bandwidth may
significantly reduce finishing times. 164
6.14 The first 200 requests of in the SDRAM use-case. 165
6.15 SDRAM controller behaving in a composable manner. 167
7.1 Overview of the automated configuration flow. 170
7.2 Configuration of CCSP and FBSP consists of a bandwuﬂbmibn step
and a priority assignmentstep. L. 617
7.3 LR servers cannot capture service provided with multiplesrétea re-
QUESEOL. . . . o o e e e e 178
7.4 The percentage of use-cases with bandwidth and latemgyrements
satisfied using pattern generators with fixed and iteratingtltounts. . 183

8.1 Two arbiters regulating requested service and provégedice, respec-
tively. . . . e 187

List of Tables

3.1

3.2

4.1
4.2

4.3
4.4
4.5
4.6

5.1

5.2
5.3
5.4

6.1
6.2

7.1
7.2
7.3
7.4

List of relevant timing parameters for a 64 Mb x16 (512 NM)R2-400

memory device. 45
Comparison of timing constraints in nanoseconds antkagcles for a
DDR2-400 and aDDR3-1600. 50
Worst-case patterns for mix-dominant patterns. 71
List of relevant timing parameters for some dlfferentl\ﬁlé x16 (512

Mb) memory devices with page sizesof 2KB. 86
Length of generated patterns for the DDR2-400 memory.. 87
Length of generated patterns for the DDR2-800 memory.. 88
Length of generated patterns for the DDR3-800 memory.. 90
Length of generated patterns for the DDR3-1600 memory.. 91
Reference to figure showing combinations of livenessiniess, and back-

109, . . o 116
Requestor configuration and service latency bounds.. 129
Bandwidth and service latency results. v . 130
Bandwidth and service latency results with malfuncmgrrequestor us-

ing a regular static-priority arbiter. 0L 131
SRAM use-case specification and configuration. 158
SDRAM use-case specification and configuration. 165
Use-case specification. 711
Output from pattern generation stage. 172
Output from normalizationstage. 175
Results from the bandwidth allocation stage. 178

XiX

XX

7.5
7.6
7.7

7.8

Al

LIST OF TABLES

Results from priority assignmentstage. 179
Output from denormalization stage. 180
Allocated bandwidths and service latencies togethén thieir corre-
spondingbounds. L L 181
Output from normalization stagewithC' =2. 182

Listofsymbols. 210

List of Algorithms

4.1
4.2
6.1
7.1

Pseudo-code of ASAP scheduling algorithm. 80
Pseudo-code of the bank scheduling algorithm. 82
Mechanism for discrete approximation of completioperat. 153
Optimal priority assignment algorithm. 179

XXi

XXii LIST OF ALGORITHMS

CHAPTER 1

Introduction

People in modern society are surrounded by computers. Shird to believe, consider-
ing that the electronic computer was a rare and simple clouthe size of a house little
over half a century ago. Since then, we have seen an amazamtpgment that turned
these machines into computational marvels that contritsuteost aspects of our daily
lives. Computers became faster and cheaper, and founditagiinto our homes. They
also became smaller and more energy efficient, resultingitaple laptop computers
that accompany us when traveling. However, the majorityoafijguters in our daily lives
are not the general personal computers we use at work, sardnolthe office. Instead,
these are the embedded systems that are built for a partpuiaose, such as our mobile
phones, MP3-players, televisions, DVD-players, and retiog systems. Examples of
embedded systems outside the consumer electronics damialng the many computers
inside washing machines, cars, and airplanes. The impesdsielopment of embedded
systems is not without drawbacks. As the systems becomeasitigly powerful and
integrate more and more functionality, they also becomeerddficult to produce. More
advanced devices consist of more hardware and softwareawn(s that must be de-
signed, integrated and verified. To stay ahead of the cotigpgticompanies have to
design these complex systems in a very short time [45]. Aqdatr challenge with em-
bedded systems design is that they often have timing rageints, as failure to produce
the right result at the right time may cause an applicatiomatfunction.

We begin this thesis in Section 1.1 by discussing trends inesltied system design,
followed by an introduction to the intended application @ans and considered plat-
forms. We then explain the problem of mapping these apjdicaton the platform and
verifying that all timing requirements are satisfied. Thasults in the problem statement
of this thesis, presented in Section 1.2, which focuses esktlissues in a main system

1

2 CHAPTER 1. INTRODUCTION

component; the memory controller. Section 1.3 then explaiow predictability, ab-
straction, composability, and automation reduce the nmappnd verification effort of
embedded systems, and introduces them as requirements solotion. The contri-
butions of this work are summarized in Section 1.4, beforgvesent an outline of the
rest of the thesis in Section 1.5. Lastly, the contents ofctiegpter are summarized in
Section 1.6.

1.1 Trends in embedded system design

This section discusses some general aspects of embeddexh slesign to create under-
standing for the different steps and the complexities v@dlin designing the embedded
systems that surrounds us in our daily lives, such as smangshand navigation systems.
Challenges are highlighted, as well as past and currerddr@rhelp us extrapolate future
problems in the field. The contents of this section revohmiad the example embed-
ded system design flow shown in Figure 1.1. The first part ofdikeussion considers

applications, which are the input to the partitioning stefhie design flow.

I

I

‘ I
Applications Partitioning Mapping Verification

Tasks Binding
Data structures Configuration

I
I
:
I
A |
Platform Platform |
Exploration | Platform !
Instance !

[
I

I

Figure 1.1: Example design flow comprised of a partitionjigtform exploration, map-
ping, and a verification stage.

Finished
system

1.1.1 Applications

The functionality provided by an embedded system is detexthby its applications. An
application is an independent program that performs a #efihed function for the user,
such as playing audio or video content. Trends show thatrtteiat of application soft-
ware in embedded systems is rapidly increasing [45]. Thidugon towards systems
with more and more functionality is visible in both the comr electronics and the au-
tomotive domains. Already a decade ago, it was shown thatri@unt of software in
high-end consumer electronic products, such as telesiideo recorders and stereo
sets, increased exponentially with an annual growth rahofit 40% [24]. Currently,
convergence in application domains causes the number b€aigns in consumer elec-
tronic and mobile devices to increase. A prime example of development is that the

1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 3

functionality of previously separate devices, such as MR$grs, movie players, cell

phones, digital cameras, game consoles, and persontdidigsistants, are all coming
together in a single hand-held device, called a smart phohe.large number of appli-

cations in these devices covers a vast space from multintegiading to Internet and

gaming [45]. As a result of this trend, the computationabl@dé smart phones grows

exponentially and doubles every five years [108]. A simitant of increased function-

ality is also visible in the automotive domain, althoughddfferent reasons. Traditional

automotive systems have been implemented as federatateatales. This means that
applications, such as engine control system, braking systad multimedia system, are
mapped on nearly autonomous distributed application siess, consisting of elec-

tronic control units (ECU), networks, sensors and actsatér state of the art car is a

complex distributed system with up to 70 ECUs [85]. For cdspendability and weight

reasons, there is a transition towards integrated ar¢bites; where multiple applications
share a common hardware base [85]. Future automotive systentnence also expected
to be highly integrated systems, executing many applinatio

Apart from being functionally correct, applications magalhave different types
of real-time requirementsSome applications havdatency requirementsvhich means
that the result of certain computation must be finished withspecified time, called a
deadline. This type of requirement is common in control egapions that need to react
quickly to incoming events. Other applications are pipsfirand haveéhroughput re-
quirementsnstead of latency requirements. In this case, it is les®ntapt how long it
takes to perform the pipelined computation, as long as dtrissbieing produced often
enough to sustain the required throughput. An example opplication with a through-
put requirement is a video decoder that must be able to praseew video frame on a
television screen with a rate of 100 Hz. This means that a neagé must be displayed
on the screen every 10 ms. The time to decode a frame may, bavbevgreater than 10
ms if the decoding process is pipelined.

Real-time requirements exist in a number of different dassn this work, we dis-
tinguish three such classes [15], beingrd real-time requirementdirm real-time re-
quirements andsoft real-time requirementsApplications with hard real-time require-
ments are oftesafety criticaland are primarily found in the health-care, automotive and
aerospace domains. The real-time requirements of hardinealapplications, such as
the brake system in a car, mustvays be satisfietb ensure safety of the passengers.
To guarantee that hard real-time requirements are satssfienlin the presence of hard-
ware failure, some architectures even include redundanzae. Some applications,
such as a Software-Defined Radio [77], have firm real-timairements. Missing a firm
deadline ishighly undesirableand may result in failure to comply with a given standard,
and may even violate the functional correctness of the Systie-Chip (SoC) [32, 103].
Firm real-time requirements, unlike their hard counterpare not safety critical, and
costly measures, such as hardware redundancy, are nottitedeciude the possibility of
missing a deadline. This type of requirement is hence maregbent in domains where
applications are not safety-critical, such as consumetrelgics. The temporal behavior
of soft real-time applications, such as media decodersnareritical to preserve the
functional correctness of the SoC. Missing a soft deadkselts inquality degradation

4 CHAPTER 1. INTRODUCTION

of the application output, such as causing visual artifeactiecoded video or clicks in au-
dio playback. Although this is perceived as annoying by terlit may be acceptable as
long as it does not occur too frequently [1]. There are algdiegtions without real-time
requirements, such as a JPEG decoder or a graphical uséageteThese applications
do not have any timing requirements, but must still execast €nough to be perceived
as responsive by the user.

The partitioning step in Figure 1.1, partitions applicaiénto smalletasksthat com-
municate through shared data structures. The JPEG decoéglre 1.2 is an exam-
ple of a partitioned application. It is partitioned intoélBrcommunicating tasks, being
variable-length decoding (VLD), inverse-discrete codirasform (IDCT), and color
conversion (CC). The reason to partition an application ertable parallel execution by
binding the tasks to different Processing Elements (PEd)tlae shared data structures
to memories. This allows computations to be done fastereasing application perfor-
mance if the overhead of communication and synchronizasidimited [46]. This has
been demonstrated for the example JPEG decoder in [36]. Akernative to increasing
performance of a single processing element, parallel ¢kecuses multiple processing
elements that run at a lower clock frequency, reducing paeesumption [117].

JPEG decoder application
encoded decoded
bit stream lll IbcT lll bit stream

Figure 1.2: A JPEG decoder application consisting of thaskd.

Multiple applications may execute at the same time and wer tefa set of concur-
rently running applications asuse-case The number of use-cases in a system varies
greatly, but is growing rapidly and is already in the hundréat a high-end television.
This impressive growth is intuitively understood by comsidg that the number of pos-
sible use-cases in a systémereases exponentiallyith the number of applications. Ap-
plications can be dynamically started and stopped at argj, tiiggering aise-case tran-
sition. This is shown in Figure 1.3, where five use-cases are creattddee applications
start and stop their executions.

1.1.2 Platform-based design

Technological advances in the semiconductor industryigcoously increase the achiev-
able density of very large-scale integrated circuits [ZHjis development has followed
a trend known as Moore’s law [75, 76] for more than four desaddoore’s law pre-
dicts that the number of transistors that can be integratesl @hip will double every 24
months. This prediction remains valid today and is consider self-fulfilling prophecy,
as the semiconductor industry strives towards its contiona

1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 5

Use-case
transition

A

L L

JPEG decoder ' [Navigation)
: [‘ | |
| [MP3 playback) !
|) |
| |

Running
applications

Time

Figure 1.3: Starting and stopping applications causesase-transitions.

Previously, a system was distributed over multiple chipsneeted on a printed cir-
cuit board. However, the increasing transistor densitydmabled more and more com-
ponents to be integrated on a single chip. This has resuitadriansition towards SoC
solutions, where an entire system is implemented on a sefgfe This development
has not only reduced the size of the resulting systems, bot@dwer dissipation and
ultimately cost [95]. The increasing transistor densitg h#aany advantages and paved
way for many of the complex embedded systems we enjoy todaweker, the bene-
fits of Moore’s law do not come without their share of assadathallenges. One of
the most prominent challenges concerns design prodyckh8]. According to Moore’s
law, the number of transistors on a chip doubles every 24 hspmbrresponding to an
annual increase of 40%. In contrast, the hardware prodiyct¥ VLSI designers only
increases annually with 20% [95]. This results in an exptinky increasinghardware
productivity gap as illustrated in Figure 1.4. A consequence if this trerttdas designers
are unable to make efficient use of the additional transistmvided by developments in
process technology without just replicating regular stricess, such as memories. Resolv-
ing this gap has been identified as one of the grand desiglenbak in the International
Technology Roadmap for Semiconductors (ITRS) [49].

-

o+ 40%
N
Pmd\)“'“\'w

2P
¢ +20%

log transistors

uctivity
re prod
Hardwa

—
Time

Figure 1.4: The design productivity gap.

6 CHAPTER 1. INTRODUCTION

The design productivity problem has led to adoptiomeafse methodologiesvhere
pre-designed and pre-verified components are reused bepwveducts [95]. However,
productivity gains from reusable Intellectual Propertl?)(komponents alone are not
enough to close the productivity gap and reduce cost, duketéarge associated inte-
gration effort. Additionally, gplatform-based desigapproach has been proposed that
promotes reuse at a higher level of abstraction [95]. A ptatfcomprises a set of hard-
ware and software components, specific to a particular egtfsn domain [49]. The
platform software is not application code, but rather mégdire (software for hardware),
operating system, and compilers, required to program thégpin. This may hence in-
volve operating system kernel, hardware drivers, comnatioic and synchronization
libraries, and resource managers. The purpose of the ptaifoto serve as a starting
point for products in the intended domain and differemiatis achieved by integrating
additional components, either in hardware or softwareJ49]. Which components to
add are determined during the platform exploration stepigife 1.1. The purpose of
this step is to find a suitablglatform instancdor the tasks of the considered applica-
tions that satisfies all design requirements. A drawbacleo$ing platforms across an
application domain is that the resulting designs are sl@améermore expensive in terms
of area and power than customized solutions. The reasoratigtt platform is more
general than what is required for a particular design andimeaglightly over-designed to
leave room for future products [58]. On the other hand, ptatfbased design increases
design productivity and reduces time-to-market, resglimincreased revenue.

In the past years, platforms for embedded systems have egrepsing towards
multi-processor systems-on-chip (MPSoC) architectuflss transition is motivated by
diminishing returns from instruction-level parallelisemd that it is no longer possible
to increase performance of a processor by increasing tle& élequency, due to power
and thermal constraints [2, 44, 54]. To further increasdoperance without adhering
to these constraints, industry has moved towards expipitisk-level parallelism by ex-
ecuting tasks on multiple processors [44,96]. This trendiéd-known and has been
observed in many homes, since most personal computersstatdibnary and portable,
are now shipped with up to four processors on a single die [8#hilarly, the number
of processors on SoCs in both consumer electronics [59] astalenphones [108] are
increasing with every generation. However, the requirest@ssing power in portable
consumer SoCs is expected to increase with three orders gifitnde over the next
ten years, while power consumption must remain largely fensfd to maintain bat-
tery life time [50]. To satisfy this requirement, we needhtygparallel heterogeneous
platforms with a single or a few general purpose processaisnaany processing el-
ements, to strike a good balance between performance, mmsgr consumption and
flexibility [34, 45, 50, 54,108, 117]. Processing elememtshis context correspond to
application-specific processors or hardware accelertiat®fficiently realize computa-
tionally intensive functions in hardware. The general psgprocessors and the periph-
erals used in these architectures are expected to maimtagtant complexity over time.
However, ITRS indicates that the number of processing eltsran a chip will increase
by an order of magnitude over the next ten years [50], puspangllel computing to its
limits. The combination adding more processing elemendsimereasing heterogeneity

1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 7

results in an overall trend towardwreasing system complexttyat is expected to persist
in the coming decades.

1.1.3 Platform architecture

In Section 1.1.1, we mentioned that the number of applioatin embedded systems is
increasing. We then explained in Section 1.1.2 how incitegstomer demand for more
applications and pressure to reduce cost and time-to-meaksed embedded systems
to move from being single-processor designs to being basedusable heterogeneous
multi-processor platforms. In this section, we discusstwha architectures of these
platforms may look like. The discussion revolves aroundreega architecture template,
shown in Figure 1.5. The considered architecture tempfgées to industrial heteroge-
neous multi-processor platforms, such as NXP’s NexpeBa32, 59], STI's Cell Broad-
band Engine [54], BroadCom MediaDSP [96], and Texas Instntsi\OMAP [34].

Based on the design trends explained in Section 1.1.2, weidema platform ar-
chitecture that consists of many Processing Elements (Hfag)processing elements in
a platform typically consist of one or a few general-purpB$8C processors, such as
ARM [12] or MIPS [73] cores. These processors orchestraeeiecution on the plat-
form by starting and stopping applications and configuriagnponents during use-case
transitions. Itis also possible that some of these are pagfermance processors that are
used to speed up execution of code that is either legacy erenlly sequential [46]. The
bulk of the computation in the platform is carried out by ayjEanumber of application-
specific instruction-set processors , such as Digital $ignacessors (DSPs), vector
processors, or very-long instruction-word processorgieting a particular application
domain. However, they may also be hardware acceleratdisieafly implementing a
single computationally intensive function, such as a Fastrier Transform or inverse-

discrete cosine transform.
|
PERI 110
rconn
PERI 110
|
[MEM))

Figure 1.5: The platform template considered in this thesis

PE

l
l
MEM

l
l
MEM

)2
) B

Apart from processing elements, the platform also contaiesnories. There are
often many different types of memories, representing wifie cost and performance
trade-offs. On-chip Static RAMs (SRAMs) are often used twesinstructions or data
local to the CPUs and PEs, either in form of caches or scrattp Being on-chip,

8 CHAPTER 1. INTRODUCTION

SRAMSs have the benefit of being faster to access than off+ti@mories, but they are
often limited to less than a megabyte (MB) to reduce costdtiiteon to local memories,
there are centralized memories (MEM) that are typicallyetidy multiple processing
elements. SRAMs may be used to implement these centralieedonies, especially if
local memories cannot be accessed by remote CPUs or PEs.velpweany platforms
have a central interface to an off-chip Synchronous Dynd®#i&1 (SDRAM). An ad-
vantage of SDRAMs is that a memory cell is implemented witingle transistor and a
capacitor, as opposed to the six transistors required byR&iV5 SDRAMSs are further-
more manufactured in large volumes in an optimized pro@dsblogy. Together, these
factors allow them to provide a large storage capacity, ugeteral gigabytes (GB), at
relatively low cost. This makes SDRAMSs an important comptrie any cost-sensitive
SoC with applications using large data sets, such as videoddes. Both SRAMs and
SDRAMSs are volatile memories, which means that they losestbeed data whenever
they are switched off. For this reason, it is common to alsehen-volatile memory
to store instructions and data required to boot the systdrasd days, this is most com-
monly done using flash memories. Finally, the platform cimstgeripherals (PERI),
such as mice, keyboards, speakers and displays, and I/@edgwioviding connectivity
to other systems. Common types of connectivity involve USBRT, HDMI, PClI, I’E,
or Ethernet.

Communicating components are connected using an inteection fabric that can
be direct wires, switches, or buses. Decreasing featueehsiz created a need for multi-
hop interconnects, since it is not always possible to cradsmin a single clock cycle.
Complex SoCs hence require bridged buses or networks-ips-f26], which are multi-
hop interconnects that allow multiple transactions to beeskin parallel.

The different hardware components, i.e. processing el&snememories, periph-
erals, 1/0 devices, and interconnect, may run at differémtkcfrequencies. This is
required either to achieve different power and performanade-offs using dynamic
voltage and frequency scaling, or because the maximum dtegkiency of a compo-
nent is limited. To cope with different clock frequenciespanunicating components
are bridged using a clock domain crossing, typically impeted using asynchronous
first-in-first-out (FIFO) buffers. The considered systerhésice globally-asynchronous
locally-synchronous (GALS) [79].

IP components in the architecture communicate by sendiag) @ad write transac-
tions on ports. The transactions consist of requests ambmess, as shown in Fig-
ure 1.6. The components communicate using a protocol, ssitheaDevice Trans-
action Level (DTL) protocol [88] used by Philips and NXP, odvanced eXtensible
Interface (AXI) protocol [13] promoted by ARM. These protte often feature a flow-
control mechanism, as illustrated by the flow-control sigtia Figure 1.6. This mech-
anism is typically implemented by a two-phase valid / acdegridshake between the
sender and receiver. The benefit of flow control is that ivedla receiving component to
stall the sender if it is not ready to accept a request or aoress which is useful to pre-
vent a buffer overflow, or to implement clock domain crossinghroughout the figures
in this thesis, standard DTL/AXI ports are colored whitejlelgrey ports indicate other
types of interfaces.

1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 9

requests requests
- -

= - - =
m = flow control flow control @
W @) %]
D O
g g responses responses _%

(%] o
5 2.
- ,_g flow control flow control @

Figure 1.6: Processing element and resource communioatirggstandard protocol.

Resources, such as memories and peripherals, are ofteudieween multiple pro-
cessing elements, since area, power and pin constraintsntrinem from being dupli-
cated. If a resource is shared, arriving requests are storadRequest Buffer, located
in front of the resource. Access to the resource is providea bus, controlled by a re-
source arbiter. The resource processes the request aad atmsponse in the Response
Buffer of the corresponding processing element when it isiied. This is illustrated in
Figure 1.7. Contemporary platforms contain a large vaiétgsource arbiters with dif-
ferent properties. One common example is Time-Divisiontigldxing (TDM), which
shares the resource in time among the processing elemeaislang to a fixed periodic
schedule. An advantage of this arbiter is that the serviogiged to a processing ele-
ment is known at design time and is completely independeotiafrs. Another example
is round-robin arbitration [80], which cycles between mesing elements trying to ac-
cess the resource. This arbiter tries to be fair by treatingacessing elements equally.
In contrast, a static-priority arbiter provides differiat¢d service by always scheduling
the processing element with the highest priority. This é&mlbow latency to be pro-
vided to applications with tight deadlines, while applioas with loose deadlines, or no
deadlines, access the resource with a longer latency.

Request Buffer

)
o3 =]
o o
% i Response Buffer
14}
c o
3 L[x
o 0
@ 0 =
Request Buffer % oD
o S
m 3 — — s o
[C)=} @
% i Response Buffer
14}
c o
=3 L[

Figure 1.7: Multiple processing elements sharing a resourc

1.1.4 Mapping

Mapping is the process of binding applications to the ptatfinstance, such that all
functional and non-functional requirements are satisfi€le mapping process hence

10 CHAPTER 1. INTRODUCTION

takes place after applications have been partitioned anitabte platform instance has
been found, as shown in Figure 1.1. The mapping processstsrditwo parts. The
first part deals with binding tasks and data structures toolRponents in the platform
instance, and the second with computing IP parameters arfiyacations. We proceed
by discussing these steps and their associated challangesé detail.

In the binding step, all tasks are assigned to processingegits, and shared data
structures to either local or centralized memories. Thacess is illustrated in Fig-
ure 1.8, as the JPEG decoder application is mapped on amdestd the considered
platform. The three tasks are mapped to different procgssdiements and the buffers
for inter-task communication are mapped in centralized BRAThe encoded bit stream
is read from an SDRAM and the decoded output is written to plajscontroller. The
binding is a non-trivial problem, since processing eleradrave different performance
and power consumption and memories have different capaditnd access latencies.
This results in a large design space that grows with the @rsing system complexity,
as more and more components are added to SoC platforms [49]e\tér, there are no
industrial-strength tools that automatically derive abié bindings, leading to that the
embedded system industry often performs this step manuadistunately, the scope of
the problem is somewhat mitigated by the increased speaian of processing ele-
ments in heterogeneous platforms. A particular implentantaf a task may hence be
limited to a subset of the processing elements, or even togiescore [59, 108]. Imag-
ine, for example, if an IDCT task has to be mapped to a platfmmchan implementation
is available as highly optimized C-code for a particularetygg DSP. In this case, the
binding is limited only to DSPs of this type unless altermatimplementations are de-
veloped. Once a satisfactory binding is found, the bandwédtd latency requirements
for all resources, such as interconnect and memories, cdered. In this thesis, we
use the ternrequestorto represent a component that performs resource access on
half of an application. This corresponds to a port on a prsingselement connected to
the resource through a communication channel. A partil@apmplication is hence asso-
ciated with multiple requestors with requirements that rhayery diverse in terms of
bandwidth, latency, and real-time classification.

The second part of the mapping process is computing paresreatd configuration
settings for all IP components, such as memory controliatsyconnect and arbiters.
IP parameters, such as buffer sizes, are used to instaotiatponents at design time.
Configuration settings, on the other hand, may be differemtyse-case and are pro-
grammed at run time. Finding these parameters and confignremponents is chal-
lenging, since all bandwidth and latency requirements efrdquestors must be satis-
fied for all use-cases. In practice, parameters and configaraettings are often de-
termined by trial-and-error using simulation-based tégphes [45]. Transaction-level
models (TLM) that capture the temporal behavior of the systeay be used to speed up
simulations [34], making the search for appropriate patarsanore feasible, possibly
at the expense of accuracy. Simulation-based techniqegs@dominant over analytical
approaches, since the impact of changing the configuraticempeters on the bandwidth
and latency of a requestor is often not well understood. Phiblem is particularly
difficult when there are multiple arbiters, often with diffat characteristics, interacting

be

1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 11

ARM9 DSP DSP

1 | / I X |
!] ; T\
! |] \\
I \

I
}
\

|
) : \ ! =
Audio .\ Interconhect ! Display
\ \ \ \
\\ \\ \ \\ \\
\ N N\ N
: D i)
SDRAM || | SRAM | | SRAM
Figure 1.8: Tasks are mapped to processing elements, dattusés to memories, and
communication channels to the interconnect as a part of Hgping process.

in the platform [108]. The configuration step is expectedeadrztreasingly difficult as
more and more heterogeneous components, executing imgJlyadiverse concurrent
applications, are added to the platforms.

1.1.5 \Verification

The purpose of the verification process is to assert thattersyseets its specification
and hence that all application requirements are satisfibd. vErification process starts
when a mapping has been determined in the mapping stagepwas 8hFigure 1.1. The
mapping is considered successful if all application rezmients are satisfied. Otherwise,
if verification fails, it is time to consider a different tapkrtitioning, a different mapping,
or a different platform instance, as indicated by the dastaat-arrows in the figure.
Verification is typically done by system-level simulatiohtbe applications execut-
ing on the platform instance. The simulation speed of a cete@ystem is very slow.
For this reason, verification is sometimes performed usiagsgction-level models of
the components, enabling the accuracy of the verificatidrettvaded for increased sim-
ulation speed. Simulation-based verification of real-tieguirements is complicated by
resource sharing, which causasheduling interferenceetween requestors, as they have
to wait for each other before accessing the resource. &meée makes the temporal
behavior of concurrently executing applications intepeledent, resulting in three prob-
lems. The first problem is that it is not sufficient to verifyaththe requirements of each
application are satisfied when executing individually. téasl, all concurrently execut-
ing applications have to be verified together for all useesasausing the verification
complexity of the system timcrease exponentiallywith the number of applications [37].
However, system-level simulation of all use-cases is fardlow to be feasible in prac-
tice. As a result, industry often resorts to reducing theecage and verifying only a
subset of use-cases that have the tightest requirements)[34 The second problem is
that verification of a use-case cannot begin until all appidns it comprises are avail-
able. Timely completion of the verification process hengeethels on the availability of

12 CHAPTER 1. INTRODUCTION

the applications, which may be developed by different telatk inside and outside the
company. The last problem with application dependencig¢isaisuse-case verification
becomes &ircular processthat must be repeated if an application is added, removed,
or modified [60]. Together these three problems contribatengking the integration
and verification process a dominant part of SoC developnheit, in terms of time and
money. Currently, verification engineers currently outhemdesigners with a ratio of
two to one for complex designs and the effort in system-lgeeffication is expected to
increase in the future [49].

An alternative to simulation-based verification is to atiablly verify that require-
ments are satisfied using a formal performance analysisefsamk, such as network
calculus [25] or data-flow analysis [100]. These framewards be used to derive hard
performance guarantees on latency or throughput of ancgtioln, provided that worst-
case execution times of its tasks are known. Firm perfor@goarantees, on the other
hand, can be analytically derived based on execution tirfimates. However, in this
case itis important to know the quality of the estimates &edassumptions under which
they are valid. Formal methods are not necessarily faster fimulation-based tech-
nigues, considering that the run-time of mapping and vettifim algorithms can be very
long. Formal methods do, however, guarantee coveragepbsdible initial states, input
sequences, and interactions with other requestors inéghaseurces, assuming conser-
vative execution times for all tasks. This contrasts to thergoverage achieved by sim-
ulation. The time required to develop formal performancelai® is not negligible, but
these models can be reused together with the software avasrdlock they model. Ver-
ification of real-time requirements using simulation-lthgehniques, on the other hand,
cannot be reused. The problem with formal verification ig theequires performance
models of the software, the hardware, and the mapping [15, 8@itable application
models, such as data-flow graphs, exist, but are not yet watkdpted by industry. Most
industrial hardware has furthermore not been designed foithal analysis in mind.
There have been recent advances in the research commumée some IP components
have been proposed together with corresponding perforenaraclels [39]. However, a
satisfactory solution has not yet been developed for SDRA&Maries. This prevents
formal analysis techniques from being applied to many ptait, since SDRAMs are
essential to satisfy large storage requirements at a reBkooost. The reason SDRAM
memories are difficult to combine with formal analysis is ttma combination of a com-
plex temporal behavior that is inherent to their architestand contradictory requestor
requirements. The next section elaborates on these preblem

1.1.6 SDRAM and real-time requirements

SDRAM memories are challenging to use in systems with liea-requirements be-
cause of their internal architecture. An SDRAM memory casgs a number of banks,
each containing a memory array with a matrix-like structurensisting of rows and
columns [51]. A simple illustration of this architectureshown in Figure 1.9. Each
bank has a row buffer that can hold one open row at a time, atbaed write operations
are only allowed to the open row. Before opening a new row iar&bthe contents of the

1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 13

currently open row are copied back into the memory array. léments in the memory
arrays are implemented with a single capacitor and a resigt@re a charged capacitor
represents a one and an empty capacitor a zero. The cafas#srits charge over time
due to leakage and must be refreshed regularly to retairtdhedsdata.

S
S
O

columns

rows

I
row buffer

Figure 1.9: The SDRAM architecture consists of banks, rams, columns.

The SDRAM architecture causes the offered bandwidth antirtteeto serve a mem-
ory request to depend on three things. First, there is a diepey on the row targeted
by the request and the rows that are currently open in thesbahke reason is that a
request targeting an open row can be served immediatelye \ehiequest targeting a
closed row must wait until the current open row has been diesel the required row
has been opened. The overhead from opening and closing eswks in additional la-
tency, as well as idle cycles on the data bus. The latter @s@lireduction of the offered
bandwidth. The second dependency is on the direction (re&e) of the current and
previous request. The reason for this dependency is thdgtiaebus is bi-directional and
requires a number of clock cycles to change direction froel te write or write to read,
again adding latency and wasting bandwidth. The last depeaydis on the temporal
alignment with respect to refresh operations, since asbfoperation requires tens of
clock cycles during which no data can be transferred on th& lblas. Together, these
three dependencies create large variations in the timéregbjserve a read or a write re-
quest. The first two dependencies are especially problensittice they involve previous
requests that may have been issued by other requestoragstiagiresource. This cre-
atesresource interferencbetween requestors, where the time required by the resturce
serve a scheduled request from one requestor depends omeaxthestors. These effects
make it very difficult to bound the bandwidth offered by themuey and the latency of
memory requests at design time, which is required to sudportand hard real-time
requirements.

We proceed by elaborating on the requirements of SDRAM r&tgue, and explain
what makes them contradictory and difficult to satisfy. SIMRPequestors are catego-
rized as eithetatency critical or latency tolerant Latency-critical requestors require
low-latency memory accesses to reduce the number of stdéé€pn the processing ele-
ments. This is typical for processing elements supportimy a few outstanding trans-
actions and that store data in a remote memory, such as an BDR¥hen no more
transactions can be issued, the processing element blotks wuesponse has been re-

14 CHAPTER 1. INTRODUCTION

turned, potentially resulting in long stalls [54]. This ptem is often mitigated by using
a cache to store commonly used data locally, significandyeang the average memory
access latency for applications with good locality. Howeweany processing elements
still spend a significant number of clock cycles waiting fatal due to long latencies in
the interconnect and memory controller. This problem goteasingly severe through-
out the single-processor era, since processor speed sectéaster than memory speed.
In fact, both processor and memory speeds increased exjedherut with different
exponents, causing the difference between the two to atsedse exponentially [118].
This observation has resulted in the theory that the pediaoa of many applications
will eventually be dominated by the memory latency, a sitimathat is known as hitting
thememory wall[118]. The effects of the memory wall can be observed in &atisn-
based workloads and high performance scientific compu68y [vhere processors can
stall up to 95% of the time. The recent step to multi-procegdatforms has reduced
the clock frequencies of processors [2], which should ratéghe effects of the mem-
ory wall. However, the cumulative memory bandwidth requieat of all processing
elements is still increasing, adding a new dimension to thblpm.

Some applications, such as media processing, can ofterpberranted in a pipelined
fashion. The requestors of these applications are monedgatlerant, but require guar-
anteed bandwidth to sustain their throughput requiremelmtghis case, higher band-
width enables higher resolutions and support for more fanatity, such as additional
tasks that improve the quality of the output. However, exdememory bandwidth is
a scarce resourcén many platforms. The reason is that an SDRAM controllerris a
expensive component both in terms of area and power congamptdding more mem-
ory controllers, or making the SDRAM interface wider, ragsimore pins. More pins
further increases both the area and power consumption, @ydateo require a more
expensive packaging. Using multiple memory controllerseace often not an option,
making it important to use the existing SDRAM bandwidth dicieintly as possible.

The requirements of latency-critical and latency-toléraguestors are challenging
to satisfy, since low latency and high offered bandwidth iafeerently contradictory
properties for SDRAMs. The memory is efficiently utilized layiting the number of
switches between reads and writes and using large requestalke better use of an
open row. Providing low latency to critical requestors, ba tther hand, is achieved
by letting them switch directions immediately and preengsslimportant requestors,
potentially closing the open rows they are using. Both of¢hactions reduce latency for
critical requestors at the expense of a reduction of thewltl offered by the SDRAM.

1.2 Problem statement

The high-level problem addressed in this thesis is to desigiemory controller that sat-
isfies the real-time requirements of applications in emieedslystems, thereby reducing
the mapping and verification efforMore specifically, the proposed memory controller
shouldaddress the diversity of contemporary platfornyssupporting different types of
memories (SRAM and SDRAM in particular) and arbiters. Themagy controller must

1.3. REQUIREMENTS 15

use the memory bandwidth efficientiince it is a scarce resource that must be care-
fully utilized. To reduce the mapping effort, the memory tolier should be supported
by tooling thatautomatically determines instantiation parameters andfiguration set-
tings for all components in the architecture, such that all ajgfilie requirements are
satisfied. The memory controller shoutdprove verification coveragey enabling for-
mal verification of real-time requirements. It should fttimorereduce the verification
complexityby enabling independent verification of applications usiitlger formal meth-
ods or simulation-based techniques.

1.3 Requirements

Based on the problem statement in the previous section, wedenfour requirements
on the memory controller design: predictability, absti@gtcomposability and automa-
tion. We proceed by explaining the concepts behind thesdéiregents, and motivate
their relevance with respect to the problem statement. Asmaew of how our solution
implements these requirements is provided in Chapter 2isadmehce not discussed here.

1.3.1 Predictability

The first requirement on the memory controller is predidigbiln this thesis, we con-
sider a component predictable if and onlyaifuseful bound is known on temporal be-
havior that covers all possible initial states and staten#ions A component in this
definition may refer either to a piece of hardware or softwatgch affects the particular
temporal behavior that should be bounded. For exampletrdetiag the time required
by a memory controller to serve a memory request, requirdls the allocated band-
width and the latency of the controller to be bounded. On therchand, computing the
throughput of a video application may require bounds on thestxcase execution times
of all its tasks. Predictability has a hierarchical aspedt,tsince the temporal behavior
of a component is determined by the timings of the sub-comaptanit comprises. This
implies that a predictable system must be built from prediilet components. We pro-
ceed by discussing the relevance and implications of ounitiefi of predictability more
closely, starting with a brief discussion about predidigbversus determinism.

A component iddeterministicif it can be implemented by a state machine that pro-
vides a unique output, given a particular input and state e®mninistic component is
hence perfectly well-defined given a particular input segeeand initial state, making
it predictable in some sense of the word. A non-determmistimponent, on the other
hand, can transition to multiple states with possibly défe outputs, given a particular
state and input. An example of non-deterministic comporseah asynchronous clock
domain crossing, the latency of which varies depending eratignment of the different
clock signals and the time to settle the signals to a stahate Et09]. A non-deterministic
component may intuitively feel unpredictable. Howeverr dafinition of predictabil-
ity requires a bound on temporal behavior, as opposed to ikigothe exact temporal

16 CHAPTER 1. INTRODUCTION

behavior. This implies that our notion of predictabilityrist exclusive to deterministic
components.

To use a bound in a general analysis, we require it to covegraaisible state tran-
sitions and initial states. This is a key problem when ariatythe behavior of a com-
ponent. For a deterministic component, the possible tiansidepend on the input se-
guence. Non-deterministic components additionally nenail possible transitions from
a visited state to be considered, further complicatingyeisl Determining the state tran-
sitions that triggers the worst-case behavior may be exhedifficult, especially if the
temporal behavior of the component is data dependent anskethaf possible inputs is
large. Consider, for instance, the problem of determinirgworst-case decoding time
of an H.264 decoder. Due to the difficulties in deriving thgsaeral bounds, we do not
consider components predictable until this analysis has dene. Knowing that a bound
exists is hence not a sufficient condition for a componenttodnsidered predictable in
this thesis.

Our definition of predictability also states that the dedil@unds must be useful.
The reason is to prevent behaviors that are bounded witlessdlounds from being
considered predictable. For example, we do not consider raamecontroller to be
predictable, if the latency of a memory access is boundedyleysg since it cannot satisfy
any realistic requirements. The exact meaning of usefalaed the required tightness
of the bound is of course highly dependent on the behavidrishaeing bounded and
the context in which is going to be used. This part of the didinihence has to be
considered on a case-by-case basis.

We proceed by exercising our definition by an example, whereamsider bounding
the offered bandwidth from a typical Double-Data-Rate (DCHORAM controller. If
we cannot exploit any knowledge of the initial SDRAM statetloe incoming request
stream, which is typically the case, we have to assume tleay @wvemory access targets a
closed row. The currently open row hence has to be closechamaétjuested row opened
before the access can proceed. This results in added laaedaynany unused cycles on
the data bus of the memory, as explained in Section 1.1.6. ribi possible under this
assumption to guarantee that the offered bandwidth will teatgr than some 10-40%
of the maximum bandwidth, depending on the speed of the mef6pr Although this
is a known bound on relevant behavior that covers all statesitions and initial states,
it is not considered useful for many SoC designs, since SDRvakidwidth is a scarce
resource that must be efficiently utilized.

The memory controller proposed in this thesis is requiregrtavide useful bounds
on offered bandwidth and laten¢y be able to satisfy the communication requirements
of the requestors. This requirement addresses the prolégemsent in this thesis by en-
abling formal verification of application requirements iregictable systems. Note that
this requires performance models of the applications, disasall other hardware com-
ponents they are using. Formal verification of a predictapé¢em has the benefit of cov-
ering all possible input sequences and initial states, pesga to the limited subset that
can be verified by simulation. This makes this verificatioprapch essential in systems
with hard and firm real-time requirements. Formal verifioatis furthermore less sensi-
tive to changes in use-case specifications than simulétsed techniques, since it only

1.3. REQUIREMENTS 17

requires re-verification if the temporal bounds on any ofdtks increase. This provides
some additional flexibility in development of IP componegutsl reduces the verification
effort. However, this benefit assumes that the applicatiodehis performance mono-
tonic, which means that a local reduction in latency canasult in an overall latency
increase. Another benefit of formal performance analydisdsthere is a clear relation
between platform parameters and the resulting temporahieh This may allow buffer
sizes and configuration settings that satisfy the apptinatquirements to be automati-
cally synthesized, removing the need for mapping appraabhsed on trial-and-error.

1.3.2 Abstraction

Contemporary SoCs platforms consist of an increasing numbshared resources of
different types, such as peripherals, interconnect, anerakdifferent types of memo-
ries. Access to these resources may furthermore be caurb}yl many different types
of arbiters, which may all affect the temporal propertiesanfapplication. The com-
plexity resulting from the diversity of shared resources ba reduced by abstraction.
Abstraction is a mapping from one description of an objecrtother, where the sec-
ond description is simpler in some sense [69]. An exampleéagitgital abstraction that
reduces continuous-time analogue signals with continaouslitude into a discrete se-
quence of ones and zeroes. shared resource abstractiotan be used to capture the
(temporal) behavior of the diversity of shared memoriesthedt arbiters, and hide the
details of their implementations [93]. A good abstractitnowwd be simple to reduce
complexity, yet capture relevant behavior as closely asipless An abstraction with
many parameters can be difficult to use, while hiding too nmaetil may result in sub-
optimal models and poor utilization of the resulting systékbstraction hence presents
a delicate trade-off between simplicity and accuracy.

The memory controller proposed in this thesis requires aesheesource abstraction
that captures temporal behavior in a way that makes the Betdithe types memory
and arbiter transparent to the usefThe chosen abstraction must be simple and general
enough to apply to a wide range of memories and arbitersgvghndviding useful accu-
racy. Abstraction should also be used in the hardware &athite to allow memories and
arbiters to be exchanged with minimum effort. The value efdbstraction requirement
is that it allows the user to deal with different memories arliters in a homogeneous
way, thus reducing complexity [93]. It furthermore enaliesse of models and tooling
for different combinations of memories and arbiters, whigtieases design productivity
and greatly simplifies automation.

1.3.3 Composability

A system is considerecbmposabléf applications cannot affect each other’s behavior in
the value and time domains [35]. This implies that applaradiare completely indepen-
dent and cannot change each other’s data, nor affect eaetisottmporal behavior by
even a single clock cycle. Composability is an issue withethaesources, as they often

18 CHAPTER 1. INTRODUCTION

enable requestors to affect each other’s temporal behhyieither scheduling interfer-
ence or resource interference, discussed earlier. Sdhgduoterference occurs in the
arbiter, where the presence or absence of a request fronequestor may cause another
requestor to be scheduled earlier or later. Resource émegrfe happens in the resource
itself when a requestor alters the resource state in a wawffezts the time it takes to
serve a request from another requestor. An example of resmterference is switching
the direction of the data bus in an SDRAM memory.

The proposed memory controller is required to provide cosapte service to ap-
plications For simplicity, we will refer to a memory controller thattisdies this re-
quirement as a composable memory controller. Composabifitiresses the problem
statement in this thesis by reducing the verification effadth simulation-based tech-
nigues in the following four ways [39]: 1) Applications cae kerified by simulation
in isolation, resulting in a linear and non-circular vegtfiion process. 2) Simulating
only a single application and its required resources reslairBulation time compared to
complete system simulations. This allows more use-casbs t@rified, increasing the
verification coverage. 3) The verification process can beemental and start as soon
as the first application is available. 4) Functional veriima is simplified, since bugs
caused by, for instance, race conditions in the integrapgdication, are independent
of other applications. Another benefit of composabilityhattindependent applications
create well-defined liabilities, which is important if ajgaltions are developed by differ-
ent parties [85]. IP protection is furthermore improvedgcsi the verification process no
longer requires the IP components of independent softnemdors to be shared. Note
that composability eliminates all interference from othpplications, but that the plat-
form may be non-deterministic, or even unpredictable [35jr example, the platform
may contain asynchronous clock domain crossings with redarthinistic latency [109],
which may resultin that a particular simulation trace frdva éxecution of an application
is hard to reproduce.

Composability is not a concept without drawbacks, sinaavibives eliminating both
positive and negative interference between applicatidimss implies thatslack which
is unreserved resource capacity or resource capacitywesbby one application that is
currently not used, cannot be used by another applicatithoégh this does not impact
the worst-case latency of an application, it affects theaye case, for instance making
non-real-time applications appear less responsive. Hexvesmposability does not im-
ply that all slack is wasted. It is possible to safely disttéslack between requestors
belonging to the same application [35].

It is important to realize that predictability and compagigbare two different prop-
erties and that one does not imply the other. Predictabiliéans that a useful bound is
known on temporal behavior, and composability that the mabehavior of an appli-
cation is independent of other applications. We illusttheedifference by discussing the
four example systems, shown in Figure 1.10, that cover atl@pations of predictability
and composability. The first system, depicted in Figured,. tbnsists of two processors,
each executing a single application. We assume that thé&catiphs are predictable and
that worst-case execution times are known for all tasksa Badtored in a shared remote
SRAM that for simplicity is reached by direct wires. The SRAMs a latency of one

1.3. REQUIREMENTS 19

@©
SRAM c SRAM

@
c
[

"
(~=)

(a) Predictable and composable (b) Predictable system.
system.

(c) Composable system. (d) Neither predictable nor com-
posable system.

Figure 1.10: Four systems demonstrating all combinatidtiseopredictability and com-
posability properties.

clock cycle that is independent of other requestors. The I8RAshared using TDM
arbitration, which is a predictable and composable ardiinescheme, since the latency
of a requestor is bounded and independent of other regsestbis makes this system
as a whole both predictable and composable. For our secatensyn Figure 1.10b,
we replace the TDM arbiter with a round-robin arbiter (RR)isTmakes the system pre-
dictable, but not composable, since the round-robin arbiteates a dependence on the
presence or absence of other requestors. We create owvdeststems by adding private
L1 caches ($) to the processors in both previous systemsivateicache is composable,
since it is not shared between applications. However, itandke systems unpredictable,
since a useful bound cannot be derived on the time to servgueesee of requests. The
third system, in Figure 1.10c, is hence composable, butreatigtable. The last system,
shown in Figure 1.10d, is neither predictable, nor complesab

1.3.4 Automation

Automation refers to having parts of the design process tgrteols. Automation has
grown to become an essential part of embedded system ds#iga it reduces the design
time, directly impacting time to market [115]. As explairiacsection 1.1.4, the mapping
process contains a configuration step that is typicallygoeréd manually. An SDRAM
controller has many instantiation parameters and configuraettings, such as buffer
sizes and the burst size of the SDRAM. Many arbiters furtloeenneed to be configured.
The particular configuration settings vary depending orathéer type, but may involve
bandwidth allocations and priority assignments.

20 CHAPTER 1. INTRODUCTION

The proposed memory service is required to have an autonagigeach to finding
IP parameters and configuration settingdhis involves automatic buffer sizing and
computation of configuration settings for the memory cdigrand its associated arbiter
at design time. Automation of buffer sizing and configumai®required to reduce design
time by removing a manual step from the mapping process ¢tiasron trial-and-error
and extensive system-level simulation.

1.4 Contributions

This section lists the main contributions of this thesise Thntributions are discussed in
terms of the illustration of the proposed predictable amposable memory controller
shown in Figure 1.11. All hardware is implemented both age3y€ simulation models

and in synthesizable VHDL.

)
Resource front-end SDRAM
back-end »
3
requestor 1 —a—=| M 7l :‘g’
.)
requestor 2 ~a—=| M SRAM
- controller
I - - ter %
O — || >
-
{}
oy] A B
[ccsp)[DM)[RR) Predictable memories

Latency-rate arbiters

Figure 1.11: The proposed predictable and composable nysroatroller.

¢ A predictable SDRAM back-er{@] is presented that provide hard/firm real-time
guarantees on bandwidth and latency with any DDR2/DDR3 SMRMAemory,
while increasing the level of flexibility over previous appches. (Chapter 4)

« We propose aredictable Credit-Controlled Static-Priority (CCSP)kiter [9, 10]
that is suitable for providing access to shared resourcts latency-critical re-
guestors and high loads, such as memories. (Chapter 5)

« A general predictable resource front-ergproposed that provides access to shared
predictable memories, such as our SDRAM back-end or an SRétitaller. The
front-end contains an arbiter in the class of Latency-R&tR)(servers, which
is a class with many well-known predictable arbiters, idahg round-robin (RR),
TDM, and CCSP. The front-end guarantees a requestor a nimipandwidth and
a maximum latency wittany combinatiorof supported arbiters and predictable

1.5. OUTLINE 21

memories. They hence act likelaR server, which is thehared resource abstrac-
tion used in this work. This abstraction enables formal verificabf real-time
requirements in a transparent manner for multiple typeserhories and arbiters
using several commonly used performance analysis frank@w@Chapter 6)

* We introduce a novel approach tcomposable resource sharirigat makes pre-
dictable shared resources composable [7]. The idea is taddelay Block to
the front-end that delays all signals sent to a requestomtalae worst-case in-
terference from others. This approach enables compayabith a wider range
of applications and shared resources than previous woflketitermore allows re-
questors that do not require composable servieestoslack bandwidtto improve
performance. (Chapter 6)

» We propose amautomated configuration flothat computes instantiation parame-
ters and configuration settings to satisfy requestor requents. The flow uses ab-
straction to make the memory and arbiter configuration ieddpnt of each other.
This enables all supported arbiters to be configured foruglperted memories in
a streamlined fashion without a special case for every coatioin. (Chapter 7)

1.5 Outline

This thesis is organized as follows. Chapter 2 provides anvisw of our proposed so-
lution in terms of the four requirements: predictabilitias&raction, composability, and
automation. Chapter 3 contains and introduction to SDRAMnmiges and explains
why they are difficult to use in real-time systems. It alscd&ses the general building
blocks of an SDRAM controller and highlights interestingsigm options. An SDRAM
back-end is presented in Chapter 4 that makes a DDR2/DDR3A&DBehave in a pre-
dictable manner, and bounds are derived on bandwidth agiidat Chapter 5 addresses
how to share the back-end, or other resources, among neutBguestors by introduc-
ing a Credit-Controlled Static-Priority arbiter. This &dp is designed particularly for
resources with high loads and latency-critical requesgursh as memories. A resource
front-end is presented in Chapter 6. The front-end provteslictable service with
any combination of arbiter in the class 6fR servers and predictable resource, such as
our SDRAM back-end or an SRAM controller. We furthermorewtmw to make the
shared predictable resource composable by delaying alhlsigent from the front-end
to a requestor to emulate maximum interference from ott@napter 7 presents our con-
figuration flow and demonstrates with a running example hataimtiation parameters
and configuration settings are derived for both the fromt-®md the back-end. The pro-
posed solution is positioned with respect to related workesource arbitration, memory
controllers, and composability in Chapter 8. Lastly, cas@ns and future work are pre-
sented in Chapter 9.

22 CHAPTER 1. INTRODUCTION

1.6 Summary

Embedded system design gets increasingly complex. Eaclprosluct generation inte-
grates more applications and contains more hardware atvdesef The product life time
is furthermore reducing, requiring new generations to Isgieed, verified, and released
faster than ever before.

Applications in embedded systems often hes@-time requirementameaning that
they must perform a particular computation before a deadhoreal-time requirement is
classified as either hard, firm, or soft, depending on it&cality. Hard real-time require-
ments must always be satisfied to guarantee safety or furattomrrectness. Similarly,
firm real-time requirements must be satisfied to preventfgnt quality degradation,
while missing a soft requirement may just be perceived asyng to the user. An appli-
cation is partitioned into tasks, which can be mapped tewfit processing elements in
the platform. Contemporary platforms often contain midtipeterogeneous processing
elements, to provide good balance between performancg,pmger consumption and
flexibility. They also have a distributed memory hierarchyhvdifferent types of shared
memories, such as Static RAM (SRAM) and Synchronous Dyn&aAigl (SDRAM), to
achieve large storage capacity with low latency at a reddermast. However, due to pin
constraints, SDRAM bandwidth is a scarce resource that brusfficiently utilized.

Mapping applications on the platform such that all realetiraquirements of the ap-
plications are satisfied is very challenging. The numberasfsiple bindings of tasks
to processing elements, and data structures to memoriesyidarge, and appropriate
instantiation parameters and arbiter settings must bgeatkerMerifying that a particular
mapping satisfies all application requirements is very tdmesuming, since it is often
done by simulation with poor use-case coverage. Formdiaation offers significantly
better coverage, but is typically not an alternative, simmest industrial hardware and
software is not designed with formal analysis in mind. SDRAMmMories are exam-
ples of commonly used components that make verificationcdiffi The bandwidths
and latencies provided by these memories depend highlyeoretiuests sent by the ap-
plications. The timing behaviors of concurrently execgtapplications hence become
inter-dependent, making it impossible to verify them inasion. Instead, concurrently
executing applications must be verified together, requlitnthat theverification com-
plexity grows exponentiallyith the number of applications.

The problem in this thesis is to design a memory controllat Hatisfies hard, firm,
and soft real-time requirements, thereby reducing the mgpand verification effort
of embedded systems. We impose four requirements on thécsoho achieve this
goal. The memory controller should peadictablein the sense that there must be useful
bounds on the latency of a memory request and on the provigleditidth. This enables
the controller to be used with formal verification technigiLienproving use-case cover-
age. The solution should make useabktractionto support different types of memories,
such as SRAM and SDRAM, and different arbiters transpayerithis reduces design
time by enabling reuse of tools and models. We require the angrcontroller to be
composablewhich means that two applications sharing the memory damodify each
other’s data or affect each other’s temporal behavior by @vsingle clock cycle. This

1.6. SUMMARY 23

property allows applications to be verified in isolationdueing the verification com-
plexity. Lastly, we requir@automationof the memory controller configuration to reduce
the mapping effort. The controller should hence be supddrietooling that automat-
ically derives configuration settings and instantiationapaeters, such that application
requirements are satisfied.

24

CHAPTER 1. INTRODUCTION

CHAPTER 2

Proposed solution

The previous chapter identified problems related to mapgpmications with real-time
requirements to a heterogeneous multi-processor platfeitn SDRAM memory and

verifying that all requirements are satisfied. We then cottedito designing a memory
controller with requirements on predictability, abstiant composability, and automa-
tion to address this issue. This chapter presents an ovwenfithe proposed solution,
and explains how it delivers on each of the four requiremets begin in Section 2.1
by discussing predictability. We then move on to abstraciioSection 2.2, followed by
composability and automation in Sections 2.3 and 2.4, ctispdy. Lastly, the chapter
is concluded with a summary in Section 2.5.

2.1 Predictability

Section 1.3.1 stated that the memory controller must peougkful bounds on the offered
bandwidth and latency of memory transactions. This seetiqutains how the proposed
memory controller delivers on this requirement. First, &argiew of our approach to
predictability, based on combining predictable memorié$ \predictable arbitration,
is presented in Section 2.1.1. Then, Section 2.1.2 explzmsto make an SDRAM
memory behave in a predictable manner, before Section@h@udes with a discussion
on predictable arbitration.

2.1.1 Overview of approach

Our approach to predictable memory controllers is basedoombining memories and
arbiters with predictable behaviors. More specificallgnfrthe memory, we require

25

26 CHAPTER 2. PROPOSED SOLUTION

bounds on the offered bandwidth and the time to serve a stdtkdeguest, since these
characterize the worst-case behavior of an unshared mehveryefer to a memory sat-
isfying this requirement aspredictable memoryWe also require aredictable arbiter
where the number of interfering requests that can be scaédbealfore a particular request
is bounded. Combining a predictable memory and a preditatiter allows the maxi-
mum time to schedule a particular request to be computed liypiging the number of
interfering requests with the maximum time to serve a scleghequest. This takes the
effects of sharing the memory into account. Our approackigd based on combining
independent analysed the memory and the arbitration. The strength of this apginds
that it lets us design a general memory controller, progjgiredictable service fany
combination of predictable memory and predictable arbit&his helps us satisfy our
abstraction requirement, as further discussed in Secti®n 2n illustration of a basic
memory controller is provided in Figure 2.1. We use this #edture as a starting point
and extend it with additional elements throughout this téiap

Memory Controller

Reqg/Resp. Buffers
e[1]
s
=[]
Arbiter

Figure 2.1: Overview of predictable memory controller.

Requestor 1

Aowa N
9|eRIpald

Requestor 2

)

2.1.2 Predictable SDRAM back-end

As previously mentioned, our approach to predictable mgnsontrollers requires a
useful bound on: 1) the bandwidth offered by the memory, antth@ time to serve a
request. Satisfying these requirements is straight-fahfa stateless SRAM memories,
where the available bandwidth simply corresponds to thdymbbetween the width of
the memory interface and the clock frequency, and a wordrigdewith a fixed latency
of one clock cycle. However, as mentioned in Section 1.1, is more difficult for
SDRAMSs, where both the offered bandwidth and the time toesarvequest depend on
the interleaving of requests from all requestors shariegiemory, which is not known
at design time.

The behavior of an SDRAM memory is determined by the sequenc&DRAM
commands that are communicated from the memory contral¢éné memory device.
These commands tell the memory to activate (open) a paaticaWw in the memory ar-
ray, to read from or write to an open row, or to precharge &las open row and store

2.1. PREDICTABILITY 27

its contents back into the memory array. There is also asefcemmand that charges
the capacitors of the memory elements to ensure that themsnf the memory array
are retained. The behaviors of some of these commands astalied in Figure 2.2.
Scheduling SDRAM commands is not a trivial task, since tlaeeea considerable num-
ber of timing constraints that must be satisfied before a canthtan be issued. These
timing constraints are minimum delays between issuingq@dar SDRAM commands,
such as two activates, or an activate and a read or a write.

Existing SDRAM controllers can be divided into two categstidepending on how
they schedule the SDRAM commands. Statically scheduledratars execute pre-
computed command schedules that are guaranteed at designatisatisfy all timing
constraints of the memory. Executing precomputed schedukbikes these controllers
predictable and easy to analyze. However, they are alsdeitmbdapt to the dynamic
behavior of applications in contemporary System-on-CK§=Cs), such as bandwidth
requirements or read/write ratios that vary over time. Tdwoad category of controllers
uses dynamic scheduling of commands, which requires thadigonstraints to be en-
forced at run time. These controllers have sophisticatathtand schedulers that attempt
to maximize the average offered bandwidth and to reducevbeage latency at the ex-
pense of making the resource extremely difficult to analyas. a result, the offered
bandwidth can only be estimated by simulation, making badihallocation a difficult
task that must be re-evaluated every time a requestor isladet@oved or is modified.

[
[
[

bank
X
activate < precharge
(open) Q (close)
| row buffer A M
re:';ld wr‘ite

Figure 2.2: The behaviors of some important SDRAM commands.

We propose a hybrid approach to SDRAM command schedulirigctimabines ele-
ments of statically and dynamically scheduled SDRAM cdigrs in an attempt to get
the best of both worlds. Our approach is baseg@tdictable memory patterns/hich
are precomputed sequences (sub-schedules) of SDRAM codsntibat are known to
satisfy the timing constraints of the memory. These pastane dynamically combined
at run-time, depending on the incoming request streams.nldraory patterns exist in
five flavors: 1) read pattern, 2) write pattern, 3) read/vswéching pattern, 4) write/read
switching pattern, and 5) refresh pattern. The patternsrai@ed such that multiple read
or write patterns can be scheduled in sequence. Howeverdaedtern cannot be sched-
uled immediately after a write pattern. In this case, thel neattern must be preceded
by a write/read switching pattern. This works analogouslthie other direction. The re-
fresh pattern can be scheduled immediately after eitheadpattern or a write pattern.

28 CHAPTER 2. PROPOSED SOLUTION

Both read and write patterns can be scheduled immediatty afrefresh without any
preceding switching patterns.

The read and write patterns consist of a fixed number of SDRAMtb, all targeting
the same row in a bank. The bursts are issued to the diffeesrkshin sequence, since
the data bus is shared between all banks to reduce the nurhpgrsamn the SDRAM
interface. The fixed number of bursts is hence first sent tditeebank, then to the
second, and so forth in an interleaving fashion until allksanave been accessed. This
way of accessing the SDRAM results in a short period withdeed accesses, followed
by a longer period without any accesses. The patterns eXaok-level parallelism by
issuing activate and precharge commands to the banks dberigng intervals in which
they do not transfer any data. The read and write patternbenee very efficient in
terms of bandwidth, since it is possible to hide a signifigaart of the latency incurred
by activating and precharging rows. This limits the ovethegcles incurred by always
precharging a bank immediately after it has been accesdadhis known as a closed
page policy. We implement this policy, as it effectively m@ras the dependency on rows
opened by earlier requests by returning the memory to aalesitite after every access.
Removing this dependency between requestskisyaelemenin our approach, since it
reduces the variation in the offered bandwidth and latemnabling tighter bounds on
bandwidth and latency to be derived.

Although interleaving memory patterns allow us to bound dffered bandwidth,
they come with two drawbacks. The first drawback is that comtiisly activating and
precharging the banks increases power consumption cothfiaifea single bank is used
at a time. The second drawback is that the memory is accestethme granularity and
hence requires large requests to be efficient. An efficieceéscrequires one SDRAM
burst to every bank. A typical burst size for SDRAM is 8 wordsl éthe number of banks
is either four or eight. The minimum efficient request sized®2-bit memory interface
is hence between 128-256 B. Working with large requests iorapreemptive manner
also means that urgent requests can be blocked longetimgsuallonger latencies.

Figure 2.3 shows example read and write patterns for a 1BbR2-400 memory
device. The SDRAM commands in the figure are encoded acaptdiactivate (ACT),
read (RD), write (WR), and no-operation (NOP). All read andexcommands are issued
with an automatic precharge option, causing the bank to éeharged automatically at
the earliest possible convenience. This removes the neexpliitly issue precharge
commands and furthermore ensures that an arbitrary row eampbned in the bank
in the shortest possible time. The numbers in the figure spard to the number of
the bank associated with a command or data element. Notévtbatata elements are
transferred every cycle due to the Double-Data-Rate (DDRjeomemory. The patterns
in the figure are very efficient in terms of bandwidth, as thepsfer data during every
cycle if they are repeated multiple times. The figure alsowshilat scheduling a write
pattern immediately after a read pattern (first command d@ewmattern in cycle 16 of
read pattern) causes a conflict on the data bus, which is otieeakasons switching
patterns are needed.

Requests are dynamically mapped to patterns in a non-pteempanner by the
command generator in the memory controller. A scheduled request maps to a read

2.1. PREDICTABILITY 29

| | | | | |
| | | | | |
cmd I I I I I I
! | | ! ! U

cycle 0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21

I
data ! :

(a) Read pattern

A

I I I I I

I I I I I

oo [efoyotofofoyofofa iyl fa i 1T1 2 o o 2 2 2 2 2 3 3 3] 3 3 3]3)

cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(b) Write pattern

Figure 2.3: Read pattern and write patterns with burst leB8dbr a DDR2-400.

pattern, possibly preceded by a write/read switching patt®imilarly, a write request is
mapped to a write pattern and a potential preceding reae/amiitching pattern. Refresh
patterns are scheduled automatically by the memory céatianh a regular basis between
requests. The mapping from requests to patterns and fraerpato SDRAM bursts is
shown for an SDRAM with four banks in Figure 2.4. The figurastrates that the time
to serve a request of four bursts varies depending on whethest a switching pattern
is required and if a refresh is scheduled before the request.

Requests ‘ Read ‘ Write ‘ Read ‘ Read ‘ Write '
| ! ‘ ‘ ! !
I | I I | |
I | I I | |
I | I I | |
I | I I | |

Memory (" Read Refresh wite |wR| Read)| Read Jrm) wii
patterns ‘[eal I efres| I rite eal I ea rite)
I I I I I I I I I
I I I I I I I I I
B t / I I I I I U I I U
Bk (0)1)2)3) (fi)2)3) (fufaf3fof11203) (of1)f2)3)
Time

Figure 2.4: Mapping from requests to patterns to SDRAM Isurst

The benefit of memory patterns is that they raise SDRAM conthsaheduling to a
higher level. Instead of dynamically issuing individual BBAM commands, like a dy-
namically scheduled SDRAM controller, our proposed cdlgrissues memory patterns
that are sequences of commands. This implies a reductiomatef and constraints that
have to be considered, making our approach easier to arhlgmecompletely dynamic
solutions. Memory patterns allow a lower bound on the offdrandwidth and the time
to serve a request to be determined, since we know the lehgtich pattern, how much
data they transfer, and how they can be dynamically combirte use of memory
patterns hence gives our approach the predictability titatly scheduled memory con-
trollers. In addition, our approach also has some promediedynamically scheduled

30 CHAPTER 2. PROPOSED SOLUTION

controllers, such as the ability to dynamically choose leetwread and write requests,
and the use of run-time arbitration. The latter is the topithe following section.

Our approach is implemented as an SDRAM back-end, as shotiguime 2.5. The
back-end accepts a scheduled request through a DeviceattamsLevel (DTL) [88]
port, and translates the logical address into a physicaladdbank, row, and column)
using an interleaved memory map. A command generator tlseressthe appropriate
memory patterns and sends the SDRAM commands to the memeaicedd he imple-
mentation of the back-end is very light weight and has a sarah foot print.

'
SDRAM back-end
Scheduled L data o (]
-] || o
request)
logical physical)§>
address dd
Memory | address
Map
DTL SDRAM
cmd Command | cmd
™1 Generator > T ’ [ﬁ

Figure 2.5: Overview of the predictable SDRAM back-end.

2.1.3 Predictable arbitration

After the previous section, we assume that we have a prétictaemory, such as an
SRAM or our proposed SDRAM back-end based on predictableangpatterns, where
useful bounds on both the offered bandwidth and the timert@serequest are known. In
this section, we consider the effects of sharing the praldietmemory between multiple
requestors. As mentioned in Section 2.1, we require a pedadecarbiter, where the num-
ber of interfering requests before a particular requestheduled is bounded. There ex-
ists are large number of both predictable and unpredictatbigéers in literature. To pro-
vide some concrete examples, we return to the three arbiteosluced in Section 1.1.3.
Time-Division Multiplexing (TDM) schedules requestorsanding to a static schedule
that is computed at design time. The latency of this arbgdrence easily bounded by
inspecting this schedule, and potentially also the reggsiest of the requestors in case
of a non-preemptive arbiter. TDM is hence a predictabletarbRound-robin arbitration
cycles between requestors that are trying to access theroesskipping any requestors
that are currently idle. This is another example of a predbiet arbiter, since the latency
is determined by the number of requestors and their reqizs. sA static-priority ar-
biter, on the other hand, is an example of an arbiter thatgadictable. The reason is
that a high-priority requestor that continuously accesisesnemory can prevent access
from a low-priority requestor indefinitely, resulting in anbounded latency.

2.1. PREDICTABILITY 31

Frame size Allocation Frame size Allocation
4 slots 1/4 slots 4 slots 2/4 slots
-
o | || || e |ee || | ee
B
Worst-case latency Worst-case latency
6 slots 4 slots
(a) Frame size of 4 slots, alloca- (b) Frame size of 4 slots, alloca-
tion of 1 slot. tion of 2 slots.
Frame size Allocation
8 slots 1/8 slots
-
o [[[[T I [ITT[]] @

Worst-case latency
14 slots

(c) Frame size of 8 slots, allocation of 1 slot.

Figure 2.6: Example of coupling between allocation graritylalatency, and allocated
bandwidth.

A common problem with existing predictable arbiters is ttiety have unwanted
couplings between essential properties, such as allocgtanularity, latency, and rate
(allocated bandwidth). We illustrate this problem with ammple in Figure 2.6. The
figure shows a frame-based rate regulator that is commomelg inspredictable arbiters
to ensure that requestors get their allocated bandwidtleryenequestor is allocated a
number of slots, corresponding to memory accesses, in a ocarperiodically repeating
frame of fixed size. We assume that the scheduler decidehwigiestor that can use
which slot in a frame arbitrarily. Figure 2.6a shows an exi@myhere the rate regulator
has a frame size of four slots. A requestor is allocated ohefdour slots in the frame,
corresponding td /4 = 25% of the available bandwidth. The figure shows that if the
scheduler would give the requestor the first slot in one fraamel the last slot in the
next frame, it would encounter its worst-case latency ofsédts. Since the requestor
maps requestors to slots arbitrarily, there is nothing wedwmato reduce the worst-case
latency, except giving more slots to the requestor, wadiangdwidth. This is shown in
Figure 2.6b, where the requestor is allocated an additisiealin the frame, reducing
the worst-case latency to 4 slots at the expense of anotliéra2the total bandwidth.
The example illustrates that latency and rate are coupletittzat one is traded for the
other. The coupling between allocation granularity aneriay becomes a problem if the
requestor only wants 10% of the total bandwidth, since theams that we are wasting
15% of the 25% allocated to the requestor. We can addresgrttieem by doubling the
frame size, changing the allocation of the requestdr/® = 12.5% of the bandwidth.
However, as seen in Figure 2.6c¢, this means that the wosstleéency also increases
from six slots to 14. The coupling between allocation grarity and latency hence
implies a trade-off between over allocation and latency.

As a part of this work, we present a Credit-Controlled St&iority (CCSP) arbiter.
The CCSP arbiter consists of a rate regulator and a statictgrscheduler, as illustrated
in Figure 2.7. The rate regulator isolates requestors bgreimg an upper bound on

32 CHAPTER 2. PROPOSED SOLUTION

the provided service, according to an allocated budget. sthgc-priority scheduler

schedules the highest priority requestor that is withilitdget. The combination of rate
regulator and static-priority scheduler makes the arpitedictable, while still being able
to satisfy the requirements of latency-critical requestor

s _ 2!
CCSP Arbiter
Requestor 1 j Rate Static-Priority | Scheduled
Requestor 2 »| Regulator Scheduler Requestor
L Scheduled requestor

Figure 2.7: Overview of a CCSP arbiter with two requestors.

CCSP has been developed to control resource access in ShGasaa small and fast
hardware implementation. The CCSP rate regulator furtbezndecouples allocation
granularity and latency bgontinuously increasing the budgets of the requestasp-
posed replenishing between frames. Bandwidth can henciolbatad with an arbitrary
precision without affecting latency, enabling a clean ¢xadff between over allocation
and area. This allows over allocation to become negligibléch is essential for scarce
SoC resources with very high loads, such as SDRAMs. Thecgtatrity scheduler
decouples latency and rate using priorities, thus enalidwdatency to be provided to
requestors with low bandwidth requirements without wasbandwidth.

The addition of a rate regulator creates a separation ofecos@and makes it pos-
sible to bound the latency of a requestor in a static-psicgitheduler without relying
on the cooperation of higher priority requestors. Instémadinds are based on the allo-
cated bandwidths and burstinesses, which are determirtbigin time. However, to be
completely robust, we also need to be independent of the sizecheduled requests to
prevent a malfunctioning requestor from preventing acéess others by issuing very
large requests. We solve this problem using preemptivacgerwhich is accomplished
by adding an additional hardware block, called/tomizer[39]. The Atomizer splits
requests int@tomic service unitgeferred to as atoms, which are served by the memory
in a known bounded time. Large requests are hence choppedamdller pieces, en-
suring that other requestors can access the resources witldunded time. The size of
the atoms are fixed and determined at design time. The size atioan is chosen to be
the minimum request size that can be efficiently served bydkeurce. For an SRAM,
the natural service unit is a single word, but it is much lafge an SDRAM with pre-
dictable memory patterns. In this case, the service unihtridg between 16 and 256
words, depending on the memory device and the pattern. Uisiedrsized requests in
the memory controller furthermore simplifies other blogk#he architecture, resulting in
a faster implementation. Another benefit of adding the Almmnas a separate hardware
block on front of the arbiter is that it effectively makesilkdictable arbiters preemptive
on the granularity of atoms. This qualifies any existing preadble arbiter for use with
our approach, which adds to the flexibility, while promothegise.

2.2. ABSTRACTION 33

A predictable SDRAM controller with two requestors is shoimnFigure 2.8. In
addition to the SDRAM back-end and memory from Figure 2.5,5&e a predictable
resource front-end with multiple DTL inputs and a single Ddutput. The front-end
contains an Atomizer per requestor that chops incomingestgunto atoms. After the
Atomizer are the Request and Response Buffers. Arrivingiatare stored in the Request
Buffer until they are scheduled by the predictable arbi#eischeduled atom is routed
through the Data Bus to the output port of the front-endyangi in the SDRAM back-
end. The proposed front-end is general and fits aith predictable resourosith a DTL
interface. For instance, if we want to access an SRAM, we lgingmove the SDRAM
back-end and connect the output port of the front-end dyréztan off-the-shelf SRAM
controller with a DTL interface. The implementation of threrft-end is hence general
both with respect to the target resource and to the type dfearlas long as they are
predictable.

Resource front-end SDRAM back-end

requestor 1 <-—{

AVHAs

requestor 2 <—>[

ical
Memory
Map
DTL SDRAM
cmd Command || cmd

Figure 2.8: A predictable SDRAM controller supporting tvemuestors.

2.2 Abstraction

The memory service is required to use a common abstractairc#iptures the temporal
behavior of many different memory and arbiter types to ratgthe increasing system
complexity. We have chosen Latency-Rat&R() servers [104] as the shared resource
abstraction in this work. In essence /& server guarantees a requestor a minimum
allocated bandwidthy, after a maximum service latend®cc, as shown in Figure 2.9.
A LR server hence provides a lower bound on the amount of datadhdie transferred
during an interval, making it an abstraction of predictadgevice.

The LR server model applies to a wide range of shared resourceshvgiequired
by our chosen abstraction. In theory, all predictable arbibelong to the class @fR
servers, since they guarantee that a request is scheduhéd vimaximum latency, mak-
ing them starvation free. However, no arbiter truly belotwthe class until the service
latency has been derived, which is difficult for some arbitdihe arbiters that belong to
the class ofZLR servers are hence a subset of the set of predictable arlBisitkistrated
in Figure 2.10. In this work, we refer to arbiters in the claB§R servers a&'R arbiters.
Itis shown in [104] that many well-known arbiters, such asghfted Round-Robin [57],

34 CHAPTER 2. PROPOSED SOLUTION

requested service

provided service

_ min. provided service

Accumulated
data

Sy
(G Clock cycles

Figure 2.9: TheCR server abstraction.

Deficit Round-Robin [98], and several varieties of Fair Qng119] areLR arbiters.
Another example of a commonly us€dR arbiter is TDM [110]. As a part of this work,
we show that the CCSP arbiter [10], also belongs to the clag¥bservers. The ap-
plicability of the LR model with respect to resources is very good, since it carsbd u
with any predictable resource. Example uses of the modékirature involve modeling
communication channels in busses [110] and networks-gm{48].

Arbiters
Predictable Arbiters

LR Arbiters

Figure 2.10:LR arbiters are a subset of predictable arbiters.

The LR server model uses two parameters, service latency anctdbbbandwidth,
to model the service provided by a shared resource. The nimtieihce more sophis-
ticated than a model with a single parameter that only cemsithe maximum time to
serve arequest and uses this for every resource accessddéub\alue of th€R model
is that it considers the service history of a requestor. @tdsvs it to exploit the fact that
many requests from a requestor may be waiting for servicepatticular time, and that
all of them cannot experience worst-case interference fotimer requestors. This al-
lows tighter bounds to be derived on the time required toesarmumber of requests, as
shown in [40]. It is possible to conceive using more than the parameters used by
the LR server model to further improve the accuracy of the modeér&lare, however,
three main reasons not to go in this direction in this workTh¢ LR model has been
shown to apply to many well-known arbiters. This body of warbuld not necessarily
be reusable by a more refined model. 2) It may be more diffiodtdve that a particular
arbiter belongs to a class with more parameters. 3) Havinge rparameters makes it

2.3. COMPOSABILITY 35

more difficult to specify requestor requirements. This ipamant since requirements
often have to be specified manually. Getting the requestetigation may hence in-
volve significant manual labor that has to be repeated wlegrahanges are made to an
application.

A benefit of theLR server abstraction is that it supports formal performamedyais
using approaches based on network calculus [25] or datadtadysis [114]. This en-
ables formal verification of real-time requirements in as@arent manner fany com-
binationof arbiter in the class of R servers and predictable resource using any of these
frameworks. Some applications have behavior that is toopbexrto model accurately
using formal models, and have to be verified by simulationréfuce the verification
effort of these applications, our memory controller alsovites composable service, as
discussed next.

2.3 Composability

The memory controller is required to provide composablgiserto applications to en-
able them to be developed and verified independently, asiegal in Section 1.3.3.
Composability requires that applications are indepenitebbth the value and time do-
mains. The proposed memory controller only explicitly agdes composability in the
time domain. Applications must hence be unable to chande@her’s temporal behav-
ior, positively or negatively, with even a single clock aycWe assume that applications
are composable in the value domain by some other mechanightgamnot affect each
other’s behavior. An example of such a mechanism is to majpicapipns to different,
potentially protected, memory regions. Composabiliteetf the design of all hardware
and software where applications can interfere with eachraémporally, such as stateful
resources and most run-time schedulers. We already ment®®DRAM as an example
of a stateful resource in Section 1.1.6, where requestarsntarfere with each other’s
temporal behavior by activating and precharging rows athging direction of the data
bus. Another example is caches, where requestors can exhbtather’s cache lines,
resulting in increased memory latency.

There are currently three approaches to composable systsgnd The first involves
not sharing any resources, which is trivially composable poohibitively expensive for
systems not running safety-critical applications. Theoseds to statically schedule all
interaction between components in the system [60]. Thisaguh requires a global no-
tion of time and is limited to applications that can be stdljcscheduled. The third is
to share resources dynamically at run-time using TDM [1h,®8ich cannot efficiently
satisfy the requirements of latency-critical requestsirs;e it couples allocation granu-
larity, latency and rate.

In this work, we present a fourth approach to composableurescsharing that is
based on th&€R server abstraction, previously presented in Section 2h2. fiiajor ad-
vantage of this approach is that is extends the use of corbpibsaeyond resources and
arbiters that are inherently composable. Our approachriseheot limited only to state-
less SRAM controllers, but can capture the behavior of aadiptable resource, such as

36 CHAPTER 2. PROPOSED SOLUTION

our proposed SDRAM back-end based on predictable memotgrpat It furthermore
supports any arbiter in the class 6R servers, enabling service differentiation that in-
creases the possibility of satisfying a given set of requesjuirements. A key benefit is
that the approach does not hary restrictionson the applications. This ensures that all
applications that cannot be formally verified can be verifirettpendently by simulation
with a linear verification complexity.

The main problem with non-composable resources and aibitris that they cause
the time to serve a read or a write request to depend on ottpeeseors. This might cause
an application that has been verified in isolation to missitieas after being integrated
with other applications due to contention for shared reseair The key idea behind our
approach is to make the system composable by delaying aflisigent to the requestor to
emulate maximum interference from other requestors. Aestqu hence always receives
the same worst-case service no matter what other requestodoing, decoupling their
temporal behaviors. Intuitively, it may seem sufficient ¢oify that the applications meet
their real-time requirements under worst-case conditamsthen disable emulation of
worst-case interference after verification to benefit fromprioved performance. How-
ever, this intuition assumes that applications executimghe system arperformance
monotonid63] and that having additional resources cannot resultdrse performance.
This only holds for applications that do not exhibit timingmkndent behavior executing
in systems that are free from timing anomalies [33], whiclymecur in shared caches,
dynamically scheduled processors [66], and some multgssor systems [33]. We pro-
pose to always emulate maximum interference to avoid otisigithe range of supported
systems and applications.

Our approach to composable resource sharing makes the t@nipebaviors of the
requestors are independent of each other, thus implengectimposability on the level
of requestors. This is a sufficient condition to be compasahlthe level of applications,
which is our actual requirement. However, composabilitytloa level of requestors is
a stricter requirement, since requestors belonging todheesapplication are allowed to
interfere with each other in a composable system. A drawb#&okir approach is hence
that it is not possible to benefit from unused resource capaserved by requestors be-
longing to the same application (slack). However, a featfieur approach is that it can
be dynamically enabled or disabled per requestor at rua-bgnturning the emulation
of worst-case interference on or off. Composable servicehesmce be provided to only
a subset of the applications, while providing predictalelevise to the rest. We refer to
this type of system as@artially composable systenthis type of system enables slack
to be used by requestors that do not require composablesgstich as non-real-time
requestors, or those belonging to applications that aiiaeusing formal approaches.
The slack may be used by these requestors to Using slackesn@blmprove perfor-
mance or reduce power [74]. Partial composability is al$erasting if the provider of
a system wants to isolate the applications shipped withytsies from those developed
by third parties. In this case, applications shipped withgtatform would have compos-
able service, while itis up to third party to decide betwesing slack and composability.
This creates a separation of concerns between differeptistgy making responsibilities
more clear.

2.4. AUTOMATION 37

Our approach is implemented by extending the componenatong) the Request
and Response Buffers in Figure 2.8. Apart from containirgRlequest and Response
Buffers the new component, called a Delay Block, contaiesatiditional functionality
to implement composable service. The refined architechrmiding both predictable
and composable service, is shown in Figure 2.11. The purpiotbe Delay Block is to
emulate worst-case interference from other requestonoiode a composable interface
towards the Atomizer. This makes the interface of the efriinet-end composable, since
the Atomizer is not shared. The Delay Block is composabld gignals sent from the
Delay Block to the Atomizer exhibit composable behaviorjekhimplies that both the
response data and the flow-control signals must emulatenmuaxiinterference. This is
achieved by computing the latest possible time this infdionacan be sent, using the
lower bound on service provided by tiH&R server abstraction.

Predictable and composable SDRAM controller

Resource front-end SDRAM back-end

|
I
requestor 1 —-——»{
I
I

-':
sng eleq

Wvdas

i
I
I
requestor 2 <—¢—>Q‘
I
i

physical
Memory | 2ddress
Map
DTL SDRAM
cmd Command || cmd
Generator

IF
[Arbiter

Figure 2.11: Aninstance of a predictable and composable/8DEontroller, supporting
two requestors.

To provide composable service, a Delay Block needs infaonabout the maxi-
mum interference that can be experienced by its requeshds.ifformation is typically
different for all requestors and changes between use-cAgésnfiguration Buss hence
added to the architecture, as shown in Figure 2.11, thavslloe worst-case interference
to be programmed.

2.4 Automation

The memory controller is required to have an automated agpreo finding Intellec-
tual Property (IP) instantiation parameters and configumagettings to reduce design
time. To satisfy this requirement, we have developed a cordtgn flow, shown in Fig-
ure 2.12. This flow derives the instantiation parametersafohardware blocks in the
memory controller, as well as programmable configuratidtingss. The purpose of the
configuration flow is to derive instantiation and configuratparameters that satisfy the
requirements of all requestors for all use-cases. Therebraapany possible configu-
rations that satisfy the requirements for a given use-dasehich case we prefer the

38 CHAPTER 2. PROPOSED SOLUTION

configuration that produces the largest amount of slackwaltd. The rationale behind
this decision is that a configuration with more slack bandhwvidl likely to provide better

average performance for requestors that do not require esalype service. The inputs
to this flow are the requestor requirements, being the reduirinimum bandwidth and
maximum service latency, and the timing specification ofrtteanory device. We pro-

ceed by discussing the different steps in this flow.

Provided
. normalized Provided Provided
Normahzed bandwiths & bandwiths & bandwiths &
requirements latencies latencies latencies

Normalize Arbiter Denormalize Verify
Requirements Configuration Allocation Requirements
Requestor d 4 4 4

requirements Memory
patterns

Pattern
| Fate - @
Generator
Memory

specification

Figure 2.12: Simplified overview of the automated configoraflow.

The first step of the flow is to generate a set of memory patt@ssiming that the
memory is an SDRAM. Otherwise, a specification is provideat tepresents the tim-
ing behavior of the particular memory. The second step irfltve is normalization of
requestor requirements, which implies transforming thedeadth and service latency
requirements to make them independent of the memory deViwaccomplish this, the
original requirements and the generated memory pattemseguired as input. The
advantage of this step is that arbiter configuration becdrmiEpendent of the memory
device, allowing the same configuration tool to be used fanamories. The normalized
service latency requirement is expressed as the numbededidring atoms that can max-
imally be tolerated, which can be computed given the lengfitte memory patterns.
Normalization of the required bandwidth implies expregshe requirement as a fraction
of the total bandwidth offered by the memory. The third stethe arbiter configuration,
which attempts to find arbiter settings that satisfy the radized requirements. The im-
plementation of this step is arbiter dependent. For a TDNtexht involves finding a
TDM schedule, while a round robin arbiter does not requireamfiguration at all. The
configuration of CCSP is divided into two parts, being bamttlvallocation and priority
assignment. Bandwidth allocation means finding the cordigpm parameters that pro-
vide the closest approximation of the normalized requiraaduvidth, given a particular
precision. The allocated bandwidths of all requestorstaea passed to the priority as-
signment that uses an optimal algorithm to assign priaritiehe requestors. The output
of the arbiter configuration is the normalized allocatedymted) bandwidths and ser-
vice latencies, resulting from the chosen configuratiompeaters. The fourth step in the
configuration flow is denormalization of the allocated baiutlas and service latencies.
In addition to the output from the arbiter configuration, themory patterns are required

2.5. SUMMARY 39

to convert the normalized allocation back into regular beidths and service latencies.
The denormalized service allocation, being the providethadth and latency, is out-
put from this step. The fifth step accepts the denormalizedcgeallocation as input and
verifies that the original requestor requirements arefgadisif all requirements are met,
the configuration is stored as a candidate configurationhi®muse-case. At this point,
the flow may iterate to evaluate another set of memory patteAfter all interesting
pattern sets have been evaluated, the configuration pngvttie most slack bandwidth
is chosen.

The proposed dimensioning and configuration flow finds albpeaters for instan-
tiation and configuration of the memory controller. Howe\msth the memory pattern
generation algorithm and the service allocation step ofG&SP arbiter are heuristic,
and are hence not guaranteed to find parameters that sditigfguarements, even if they
exist. However, the size of the design space is so large @rendividual steps, such as
the memory pattern generation, that optimal solutions ateonsidered feasible.

2.5 Summary

This chapter discussed how the proposed memory contraiklita associated tooling
deliver on the four requirements introduced in the previchapter: predictability, ab-
straction composabilityandautomation First, we presented an approach to predictabil-
ity, based on combining predictable resources with prabletarbitration. We showed
how to make an SDRAM memory behave in a predictable mannagusemory pat-
terns which are precomputed sequences of SDRAM commands. Thefwatypes of
memory patterns: read patterns, write patterns, rea@\switching patterns, write/read
switching patterns, and refresh patterns. These pattemslyamamically instantiated
and combined at run-time by a proposed SDRAM back-end. Tawatlur SDRAM
back-end to be shared among multiple requestors, a prbticaebiter, suitable for pro-
viding access to shared memories, is needed. We proposeeld#-Controlled Static-
Priority (CCSP) arbiter, consisting of a rate regulator arstheduler. The rate regulator
isolates applications by regulating the amount of provisedice in a way thatlecou-
ples allocation granularity and latencyThe scheduler then uses prioritiesdecouple
latency and ratesuch that low latency can be provided to any requestorrdésss of its
allocated rate.

We presentedlatency-Rate {R) serversas our shared resource abstractionCR
server is an abstraction of predictability that uses twapeaters to describe a lower
linear bound on the amount of data that is transferred in tanial. TheLR server
model is very general arapplies to any predictable resourcgich as SRAM controllers
or our proposed SDRAM back-end. It furtherm@@pports many well-known arbiters
including the CCSP arbiter. An important benefit of th&® server model is that it is
compatible with several commonly used formal performanadysis frameworks, such
as network calculus and data-flow analysis. Any combinaif@upported resources and
arbiters can hence be used transparently with any of thasesfvorks.

40 CHAPTER 2. PROPOSED SOLUTION

Some applications have behavior that is too complex to macialrately using for-
mal models, and have to be verified by simulation. Compoisaisl required to reduce
the verification complexity for these applications. Howeeisting approaches to com-
posable system design are either restricted to applicatiwat can be statically sched-
uled, or share inherently composable resources usingdims&on multiplexing, which
cannot efficiently satisfy tight latency requirements. Wesgnted a new approach to
composable resource sharing, based ondReserver abstraction. The key idea is to
delay all signalssent from the resource to a requestor to emulate maximumieérgace
from other applications. A benefit of our approach is thaait be dynamically enabled
or disabled per requestor at run-time. Taimbles slack bandwidth to be used to improve
performance of requestors that do not require composalrieéce However, the biggest
advantage of this approach is that is extends the use of czabpity to work withany
applicationsharingany combinatiorof predictable resource and arbiter in the class of
LR servers. This approach is implemented as a resource fnohthat is located in front
of a predictable resource, such as our SDRAM back-end.

The composable resource front-end and SDRAM back-end gosied by a con-
figuration tool thatautomatically computes memory patterns and arbiter sgstimhe
tool uses abstraction to separate the configuration of tmeaneand the arbiter. The tool
hence only knows how to configure the supported SRAM or SDRAN each of the
arbiters, but can compute configurations that satisfy badtthvand latency requirements
for any combination.

CHAPTER 3

SDRAM memories and controllers

The journey towards a predictable and composable SDRAMralet is started with
some background information on both SDRAM memories theveseand their con-
trollers. First, the architecture and temporal behavioBBRAM memories are intro-
duced in Section 3.1. A formal model is then presented ini@e&.2 that enables us
to formally describe our techniques in later chapters. Tdreept of memory efficiency
is introduced in Section 3.3, as we explain why it is difficidtbound the bandwidth
and latency of an SDRAM at design time. A general memory alletrarchitecture is
presented in Section 3.4, and its main functional blocksleeussed. For each of these
blocks, different design options are highlighted alongwtiteir impact on the provided
bandwidth and latency. Lastly, we conclude the chapter awghmmary in Section 3.5.

3.1 Introduction to SDRAM

Random Access Memory (RAM) is a fundamental component inpegar systems and
has been for the past decades. It is used as intermediadgestfor the processing el-
ements in the system. There are several types of RAM tamydtfferent requirements
on bandwidth, power consumption, and manufacturing colis Work focuses on two
common types of RAMs: Static RAM (SRAM) and Dynamic RAM (DRAMSRAM,
was introduced in 1970 and is typically used as fast on-cl@mory that can be accessed
with low latency. For this reason, SRAM is often used for eschnd scratchpads in the
higher levels of the memory hierarchy to boost performarnidee drawback of SRAM
is cost, since at least six transistors are needed for eveny the memory array. The
DRAM was invented in 1968 by Robert Dennard at IBM [3]. DRAMdansiderably
cheaper than SRAM, as it needs only one transistor and aitapger bit. The capacitor

41

42 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

is charged with a high or low voltage to indicate a one or zexspectively. The term dy-
namic stems from the fact that the capacitor is leaking ctirmad needs to be refreshed
several hundred times per second to prevent data loss. DRAfanufactured in an
optimized process technology, allowing it to reach highsits and speeds. However,
it is typically an off-chip memory, which implies longer &tcies and higher power con-
sumption than its on-chip static counterpart. On-chip etdied DRAM exists, but has
yet to gain widespread adoption. For these reasons, DRANtés aised high-volume
storage in the lower levels of the memory hierarchy.

In the past ten years, there have been a number of improverogtite DRAM de-
sign. A clock signal has been added to the previously aspncus DRAM interface
to reduce synchronization overhead with the memory cdetraluring burst transfers.
This type of memory is called synchronous DRAM, or SDRAM fbod. In 2001, a
new generation of SDRAM was introduced, featuring signifibahigher bandwidth.
These memories transfer data on both the rising and thadadliige of the clock, hence
the name Double-Data-Rate (DDR) SDRAM. The second and gercerations of this
memory, called DDR2 [52] and DDR3 [53], respectively, arepgmilar in design, but
scales to higher clock frequencies and bandwidths.

3.1.1 SDRAM architecture

The architecture of an SDRAM memory contains a humber of barWkbank stores a
number of word-sized elements in a two-dimensional strectirganized in rows and
columns, as shown in Figure 3.1. In essence, banks are indepememories, but they
share a data bus, an address bus, and a command bus to rezlncentber of off-chip
pins. Each bank has a row buffer that stores one open row. tBalglements of this open
row can be accessed by read and write accesses. To give aabideaithe number of
banks, rows, and columns in a contemporary SDRAM, we choosxample memory
that we use throughout this thesis. This memory is a 512 nieddb) DDR2-400 [52]
device with a word width of 16 bits. This device has 4 bankgheaith 8192 rows
containing 1024 word-sized elements. Since each colunushai element of 16 bits, it
follows that a row contains 2 kilobytes (KB) of data. Thisédarred to as thpage size
of the memory. Multiple devices can be combined to createwigemory interfaces and
increase storage capacity. The clock frequency of our elempmory is 200 MHz and
data elements can be transferred with a frequency of 400 Mtiz,to the double data
rate.

If we compare our example memory to other DDR2 or DDR3 mersprie notice
that the DDR2-400 is the slowest memory of these generatidhg reason for using
this memory as our running example is that it results in gmaahd less complicated
memory schedules, increasing the clarity of our presemtafdDR2 memories start with
the DDR2-400 memory and ends with the DDR2-800 running at Me. This is
where the DDR3 generation begins with the DDR3-800 and tedsird specifies up to
DDR3-1600, which runs at 800 MHz. Faster DDR3 memories, upbiR3-2133, are
listed in the standard, but are not yet fully specified. DDES®O is hence the fastest
memory considered in this thesis. Except the increase ickdi@quencies, there are

3.1. INTRODUCTION TO SDRAM 43

bank
X
activate < precharge
(open) Q (close)
| row buffer A M
re:ad wr‘ite

Figure 3.1: The SDRAM architecture.

few differences between the DDR2 and DDR3 generations of ADhat are relevant
to this work. We will point out these differences where apgltile. The typical number
of banks in a DDR memory is 4 or 8. All DDR3 memories have 8 bamksle it is
determined by the density of the memory for DDR2. DDR2 devieéh a density less
than 1 Gb have 4 banks, while the larger ones have 8 banks. €heny devices are
available with widths of 4, 8, and 16 bits, and specified cajescare 256 Mb to 8 Gb.

3.1.2 The SDRAM protocol

An SDRAM is controlled by sending SDRAM commands to the megminterface ac-
cording to the SDRAM protocol. The protocol contains six coamds: activate (ACT),
read (RD), write (WR), precharge (PRE), refresh (REF), andperation (NOP). We
continue by discussing the function of each of these commsand

The activate command is issued with a row and a bank as argumstnucting the
chosen bank to copy the requested row to its row buffer. Oheeréquested row is
opened, column accesses, such as read and write burstsedasuld to access the
columns in the row buffer. These bursts have a burst lenBfl) 6f 4 or 8 words. The
burst length of a DDR2 memory is programmed when the memanjtialized, while a
DDR3 allows it to be changed on the fly for every access. A Hergith of 4 words is
only supported by a burst chopping mechanism on DDR3 de{#&&}s Such a chopped
burst requires the same time as a burst of 8 words, but omgfees data during half the
time. The read and write commands have the target bank, rac@umn sent as argu-
ments. The precharge command is the converse of the aatvatmand, as it copies the
contents of the row buffer back into its place in the memorgyarRead and write com-
mands can be issued with an auto-precharge flag, resulting sutomatic precharge
at the earliest possible moment after the transfer is camgbleThis has the benefit of
allowing a new arbitrary row to be opened as quickly as pdssilithout causing con-
tention on the shared command bus. The refresh command mussued regularly to
prevent the leaking capacitors from losing data. Multigieesh commands are required
to refresh the entire memory array, as each individual conthoaly refreshes a fraction
of the capacitors. However, no argument is required by thisrnand, since an internal
counter supplies the appropriate address. All banks mystaharged before the refresh

44 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

command is issued. The last command is the no-operation emehmvhich is issued if
no other command is required during a cycle. Figure 3.1tifiss the behaviors of some
of these commands.

3.1.3 Timing constraints

There are many timing constraints and parameters thateletich SDRAM commands
that can be issued during a particular cycle. The consgraire typically specified as
minimum delays between successive commands. Table Flallstelevant constraints
for our example memory. Detailed descriptions of all caists are provided in [52,53].
The meanings of some of the constraints are illustratedgairgi 3.2, which is a valid
command sequence for our example memory. The figure shotettleast R RD cycles
have to pass between consecutive activates to differeksbdtnalso shows that at least
tRCD cycles have to pass from issuing an activate command befoeadior write
command is sent to the same bank. A read or a write commandsédata to be sent over
the data bus durin@L/2 clock cycles with a DDR memory. This means that successive
read or write commands must be scheduled at IBagR clock cycles apart to prevent a
conflict on the data bus. This is seen in the figure, where th&t length is programmed

to eight words. The first read and write data appears on tleeliest a number of cycles
after the corresponding command has been issued. This simederred to as the read
latency,tRL, and write latencyt WL, respectively. The figure shows that the read latency
is 3 cycles for our example memory.

> tRCD > BL/2

| | | | | |
m@@@@@@@@@@::::::
| | | | | |
g || ERERGO000000000060006

_—=

-_—
>tRRD tRL

Figure 3.2: Example of SDRAM timing constraints.

3.2 Formal model

We proceed by introducing the formal model used in this theshich allows us to
formally describe some of our techniques. For simplicitg, bwild up this model incre-
mentally and add more content in later chapters. We stamtogducing our choice of
notation. Throughout this thesis, we use capital lettefst¢Adenote sets, hats to de-
note upper boundsi), and checks to denote lower bounds. (We use subscripts to
disambiguate between variables belonging to differentigstprs, although for clarity
these subscripts are omitted when they are not required. S&& to denote the set of

3.2. FORMAL MODEL 45

Table 3.1: List of relevant timing parameters for a 64 Mb x5 Mb) DDR2-400
memory device.

Parameter Description DDR2-400
[cycles]

tRC Row cycle time. Minimum time between successive activ 11
commands to the same bank

tRCD Minimum time between activate and read/write commands on 3
the same bank

tCL CAS latency. Time after read command until first data is av: 3
able on the bus

tWL Write latency. Time after write command until firstdatais avail- 2
able on the bus

tRP Minimum time between a precharge command on a bank a 3
successive activate command

tRFC Minimum time between a refresh command and a successive 21
refresh or activate command

tRAS Minimum time after an activate command to a bank until tt 8
bank is allowed to be precharged

tRTP Minimum time between a read and precharge command 2

tWR Write recovery time. Minimum time after the last data has be 3
written to a bank until a precharge may be issued

tFAW Window in which maximally four banks may be activated 10

tRRD Minimum time between activates to different banks 2

tCCD CAS to CAS command delay. Minimum time betweentworead 2
commands or two write commands

tWTR Internal write to read command delay 2

tREFI Average refresh interval 1560

46 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

non-negative integers, afd™ to denote the set of positive integers. Time is discrete and
counts from zero.

We start by defining the architecture of a memory in DefinitBoh. This definition
is quite general and does not only describe the architeof B®RAM, but also SRAM.
A typical SRAM architecture has a single bank, a data ratenefword per cycle, and
a burst length of one word. The clock frequency and data wdéfhends on the design
in which it is used. The only timing parameter we are inter@sh for SRAMs is the
clock frequency. The more elaborate definition of the timedpavior of an SDRAM is
provided in Definition 3.2.

Definition 3.1 (Memory architecture)The architecture of a memory is defined agf«s
Wmem fmem dr, BL), WherenpanksiS the number of banksymemis the width of the data
bus in bits, fmemis the clock frequency of the memory in MHz,is the number of data
words that can be transferred during a clock cycle, aBf is the programmed burst
length in words.

Definition 3.2 (SDRAM timings) The timings of an SDRAM, measured in clock cycles,
are defined astRC, tRRD, tRCD, tRP, tREFI, tRFC, tCL, tWR, tWTR, tRL,
tWL, tRAS, tRTP, tFAW, tCCD, tCK), where the parameters are defined according
to Table 3.1.

We proceed by adding definitions for requestors and memaopyests. These enable
our discussions on memory efficiency in this chapter and éxé The memory is shared
between a set of requestors, as stated in Definition 3.3. detqr generates a sequence
of memory requests, defined in Definitions 3.4 and 3.5, thatlmeeaeither reads or writes.
These requests have variable size, as expressed by Defidi@oA read or a write burst
is only allowed to start at an address that is an integer pialtf the programmed burst
length. The alignment of a request is defined as the offsdtefdrgeted address with
respect to the start of the burst, as defined in Definition 3.7.

Definition 3.3 (Set of requestors)The set of requestors sharing the memory is denoted
by R.

Definition 3.4 (Set of requests)The set of requests from a requestoe R is denoted
by Q...

Definition 3.5 (Request) The k:th requestk € N) from a requestor € R is denoted
bywk € Q,.

Definition 3.6 (Request size (bytes))The size of a request” in bytes is given by
sYeYwk) 1 Q, — N*,

Definition 3.7 (Request alignment)The alignment of a request® in bytes is given by
a(wk) : Q, — N, and is defined ag(w”) = a(w¥) mod (BL - wmen), Wherea(wF) is
the address af” in bytes.

3.3. MEMORY EFFICIENCY 47

3.3 Memory efficiency

The offered bandwidth from a memory ideally correspond$ieogroduct of the width
of the memory interface, the clock frequency of the memanyg the data rate. This is
referred to as th@eak bandwidthdefined in Definition 3.8. Our example DDR2-400
memory has a peak bandwidth of 800 MB/s, since it has a claedutency of 200 MHz,
a data rate of 2 words per clock cycle, and a data bus width bit$6A typical SRAM
has no problems with achieving its peak bandwidth, due todtsstant access latency.
However, SDRAMs typically cannot be fully utilized, due t@k cycles caused by the
timing constraints of the memory. This is captured by theceph ofmemory efficiency
Memory efficiency corresponds to the fraction of cycles dataansferred to and from
the memory. A useful classification of memory efficiency ifive categories is presented
in [116]. The categories are: 1) refresh efficiency, 2) revsité efficiency, 3) bank effi-
ciency, 4) command efficiency, and 5) data efficiency. Weinaetby explaining each
of the categories of memory efficiency, discuss what theyeddmpn, and try to estimate
their impact in the general case.

Definition 3.8 (Peak bandwidth) The peak bandwidth of a memory device is denoted by
vPeak and is defined aB*™ = frem: dr - Wmem

3.3.1 Refresh efficiency

Refresh efficiencyg™, accounts for the cycles that are lost due to refreshingapac
itors in the memory array. This efficiency depends on the tietpiired to precharge
all banks, the time to complete the refresh command itsetf,the refresh period. The
refresh command requireé® F'C' cycles to complete after it has been issued. The value
of this parameter is determined by the size of the memorycdews larger devices re-
quire more time to refresh. The refresh command must bedssuerytREFI cycles
on average, corresponding to 78 for all DDR2 and DDR3 devices at normal operat-
ing temperatures. The only uncertainty when determinirfigesé efficiency is the time
required to precharge all banks, which depends on the dt#te osnemory. The refresh
efficiency can hence be estimated at design time with reas®aacuracy. Typically, the
refresh efficiency is between 95-99% for both DDR2 and DDR&worées.

3.3.2 Read/write efficiency

SDRAMSs have a bi-directional data bus that requires timentiéech from read to write
and vice versa. This results in lost cycles as the directitineodata bus is being reversed.
To use the data bus of a DDR SDRAM at maximum efficiency, a readrite command
must be issued everBL/2 cycles. We quantify the cost of switching directions as the
number of extra cycles on the command bus before the readite eammand can be
issued. As an example, the cost for a read/write switch andite/read switch using
our example DDR2-400 is 2 and 4 cycles, respectively. Thd/vaite efficiency,e™,
depends on the number of read/write switches, which carypatally be determined

48 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

at design time. However, a formula is presented in [116] twahputes the average
read/write efficiency, based on a long-term read/writeoradis an example, the average
read/write efficiency for traffic consisting of 70% reads @@ writes withBL = 8
equals 93.8%. Note that the worst-case read/write effigienest be considerably lower,
since a long-term read/write ratio cannot exclude thatthee long intervals where there
is a switch after every single access.

3.3.3 Bank efficiency

The access time of an SDRAM is highly variable. A read or wedéenmand can be
issued immediately to columns in the active row. Howevern fommand targets an
inactive row, it first requires a precharge followed by arivateé command. This requires
at least an additionalRP + tRCD cycles (6 for our memory) before the read or write
command can be issued. The penalty can be even largeR @asycles must separate
one activate command from another within the same bankrdicepto Table 3.1. This
overhead is captured by bank efficiene§2™ Bank efficiency is highly dependent on
the target addresses of requests, and how they are mapeddifférent rows and banks
of the memory. Therefore, it is not possible to give a genestimate on the impact of
this efficiency.

3.3.4 Command efficiency

Even though a DDR device transfers data on both the risingtanéalling edge of the
clock, commands can only be issued once every clock cyclene8mes a required
activate or precharge command has to be delayed becauseeanommand is already
issued in that clock cycle. This results in lost cycles whemead or write command
has to be postponed due to a row miss. The impact of this isexbted to the burst
length, as smaller bursts result in more activate and prgeheommands. Command
efficiency, ™, is traffic dependent and can generally not be calculateésitd time,
but is estimated in [116] to be between 95-100%.

3.3.5 Data efficiency

Data efficiencye%2®, is defined as the fraction of a memory access that actuatitaits
requested data. This can be less than 100%, since SDRAM remnane accessed with a
minimum burst length; 4 words for DDR2 and 8 for DDR3 SDRANn(= four words is
only supported by chopping bursts of 8 words). The problenotonly related to fine-
grained requests, but also to how data is aligned with réspecmemory burst. This is
because a burst is required to accBéswords from an address that is evenly divisible by
the burst length. This is illustrated in Figure 3.3. The dadfiiency of a requestor can be
computed at design time if the minimum access granularitheimemory, and the size
and alignment of requests are known. For example, if requagstaligned cache lines of
128 B from an L2 cache then the data efficiency may be 100%. ©attrer hand, [116]
computes a data efficiency of 75% for an MPEG2 stream. Howeheroverall data

3.3. MEMORY EFFICIENCY 49

efficiency of the memory depends on how many requests fromtizplar requestor that
is scheduled in an interval, which is determined by the arlziihd may hence depend on
traffic.

3.3.6 Gross and net efficiencies

Having discussed all categories of memory efficiency, weeed by distinguishing two
different types of the concept. Definition 3.9 defirgress memory efficiencys the
product of all categories memory efficiency, excluding ddtiziency. This metric hence
does not care if the data on the bus is wanted by any of the s&mpgeor not. Gross
bandwidth defined in Definition 3.10, hence accounts for all data tlesisps the data
bus in an interval. This metric is primarily relevant if thatd efficiency is unknown or
uninteresting. Note that all categories of gross memorgieffty are traffic dependent,
making it very difficult to determine the gross bandwidth asign time in the general
case.

Definition 3.9 (Gross memory efficiency)Gross memory efficiency is denotedeByss,
and is defined agdss = ¢ref . W . bank. comd,

Definition 3.10(Gross bandwidth) The gross bandwidth of a memory device is denoted
by 59755 and is defined aB?™ss = pPeak. ¢9oss

Definition 3.11 defineset memory efficien@s the product of all categories of mem-
ory efficiency, thus including data efficiency. This henceresponds to the fraction of
clock cycles with useful data requested by a requestor ormldt@ bus. Net memory
efficiency is used to determine tmet bandwidthprovided by the memory controller,
defined in Definition 3.12. Net bandwidth is an important aic since the bandwidth
requirements of the requestors have to be satisfied acgotalithis definition of band-
width, as stated in Definition 3.13. This implies that the Iob@thdwidth allocated to the
requestor in the memory controller, defined in Definitiond3.rhust be at least equal to
the requested bandwidth.

Definition 3.11 (Net memory efficiency) Net memory efficiency is denotedd3§', and
is defined asnet: eref e ebank_ ecmd. edata_

Definition 3.12 (Net bandwidth) The net bandwidth of a memory device is denoted by
b€, and is defined ag"®t = pPeak. gnet

Definition 3.13 (Requested bandwidth)The net bandwidth, expressed in MB/s, of a
requestorr € R is denoted by,..

IRARNARN RNARNRN il e
word word

Figure 3.3: Two bursts of 8 words are required to read or v@&iteords that are mis-
aligned.

50 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

Definition 3.14 (Allocated bandwidth) The allocated net bandwidth, expressed in MB/s,
of a requestor € R is denoted by,

3.3.7 Memory efficiency trend

An interesting trend in SDRAMs is that the actual timing bebadoes not change much
between generations. This trend is clearly visible if tineitig constraints, measured in
nanoseconds, are compared between newer and older menktovesver, newer memo-

ries are clocked at higher and higher frequencies, reguhithat the timing constraints,

measured in clock cycles, are increasing. We illustrate pbint in Table 3.2 by com-

paring the timings of the slowest DDR2 memory (DDR2-400)he tastest considered
DDR3 memory (DDR3-1600) in both nanoseconds and clock sydlge note that the

activate-to-activate delay for a bankzC, is reduced with 10 ns for the DDR3-1600,
corresponding to a reduction of about 20%. However, the shatasy measured in clock
cycles is more than 3 times larger than for the DDR2-400! We ttwat similar trends are

visible for the other timing parameters. The bottom linehi$ trend is that the fraction

of time lost due to memory access overhead increases wittk ftequency. It hence

follows from Amdahl’'s law [11] that the memory efficiency oD®AMs is decreasing

over time. We will experimentally demonstrate this tren&action 4.7.

Table 3.2: Comparison of timing constraints in nanosecants$ clock cycles for a
DDR2-400 and a DDR3-1600.

DDR2-400 DDR3-1600
Constraint [ns] [cc] [ns] [cc]
tRC (ACT-ACT same bank) 55 11 45 36
tRRD (ACT-ACT diff. banks) 7.5 2 6 5
tRCD (ACT-RD/WR) 15 3 10 8
tRP (PRE-ACT) 15 3 10 8

3.4 Memory controllers

There exists a large number of memory controller designis different features. How-
ever, most memory controllers consist of the same basidibgiblocks. In this section,
we present an overview a general SDRAM controller desigreh&ucontroller can be
partitioned into two parts: a front-end, and a back-endllastiated in Figure 3.4. The
front-end is memory independent and primarily buffers mawg requests, schedules
access to the back-end, and returns responses. It hence evotlke granularity of trans-
actions. The back-end, on the other hand, is dependent engh®ry device and needs
to be replaced, modified, or reprogrammed if the memory oesinghe back-end is pri-
marily responsible for the translation between the prdto€the requestors and that of
the memory. The back-end of an SDRAM controller hence worits toth requestor

3.4. MEMORY CONTROLLERS 51

transactions and SDRAM commands. There four main buildingks in an SDRAM
controller: 1) a bus and arbiter, 2) a command generator, fBg@ory map, and 4) a
data path. The bus and arbiter are located in the front-ehitie the command generator
and memory map are in the back-end. The data path goes thbmighhe front-end
and the back-end. We proceed by describing the functionethtee first blocks and
explain some important design options that impact impértharacteristics of the con-
troller, such as the provided net bandwidth and latency.d&ta path is a necessary part
of the controller, but we do not discuss it further, sincer¢h@re no interesting design
considerations that are relevant to this work. We keep an agiad in this section and
discuss options without making any decisions for our owrigitesThese decisions are
postponed until Chapter 4 when we present our predictabRADback-end.

T B\ M)
Front-end ! Back-end
|
Logical I Physical
Address(es; I Address(es;
(es) [Memory (es)
Requestor / : Map \
Transactions : N ad
- = Address (7))
BUS. & Read : II > =
- = Arbiter Req I ACT Command);E
Requestor : <
Transactions \\ : Command
Scheduled ! Generator SR
Request(s) | Commands
|
|
i Data path pata
T
| ‘ N—t

Figure 3.4: The most important building blocks of a geneR3M controller.

3.4.1 Bus and arbiter

The bus is responsible for funneling arriving requests thioback-end according to the
policy of the attached arbiter. The arbiter can work in aeftgrof ways, but typically
makes decisions based on bandwidth and latency requirsroftite requestors. We cat-
egorize arbiters into static and dynamic, depending oreittheduling is done at design
time or at run time. The main advantage of computing a statiedule at design time
is that the maximum number of interfering requests can bexdbed by examining the
schedule, making the arbitration predictable. The disathge is that they cannot han-
dle latency-critical requestors or requestors with smafidwidth requirements without
wasting bandwidth. The reason for this wasted bandwidthasstatic front-end arbiters
suffer from the couplings between allocation granulaldyency, and rate, previously
described in Section 2.1.3. The increasing number of usesda contemporary systems
furthermore causes difficulties with static arbiters. NMult use-cases are supported by
precomputing and storing a separate schedule per useJdsdsanay take a long time to

52 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

compute and require a significant amount of space to stohe ittimber of use-cases is
large.

Dynamic front-end arbiters make scheduling decisions attime, allowing them
to use information that is not available at design time. Thikes them more flexi-
ble, but also more difficult to analyze. Useful bounds onrleyehave not been suc-
cessfully derived for many dynamic arbiters, making therpradictable according to
our definition. The three types of arbiters presented ini@ed.1.3, Time-Division
Multiplexing (TDM), round robin, and static-priority sctieling, are all examples of
front-end arbiters, since scheduling is done at run timevéver, TDM has many prop-
erties of static arbitration, since it is based on a schethdé is computed at design
time. We elaborate further on front-end arbitration in Gap when introducing our
Credit-Controlled Static-Priority (CCSP) and in Sectiath 8/hen discussing its related
work.

3.4.2 Command generator

The command generator is responsible for generating anedathg SDRAM com-
mands, such that no timing constraints of the SDRAM are tédlaJust like front-end
arbiters, command generators can be classified as eittierastdynamic, depending on
how the scheduling is done. A command generator that ustés stheduling simply
issues a schedule of SDRAM commands that is precomputeds@ndéme. The com-
mand generator is hence a very simple block that does notbdeeaware of the state of
the memory, since this becomes the responsibility of thirtgthat computes the sched-
ules. These command generators are predictable, sindethtotserve a request and the
provided gross bandwidth can be derived from the scheddesign time. However, the
precomputed schedule makes these controllers unable potadzhanges in traffic. This
limits the applicability to requestors with regular accpatierns, where the request sizes
and read/write ratio do not change during a use-case. keasinlithe case of front-end
arbitration, static command scheduling implies that sedéht SDRAM schedule has to
be computed and stored for every use-case.

A command generator that uses dynamic scheduling gen¢hatesquired SDRAM
commands for the memory requests sent to the back-end aadigek them according to
some algorithm. A common goal is to schedule the commandsiomize gross band-
width and provide low latency to critical requestors. Toiaeh high efficiency, requests
are often scheduled out of order, depending on how they fit thi¢ state of the mem-
ory. Requests that address open rows may hence be prefemedequests that target
closed rows to reduce overhead. Similarly, reads or writeg be preferred depending
on the current direction of the data bus. Most dynamic conthggemerators address re-
guirements of latency critical requestors by incorpoatimiorities into the scheduling
algorithm, thereby decoupling latency and rate. It is inigotr that command genera-
tors that use dynamic scheduling closely tracks of the sifatiee memory, such that no
timing constraints are violated. The particular timingstuf target memory device are
often programmed into registers, allowing a single commgenkrator to be used with
many different SDRAM devices. Dynamic command schedukngearly more compli-

3.4. MEMORY CONTROLLERS 53

cated that the static counterpart, both conceptually aterins of hardware, but it also

gives many additional degrees of freedom. This approaadnaatically adapts to the in-

coming requests and can hence handle input-dependentatppis. It does furthermore

not require reconfiguration between use-cases. While dynemmimand generation and
scheduling has many advantages, it is not without its shiidisadvantages. The in-

creased flexibility may increase the provided bandwidth iaatlice latency, but at the
expense of predictability. The provided net bandwidth atdrcies are typically not

bounded, due to the complex interactions between differesthanisms, and have to be
estimated by simulation. This makes it difficult to satisfguestor requirements, since
the bandwidths and latencies have to be reevaluated eweeydirequestor is added,
removed, or changes behavior.

3.4.3 Memory map

A memory map provides a translation from the logic memoryrasises used by the
requestors to the physical address (bank, row, column) bgethe memory device.
There are many possible memory mappings and the choice imipggortant properties
of the memory, such as the average and worst-case offereaviziths and latencies. We
proceed by discussing two commonly used memory maps antidhigtheir respective
advantages and disadvantages.

Continuous memory map

A continuous memory map maps a sequential address spacecessive elements in a
single row in a single bank. Thus, the same row is accessedadeover again until the
end of the row is met. At this point, the mapping switches tew bank. When there are
no more banks, the next access maps to the next row in thedimkt T his is illustrated
in Figure 3.5, where a five-bit logical address space is m@ppe toy memory with
four banks, two rows, and four columns. The figure also shohiswbits in the logical
address are used to index the bank (B), row (R), and columiré&)ectively.

Logical Address | 4 [3 [2| 1 [o |

Physical Address \ R[O]‘ 5[1]\ B[O] \ cry \ clo] I

Column
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
olo|1]2]|3 ol4|5|6]|7 ol8|9]10|11 0 |12|13|14|15

1116(17]18|19 1120(21|22|23 1 |24(25|26|27 1128(29(30|31

Row

Bank 00 Bank 01 Bank 10 Bank 11
Figure 3.5: lllustration of a continuous memory map.

The best case for a continuous memory map is demonstratejumeF3.6 for a
single requestor that reads four bursts with = 4 from a sequential address space

54 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

using our example DDR2-400 memory. First, an activate conthigissued to open the
appropriate row. Then, the requestor reads all four burgts the same row without any
need to activate or precharge. When the requestor reachesdrdf the row, an activate
command is sent to a row in the next bank. If the request requérccess to this bank is
presented early enough, the bank activation can be done ibatkground, completely
or partially hiding the overhead. This results in a bank &fficy close to 100%.

o 7o T Yoo Yoo P Joor)
2 3 4 5 6 7 8 9

cycle 0 1

Figure 3.6: Best case for a requestor reading sequentiaéssles using a continuous
memory map.

The worst case for this memory map, or any other memory maghédrmatter, is
when successive bursts target different rows in the samle Bdris requires an activate
and a precharge command to be issued for every access, as sh&igure 3.7. The
activate-to-activate timing constraint for a single batiR(, is quite long, resulting in
significantly increased latency. This is seen in Figure @/iere the time required to
issue four memory bursts is 37 clock cycles, as opposed tbtlséock cycles in the best
case. This shows that memory efficiency is highly dependersipatial locality, and is
very high in the best case, but very poor in worst case.

. o
o (7 fron om0 7y T fomon) T 7y 17 om0 7y T roroon)
0 1 2 3 11 12 13 14 22 23 24 25 33 34 35 36

cycle

Figure 3.7: Worst-case for a requestor reading sequemttieases using a continuous
memory map.

One technique to prevent requestors from ruining each 'sthpatial locality is to
partition them to different banks. In this case, each reipuggts exclusive access to one
or more memory banks, depending on their required storagacig, resulting in that
their potential spatial locality is preserved. Howeverrahtem with this approach is that
it is only guaranteed to work if there is maximally one reqaeper bank. Otherwise, the
risk of interference between requestors reappears. Sieceumber of banks is limited
to four or eight, this becomes a significant restriction.

Serving larger requests in a non-preemptive manner is anatbthod of improving
worst-case efficiency. Figure 3.8 shows the worst case fjuasts consisting of four
bursts to sequential addresses that are served non-pireemptn this case, every re-
guest targets a different row in the same bank, thus requériprecharge and an activate
for every four bursts. This causes the sequence in the figube repeated for every
request, resulting in a bank efficiency 14 = 57%. The bank efficiency increases
with the size of the request as there are more cycles withtdatafer to amortize the
overhead cycles.

3.4. MEMORY CONTROLLERS 55

o (R0 T Joor) o T Yo Joor e o))
2 3 4 5 6 7 12 13

cycle 0 1 8 9 10 11

Figure 3.8: Worst-case command sequence for a requesstingsf four bursts using
a continuous memory map.

Interleaved memory map

An interleaved memory map is an alternative approach to mgmapping. This map-

ping sends sequential bursts in the logical address spadiéfecent banks. Once all

banks have been accessed, bursts are mapped to the folloolimgns in the same rows,
until the rows are full. At this time, the interleaving camiies over the next rows. This
is illustrated in Figure 3.9, where bursts of size two arerietaved over the banks.

Logical Address | 4 [3 [2| 1 [o |

Physical Address \ R[O] \ 0[1]\ B[] \ B[O] \ clo] I

Column
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
olo|1[8]|9 ol2|3]10]|11 0l4|5]12|13 0l6]7/14|15

1116(17(24|25 1 (18(19|26 |27 1120(21|28|29 1122|23|30|31

Row

Bank 00 Bank 01 Bank 10 Bank 11

Figure 3.9: lllustration of an interleaved memory map.

The best case for an interleaving memory map is shown in EigutO, where a
number of sequential reads with auto-precharge are issluesd like for the continuous
memory map, the best case is very efficient and also requiresydes to issue four
read commands. The worst case with an interleaving memory eractly the same
as for the continuous memory map, previously shown in Fi@ure and happens when
every burst accesses different rows in the same bank. Howteeetwo memory maps
behave differently in the worst case if requests are lafgen ta single burst and are
served non-preemptively. In this case, a single NOP comnsmadded to the end of
the sequence in Figure 3.10 to satisfy the activate-tarateticonstraint{RC', for bank
0. The latency to precharge the banks is hidden by the accésdbe other banks.
This results in a worst-case bank efficiency8giill = 73%, which is higher than the
57% provided by the continuous memory map. In fact, an ieéethg memory map
always provide equal or higher worst-case bank efficienan fits continuous counter
part, since it exploits bank parallelism. However, a draviaf this memory map is that
interleaving over the banks causes more activate and pgeebammands to be issued.
Both of these commands consume a considerable amount ofr joy&’1], resulting

56 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

in that the total power consumption of the memory device mapigher than with the
continuous alternative.

ACT ACT ACTY RD YACT Y RD RD
emd. (T norP ST P J0STNRP RSP Juomf D)
2 3 4 5 6 7 8 9

cycle 0 1

Figure 3.10: A requestor reading sequential addresseg asimterleaved memory map.

3.5 Summary

Synchronous Dynamic RAM (SDRAM) memories are commonly wsedff-chip back-
ground memory in contemporary systems, since they provigle storage capacities
and reasonable bandwidths at low cost. Many current ptagarse Double-Data-Rate
(DDR) SDRAM that transfer data elements on both the rising fatling edges of the
clock, effectively doubling the bandwidth over its predes@rs. This work considers
DDR2 and DDR3 SDRAM memories, which are the second and theérkations of
DDR SDRAM, respectively. These memories are specified frothtd 800 MHz. The
architecture of an SDRAM consistslofnks rows andcolumns Current SDRAM mem-
ories have either 4 or 8 banks, which are essentially indi#gr@nmemories, but with
shared data, command, and address buses to reduce the rofroffehip pins.

The SDRAM protocol consists of six commandsctivate read write, precharge
refreshandno-operation The activate command opens a row in the memory array and
stores it in a row buffer. Once the requested row is opened amd write commands
can be issued to access the columns in the row buffer. Thesésthave a length of
either 4 or 8 words. The precharge command is the converdeeaidtivate command,
as it copies the contents of the row buffer back into its plade memory array. Read
and write commands can be issued witheato-prechargdlag, resulting in an automatic
precharge at the earliest possible moment after the tnaissfempleted. A DRAM cell
stores a bit as a charge in a capacitor. To prevent data framg hest due to leakage, a
refresh command must be issued regularly to recharge tlaeitap The last command
is the no-operation command, which is issued if no other canmhis required during a
cycle. There are maryming constraintghat decide which SDRAM commands that can
be issued during a particular cycle. These constraints/aredly specified as minimum
delays between successive commands of different types.

The peak bandwidtiprovided by a memory is determined by the width of its inter-
face, the clock frequency, and the data rate. However, SDR#gvhories cannot achieve
this bandwidth due to overhead caused by the timing conssrarlhis is captured by the
concept ofnemory efficiengywhich is the fraction of the time that the memory controller
transfers data. Memory efficiency can be classified into fategories that account for
different types of overhead: Igfresh efficiency2) read/write efficiency3) bank effi-
ciency 4) command efficiengyand 5)data efficiency All of these categories are traffic
dependent for SDRAM and very difficult to bound at design timéhe general case.

3.5. SUMMARY 57

Gross memory efficiendy the product of the first four categories of memory efficienc
Multiplying this number with the peak bandwidth determitigsgross bandwidthwhich
considers all data that is sent over the data bus of the meiGomjlarly, net memory ef-
ficiencyis the product of all categories of memory efficiency. Muitipg this with the
peak bandwidth computes thet bandwidthcorresponding to the data sent over the data
bus that is requested by any of the requestors.

A typical SDRAM controller has three main building blocksbiter, command gen-
erator, andmemory map The arbiter schedules one or more requests. The command
generator generates the appropriate SDRAM commands factieduled requests. It
also schedules these commands, such that no timing contstadithe memory are vio-
lated. The arbiter and command generator eitherstesic or dynamic schedulingThe
advantage of static scheduling is predictability, but @lso less flexible than its dynamic
counterpart, resulting in longer latencies and lower mgnadficiency. The memory
map translates the logical addresses used by the requesfargsical addresses, being
the targeted bank, row, and column. Two common ways of ddiigji$ using either a
continuousor aninterleaved memory mapAn interleaved memory map offers better
worst-case bank efficiency than a continuous memory map, eéploits bank paral-
lelism. However, this benefit comes at the expense of inecepewer consumption.

58

CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

CHAPTER 4

Predictable SDRAM back-end

Designing a predictable SDRAM controller is challengingaditional approaches are
based on static scheduling of requests and SDRAM commantis. nfakes them un-
suitable for many applications in contemporary SystenGbips (SoCs), as they are
getting increasingly input dependent and have diverse \biltid and latency require-
ments. However, the timing constraints of SDRAM memoriekenia difficult to sup-
port dynamic behavior, since it results in that net bandwaltd latencies become traffic
dependent and hard to bound at design time. This chaptés stidh an overview of
our predictable memory controller in Section 4.1 by disoygs®ur decisions between
static and dynamic arbitration and command generation,betdeen continuous and
interleaved memory maps. The rest of this chapter focusehe@®SDRAM back-end,
saving the front-end arbitration for Chapter 5. After theeiwiew, Section 4.2 intro-
duces memory patterns, which are a key concept to achiedectability with SDRAM

in our approach. We then show how these patterns enable wutallgross bandwidth
and latency in Section 4.3 and Section 4.4, respectivelyxt,Nleree approaches to au-
tomatic memory pattern generation, each offering a diffenede-off between memory
efficiency and run time, are presented in Section 4.5. Thheitaxture and synthesis
results of our SDRAM back-end are discussed in Section £f6ré we experimentally
evaluate it in Section 4.7. Lastly, we conclude the chapttr assummary in Section 4.8.

4.1 Overview of predictable SDRAM controller
We learned from our discussion about memory controllerseictiSn 3.4 that there are

many important design decisions to be made when making a esigrd and the right
choices are determined by the goals of the design. We ardogpévg a predictable

59

60 CHAPTER 4. PREDICTABLE SDRAM BACK-END

SDRAM controller, and we mentioned in Section 2.1.1 that apjproach is based on
combining memories and arbitration that are predictablehémselves. The motiva-
tion for this decision is that it allows us to combine differenemories and arbiters,
and abstract from the diversity of memory controllers foimdontemporary SoCs. To
consider the memory predictable, we require useful boundsath net bandwidth and
the time to serve a scheduled memory request. The predicaabitration accounts for
resource sharing, and here we require a useful bound on thberwof interfering mem-

ory transactions. Together, these requirements allow getermine the behavior of a
shared memory. In the light of these requirements, we poblogéooking into the design

choices made for each of the three major functional bloclemniSDRAM controller.

4.1.1 Arbitration

Ouir first design decision involves choosing between statitdynamic (front-end) arbi-
tration. We highlighted predictability as a feature of statbiters in Section 3.4.1. How-
ever, we also mentioned that these arbiters cannot saliefyetjuirements of latency-
critical requestors, or requestors with low bandwidth regraents without wasting band-
width. We explained in Section 1.1.6 that we consider retqugsvith these requirements
in this work, and that SDRAM bandwidth is a scarce resouraedannot be wasted. We
hence decide to use dynamic arbitration for our predictai@enory controller design.
However, we also mentioned that all dynamic arbiters arepnetlictable, which re-
quires us to further reduce the design space. For the reagpt@ned in Section 2.2, we
choose to limit ourselves to dynamic arbiters in the cladsabéncy-Rate L R) servers,
which is a subset of predictable dynamic arbiters. In comudm with a predictable
memory, these arbiters guarantee a requestor a minimumniidthg »’, after a max-
imum service latency©©, thus providing a lower bound on service in an interval of
arbitrary length. The class contains many well-known arsitsuch as Weighted Round-
Robin [57], Deficit Round-Robin [98], and several varietiéd-air Queuing [119], suit-
able for a wide range of requestor requirements. We disbis&irther when introducing
the Credit-Controlled Static-Priority arbiter in Chapger

4.1.2 Command generator

After deciding to use dynamic arbiters in the classL® servers to satisfy our require-
ment on predictable arbitration, we continue by making ttemory behave in a pre-
dictable manner. We start this process by considering thierapof static and dynamic
command generation and scheduling. We require useful landhe amount of net
bandwidth and the time to serve a scheduled memory requigistrdguirement fits well

with the properties of a static command generator. Howewany applications in our
considered application domains are too dynamic and inpueraident to fit with a static
schedule. On the other hand, dynamic command generatacaltygrove too compli-

cated to analyze. We hence decide to take a middle groundexetbg a hybrid approach
that combines aspects of static and dynamic command gemweratd scheduling. We
use predictable memory patterns, which are precomputagesegs of commands for

4.2. MEMORY PATTERNS 61

read accesses, write accesses, read/write switches, fapshreperations, respectively.
These short patterns are then dynamically scheduled bythexand generator depend-
ing on whether the scheduled request is a read or a write,itisitime to refresh. We
hence reduce the problem of scheduling memory commands twéblem of scheduling
memory patterns, which is an easier problem, since patt@ves much fewer constraints
determining when they can be scheduled. The hybrid apprstitias the benefit of
being predictable, since the rules for how the patterns eaypamically combined are
relatively straight-forward. The command generator cahkdy@ simple, since the pat-
terns are constructed at design time to prevent timing titia for all valid dynamic
combinations. We support an increased level of dynamisnpeoed to fully static ap-
proaches, since the decision to schedule a read, a writeedressin is done at run time.
Lastly, the problem of computing and storing schedulesdsiced, since we only have
to compute and store patterns, which are a small number of shio-schedules.

4.1.3 Memory map

Our choice to use a hybrid approach for the command genaraans that bandwidth
and latency can be bounded at design time. The next stepl®tse a suitable memory
map to make the bounds as useful as possible. The propéeftlesiaterleaved memory
map provides a closer fit with our requirements, since thenb@mn gross bandwidth is
higher than that of a continuous memory map. However, itijghiées more power than
a continuous memory map, since activates and prechargéibcoa significantly to the
power consumed by the memory device. We accept this drawbdlckhe motivation
that we are providing the first predictable memory contradfdts kind, and even though
reducing power consumption is an important goal in embedgstems, it is not one of
the main goals addressed in this thesis. However, we repediis as important future
work to enable predictable memory controllers in portateeicks.

4.2 Memory patterns

After motivating the design choices for our predictable rogyrcontroller, we explain
the details of the SDRAM back-end. We start by discussingptteelictable memory
patterns with interleaving memory accesses. The commanergi®r uses a set of pre-
dictable memory patterns, consisting of five patterns darieo two groups. The read
and the write pattern constitute the first group cabedess patternsThe name of the
group reflects that these patterns are the only ones thatsattoe row buffers and mod-
ify the contents of the memory. The second group, cadlexiliary patterns contains a
read/write switching pattern, a write/read switching @atf and a refresh pattern. These
patterns do not access the contents of the memory, but angeddo give the data bus
time to switch direction, and to prevent the memory from ingglata.

62 CHAPTER 4. PREDICTABLE SDRAM BACK-END

4.2.1 Scheduling rules

The scheduling rules determine how the memory patterns mayamically combined
by the command generator. These important rules imposéreagents on the construc-
tion of the patterns, and affect the worst-case latency aoss¢net bandwidth. Our ap-
proach uses five scheduling rules: 1) Memory patterns aedsibdbd in a non-preemptive
manner, which means that a pattern that has been issuedtdmnatmpped until it has
finished. This rule restricts schedulingwork on the granularity of patternas opposed
to SDRAM commands, greatly simplifying both scheduling amélysis. 2) A read or
a write pattern can be scheduled immediately after itselfyloen the memory is idle.
This rule makesuccessive read and write transactions independent of e, fur-
ther simplifying analysis. 3) A write pattern following aa@ pattern must be preceded
by a read/write switching pattern. Similarly, a read patfetlowing a write pattern must
be preceded by a write/read switching pattern. Combineldl tivé first and second rules,
thisbounds the interference that can carry over from one mennangaction to another
Itis possible to build enough time into the read and writégyat to allow them to repeat
after each other arbitrarily [105]. However, this is eqleve to enforcing a read/write
switch after every access pattern, which may unnecessaditgase latency and waste
bandwidth. 4) A read or a write pattern can be scheduled inately after a refresh pat-
tern. This follows from that the refresh command leaves atids in a precharged state,
suitable for both read and write patterns. 5) A refresh pattéll only be scheduled after
a read pattern, a write pattern, another refresh patteiifftoe memory is idle. Techni-
cally, it would be possible to schedule a refresh also aftevieching pattern, but it does
not make sense to spend time switching direction and theedsid a refresh pattern,
which can be followed by either a read or a write pattern rdigas.

4.2.2 Pattern descriptions

We now present the structure of the different patterns inteepaset. There are many
possible patterns for each memory device that implemestdtiucture. For now, we
keep the discussion general and consider any patterns diffaeent types that satisfy
the scheduling rules and do not violate the timing constsaif the memory device.
We refer to these patterns aalid patterns We return in Section 4.5 to discuss how to
construct valid patterns that are efficient.

We have chosen to use an interleaving memory map for ourmeshys means that
read and write accesses to successive logical addressetortap different banks in
sequence with a granularity of one or more SDRAM bursts. Hoesd scheduling rule
in Section 4.2.1 states that successive access pattemessae type must be completely
independent of each other. It is hence not possible to asshaméhe correct rows are
open in any of the banks, so an access pattern must contaiactimate command and
one precharge command for each bank. The pattern also esradixed number of
SDRAM bursts to every bank. The number of SDRAM bursts is depatparameter
and is referred to as thieurst count defined in Definition 4.1. The example access
patterns in Figure 2.3 have a burst count of one, since tiseoaly a single SDRAM

4.2. MEMORY PATTERNS 63

burst per bank in the patterns. The reason for having a botsttdarger than one is
that a single burst to each bank requif@s/2 - npanks clock cycles to complete. This
number may be less thatC, which is the minimum activate to activate delay for a
bank and hence the minimum length of an access pattern théslecaepeated after itself.
Increasing burst count addresses this problem by incrgakannumber of cycles that
data is transferred during a pattern. However, increagiagbtirst count also increases
the access granularity of the memory, defined in Definitiéh #ore data hence has to
be read or written on every access and requests smalleritbattess granularity of the
pattern are masked or padded to fit. This choice might soweteebut it is important
to realize that no SDRAM controller performs well in the wiarase with small memory
transactions, due the inherent uncertainty of SDRAM meesorDifferent approaches
push this uncertainty in different directions to put it whérdoes not interfere with the
goals of the design. Our goal is to make a predictable SDRAMrobler, so we push this
uncertainty into data efficiency where it can be quantifiedestign time, allowing us to
bound the net bandwidth. The impact of this decision becapparent when bounding
memory efficiency in Section 4.3 and when computing net baditthvior some example
memories in Section 4.7.

Definition 4.1 (Burst count) The burst count of an access pattern is denoted3ioy
and is defined as the number of SDRAM bursts per bank in therpatt

Definition 4.2 (Access granularity) The access granularity in bytes of an access pattern
is denoted by, and is defined ag = BC - BL - npanks® Wmem

The switching patterns are used to provide sufficient tinnéHfe SDRAM to reverse
the direction of the data bus. These patterns only consiBlQ@® commands, and the
length is determined by the minimum number of cycles regliretween read and write
commands, which are defined by the specification of the menhevrice. Note that it is
possible to have switching patterns with a length of zerdesyif the distance between
the last read of a read pattern and the first write of a writéepat or the other way
around, is already sulfficient.

The refresh pattern contains a single refresh commandegeelcand succeeded by a
number of NOPs. There have to be enough NOPs before thelrefoesmand to allow
all banks to auto-precharge after the last read or writepatiAfter the refresh command
is issued, there have to be at le&aBF'C’ NOPs to allow the refresh operation to complete
before the next pattern is issued.

We conclude our discussion about the general structure nfanepatterns by for-
mally defining memory patterns and pattern sets in Definiid@ and Definition 4.4,
respectively. Definition 4.4 considers the lengths of thiégpas in the set, corresponding
to the number of commands in the pattern. One command isddsuthe memory con-
troller per clock cycle, which implies that the time to issupattern is known at design
time. This information is required to bound the bandwidtl &tencies provided by the
memory controller.

64 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Definition 4.3 (Memory pattern) A memory pattern is defined as a sequence of SDRAM
commands in {ACT, RD, WR, PRE, REF, NOP}. The number of codsmathe pattern
is referred to as the length of the pattern.

Definition 4.4 (Pattern set) A pattern set is defined agdag, twrite, triw, twirs tref), Where
the parameters correspond to the lengths of the read pattiv write pattern, the
read/write switching pattern, the write/read switchingtiean, and the refresh pattern,
respectively.

4.2.3 Pattern set dominance

Before bounding the gross/net bandwidth or latency for @&mipattern set, we must
determine which sequence of patterns produces the wotdtseShere are four different
possibilities, depending on the relations between thethengf the patterns in the set.
We hence sort pattern sets into four classes: read-domiwaite-dominant, mix-read-
dominant, or mix-write-dominant. We proceed by definingsthelasses and show how
to compute the dominance of a pattern set.

A pattern set is classified asad-dominanivhen the read pattern is longer than the
write pattern and both the switching patterns put togetfidis is formally defined in
Definition 4.5 and illustrated in Figure 4.1a. In this cadee towest bandwidth and
longest latency occurs when all interfering transactiaesraads, i.e. when only read
patterns and an occasional refresh pattern are issuedefety a pattern is considered
write-dominantf the write pattern is longer than the combined lengths efrérad pattern
and both the switching patterns. This case is defined in Dieird.6, and an example is
shown in Figure 4.1b. It follows by the earlier reasoning tha& worst-case bandwidth
and latency for a write-dominant pattern set occurs wheringdrfering requests are
writes, resulting in that only write patterns and refrestiqras are issued. Pattern sets
that are neither read-dominant nor write-dominant arerredieto asmix dominantsets,
defined in Definition 4.7. For these sets, the worst-casewialtidand latency is provided
when interfering requests alternate between reads andsygausing as many switches
as possible. The definitions of the dominance classes aex@iéssed in terms of the
read pattern to clearly show that the classes are mutuallygixe and jointly exhaustive.

Definition 4.5 (Read-dominant pattern set pattern set is defined as read-dominant iff
tread > twrite + twir + Ertw-

Definition 4.6 (Write-dominant pattern set)A pattern set is defined as write-dominant
iff twrite > tread + twtr + trtw; which is eqUivalem '[@read < twrite — twtr — Lriw-

Definition 4.7 (Mix-dominant pattern set)A pattern set is defined as mix-dominant iff
twrite — twir — triw < tread < twrite + twir + Lriw-

The division into three dominance classes is sufficient tmdaet bandwidth. How-
ever, to accurately determine worst-case latency, mixidant pattern sets are further
subdivided into two categoriesnix-read-dominanaind mix-write-dominantsets. The
reason is that we need to know if an odd number of interferaggests result in more

4.2. MEMORY PATTERNS 65

[Read) [Write)
R/W Write I W/R) W/R Read I R/W)

(a) A read-dominant pattern set. (b) A write-dominant pattern set.

aw] wme) (R wme)
(wr] reas) (wr) e)

(c) A mix-read-dominant pattern set. (d) A mix-write-dominant pattern set.

Figure 4.1: Example pattern sets illustrating the foured#ht dominance classes.

read patterns or write patterns in the worst case. A mix-dgadinant pattern set corre-
sponds to a mix-dominant set in which the lengths of the vioteead switching pattern
and the read pattern is greater than or equal to that of thietoearrite switching pat-
tern and the write pattern. Otherwise, the pattern set isvmite-dominant. Mix-read-
dominant and mix-write-dominant pattern sets are formadlfined in Definition 4.8 and
Definition 4.9, respectively. The corresponding exampligpa sets are illustrated in
Figure 4.1c and Figure 4.1d.

Definition 4.8 (Mix-read-dominant pattern setA mix-dominant-pattern set is defined
as mix-read-dominant ity + tread > trw + twrite, Which is equivalent tdreag > twrite —
twtr + trtw-

Definition 4.9 (Mix-write-dominant pattern set)A mix-dominant pattern set is defined
as mix-write-dominant iffqy + twrite > twir + treag, Which is equivalent téeaq < twrite —
twtr + Lrtw-

Having defined all four dominance classes, we illustraté tiedation in Figure 4.2.
The figure shows how the dominance class of a pattern chasgggqsas scaled up and
down while keepingurite, twtr, andtry fixed.

twrite = twtr + trtw
|

Write— | Mix-write= | Mix-read- | Read-
dominant dominant dominant dominant
treari - : : : tread ++
| | |
| | |
f/write - f/wtr - tTtw twrite + t’LUtT + f/rtw

Figure 4.2: lllustration of how the dominance class of agratiset changes agaq is
incremented or decremented.

66 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Patterns (Read I Refresh I Write W/-R Read Rﬂ Write)

Bursts /

Banks QYYD 08D GLU

Time

Figure 4.3: A sequence of patterns and corresponding bursts

4.3 Memory efficiency bound

We have now introduced the concept of predictable memorgsacpatterns and learned
how to categorize pattern sets into different dominancssels, based on the situation
that triggers the worst-case bandwidth and latency. We rewe lall the necessary in-
gredients to lower bound the memory efficiency for all classtpattern sets, which
is an important step towards creating a predictable memanyraller. We proceed by
walking through each of the efficiency categories preseme8ection 3.3 and show
how predictable memory patterns allow them to be bounded.il&rate the effects
of cumulatively bounding the efficiencies using a runningraple. Figure 4.3 shows
the starting point of this example, which is a sequence depat and their associated
SDRAM bursts. The gray bursts are the useful bursts thatransferred to and from
the requestors. The black bursts correspond to data that explicitly requested by the
requestors, but is provided anyway due to the minimum agpessilarity of the patterns.

4.3.1 Refresh efficiency

We explained in Section 3.3.1 that the refresh efficiencyeddp on the time to precharge
all banks and execute a refresh command, and the refreshdpaife mentioned that
the difficulty with accurately bounding refresh efficieneyté know how long it takes to
precharge all banks, since this depends on the state of tim@meThis problem is solved
in our approach by accounting for the time to precharge alkbay inserting NOPs
before the refresh command in the refresh pattern. TheHesfghe refresh patterigs,
hence accounts for all time lost due to refresh operations.

The refresh period is controlled by a timer that triggersrew& EFI clock cycles
(corresponding to 7.8s for all DDR2 and DDR3 memories). At this point, the mem-
ory controller prepares to schedule a refresh pattern. Meryvthe scheduling rules state
that a refresh pattern can only be issued after a read or paitern has finished. The
longest blocking timety ok, before a refresh pattern can be issued is hence determined
by the largest sum of a write/read switching pattern and d pedtern, and a read/write
switching pattern and a write pattern. This is expressedjimelion (4.1), which is inde-
pendent of the dominance class of the pattern set. A refragbrp is hence scheduled
every 7.8us on average, but with some occasional jitter due to blockimbis jitter
does not jeopardize the integrity of the data in the memagyaunless it is greater than
8-tREFI [52,53], which is a very long time in comparison to the timtakes to execute
any reasonable pattern. In case the jitter is larger ##&F, multiple refresh events

4.3. MEMORY EFFICIENCY BOUND 67

Read Wri W/R Read RIW Wri
Patterns (rite R eal N rite)
Bursts /

Banks 00 - QYD 08Y) QU

Time

Figure 4.4: Refresh efficiency accounts for refresh pagtern

are queued, resulting in that several refresh patternsxa@uted in sequence. We now
bound refresh efficiency according to Equation (4.2). Fegdi4 illustrates the mean-
ing of bounding refresh efficiency by removing the refreskigga from the example

sequence of patterns.

thlock = maX(twtr + tread, trtw + twrite) (4-1)
t
ref ref
=1- 4.2
c tREFI (4.2)

4.3.2 Read/write efficiency

The read/write efficiency accounts for the time lost to shiiig direction of the data

bus. Read/write efficiency is often difficult to determinice the worst-case number
of switches in an interval is rarely known at design time. ndspredictable memory

patterns, we know that the read/write efficiency correspdndthe maximum fraction

of time spent executing read/write and write/read switghpatterns. This can be de-
termined at design time, since the length of the patternstia@dcheduling rules are
known. The read/write efficiency is straight-forward toatetine for read-dominant and
write-dominant pattern sets, since these issue only reagrite patterns in the worst
case. Since the worst case does not contain any switchedpi$ that the read/write

efficiency is 100% for these sets. However, if the set is nurithant, there is a switch
after every read and write pattern in the worst case. The'wege efficiency is hence

determined by the time required to execute a read and writerpalivided by the time

to execute the patterns and their corresponding switcleeshawn in Equation (4.3).
Bounding read/write efficiency after having already bouhdsfresh efficiency is illus-

trated in Figure 4.5 by also removing all switching patterosn the sequence. All that
remains to be considered is the efficiency of the read ané watterns themselves.

(4.3)

—freadttuie __ if mix-dominant

w { 1 if read-dominant or write-dominant
tread+twrite +twtr +trw

68 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Patterns (Write) [Read) (Write)
Bi /
Banks QD @A) QL)

Time

Figure 4.5: Read/write efficiency accounts for switchingeras.

4.3.3 Bank and command efficiency

The bank efficiency accounts for the overhead associatédagiivating and precharging
banks. This term is highly dependent on how the traffic mapghedalifferent rows and
banks, as explained in Section 3.3.3, and cannot be tigbtiyndbed in the general case.
The predictable memory patterns allow us to tightly bounsléfficiency by interleaving
every memory access over all banks, making the timings @fcivates and precharges
known at design time. We compute the bank efficiency by detengp the fraction of
cycles of a read and a write pattern that data is actuallysteared. However, this also
accounts for any overhead due to command conflicts that nay detivate or precharge
commands and result in a longer read or write pattern. Aljhatimay be possible to
distinguish this loss, we conveniently choose to compute ledficiency and command
efficiency as an aggregate. The aggregate bank and commfiidnefy is computed
by first determining the number of cycles that data is tramasteduring a read pattern
or a write pattern, denoted biyansier. This is calculated by considering that there are
BC bursts of BL words to each of thepanks and that two words are transferred every
clock cycle to a DDR memory. This is expressed in Equatio#)(4-or read-dominant
pattern sets, we simply divide the data transfer cycles thighength of the read pattern.
Conversely for write-dominant sets, we divide the transf@les with the length of the
write pattern. Lastly for mix-dominant sets, we consider fitaction of transfer cycles
during one read and one write pattern. This is expressedalbyrim Equation (4.5).
Accounting for bank and command efficiency after alreadys@tering refresh efficiency
and switching efficiency is illustrated in Figure 4.6. Allemhead cycles inside the read
and write patterns are removed, leaving only the cycles evtiata is transferred.

BC' - BL - npanks

ttransfer = f (44)
Herterjf read-dominant
real
ehank. gemd — 0 Lranste if write-dominant (4.5)

twrite

2'ttransfe.r |f mix-dominam
tread+twrite

4.3.4 Data efficiency

Data efficiency corresponds to the amount of data that isteared over the data bus
that is useful to the requestors. The data efficiency of aeasgtgu is determined by how

4.4. LATENCY BOUND 69

Bursts /

Banks 00 QYYD ALY T

Time

Figure 4.6: Bank and conflict efficiencies remove overheatiiwiread and write pat-
terns, leaving only data bursts.

the size and alignment of its requests fits with the minimuesas granularity of the
memory, as previously discussed in Section 3.3.5. The mimiraccess granularity in
our approach is equal to the granularity of an access pattenmputed according to Def-
inition 4.2. This is a drawback of our approach, since thessgranularity of a pattern
is significantly larger than that of a single SDRAM burst, @his the minimum access
granularity of the memory device itself. This means thatsaoffrthe efficiency gains pro-
vided in the other categories are lost in data efficiency énptesence of small requests.
However, a benefit of our approach is that this loss can betifjeain allowing the net
bandwidth to be bounded. The data efficiency of a requestcomputed according to
Equation (4.6). As seen in the equation, we use a simple ntbdeuses the worst-case
combination of size and alignment that is possible for thipiests from a requestor. A
more refined model of data efficiency may be possible givenca gharacterization of
the application. We demonstrate Equation (4.6) by applytrig the example in Fig-
ure 3.3, assuming a 16-bit memory interface. The requesttire figure has a request
size of 16 bytes (8 words), an alignment of 6 bytes (3 words),the minimum access
granularity of the memory device is 16 bytes. This resulta bata efficiency of 50%,
which is accurate, since two accesses of 8 words are reqoiteghsfer the request.

bytes, ,k
edata: min s S(wr)
" Vwk e, s wk)+a(wk)
" - 4 |9

(4.6)

Equation (4.6) can be used to determine the total data eféigief the memory in
the special case where the request sizes and alignmentsrefjaéstors are the same.
If this assumption does not hold, then the data efficiencyeddp on how frequently
the different requestors are scheduled, which is detewniayethe particular front-end
arbiter. We return to discuss this issue in Chapter 7. Figusdllustrates the effect of
accounting for data efficiency after all other categoriesesHzeen considered. All bursts
that are not useful to the requestors are removed, leavilyglos actual useful bursts in
the figure. We have now arrived at the net bandwidth, whicltckmies our example of
bounding memory efficiency.

4.4 Latency bound

We have shown how to bound gross and net bandwidth, basedvetheopatterns in
a pattern set are dynamically combined in the worst case. &lepnoceed by showing

70 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Bursts /

Barks 0006 D) QI

Time

Figure 4.7: Data efficiency accounts for data that is notulsefrequestors, leaving only
requested data bursts.

how to derive the maximum latency of a request, given a maximumber of interfering
atomic service units (atoms). An atomic service unit cqroesls to a memory transac-
tion with a size equal or less than the access granularitheofitcess patterns, and it is
hence served in a non-preemptive manner. We choose thisydartmetric, since this is
the granularity at which arbitration is done in our architee, as previously explained
in Section 2.1.3. We define the maximum latency of an atom esatal length of in-
terfering patterns. This accounts for all switching paisesind access patterns related to
different atoms, and to refresh patterns. The own switcpattern and access pattern is
not considered a part of this latency.

Ouir first step towards bounding the worst-case latency ot@m & to disregard of
refresh patterns and compute the maximum latency causedaaly write and switch-
ing patterns in the presence sfinterfering atoms. The maximum latency in this case
depends on the dominance of the pattern set, as shown ini&uat7). If the setis
read-dominant, then all interfering atoms are assumed tedws. In this case, the worst
case contains an initial write/read switch, followed byead patterns. By the same
logic, all interfering atoms are assumed to be writes fotemiominant patterns. The
worst-case latency for mix-dominant patterns happensifiiterfering atoms alternate
between reads and writes, resulting in the maximum numbetefering switching pat-
terns. Which type of access pattern there are more of dependbether the pattern set
is mix-read-dominant or mix-write-dominant, as shown irugtipn (4.7). For clarity,
Table 4.1 shows the mix patterns instantiated in the worst éar up to four interfering
atoms using mix-dominant patterns.

twtr + tread " @ if read-dominant
trw + twiite * T if write-dominant
[Z] - (twtr + tread) + | 2] - (frow + twrite) if mix-read-dominant
[Z] - (tow + twite) + | 2] - (twtr + tread) if mix-write-dominant

(4.7)

taux(ﬂj) =

Next, we account for interference due to blocking and réfrasd compute the total
worst-case latency:. Blocking occurs because the worst-case latency of a reques
may start counting from a moment just after a schedulingsilecihas been taken by
the arbiter. This results in that maximally one addition@ina may interfere with the
requestor due to the non-preemptive nature of memory patteWe account for this
by adding one extra interfering atom to the bound, thus ugingx + 1) to compute
the maximum interference from atoms. To compute the maximum interference from
refresh patterns, we must consider the minimum distanaedaset two of these patterns.

4.4. LATENCY BOUND 71

12

o+

T tread triw twrite r tread triw turite

X Wi T wt

0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 1 1
2 1 1 1 1 2 1 1 1 1
3 2 2 1 1 3 1 1 2 2
4 2 2 2 2 4 2 2 2 2

(a) Worst-case patterns for mix-read- (b) Worst-case patterns for mix-write-
dominant pattern sets. dominant pattern sets.

Table 4.1: Worst-case patterns for mix-dominant patterns.

tREFI tblock t’V‘Ef tREFI — tref — tblock
Refresh Block | Refresh {@—>
: : : Time
0 tREFI 2-tREFI

Figure 4.8: The minimum distance between two refresh padter

This distance occurs if one refresh pattern is maximallgkdal ¢yock) by other patterns,
and the following refresh pattern encounters no blockinghis case, the time between
two consecutive refresh patternsgBEFI — tret — toiock @S illustrated in Figure 4.8. For
every such interval, we add the time to execute a refresbrpath the latency from other
interfering patterns, as shown in Equation (4.8). This apph is somewhat pessimistic,
since two such worst-case intervals cannot occur multiptes in a row. However, we
do not attempt to tighten the bound in this work. The equat@mds the number of
interfering refresh patterns up, reflecting that a refremf lcappen immediately in an
arbitrary interval. Hence, all requestors always haveadtlene refresh pattern in their
worst-case latency.

Equation (4.8) provides a hard bound on the interferenam fther requestors ac-
cessing the back-end. A key feature of this equation is thittds not makany assump-
tionsabout the arbiter, since the number of interfering atomsftsals a parameter. This
separates the analysis of the arbiter and the resouasedescribed in Section 2.1. The
back-end can hence be used in a predictable manner withedyafiarbiters, which is a
differentiating feature with respect to the state of the @hte equation can furthermore
be used to bound many different definitions of latency. Orasrgxe is worst-case delay,
often used in communication networks [104], which congidee maximum time from a
request arrives at a resource until it gets scheduled byrHitea Another example is ser-
vice latency, used b¢'R servers, which measures the time from a request is eligible f
scheduling at the head of the Request Buffer until it getedaled. All that is required
to use Equation (4.8) with any of these metrics is that theseharbiter can provide a
bound on the number of atoms scheduled in this time. Thisshimidany arbiter in the
class ofLR servers.

72 CHAPTER 4. PREDICTABLE SDRAM BACK-END

taux(l' + 1)
t =
tot(x) LREF[— tref — tolock

—‘ “tref + tau(z + 1) (4.8)

4.5 Memory pattern generation

We have now explained how our approach to achieve prediityabith SDRAMs al-
lows us to bound gross/net bandwidth and worst-case latanoging memory patterns.
However, we have not yet discussed how these patterns aeeaged. In the early stages
of this research [5, 6, 105], memory patterns were derivedualy using spreadsheets.
Although this was sufficient to illustrate the concept, thare three important reasons
to automate the process: 1) Making a pattern set is a timauating process that must
be repeated every time a new combination of memory devicest bength (L) and
burst count BC) is needed. 2) Making patterns manually is error prone,ideniag the
large number of constraints that must be satisfied for a ipattebe valid. In fact, our
automated generators found errors in some of our handmatiens 3) It is difficult
to ensure that the generated patterns provide (close topapefficiency, considering
the huge number of valid patterns for a particular memoryadewurst length and burst
count. Also here, our automated pattern generators hawsedgyatterns that are more
efficient than some of those previously made by hand.

We now proceed by discussing how to automatically computeiesit pattern sets.
First, we motivate some design decisions that focus theseasth space on the more ef-
ficient sets, while speeding up the computation. We thengaddy explaining the con-
ditions that have to be satisfied for an access pattern torimdared valid and complete.
After discussing these preliminaries, we move on to predeae pattern generation al-
gorithms, each presenting a different trade-off betweenetficiency of the generated
pattern sets and run time. Note that we focus our efforts oreigding patterns for a
given burst count and memory device. We return to discuss thogsketermine which
burst count is best suited to satisfy requestor requiresriar@hapter 7.

4.5.1 Design decisions

The number possible access patterns for a given burst cadnihamory device grows
exponentially with the pattern length, resulting in a hugsign space. To limit the size
of the design space, we make five important design decisignsfe assume that shorter
access patterns provide more bandwidth and lower latetie@slonger ones. 2) We do
not distinguish the identity of the banks, but cycle throtigeam in ascending order. 3)
We always start an access pattern with an activate commagniistéad of scheduling
precharge commands, the last burst to each bank in an acatssnps issued with
the auto-precharge flag. 5) We issue all bursts in an accé&sp#o one bank before
moving on to the next. We proceed by motivating these datésamd explaining their
consequences.

The first design decision is that we assume that shorter apedterns result in higher
bandwidth and lower latencies. The benefit of this assumpsidhat it allows the pat-

4.5. MEMORY PATTERN GENERATION 73

tern generation algorithms to focus on independently figdire shortest read and write
patterns for the given burst count before deriving the apoading auxiliary patterns.
Otherwise, auxiliary patterns have to be derived for evessible pair of access patterns,
exploding the design space. The validity of the assumptepedds on the dominance
class of the pattern set. The assumption typically holdp#dtern sets that are read
or write-dominant. For these patterns, the lowest bandwaditd longest latencies oc-
cur when all transactions are reads or writes, respectigaly hence when there are no
read/write switches. The number of words transferred incess pattern with a given
burst count is constant. A shorter pattern hence trandierséme amount of data in less
time, which intuitively means increased bandwidth. Expegsmore formally, the bank
and command efficiency in Equation (4.5) monotonically éases with reducing pattern
lengths, becausi@ansteris constant, whilé g andtie are reducing. The problem with
the assumption is that a shorter access pattern may resslightly longer switching
patterns and refresh patterns, since NOP commands at thef emdess patterns help
precharging the banks before auxiliary patterns are isstibis effect, both in terms of
bandwidth and latency, is negligible in most cases for sffreatterns, due to their low
frequency. Experiments with a variety of memories and beoshts suggest that mem-
ory efficiency may reduce with 0.1% and that latencies ardfectad by longer refresh
patterns. The effect of longer switching patterns is négkgfor read-dominant and
write-dominant pattern sets, but may be more significantifeir mix-dominant counter
parts, since read/write switches occur after every accassrp in the worst case.

The second design decision is not to distinguish the ideatithe banks. This means
that we do not consider two access patterns as different dfoahmands to two banks
are swapped. Swapping the commands in this fashion edgentiaresponds to conse-
quently changing the identity of the banks, which affectishme bandwidth nor latency.
However, this decision has a significant impact on the seabd ypatterns, since we do
not have to consider identical patterns that access thesbarfferent orders.

The third design decision states that we always start arsagestern with an acti-
vate command. The idea behind this decision is to prune a laugber of uninteresting
patterns from the design space, which grows exponentiatlytive length of the pattern.
This decision ignores all patterns starting with one NOPmmamd, two NOP commands,
etc., possibly removing millions or billions of possibletigans. The rationale behind the
decision is that the purpose of an access pattern is to isauenber of read and write
bursts to the SDRAM. These bursts cannot be issued until doeresponding banks
have been activated. Inserting NOPs in the beginning of arsacpattern makes the
access pattern longer. This typically reduces bandwiditisrecreases latencies for read
or write-dominant pattern sets, similarly to what we ddsenli for the first design deci-
sion. For mix-dominant patterns, adding a NOP in the beginof a read pattern implies
that a NOP can be removed from the write/read switching pattenless the length of
the switching pattern is already zero clock cycles. Thidlistrated in Figure 4.9 for
our example memory. Shifting NOP commands from a switchiaigepn to the begin-
ning of an access pattern does not affect worst-case latbatyt reduces actual-case
bandwidth during intervals with better than worst-casetaving behavior. However, it
does not change the bound on bandwidth for mix-dominanépedt since the increase in

74 CHAPTER 4. PREDICTABLE SDRAM BACK-END

I
,

R 5 5 0 40 0 0 69 0 0 0 G0) 9 5 9 4)
I

tuwtr tread

(a) Original patterns.

cmd

I
)

0 (5 4 0 S 6 0 5 0 G) (0 5 69))
I

tuwtr tread

(b) Two NOP commands added to beginning of read pattern.

Figure 4.9: Adding NOPs to the beginning of an access pattesnreduce the length of
a switching pattern.

read/write efficiency and decrease in bank and conflict efiy cancel each other out.
This effect can be observed in Equation (4.9), which cowedp to Definition 3.11 with

all efficiency terms that depend on the length of the acceisrpa and switching pat-
terns expanded. Addingcycles to the length of an access pattern and subtract the sam
number of cycles from one of the switching patterns does fiettamemory efficiency.

emem _ eref . tread t twrite . 2- ttransfer . edata _
tread + twrite + twtr + trtw tread + twrite
BC-BL-n
oref banks . pdata (4.9)

tread + twrite + twtr + trtw

The fourth design decision is to issue the last burst to a lamn access pattern
with the auto-precharge flag. This removes the risk of conthtamflicts when issuing
precharge commands, possibly reducing the length of therpatlt also reduces the
number of non-NOP commands in the access patterns, fugtiecing the design space.

The last design decision is to issue Bl bursts to one bank before proceeding to the
next. A bank is ready to receive the next read or write commab@2 cycles after the
first. No read or write command can be issued to any other bafttdthis time, since
it would cause a conflict on the data bus. Keeping all burs& lb@ank close together
may give a bank more time between the activate command anfirsheead or write
command, as well as more time to precharge after the lasoreadte command before
the following activate command. We illustrate this in Figu.10, where a read pattern
is repeated after itself. To get a short pattern, we usenaginary memorwith very
generous timings, two banks, and with., = 4 and BC' = 2. Figure 4.10a shows the
case where only a single read is sent to a bank before movitgtbe next. Conversely,
the pattern in Figure 4.10b issues both bursts before mawirtg the next bank. We see
that the time between the activate to and read to bank 1 isfangthe second figure.
Similarly, the time from the last read until the activate e¢oand in the second pattern
is longer. This makes it easier to satisfy the timing comstsaof the memory device,
making the set of valid patterns larger and potentially ltegyin shorter patterns.

4.5. MEMORY PATTERN GENERATION 75

Last read to reactivation
bank 0

- !
Activate to first read
bank 1

(a) One burst per bank before moving on.

Last read to reactivation
bank 0

Activate to first read
bank 1

(b) All bursts to one bank before moving on.

Figure 4.10: Issuing all bursts to a bank before moving orhéortext gives more time
between activate and reads/writes, and more time to prgelafore reactivating.

4.5.2 Access pattern termination

We now show how to decide when an access pattern is valid amglete, which de-

termines what the access pattern generation algorithmsalhchave to do. An access
pattern is valid and complete when it satisfies the followfing criteria: 1) all necessary
commands have been scheduled, 2) the activate-to-activatgraint is satisfied for all
banks, 3) the four-activate window constraint is satisf@dthe data bus constraint is
satisfied, and 5) the precharge constraints are satisfie¢gordeed by explaining these
conditions and how to ensure that they are satisfied.

The first termination condition requires all necessary camds to be included in
the pattern. It follows from the structure of access pagiepnesented in Section 4.2.2,
and our design decisions in Section 4.5.1 that an accessmpatinsists of one activate
command andC read or write commands per bank. There are no precharge codsma
since the last SDRAM burst in the pattern is issued with the-puecharge flag. After
all commands have been scheduled, NOPs are added to the #radgenerated pattern
to prevent the following constraints from carrying overiat repeated pattern, violating
their independence. The second condition is that the aetieaactivate constraint must
be satisfied for all banks. This condition implies that therest be at leastRC' clock cy-
cles between successive activates to a bank when an actiess grepeated after itself.
Since there is only one activate command per bank in an apedtsn, this constraint
is automatically satisfied if the length of the pattern isagee than or equal toRC.
The third condition is that any window af?AW cycles, referred to as a Four-activate
window (FAW), can maximally contain four activate commandis is to ensure that
the instantaneous power consumption by a device with eigihitddoes not exceed that
of a device with four banks. This constraint has to be comsitiduring the pattern gen-

76 CHAPTER 4. PREDICTABLE SDRAM BACK-END

eration, but NOPs may additionally have to be added at theoépdttern to allow it to
be repeated after itself without violating this constrairtte fourth termination condition
requires that the data produced on the data bus by the lagttiban access pattern does
not collide with the data from the first burst in the next. Theguirement is satisfied if
the corresponding access commands are separated by aBle@stlock cycles, which
is the time required to finish the burst. The last conditiaguiees that there must be at
leasttRP clock cycles between the bank is precharged and reactivatedatisfy this
requirement, we must know in which clock cycle the prechafgbe last accessed bank
actually happens. This procedure works differently fordread write patterns. For a
read pattern, the precharge cycle of the last bank is datedy finding the cycle with
its activate commandg, and the cycle with its last read commad@gtd. The precharge
cycle is then computed according to Equation (4.10). Node tie precharge cycle is
computed with respect to start of the read pattern and maydaeeay than the total length
of the pattern, indicating that the precharge finishes dutfie execution of a later pat-
tern. The procedure is similar for write patterns, althokghation (4.11) is used instead.
Both these equations are derived from [52,53].

e max (425 + 2L + max(tRTP,2) — 2, tac + tRAS) DDR2 (4.10)
ad) max(tBSy + tRTP, tat + tRAS) DDR3
BL
the = tast. + tWL + - HtWR (4.11)

45.3 Branch and bound

The first of the three access pattern generation algoritisnasbranch and bound al-
gorithm. This algorithm is based on a depth-first travergahe set of valid patterns
satisfying the design decisions in Section 4.5.1. It is gntaed to find the shortest pos-
sible access patterns, as its bounding conditions exclofyelanger patterns. We start
by giving a brief introduction to the branching part of thgaithm, before explaining
how to bound the search space. The algorithm works by sfigatiraccess pattern with
an activate command in the first cycle, according to our tbedign decision. It then
looks to see which commands that can be scheduled the falipayicle. For each com-
mand that respects the timing constraints of the memorypgs 0bthe pattern is made
and each command is appended to the end of a copy. The algaggheats this process
cycle by cycle until the first pattern is complete. At this it stores the completed
pattern and returns to one of the remaining copies and agegiits search until there are
no unfinished copies remaining. An illustration of this aljon is shown in Figure 4.11.
The set of valid patterns complying with our design decisiisrvery large and grows
exponentially with the size of the patterns. To speed upuwi@t of the algorithm, we
implemented two bounding conditions that limit the sizeled tlesign space. The first
bounding condition is a sliding cut-off point based on théera length. We keep track
of the length of the shortest pattern found so far, and stepung any branches longer

4.5. MEMORY PATTERN GENERATION 77

v ACT 2
|_wRDO ———®NOP <% NOP
ACT1 RDO ¥ ACT 2
3 4
/ N ™ noP
NOP
L » ACT2
A NP <
& NoP
ACTO —» NOP ——i» NOP v NP
N
e i RDO
/ ACT 1
A RDO ———» NOP
| » ACT1 ———» NOP
NOP —»RDO <_| ACT1
A Nop — %
—» NOP
% NOP
\ Ly ACT1 —|
NOP —» RDO
™ RDO ——»ACT1
\ & NOP
NOP ~r—» RDO
Q ACT 1
NOP
0 1 2 3 4 5 6
Cycle Number

Figure 4.11: The branch and bound algorithm creates paligrexploring a tree of
SDRAM commands.

78 CHAPTER 4. PREDICTABLE SDRAM BACK-END

than this value. This condition significantly reduces the time and memory use of
the algorithm, while trivially not excluding the shortesitfern. The second bounding
condition is an extension of the first. Whenever, the algorititanches, it looks at the
list of commands remaining to be scheduled, and performsguick sanity checks to
see if the finished pattern can be shorter than or equal touttiert shortest pattern in a
best-case scenario. If any of these checks fail, then nbdutiranches along this path is
pursued. Just like the first condition, this significantlgiwees run time and memory us-
age of the algorithm. The sanity checks are exact and carohicke the shortest pattern
from the search space. The first check considers the numlaetiehtes that remains to
be scheduled; .. The time required to schedule these commands is guaratatéedcat
least(nact — 1) - tRRD + tRCD clock cycles. Thénaet — 1) - tRRD comes from the
fact that activates cannot be scheduled wittitR D cycles of each other, and there are
at least(nact — 1) full delays between activates remaining. The second pdhteo$um is
tRCD. This is included because we know that if there is at leastamtigate left, there
is also at least one read or write command remaining,t®&tD is the minimum delay
between an activate and a read or a write command. The firisy sleck hence simply
determines if the current cycle, plus the delays implied by the remaining activates can
result in a pattern that is equal to or shorter than the ctigieortest onet,orcs¢- This

is expressed in Equation (4.12)

t+ (nact -]-) -tRRD + tRCD S tshortest (412)

The second sanity check considers the number of remainaabmewrite commands,
nace If there arengec read or write commands remaining, we know that there have to b
at least(nacc — 1) - BL/2 cycles between them to prevent a conflict on the data bus. The
data of the last read or write command may overlap with thieighg pattern and is
hence not included. The second check is hence expresseadiacctm Equation (4.13).

t+ (nacc -]-) . BL/2 S tsho’r‘test (413)

After the search is complete, there is at least one accetgsipaf each type with the
shortest length. Out of these, we choose the read and wtiterpavhere the last read
or write command is issued as early as possible. This allbesitcess pattern to hide
more of the precharge time, potentially resulting in shaméresh pattern and switching
patterns.

The benefit of the branch and bound algorithm is that it is goi@ed to find the
shortest possible access patterns and choose the one efttia¢provides the shortest
auxiliary patterns. The drawback of the algorithm is thamndy take a long time to
search the design space, despite the help of our two boundidjtions. The complex-
ity of the algorithm begins to show itself as the clock fregoyeof the memory device
increases. This is because the timing constraints becamyeipas previously discussed
in Section 3.3.7, and increase the lengths of the patteimslagly, increased burst count
increases the number of commands to schedule, creatingoptiomns and longer pat-
terns. The size of the design space is seen in Figure 4.12figure shows the number

4.5. MEMORY PATTERN GENERATION 79

of valid patterns with a particular length that fits with owsijn decisions for our ex-
ample DDR2-400 SDRAM memory witlBC' = 2. We note that there are thousands
of suitable read and write patterns with length 32, whicth&s minimum possible size.
The complexity of the problem becomes apparent when incrgéise length of the pat-
tern with five cycles, resulting in that the set of suitablégras grows with three orders
of magnitude! For practical purposes, this algorithm igahie up to DDR3-1600 with
BC = 2. After this point, the run time of the algorithm moves intomtizs and years.
This motivated us to look for a faster algorithm.

Read Emmm
1e+07 | Write mem—

1e+06 ¢
100000 ¢
10000 ¢

1000 ¢

Valid patterns

100 ¢

10 ¢

1

32 33 34 35 36 37
Pattern length

Figure 4.12: Number of valid patterns fitting our design dieeis atBC = 2 for a
DDR2-400 SDRAM device.

4.5.4 As-soon-as-possible scheduling

The second pattern generation algorithm uses as-soonsaihfe (ASAP) scheduling.
According to our design decision, the algorithm starts bifipg an activate command
in the first cycle. It then proceeds one cycle at a time by cingoa command that
can be scheduled without violating the timing constrairitthe memory. If there are
multiple candidate commands, a simple priority schemeaesl s make the choice. This
contrasts to the previous algorithm that pursues all ptessittions. This priority scheme
first considers read and write commands, since these areotheands that put data
on the data bus, thereby increasing efficiency. Activaternands are considered as
second, since these enable future read or write commandibemce future data transfer.
However, an activate command is less important than a readwaite, since this can
sometimes be postponed without negatively affecting thgtkeof the pattern. If none of
these commands are available, a NOP command is schedulezhc&pmtual illustration
of the ASAP scheduling algorithm is provided in Figure 4.48d the pseudo-code is
shown in Algorithm 4.1.

A consequence of the ASAP scheduling algorithm is that thigate commands are
scheduled early in the pattern, as seen in Figure 4.14a. &dson is that activates to
different banks can be scheduled eveéRRD clock cycles, which is not a very long
time. However, the read and write commands must be sepdratetieastBL/2 clock

80 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Algorithm 4.1 Pseudo-code of ASAP scheduling algorithm.

t—0

pattern[t]«— {ACT-0}

while notCompleted(patterrgo
availableCmds— getAllowedCmds(pattern, t)
cmdToSchedule- pickBestCmd(availableCmds)
pattern[t]«<— cmdToSchedule
t—t+1

end while

priority 3 valid commands
cycle 6
priority 2 A%T
amd (7 JrorfnorJAT] %P Juor)

cycle 0 1 2 3 4 5 6

Figure 4.13: Conceptual illustration of the ASAP schedyligorithm.

cycles, causing the distance between an activate commahisacorresponding read
or write to increase, as shown in the figure. This creates lalgmg since a bank needs
time to precharge after the last read or write command hapleted, before it can be
reactivated. The earliest reactivation occurs when thieais repeated after itself. The
critical constraint is hence the time between the last readite command in the pattern
until the activate command in the repeating pattern. Thieedhe activate command,
the less time available to precharge. This is why the patiemerated by the ASAP
scheduling algorithm requires five extra NOP commands tonberied at the end of
the pattern, while the more balanced pattern shown in Figuréb does not. Clearly,
scheduling commands as early as possible is not always bighefi

The advantage of the ASAP scheduling algorithm is that it extremely fast. It gen-
erates a schedule in less than a second for any memory andaéds burst count, clearly
addressing the problem with the branch and bound algoritdowever, the advantage
in speed comes at the cost of bandwidth, mainly due to thelgmolwvith prematurely
scheduled activate commands. As a result, the generatedrsaprovide up to 10% less
bandwidth than those generated by the slower algorithninodilgh the ASAP scheduling
algorithm provides a different trade-off between run time dandwidth, we consider it
rather inefficient, since SDRAM bandwidth is a scarce resauiVe hence look into a
third algorithm, hoping to find a suitable middle ground.

455 Bank scheduling

The bank scheduling approach builds on the lessons leammmdX¥SAP scheduling algo-
rithm. The idea behind the algorithm is to keep an activateroand as close as possible

4.5. MEMORY PATTERN GENERATION 81

3 cycles 7 cycles
oms (5T fror TR o) 0 G 0 5 0) 0 (2 o)
cycle 0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20

5 cycles

9 cycles

(a) The ASAP algorithm results in increasingly large disembetween activate commands and their
corresponding write commands.

3 cycles 3 cycles 3 cycles 3 cycles
13 14 15

(b) A pattern with balanced distances between activate comdsnamd write commands.

cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.14: Prematurely scheduled activate command¥ resonger access patterns.

to its corresponding read or write command, thereby prévgtive precharge-to-activate
constraint from extending the length of the pattern.

The bank scheduling algorithm works by scheduling one bark tame. It starts
by putting an activate command to the first bank in the firstegyand a corresponding
read or write command at the earliest possible convenidreiag tRCD cycles later.
Each additional burst to the bank is then schedd&d2 cycles apart to constantly keep
data on the data bus. This finishes the scheduling of the firdt.bFor each successive
bank, the algorithm finds the position of the latest read atewaommand, and tries to
schedule the next read or wrifel, /2 cycles later when the data bus is free. The new
read or write command can be scheduled in this position i&dtévate command can
be scheduledRCD cycles earlier. This depends on whether the cycle alreadyaha
scheduled command, and whether the activate-to-actieastr@ints for different banks
and the four-activate window constraint are satisfied. dfdbtivate cannot be scheduled
in the requested cycle, the algorithm tries to schedule ¢ad or write command in a
later cycle by iteratively repeating this test. Once the fiemd or write command to
the bank has been scheduled, the others follow with a sémauet BL/2 clock cycles.
An illustration of the algorithm is provided in Figure 4.18dapseudo-code is presented
in Algorithm 4.2. We evaluated an alternative approach te #igorithm, where we
let the activate command slide backwards instead of slitiegead or write command
forwards. However, the results of this algorithm were at bigs same and occasionally
provided worse results than the current implementation.

The patterns generated by the bank scheduling algorithirievacvery regular dis-
tances between the activates and their corresponding nelgrite commands, address-
ing the problem found with the ASAP scheduling approach. alet,fthe write pattern
shown in Figure 4.14b was generated using this approachrurtime of the algorithm
is similar to the ASAP scheduling algorithm, and hence sieffity fast. It furthermore
generates pattern sets that provide similar bandwidthsosetcreated by the branch and

82 CHAPTER 4. PREDICTABLE SDRAM BACK-END

|
cmd bank 0 A%T
|

|
cmd bank 1

|
| | |
nch | |
| | |
e
| |
|

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | | |

RD | | | | | |

1 | | | | | |

| | [| | J | |
ENENO00000000606006660606

cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

|

|

|

|

|

I

|

|

data ! |
I I

Figure 4.15: Conceptual illustration of the bank schedpditgorithm forBC = 1.

Algorithm 4.2 Pseudo-code of the bank scheduling algorithm.
currentBank— 0
while currentBank< npanksdo
/I Determine cycle of next activate command
targetCycleAct— 0
if currentBank > @hen
cycleLastRead— getLastRead(pattern)
targetCycleAct— cycleLastRead BL/2 — tRCD
end if

while !activateAllowed(targetCycleActjo

targetCycleAct— targetCycleAct + 1
end while

/I Schedule activate, followed b§C read command
pattern[targetCycleAct}- {ACT - currentBank}
currentBurst— 1

targetCycleRead- targetCycleAct +RCD

while currentBurst< BC do
pattern[targetCycleRead} {RD - currentBank}
targetCycleReae- targetCycleRead BL/2
currentBurst— currentBurst + 1

end while

currentBank— currentBank + 1
end while

4.5. MEMORY PATTERN GENERATION 83

bound algorithm. Bank scheduling hence provides a veryrédble trade-off between
run time and memory efficiency, compared to the other alorit

4.5.6 Computing auxiliary patterns

The auxiliary patterns can be computed as soon as the actssp are calculated by
any of the pattern generation algorithms. We start by shgWwow to generate the refresh
pattern, followed by the switching patterns. The refresttepa starts with a number of
NOPs that allow the banks to precharge after the latest apegtern. The time required
to precharge all banks depends on the distance betweendbleapge cycle of the last
bank, >, or the., and the end of the read or write pattern, since this detesniow
much of the precharging time that is hidden by the accesempatself. The number of
NOPs required to precharge all banks may be different aftead and a write pattern,
since the values of.., andt}. are unrelated. It is hence possible to derive two refresh
patterns, one that follows read patterns, and one thawellorite patterns. However,
reducing the refresh pattern for one of these cases with alfak cycles has very little
impact on both bandwidth and latency and is hence not coregida this work. The
pre

refresh command is placed in cycl®P + (thay — tread), OF tRP + (thie — twiite),
whichever is larger. This is followed by a refresh command &RFC NOPs that are
required to satisfy the refresh-to-activate constrainhe Bquation for computing the

length of refresh patterns is therefore:

tref = tRP + tRFC + max(they — tread thrte — twrite) (4.14)

The switching patterns only consist of NOP commands thatwathe direction of
the data bus to be reversed. We first explain how to computectidywrite switching
pattern and then proceed with the write/read switchingepattThe number of NOPs in
the read/write switching pattern depends both on the SDRA&NEgation and the burst
length. For simplicity, we do not consider that DDR3 mem®iman change the burst
length on the fly and assume that the burst length is fixed hee# or 8 words for both
reads and writes. However, there should be no conceptublgms with supporting
read patterns and write patterns with different lengthsloag as it does not change
dynamically. Equation (4.15) shows the minimum number otklcycles between a
read and a write command for different memories and burgjthesn This equation is
derived from the memory specifications [52, 53]. We comphb&ertumber of NOPs in
the read/write switching pattern by subtracting the nunalbeycles between the read and
write commands that are already built into the read and thee watterns. The length
of the read/write switching pattern is hence computed aticgrto Equation (4.16). The
computation of the write/read switching pattern is comgutea similar manner. The
minimum delay between the write and the read command is shoguation (4.17)
and the length of the pattern is determined in Equation §4.18

84 CHAPTER 4. PREDICTABLE SDRAM BACK-END

4 DDR2 with BL = 4
6 DDR2 with BL = 8
Sread = 4.15
207) t0L + 190 2 — yWI DDR3 with BL — 4 (4.13)
tCL + tCCD +2 — tWL DDR3with BL = 8
trw = max(Sread — (s + tread — 12Sk), 0) (4.16)
BL
twtr = max (dwrite — (tpé;td + twrite — t{:llﬁ%e)v 0) (4.18)

4.6 Architecture and synthesis

The concepts in this chapter are embodied in hardware as BABIback-end, accord-
ing to the architecture previously shown in Figure 2.5. Taelkend is accessed through
a Device Transaction Level (DTL) [88] port, where the scHeduequest is presented by
the bus in the resource front-end. The back-end consistgmifrtajor functional blocks,
being a Command Generator and a Memory Map.

The Memory Map decodes the logical memory addresses useklebsetjuestors,
into a physical SDRAM address consisting of bank, row andimol. The burst are
mapped to the banks in an interleaving fashion, as mention&ection 3.4.3. For the
example patterns of our example DDR2-400 memory vidth= 8 and BC' = 1 shown
in Figure 2.3, this is done by letting bits 3 to 4 in the logioemory address index the
bank, 12 to 24 index the row, and 0 to 2 and 5 to 11 index the celum

The Command Generator issues the appropriate memory rmmattased on the re-
fresh state, the read/write state, and the scheduled redues patterns are hard-coded
in a finite-state machine inside the Command Generator,iwigisults in a small imple-
mentation. However, this also implies that the Command &doemust be modified to
change the patterns in response to different use-caseeawiits, or if a different mem-
ory device is used. Although this is sufficient for an inig@bof of concept, we consider
a configurable Command Generator important future work.

The SDRAM back-end has been implemented in VHDL and testgether with a
Verilog model of a Micron DDR2-400 memory [72]. The implenteth model is a part
of an older version of the proposed memaory controller [6, @0htaining an integrated
front-end and back-end. Apart from Command Generator anchdig Map, this im-
plementation also contains a bus and a Credit-ControllaticSriority (CCSP) arbiter.
This older memory controller is no longer maintained, indiaef the new more modular
architecture. The design has been synthesized in atT3VIOS technology. Synthesis
with six ports and a speed target of 200 MHz, suitable for a RHEIRO, resulted in a total
cell area of 4200:m?. Note that all synthesis results in this thesis are obtabeddre

4.7. EXPERIMENTAL RESULTS 85

place-and-route and that areas after layout are expectes higher and maximum fre-
quencies lower. We estimate the size of the current SDRANHead without the arbiter
to 23000.:m? by subtracting the area of the six port CCSP arbiter instamdladed in
the design. The cell area of the design is small for an SDRAMrotler, partly because
it does not include buffers to store requests and respomsescond reason is that the
design is customized for a particular memory and uses a sifipte-state machine to
schedule commands in a way that is guaranteed not to viotgtdiming constraints.
We do hence not require the large amount of registers ratjtirérack the state of the
memory.

4.7 Experimental results

We conclude the chapter by experimentally evaluating top@sed SDRAM back-end.
We first describe the experimental setup, before conduttireg experiments. The first
experiment evaluates the three different memory pattenergg¢ion algorithms by com-
paring how much bandwidth they provide for different merasrand burst counts. We
consider gross bandwidth in this experiment to isolate #selts from the influence of
different request sizes. The different categories of grsmory efficiency are quan-
tified, enabling us to learn about how efficiency is lost fag thifferent memories. In
our second experiment, we take data efficiency into coraider and demonstrate that
both burst count and memory device must be chosen carefuthakimize bandwidth in
presence of small requests. For our last experiment, we@eathe tightness of our de-
rived bound on net bandwidth by simulating a SystemC modeloSDRAM back-end.
No latency results are presented in this chapter. Howelkertightness of the latency
bound is evaluated in Chapter 5 when we discuss sharing tRASTback-end between
multiple requestors.

4.7.1 Experimental setup

The experiments in this section use our proposed SDRAM leacktogether with four

different memories with different speeds: DDR2-400, DD, DDR3-800, DDR3-

1600. These memories cover the span from the slowest spkciBenory in the DDR2

generation to the fastest specified DDR3 device. Each okthammories exists in a
number of different speed bins, determining their timinifge have consistently used
the fastest possible version of every memory, which shorgslige as much freedom as
possible when generating the patterns. All memories haepadity of 512 Mb and 16-

bit interfaces. The DDR2 memories have four banks, and the®@emories eight. The
relevant timing parameters of these memories are listedliteT4.2. Brief explanations
of the different memory timings are provided in Table 3.1.

86 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Table 4.2: List of relevant timing parameters for some déffe 64 Mb x16 (512 Mb)
memory devices with page sizes of 2 KB.

Parameter DDR2-400 DDR2-800 DDR3-800 DDR3-1600
[cycles] [cycles] [cycles] [cycles]
tRC 11 22 20 36
tRCD 3 4 5 8
tCL 3 4 5 8
tWL 2 3 5 8
tRP 3 4 5 8
tRFC 21 42 36 72
tRAS 8 18 15 28
tRTP 2 3 4 6
tWR 3 6 6 12
tFAW 10 18 20 32
tRRD 2 4 4 6
tCCD 2 2 4 4
tWTR 2 3 4 6
tREFI 1560 1560 1560 1560

4.7.2 Algorithm evaluation

In our first experiment, we compare the different patterregation approaches. The idea
behind the experiment is to let all three algorithms gereaaset of patterns for burst
counts 1, 2, and 4 with a burst length of 8 words. To providewalitency option, we
also generate pattern sets with burst count 1 and burstienfgtr the DDR2 memories.
This experiment just exercises the pattern generatioingpohnd does not involve any
implementation of the SDRAM back-end. To reduce the ruretioh the branch and
bound algorithm, the lengths of the access patterns gemklst the bank scheduling
algorithm were used as initial shortest patterns. Thisifiaggmtly reduces the search
space without the possibility of removing the shortesteratt

First up is our example DDR2-400 memory. Table 4.3 listséimgths of the resulting
patterns for the different algorithms. We have merged thenaps for the branch and
bound algorithm and the bank scheduling algorithm, sineg ttonsistently provide the
exact same pattern lengths for all tested memories. The #inws that all algorithms
provide patterns with the same length 8f = 4. In fact, they even provide the exact
same patterns. The reason is that the low burst count and st length results in
short patterns, where the memory timings do not allow a lopmtfons. In contrast
with BL = 8, we observe that the ASAP scheduling algorithm generatiée patterns
that are five cycles longer than those generated by the olperitams. As explained
in Section 4.5.4, this is because scheduling the activatem@nds as soon as possible
causes the distance to the corresponding write commandadoajly increase, causing
a problem with precharges. The generated read patternaaithe same lengths. The
ASAP scheduling algorithm still schedules the activate k@nds much earlier, although
this does not affect the length of the pattern, since the mgistarts precharging faster

4.7. EXPERIMENTAL RESULTS 87

Table 4.3: Length of generated patterns for the DDR2-400 ongm

B&B & Bank scheduling ASAP scheduling
BL/BC 4/1 8/1 8/2 8/4 | 41 8/1 8/2 8/4
Dominance| wr mixrd mixrd mixrd | wr wr wr wr

tread 11 16 32 64 11 16 32 64
twrite 13 16 32 64 13 21 37 69
triw 0 2 2 2 0 2 2 2
twir 0 4 4 4 0 0 0 0
tref 27 32 32 32 2r 271 27 27

after reads. Having a longer write pattern is not completethout advantages. We
observe that the patterns generated by the ASAP algorithen bfas shorter write/read
switching patterns and refresh patterns. The reason ighibdtve NOPs at the end of
the write patterns hide some of the time required to switohatiion of the data bus, or to
precharge all banks.

As far as the run times of the algorithms are concerned, th&PAScheduling and
bank scheduling algorithms provided all results in a maifexeconds. The branch and
bound algorithms managed to produce patterns with low lsorgtts in comparable time.
However, the pattern set witBC' = 4 took 8 days to generate. Such a long run-time
clearly motivates the existence of the heuristic algorghm

Next, we look at how the bounds on gross memory efficiency angsgbandwidth
vary between the different algorithms for the DDR2-400 mgmhis is shown in Fig-
ure 4.16a. Note that the bars in the plot can be interpreted e#ther y-axis, depending
on the metric of interest. The branch and bound algorithmthadank scheduling al-
gorithm perform identically, having generated patternthwiie same length. We note
that the patterns generated with the ASAP scheduling dlgorfor BL = 8 provide
slightly less gross bandwidth than the patterns from therativo algorithms. The rea-
son is that the longer write pattern reduces the bank and emdrefficiencies. The
improved read/write efficiency and refresh efficiency (nzai) helps compensating for
this drawback, but they do not manage to completely candeheteffect.

Figure 4.16b illustrates the impact of the different categgpof gross efficiency for
the pattern sets with the shortest access patterns, gedénathe branch and bound and
bank scheduling algorithms. We note that it is the bank amdneand efficiencies that
cause problems for DDR2-400 witBL = 4. This because the access patterns only
transfer data during 8 cycles and then have to wait a few symédore the activate-to-
activate constraint or precharge constraints are satisfitmvever, these extra cycles
completely eliminate the switching patterns, resultinggad/write efficiency of 100%.
As the burst count and burst length increases, we note thdighk efficiency is 100%
for this memory, as it transfers data during every cycle efdlacess patterns. Instead,
the main loss of efficiency is now due to read/write switctsisce this overhead is no
longer hidden by the access patterns. The line in the figesrlgl shows how the gross
efficiency increases with increasing burst count, indiathe longer bursts to all banks
help amortizing the switching costs.

88

B&B wzzzza ASAP

Bank sz

CHAPTER 4. PREDICTABLE SDRAM BACK-END

0.8

0.6 -

0.4

Gross efficiency

0.2

/ R
BL4/BC1 BL8/BC1 BL8/BC2 BL8/BC4
Settings

800
700
600
500
400
300
200
100

Gross bandwidth

Gross efficiency

o zzzg gbank y gemd

ross ..

08 |

06 [

04 |

BL4/BC1BL8/BC1BL8/BC2BL8/BC4
Settings

800
4 700
1 600
1 500
4 400
4 300
1 200
1 100

Gross bandwidth

(a) Bounds on gross efficiency and gross bandwidth(b) Bank scheduling gross efficiency breakdown.
for the different algorithms.

Figure 4.16: Memory efficiency results for DDR2-400.

Table 4.4: Length of generated patterns for the DDR2-800 omgm

B&B & Bank scheduling ASAP scheduling
BL/BC 4/1 8/1 8/2 8/4 4/1 8/1 8/2 8/4
Dominance| mixrd mixrd mixrd mixrd | mixrd mixrd mixwr mixwr

tread 22 22 33 65 22 22 33 65
twrite 22 22 33 65 22 22 36 68
trw 0 0 1 1 1 0 1 1
i 1 3 5 5 1 3 2 2

tref 27 32 32 32 27 27 27 27

We proceed by looking at the results for the DDR2-800, théefisdevice in the
generation of DDR2 memories. The patterns generated fontbimory are listed in Ta-
ble 4.4. The difference between the algorithms is that AS&duling again generates
longer write patterns for some values of burst count andtibengith. The increase is
slightly less severe than for the DDR2-400, since the pngihg constraints are more
favorable for this memory. The minimum spacing betweervatgs to different banks,
tRRD, is increased from two to four cycles, moving all but the fastivate commands
further into the access patterns. This gives more time tohange the banks after an
access pattern before they are reactivated in a later paftére timing constraints that
determine the precharge cycle increase too for this merbaty)ot enough to cancel out
the benefits. Just like for DDR2-400, all patterns were gateerin a few seconds with
the exception oBC = 4, which took the branch and bound algorithm 32 minutes.

Looking at the gross efficiency for the different algorithmd=igure 4.17a, we ob-
serve that the ASAP scheduling algorithm is not performirggse than the branch and
bound algorithm and bank scheduling. In fact, the longetengatterns result in that the
gross efficiency is marginallincreasedby 0.001! This is explained by observing that
the patterns are mix-dominant and that increasing the \péttern with three cycles re-
moves three cycles from the write/read switching patteimieating the disadvantage.

4.7. EXPERIMENTAL RESULTS 89

& zzzg gbank y gomd
W elross

B&B wzzzza ASAP

1600
4 1400
1 1200
1 1000
1 800
1 600
1 400
1 200

1 T T T T 1600

1400 08

1200
1000 06

800
04 -

Gross efficiency
Gross bandwidth
Gross efficiency
Gross bandwidth

600
400 0.2 b
200

BL4/BC1BL8/BC1BL8/BC2BL8/BC4
Settings Settings

(a) Bounds on gross efficiency and gross bandwidth(b) Bank scheduling gross efficiency breakdown.
for the different algorithms.

Figure 4.17: Memory efficiency results for DDR2-800.

The slight increase in efficiency stems from that the longgtewpattern also allows
the refresh pattern to be shorter. This demonstrates thathbrtest access patterns do
not always provide the best efficiency, although the difieeein this case is negligible.
Comparing the results of DDR2-800 to our earlier resultd¥BiR2-400 shows that the
efficiency of the faster memory is lower for any burst coustdscussed in Section 3.3.7.
However, the gross bandwidth of DDR2-800 is still highemtlfiar DDR2-400, since the
peak bandwidth of the faster memory is twice as high.

The gross efficiency breakdown in Figure 4.17b reveals thatthe bank and com-
mand efficiency that causes the most significant efficiensg for this memory with
lower burst counts. This happens because the time betweeseaaive activate com-
mands to the same bani®CD, is 22 cycles, effectively preventing any access pattern
from being shorter than that. This in turns allows the acpasterns to hide much of the
read/write switching time, resulting in high read/writéi@éncy.

The next memory is DDR3-800, the slowest memory in the DDR&gation. We
are interested in this memory, since it provides the samk paadwidth as the DDR2-
800. Apart from the difference in memory generation, our 3E890 memory comes
with 8 banks instead of 4. We do not evalud@ié = 4 for DDR3 memories, since this
is only supported by means of a burst chopping mechanisnst8af 4 words are hence
not much faster than burst of 8 words. The generated paffi@rtisis memory are shown
in Table 4.5. The results from all algorithms are merged;esihey always provide pat-
terns of the same lengths for this memory. A possible reagothfs is that eight banks
resolves the precharging problem of the ASAP algorithmgesithe last activate com-
mand slips further into the pattern. Eight bank memories hts/e the additional FAW
constraint, which limits the number of activate commands window oftFAW cycles.
This constraint helps spacing the activate commands indttenp more evenly, further
mitigating the precharging issue. However, this constraaes not primarily make pat-
terns shorter. Both access patterns witi = 1 have two NOP commands in the end
to ensure that the FAW constraint is satisfied also when ttierpa are repeated after

90 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Table 4.5: Length of generated patterns for the DDR3-800 ongm

All algorithms
BL/BC 8/1 8/2 8/4
Dominance| mixrd mixrd mixrd
tread 40 66 130
iz 40 66 130
trtw 0 0 0
i 5 7 7
tref 53 55 55

! The B&B algorithm did not finish in less than 10 days for this setting.

themselves. The additional banks also impact the run tinigedbranch and bound algo-
rithm. More banks imply more commands to schedule, creatioge possible patterns.
The pattern set witlBC' = 1 still completed within seconds. However, the patterns with
BC = 2took 39 hours to complete, and the patterns vilithh = 4 where still not finished
after 10 days when we terminated the experiment.

Since all three algorithms perform identically, we proce@eéctly to the gross effi-
ciency breakdown in Figure 4.18. The breakdown is similahsa of DDR2-800. Most
of the efficiency loss is due to bank and command efficieneigéch reduce with in-
creasing burst count. Overall, DDR3-800 has a gross effigi¢iat is a few percent
higher than DDR2-800.

1600
1 1400
1 1200
41 1000
1 800
1 600
1 400
1 200

08

0.6

0.4 -

Gross efficiency
Gross bandwidth

02

BL8/BC1 BL8/BC2 BL8/BC4
Settings

Figure 4.18: Bank scheduling gross efficiency breakdowiiDidR3-800.

Our last memory in the pattern generation experiment is a D600, currently
the fastest specified DDR3 memory, doubling the peak bartbwig¢er DDR3-800. Just
like for the previous memory, all algorithms perform the saamd provide the results
shown in Table 4.6. We observe that there is not a big diffsxdn the length of the
access patterns witBC' = 1 and BC = 2. The reason is that the FAW constraint of
32 cycles postpones the fifth activate command by eight syioldoth access patterns
with BC = 1. The same constraint also adds an extra five NOPs at the emed t
access patterns to allow them to repeat after themselveshréinch and bound algorithm

4.7. EXPERIMENTAL RESULTS

Table 4.6: Length of generated patterns for the DDR3-160®omg

All algorithms
BL/BC 8/1 8/2 8/4
Dominance| mixrd mixrd mixrd
tread 64 70 133
twrite 64 70 133
tnw 0 0 0
twtr 4 9 9
tref 98 103 103

91

! The B&B algorithm did not finish in less than 10 days for this setting.

required 7 days to generate the pattern set With = 1, although the set wittlBC' = 2
was generated in seconds. The algorithm had not succesgiierated a pattern set
with BC' = 4 after 10 days when we terminated the experiment. Just likays, the
other two algorithms produced all results in just seconds.

The gross efficiency breakdown in Figure 4.19 does not shomuwsh new over
DDR3-800. We observe that the gross efficiency is lower foRBEL600 than for DDR3-
800, proving the efficiency trend for faster memories yetradatill, the peak bandwidth
is double compared to the slower memory, resulting in ireedayross bandwidth.

eref [ZZZZ,Z] ebankx ev:mcl e

e PRECE -

41 3000

0.8 1 2500

0.6 -

0.4

Gross efficiency

1 2000

1 1500

4 1000

Gross bandwidth

0.2 1 500

— 0
BL4/BC1BL8/BC1BL8/BC2BL8/BC4
Settings

Figure 4.19: Bank scheduling gross efficiency breakdowmiibR3-1600.

This experiment allows us to draw three conclusionsBylxonsidering all patterns
generated by our algorithms, we observe that all generaezal patterns are shorter
than or equal to the corresponding write patterns. Simijlaread/write switching pat-
terns are always shorter than write/read switching pattetn both cases, this is related
to the fact that a bank requires more time to precharge aftenita burst. A result of
this relation is that we have not generated any read-dompettern sets in this experi-
ment. In fact, it is possible that read-dominant pattera sahnot be optimal for current
DDR2 and DDR3 memories. Z3ross efficiency increases with burst count, although
the increase becomes smaller for every increméhis is shown for all tested memories
when comparing their results with the bank scheduling @lgor in Figure 4.20a. 3)

92 CHAPTER 4. PREDICTABLE SDRAM BACK-END

DDR2-400 =xxx® DDR3-800 mmmm— DDR2-400 =xxx® DDR3-800 mmmm—
DDR2-800 &% DDR3-1600 tois DDR2-800 &= DDR3-1600 toims

3000 -

0.8 2500 |

06 L 2000 -

1500
0.4

Gross efficiency

1000

Gross bandwidth (MB/s)

0.2

500 -

R teeisg R
BL8/BC2 BL8/BC4 BC1 C2
Settings Settings

(a) Gross efficiency comparison (b) Gross bandwidth comparison.

% R
BL8/BC1

Figure 4.20: Gross efficiency and gross bandwidth compsibetween different DDR2
and DDR3 memories.

Newer faster memories offer higher peak bandwidths, buél@soss efficiency, due to
increasingly severe timing constraints. However, the joled gross bandwidth is still
increasing with clock frequencyigure 4.20a indicates that gross efficiency is reducing
as memories get faster. It also shows that DDR3-800 has highss efficiency than
DDR2-800. The fact that gross bandwidth is increasing dedpée reducing gross effi-
ciency is clearly shown in Figure 4.20b, where DDR3-1600vjules the highest gross
bandwidth.

4.7.3 Bounding net bandwidth

For our second experiment, we take data efficiency into atcnd bound the net band-
width offered by the memories. Figure 4.21 shows the boungedtandwidth provided
by the different memories and settings for different rejse=es, based on the patterns
generated by the bank scheduling algorithm. For simpligity assume that the request
sizes of all requestors are the same, since this allows usmpute the data efficiency
independently of the memory arbiter. The bars in the plotlEaread from either y-axis,
depending on if net bandwidth or net efficiency is of interédt graphs have the same
scale, allowing the net bandwidths provided by the differaemories to be compared.
From this experiment, we learn that while increasing buesint consistently increases
gross bandwidth, it may reduce net bandwidth. The reasdratsricreasing burst count
also increases the access granularity of the memory, irguitt more waste for small
requests. This trend is clearly visible for requests of 25@¥es) as the DDR3-1600
memory moves fronBC = 2to BC' = 4. This reduction of net bandwidth is guaranteed
to occur no later than when the access granularity of the metmecomes larger than
the request size of all requestors. Similarly, increasirgrtumber of banks from 4 to 8
improves bank and command efficiencies, but can still redetdandwidth, due to the
larger access granularity. A consequence of this behavibiat our DDR2-800 provides
more net bandwidth for small requests than the DDR3-800. d¥evw the tables turn as
requests become big enough to benefit from the larger gndyulBhe figure also shows

4.7. EXPERIMENTAL RESULTS 93

3000 3000

2500 2500

2000 125 2000

1500 1500

N

Net efficiency
=

Net efficiency

1000 1000

Net bandwidth (MB/s)
Net bandwidth (MB/s)

500

105 500

d a

8/BC1 BL8/BC2 BL8/BC4 BL8/BC1 BL8/BC2 BL8/BC4
Settings Settings

(a) Net bandwidth with a DDR2-400 (b) Net bandwidth with a DDR2-800

2 1
3000

3000

2500 2500 08

2000 2000

0.6

1500 1500

0.4

Net efficiency
Net efficiency

1000 1000

Net bandwidth (MB/s)
Net bandwidth (MB/s)

0.2

500 500

d a4

0
BL8/BC1 BL8/BC2 BL8/BC4 BL8/BC1 BL8/BC2 BL8/BC4
Settings Settings

(c) Net bandwidth with a DDR3-800 (d) Net bandwidth with a DDR3-1600

Figure 4.21: Bound on net bandwidth for different memoried sequest sizes.

that achieving really high bandwidths with an interleavingmory map fundamentally
requires large requests. In fact, the DDR2 memories withrk®aequire requests of
64-128 B to provide a net memory efficiency of above 80%, wiiteDDR3 memories

require requests of 256 B to accomplish the same. If the stgirethe system are small,
there is hence no benefit in using a faster SDRAM memory uitéssheaper to buy.

A good example of this is that the DDR2-800 with four banksvdes the most net
bandwidth for requests of 32 B.

4.7.4 Tightness of net bandwidth bound

In our third and last experiment, we evaluate the tightnéssuo lower bound on net
bandwidth by simulation using a SystemC model of our progd@®RAM back-end.
We measure the running average net bandwidth, which we etgeonverge to a value
greater than or equal to our derived bound during the sinamatThe experiment is
conducted by sending an equal mix of read and write requestsrtexample DDR2-400
memory using the shortest mix-read-dominant pattern sii B = 1, computed in
the first experiment. The sizes of the requests are 64 B, whielgual to the access
granularity of the pattern, thus providing a data efficien€y.00%. The bound on net
bandwidth with this setup is 660 MB/s. We simulate the memaaytroller back-end
twice. In the first simulation, we let read and write requesta/e in a random order. In
the second simulation, arriving requests are alternaéads and writes to illustrate what

94 CHAPTER 4. PREDICTABLE SDRAM BACK-END

800 - n 1 800 - n 1
Normal simulation Normal simulation

Worst-case simulation - Worst-case simulation -
Bound e 0.95 Bound e 0.95
750

750

0.9 0.9

@ @
Q 41
= 3 2 3
£ 3 £ o
2 700 £ 2 700 M____F"___ 8
g e 085 g g b, 085 g
= N SO ——. g s 1, g
T 650 3 650
z 0.8 z 0.8

600 0.75 600 0.75

0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 140 160
Time [us] Time [us]
(a) The first 16us of the simulation. (b) The first 16Qus of the simulation.

Figure 4.22: Net bandwidth plotted over time for a DDR2-406mory with and without
worst-case switches.

happens during worst-case conditions. The simulation imb®th cases is 100 ms. The
results of this experiment are shown in Figure 4.22, wheeeptiovided net bandwidth
is plotted over time. Figure 4.22a shows the firsty&60f the simulation, which is just
enough to get two interfering refresh patterns. In both &tens, net bandwidth shoots
towards 800 MB/s as the first request arrives. This is bectesbank and command
efficiency of the patterns is 100% and hence that data isfaard on every cycle of the
pattern. The efficiency then gradually reduces as rea@\svititches cause lost cycles
on the data bus. We note that the impact of these switches&d=yably higher when
the worst-case switching behavior is enforced. We see fieetefof refresh at 7.&s
and again at 15.6s, where the efficiency reduces due to the 32 idle cycles med|td
precharge all bank and refresh the memory. The measuredvizithds very close to
the bound at the end of the refresh pattern, indicating thiati$ the time at which the
memory efficiency calculation “evens out”. This is not sisjrg, considering that all
events covered by the bound, such as read/write switchesefnedh, have happened at
this time. After 100 ms when the simulation ends, the woastecsimulation converges at
a net bandwidth of 661.0 MB/s, which is less than 0.2% fromdiiéved bound. This is
not completely unexpected, since we have enforced exdnlipehavior assumed by the
bound. The normal simulation, on the other hand, converg@84MB/s, thus providing
about 4% extra net bandwidth due to the reduced number ofwetel switches. This
convergence is visualized in Figure 4.22b, which shows ffieiency during the first
160 us of the simulation. This experiment is shown also for DDRB,8DDR3-800,
and DDR3-1600 in [42]. A similar experiment, although witih@nforcing the worst-
case scenario, is furthermore conducted with the VHDL inm@etation of the back-end
together with a Micron DDR2-400 memory model in [90].

4.8 Summary

Our approach to predictability involves combining predite resources with predictable
arbitration. This chapter addressed the first part of thig@ach by introducing a pre-

4.8. SUMMARY 95

dictable SDRAM back-end that increases the level of dynamiempared to previous
work. The proposed back-end is shared using predictdyatamic front-end arbitra-
tion to be able to satisfy diverse latency requirements, whiteaiaing analyzable. The
command generator uses a naybrid approactthat combines elements of static and dy-
namic command scheduling, enabling it to accommodatedrdiéit is not fully known
at design time in a predictable fashion. The hybrid appraadfased oormemory pat-
terns which are precomputed sequences of SDRAM commands thatyaamically
instantiated and combined by the command generator atmen-t

A pattern setconsists of five memory patterns:read pattern a write pattern a
read/write switching patterna write/read switching patternand arefresh pattern The
read and write patterns access the memory by issuing a fixedberuof bursts each of
the banks in an interleaving fashion. The read/write svrigtpatterns and write/read
switching patterns are used to give the data bus time to lswlitection between a read
and a write pattern. The refresh pattern is issued regutarlyrevent leakage in the
DRAM cells from causing data loss.

A pattern set is classified as eittread-dominantwrite-dominant or mix-dominant
depending on which combination of patterns that resulthiéanlowest bandwidths and
longest latencies. A pattern set is read or write-dominfathiei worst case happens if all
interfering requests are either reads or writes, resuitirtat only read or write patterns
are issued. On the other hand, the worst-case situationrfok-@lominant pattern is if
requests alternate between reads and writes, causing tieoma number of read/write
switches. A mix-dominant pattern is further classifiednaig-read-dominanbr mix-
write-dominantdepending on if an odd number of requests contain more reagstes
in the worst case. The gross and net bandwidths provided btterp set were computed
for all dominance types by bounding the five categories of orgrafficiency introduced
in the previous chapter. We also bounded the maximum timeinedjto serve an arbi-
trary number of atom service units, delivering on the regmients for the controller to
be predictable.

Three algorithms for automatic memory pattern generatienewresented, repre-
senting different trade-offs between net bandwidth andrtimetime of the algorithm.
The algorithms try to compute the shortest possible readaitel patterns and then gen-
erate the accompanying switching and refresh patternsfifghalgorithm uses branch
and boundapproach to exhaustively evaluate all valid patterns, ¢iveng only when a
given pattern cannot become shorter than the shortest arently found. This algo-
rithm is guaranteed to find the shortest read and write pettéiut has a run time in the
range of weeks or months when the generated patterns are Ttnegsecond algorithm
usesas-soon-as-possible (ASAP) schedubing tries to schedule SDRAM commands at
the earliest possible time, prioritizing read and write ao&imds over activates in case two
commands can be scheduled in the same cycle. This algornithsrim less than a second,
but occasionally generates patterns providing 10% lesdvaidih than the branch and
bound algorithm. The last algorithm is callbdnk schedulingas it schedules commands
for one bank at a time. This results in patterns offering reesbandwidth as the branch
and bound algorithm in all our tests, while having a run tiroenparable to the ASAP
scheduling algorithm.

96 CHAPTER 4. PREDICTABLE SDRAM BACK-END

We experimentally concluded that newer faster memoriesr dffgher peak band-
widths, but lower gross efficiency, due to increasingly sewaning constraints. How-
ever, the provided gross bandwidth is still increasing wititk frequency. It was shown
that gross memory efficiency increases with burst courtipaljh the increase becomes
smaller for every increment. We also concluded that largeiest sizes are required to
achieve high net memory efficiency. A DDR2 memory requir@piest sizes between
64-128 B to provide a net memory efficiency above 80%, whik BIDR3 memories
require requests of 256 B to accomplish the same.

CHAPTER D

Credit-Controlled Static-Priority arbitration

The previous chapter presented a memory controller baditfeat makes an SDRAM
into a predictable resource, corresponding to the firstgfartir approach to predictabil-
ity. The second part of the approach, which is the topic &f thiapter, considers sharing
this resource among multiple requestors in a predictablenera The context of this
problem was previously shown in Figure 1.7, where requesitseean a Request Buffer
in front of a resource arbiter and responses are returne@Response Buffer. Resource
arbitration with real-time requirements is in no way a nesegach field. In fact, research
has been conducted in this field during more than half a cgaitgady and there exists a
plethora of different arbiters. Still, new applicationglamerging technologies like het-
erogeneous multi-core System-on-Chips (SoCs) continabdnge the requirements, as
they need small and fast arbiters that cater to diversemn@ments without wasting scarce
resource capacity. We start this chapter in Section 5.1ddyoeating on the requirements
from the SoC context, and from the requestors in our constiapplication domains.
We then proceed in Section 5.2 by augmenting our formal medeldefinitions related
to resource arbitration. In Section 5.3, we address thératioin requirements by propos-
ing a Credit-Controlled Static-Priority (CCSP) arbitesnsisting of a rate regulator and a
static-priority scheduler. We subsequently perform a woase analysis of the arbiter in
Section 5.4, and derive its service guarantee. Based ondhifce guarantee, we prove
that CCSP belongs to the class of Latency-RAR) servers in Section 5.5. A small and
fast implementation of the CCSP rate regulator is derivefention 5.6, and we show
that it decouples allocation granularity and latency. ®ad.7 discusses the architecture
of the arbiter and presents synthesis results. We thenagestloe arbiter experimentally
in Section 5.8, before concluding the chapter with a sumrima8ection 5.9.

97

98 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

5.1 Arbiter requirements

An important difference between memory arbitration andirfstance, processor schedul-
ing is that a memory arbiter works at a much finer level of glarity [103]. The execu-
tion time of a task may range from microseconds to milliselsomhile a memory request
in an SRAM controller is served in a few nanoseconds. Thiséimportant reason why
resource arbiters are implemented in hardware insteadtwia®@. There are three main
requirements on the hardware implementation of the artntarake it applicable to this
type of resource. 1) It must run at high clock frequency topkep with the resource
and to be able to schedule small requests. 2) It must have latsmdware implemen-
tation to limit the impact on area. 3) The arbiter must be ablprovide the required
service to a requestor without reserving more capacity teguired, referred to asver
allocation Limiting over allocation is imperative, since memory beidth is scarce
and must be efficiently utilized. The arbiter must not onlypsider the requirements of
the SoC context, but also those of the requestors in ourcgtigh domains, previously
discussed in Section 1.1.6. It must hence be able to accoatmbdth latency-critical
and latency-tolerant requestors.

5.2 Formal model

We proceed in this section by extending our formal model with definitions required

to deal with resource arbitration. To emphasize the geiterlour arbiter, and its ap-

plicability to a wide range of resources, we abstract fromegtigular target resource.
Some of the definitions in this section are hence more gettaalrequired by the pro-
posed memory controller. Still, we chose to include thesedease the applicability of
the provided theory. However, for simplicity, we limit thesdussion to individual inde-

pendent resources, such as memories. Resources with lmuitigrnal arbiters, such as
Network-on-Chips (NoCs), are not addressed here.

We adopt an abstract resource view, where a service unggmonds to the access
granularity of the resource. For a typical SRAM, the acceasugarity is a single word,
and for the proposed SDRAM back-end it is the granularity dad or write patterry,
previously defined in Definition 4.2. The size of a requeskirviee units is hence com-
puted according to Definition 5.1. Note that in the architeef the proposed memory
controller, previously shown in Figure 2.11, the Requedfda are located inside the
Delay Block, and hence after the Atomizer. This means thatathiving requests are
atoms and are hence guaranteed to have a size of a singleesanit per definition.
Time is discrete and counts from zero. A time unit, refereds aservice cycleis de-
fined as the time required to serve a request with the sizem§ervice unit. The length
of a service cycle, measured in clock cycles, is expressedrding to Definition 5.2.
A simple SRAM has a constant service cycle length of one cloate. On the other
hand, an SDRAM has a highly variable service cycle lengthdepends on whether the
request is a read or a write and the state of the memory attigsitis scheduled. Multi-
plying a latency in service cycles with the maximum serviggelength, which is known

5.2. FORMAL MODEL 99

and bounded for predictable resources, always provideaseceative result. While this
approach works well for an SRAM, it is too pessimistic for @DPRAM back-end, since
it considers an interfering read/write or write/read switnd a refresh for every single
request. Instead, we use the specialized latency equaficr) from Equation (4.8) for
this particular resource. This equation accurately actsofor the maximum possible
interfering read/write switches and refreshes. We comgidstration that igpreemptive
on the granularity of service cycles. This applies to marjtars in general and to all
arbiters in our architecture, due to the presence of the Atem

Definition 5.1 (Request size (service units)Jhe size of a request® in service units is
given bys(w¥) : Q, — N7, and is defined ag(wF) = [s?*wk)/g].

Definition 5.2 (Service cycle length) The length of the service cycle, measured in clock
cycles, when servicing a request at timet is given by\(w¥,) : Q, x N — N.

We use service curves [19] to model the interaction betwleemegsource and the re-
questors. These service curves are typically cumulatigder@notonically non-decreasing
in time. We start by defining an operator for retrieving th&ugaof a service curve in
Definition 5.3. We use closed discrete time intervals thihmug this thesis. The interval
[r,t] hence includes all service cycles in the sequefice + 1,...,¢t — 1,t). Defini-
tion 5.4 defines a more compact notation for expressing ffereince in values between
the endpoints of such an interval.

Definition 5.3 (Value of a service curve)The value of a service cungin service units
at service cycle is given by¢(¢) : N — N.

Definition 5.4 (Difference in values between endpoints of an interva@be difference in
values between the endpoints of the closed intdrva), wheret > 7, of a service curve
¢isgiven byt(r,t) : N x N — N, and is defined ag(r,t) = £(t + 1) — &(7).

A requestor generates requests according to a requestddeseate, as defined in
Definition 5.5. This rate expresses the requested fractidheototal service units pro-
vided by the resource, and is definedmgs= b, /b" for the special case where data
efficiency is 100%, making gross and net bandwidth identitale general case is dis-
cussed in Chapter 7. A request is considered to arrive as pal$smwhen: 1) it has
completely arrived in the Request Buffer, and 2) there isughcspace in the Response
Buffer to store a response, as stated by Definition 5.6. Bhisptured by the requested
service curvew, defined in Definition 5.7. For clarity, it is assumed thatyoalsingle
request arrives per requestor in any cycle, although thteasy to generalize. Note that
Definitions 5.6 and 5.7 state that a requested service ctiti@at + 1 accounts for a
request with arrival time + 1.

Definition 5.5 (Requested service rateéjhe requested service rate of a requester R,
expressed in service units/service cycles, is denoted.by

Definition 5.6 (Arrival time). The arrival time of a request” from a requestor € R
is given byt, (wF) : Q, — NT, and is defined as the smallgsit which the last bit of,*

100 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

has arrived in the Request Buffer and there is enough freeesppathe Response Buffer
to store a response.

Definition 5.7 (Requested service curveThe requested service curve of a requestor
r € Ris given byw,(t) : N — N, wherew, (0) = 0 and

)=t+1

wy(t) + s(wk) FwkF @t (wk
to(WF) =t+1

wy-(t) Ak

we(t+1) = {

The arbiter schedules a requestor every service cyclediogao its particular schedul-
ing policy, as stated in Definition 5.8. A request has to be scheduledw”) times
before it is finished.

Definition 5.8 (Scheduled requestorThe scheduled requestor at timhis given byy(¢) :
N — R U {@}, where@ denotes that no requestor is scheduled.

The provided service curvey’, defined in Definition 5.9, reflects the number of
service units provided by the resource to a requestor. Aicgennit takes one service
cycle to serve. This is reflected in that the provided serisdecreased at + 1, if a
requestor is scheduled &t An illustration of a requested service curve and a provided
service curve is provided in Figure 5.1. For reasons oftgldtie curves in the figure are
drawn as continuous functions, although their values alg defined at discrete points
in time.

Definition 5.9 (Provided service curve)The provided service curve of a requestat R
is given byw!.(t) : N — N, wherew!.(0) = 0 and

wh(t)+1 ~y(@)=r
wy(t) V() #r

wl(t+1) :{

Accumulated
service units

»
N
Sy

)
N
-—

»
L

ta(@%) to(wh) T Service cycles

Figure 5.1: A requested service curve,a provided service curve,’, and representa-
tions of the related concepts.

The backlog of a requestor, defined in Definition 5.10, cquesls to the amount of
requested service that has not yet been served at a partiooéa A requestor that has

5.3. DEFINITION OF CCSP ARBITRATION 101

a backlog greater than zero has outstanding requests, asfetiised to as a backlogged
requestor. The set of requestors that are backlogged atiaytar time is defined in
Definition 5.11. The graphical interpretation of backlogli®wn in Figure 5.1.

Definition 5.10 (Backlog) The backlog of a requestor € R at a timet is given by
¢-(t) : N — N, and is defined ag,(t) = w..(t) — w..(t).

A

Definition 5.11(Set of backlogged requestargjhe set of requestors that are backlogged
attis defined af?f = {r | Vr € R A ¢,(t) > 0}.

5.3 Definition of CCSP arbitration

The CCSP arbiter consists of a rate regulator and a schethllewing the decomposi-
tion from [120]. The purpose of a rate regulator is to protequestors that do not ask
for more service than they are allocated from the ones thaivtich is a key property
in providing guaranteed service to requestors with reaktrequirements [119]. The
scheduler is responsible for choosing which requestorttecide, based on its particular
policy. This partitioning provides a separation of consebut also emphasizes the mod-
ularity and re-usability of the components. We proceed Isgulising the details of the
CCSP rate regulator and scheduler separately in SectiBrisénd 5.3.2, respectively.

5.3.1 Rate regulator

A rate regulator provideaccountingandenforcemenand determines which requests are
eligible for scheduling at a particular time, considering their cdliied service. The ser-
vice allocated to a requestor in the CCSP arbiter depends@parameters, as defined
in Definition 5.12. These are the allocated service rateand allocated burstiness’,
respectively. The definition states three constraintsrthagt be satisfied in order for an
allocation to be valid: 1) the allocated service rate of aiestior must be at least equal
to its average request rate, to satisfy its service requirement, and to maintain finite
buffers, 2) it is not possible to allocate more service tartfipiestors than what is offered
by the resource, and 3) the allocated burstiness must beisnffy large to accommodate
a service unit.

Definition 5.12 (Allocated service) The service allocation of a requester e R is
defined ago., pl.) € Rt x RT. For a valid allocation it holds that'r € R : p.. > p,.,
YovrerPr < 1,andVr € R:o) > 1.

Next, we introduce the accounting mechanisms in the CCSPregulator. An im-
portant feature of this mechanism is that it usestinuous replenishmerite. a requestor
gets a small increase in its resource access budget, pogirto its allocated service
rate, every service cycle, as opposed to being replenistibeé &nd of a frame. This is
similar to getting a small salary at the end of the day rathanta larger salary at the
end of the month. Continuous replenishment is not an exausiature of CCSP, but
it is not very common among resource arbiters, as we will Seenwdiscussing related

102 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

work in Section 8.1. The advantage of this feature is thattlhg&imum time before a
requestor can afford to access the resource is indepenflanthe number of days in
a month (frame size), as it is just a function of the allocaged/ice rate and the cost
of a resource access. The allocation granularity in the C@&Pregulator can hence
be increased without increasing a frame size and also isefetency.This means that
the CCSP rate regulator decouples allocation granularinddatency.We continue by
elaborating on the details of the regulator.

The accounting and enforcement mechanisms are based onottbe aof active pe-
riods. Definition 5.13 states that a requestor is active itit is either live att (Def-
inition 5.14), backlogged at, or both. Definition 5.14 states that a requestor must on
average have requested service according to its allocatedince the start of the latest
active period to be considered live at timeNote that liveness is determined only by the
requested service curve and is hence independent of therces@acklog, on the other
hand, is determined by both the requested service curvehangrovided service curve,
and hence depends on the behavior of the resource.

Definition 5.13 (Active period) An active period of a requesterc R is defined as the
maximum intervalr , 73], such thawt € [r, 2] cw,(m1 —1,t—1) > pl.- (t —T1 +1) V
q-(t) > 0. Requestor is activevt € [y, 72).

Definition 5.14 (Live requestor) A requestorr € R is defined as live at tim&during
an active periodry, 7o) if w.(ry — 1,t = 1) > pl - (t — 7 + 1).

Definition 5.15 (Set of active requestors)rhe set of requestors that are activetas
defined asky = {r | Vr € R A r active att}.

Definition 5.16 (Set of live requestors)The set of requestors that are livetas defined
asR, = {r|Vr e R A rlive att}.

Figure 5.2 illustrates the relation between being live kliagged and active. Three
requests arrive between and,, keeping the requestor live unti. This is seen in
the figure by the requested service curve being above thedtatddlive line, which
graphically illustrates the requirement to be live in Defoni 5.14. The requestor is
initially both live and backlogged, but the provided seeviurve catches up with the
requested service curve st This puts the requestor in a live and not backlogged state
until 3. The requestor is neither live nor backlogged betweemndr,, as no additional
requests arrive at the resource. The requestor becomeanli/backlogged again at,
since two additional requests arrive within a small peribdirne. The requestor stays
in this state untiks, since not enough service is provided to remove the bacKidg
requestor is hence backlogged but not livergtand remains such until the end of the
shown interval. The requestor in Figure 5.2 is active betwegeandrs; and fromr, and
onwards, according to Definition 5.13. Note from this exaariplat a live requestor is
not necessarily backlogged, nor vice versa.

We proceed in Lemma 5.1 by deriving some important relatioetsveen the re-
guested service curve and provided service curve at thieaftan active period. These

5.3. DEFINITION OF CCSP ARBITRATION 103

live | X [
backlogged | X [
active | X [

X

I x|
I [x|
I x|

X

live lines

Accumulated
service units

LA
N\
Y

71 T2 T3 T4 s To
Service cycles

Figure 5.2: Service curves showing the relation betweengokve, backlogged, and
active.

relations follow immediately from the definitions of the @ee curves and active peri-
ods. The purpose of this lemma is to create an intuition ahctite periods, as well as
deriving useful results for later analysis. Two importargights provided by this lemma
are that: 1) there is no backlog at the start of an active gednd 2) an arriving request
is required to trigger the start of an active period.

Lemma 5.1. If 7, is the start of an active period then(r;) > w(m — 1) =
w'(m) =w'(m —1).

Proof. According to Definition 5.13, ifr; starts an active period then the requestor
was inactive at; — 1 and hencey(r; — 1) = 0. We know from Definition 5.10 that

if (1 —1) = 0thenw(r; — 1) = w'(m, — 1). This implies that the requestor can-
not be scheduled at — 1, which according to Definition 5.9 results in that(r;) =
w’(m; — 1). Definition 5.13 states that if an active period starts;atheng(r;) > 0 or
w(n — 1,71 — 1) > p'. These cases all imply (1) > w(m — 1). O

We are now ready to discuss the accounting mechanism irsd8E€SP rate regula-
tor. The accounting provides an upper bound on providedeerigased on the concept
of active periods. This upper bound is defined according tbnidien 5.17. The in-
tuition behind the definition is that the upper bound on pdedi service of an active
requestor increases according to the allocated rate eeevice cycle. Conversely, for
an inactive requestor, the bound is limitedwd(¢) + o/, a value that depends on the
allocated burstiness. This prevents that a requestorgligactive for an extended period
of time increases its bound to an arbitrarily large valugl, starves other requestors once
it becomes active again.

104 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

Definition 5.17 (Provided service bound)he enforced upper bound on provided service
of arequestor € R at timet is given by@..(t) : N — R*, wherew!.(0) = o, and

W (t) +p, T ERY

wh(t)+ ol ré¢ Ry ®-1)

W (t+1) = {
Note that the upper bound on provided service is not nedgssarnotonically non-
decreasing in time, as shown at timgin Figure 5.3. The requestor in the figure is
live until 7, but remains active untit; wherew’ catches up tavw. According to Def-
inition 5.17, this results in an upper bound on provided isend’(r2 + 1) < @'(72),
sincew’(m2) > w'(m2) + ¢’. The requestor starts a new active periogkatausingd’ to
increase again. Note that the fact that the upper bound anided service is not mono-
tonically non-decreasing does not impact the service geavito a requestor during an
active period, since a decrease in potential can only happen a requestor is inactive.

A
o
g £ v
c S - w
= 5 -
S 5 - -
IS o P ! _ -
3 s -~ too T PR
o c - s
2 e m(71) _ \
4”_1 /~’+ . j live line
, P . .
o) . . .
i - SR -

71 T2 73
Service cycles

Figure 5.3: The upper bound on provided servigg,is not necessarily monotonically
non-decreasing.

It is not possible to perform accounting and enforcementirtvare based directly
onw/’, sincelim,_, ., W' (t) = oo, resulting in overflow of finite counters. Instead, the ac-
counting mechanism in the rate regulator is based opdbentialof a requestor, defined
in Definition 5.18. Potential corresponds to the amount ofise that can maximally
be provided before the provided service curve reaches therlgmund, as illustrated in
Figure 5.3. The potential of a requestor is bounded, sineathiter guarantees a lower
bound on provided servicey, as we will show in Section 5.4. We show in Lemma 5.2
how to express the potential of a requestor at any time dannactive period, using the
upper bound on provided service and the provided servicgecdmhis result is used ex-
tensively in later analysis. The potential-based accagnised by the CCSP rate regula-
tor is defined according to Definition 5.19. Lemma 5.3 showstie accounting mecha-
nism in Definition 5.19 corresponds to a recursive definiibpotential. Definition 5.19
illustrates an important point of the accounting mechanisamely thatr(¢) = o’ if t is
the start of an active period. This means that we do not hassgome that a requestor

5.3. DEFINITION OF CCSP ARBITRATION 105

has an initial potential of zero when deriving a lower boundservice provided during
an active period in Section 5.4.

Definition 5.18 (Potential) The potential of a requestor € R at timet¢ is given by
7-(t) : N = R, and is defined as,.(t) = @w..(t) — wl.(t).

T

Lemma 5.2. During an active periodr, 72, it holds thatvt € [r, 7] : =(t) =
@'(11) —w(m) + @' (11,t — 1) —w' (71, ¢t — 1).

Proof. Rewriting the right hand side according to Definition 5.4gsab’ (71) —w’ (71)+
W' (t—141)—w' () — (w'(t—14+1)—w'(71)). According to the definition of potential
in Definition 5.18, this is equivalent to(r;) + 7 (t) — w(11) = 7w (t). O

Definition 5.19 (Potential-based accountingThe accounted potential of a requestor
r € Ris given byr*(¢) : N — R, wherer(0) = o. and

mit)+p,—1 reREAN(E) =T
T (t+1) =< m) + ol r€RINY() #r (5.2)
o, r ¢ R}

Lemma5.3.Vt € N: 7(t) = 7*(t).

Proof. We prove the lemma by induction.

Base case:The lemma holds wheh = 0, sincen(0) = @'(0) — w'(0) = 7*(0),
according to Definition 5.9, Definition 5.17 and Definitiod 8.

Inductive step:For the inductive step, we prove that if the lemma holds aetirthen
it also holds fort + 1. According to Definition 5.18, potential at+ 1 is defined as
m(t+1) =@l (t+1) — wl.(t +1). We substituted!.(¢t + 1) andw..(t + 1), according to
the recursive definitions in Definition 5.17 and DefinitioB Fespectively. Definition 5.9
has two cases and depends on whether the requestor is sathedulot. Similarly, Def-
inition 5.17 has two cases depending on if the requestortigeagr not. The resulting
equation is shown in Equation (5.3).

(W'(t)+p)— (w'@)+1) reRIAY(E) =7
V(t4+1) —w(t+1) = (@' () + p') — w'(t) re REAY()#r (5.3)
(w'(t) + o) —w'(t) r & REAA(E) # 7
Finally, we substituter(t) = @’(¢t) — w’(¢), in accordance with Definition 5.18, after
which we arrive at the accounting mechanism in Definitiord5.1 O

Enforcement in the rate regulator is performed by detemmginf a requestor is el-
igible for scheduling. Definition 5.20 states that a reqoeist considered eligible if it
is backlogged, and has at least enough potential to serveasmige unit, including the
service earned the next time the accounting is updated.

106 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

Definition 5.20 (Eligible requestor) Requestor is defined as eligible for scheduling at
tif m(t) > 1 — pl Aw,p(t) > wl.(t).

Definition 5.21 (Set of eligible requestors)The set of requestors that are eligible for
scheduling at is defined asky = {r | Vr € R A r eligible att}.

5.3.2 Scheduler

Schedulers are divided into two classes, as they are eithrconservingor non-work-
conserving A work-conserving scheduler always schedules a requeshliere is a
backlogged requestor. A non-work-conserving scheduleithe other hand, does not
schedule a request unless it has enough budget/potentgytdor the access, even
though the resource may be idle. A non-work-conserving cialee clearly leads to a
lower resource utilization, but is beneficial for networksadbiters, as it limits the in-
crease in burstiness of the provided service at their réispeautputs [25, 104,120]. On
an orthogonal axis, a scheduler can be either preemptiverspreemptive. Although
there are flavors of CCSP covering all combinations of theepgsties, we consider a
non-work-conserving scheduler that is preemptive on ta@warity of a single service
unit. Note that this is actually a non-preemptive instarfdb® arbiter that is analyzed as
preemptive, due to the presence of an Atomizer. Analysis®bther flavors of CCSP is
covered in [8].

The CCSP arbiter uses a static-priority scheduler, becauseouples latency and
rate and has a low-cost hardware implementation. Each semuie assigned a unique
priority level, p, as stated in Definition 5.22, where a lower level indicaighér priority.
Unlike [120], we do not allow requestors to share priorityells, as it results in a situation
where equal priority requestors must assume that they\a! toawait for each other in the
worst-case, resulting in less tight bounds. Each requistare has a unique set of higher
priority requestors, defined in Definition 5.23. A preemetion-work-conserving static-
priority scheduler schedules the highest priority eligitdquestor every service cycle, as
defined in Definition 5.24.

Definition 5.22 (Priority level). A requestor- € R has a priority levep,. € N, such that
Vri,ri € Riri # 15 = pr, # Dr;-

Definition 5.23 (Set of higher priority requestors)rhe set of requestors with higher
priority thanr; € Ris defined af;\ = {r; | Vr; € RAp,, > pr, }.

Definition 5.24 (Static-priority scheduler) The scheduled requestor at timén a pre-
emptive non-work-conserving static-priority schedutedéfined as

(t))T s.t.r; € Rf A 397”3' S R? D Pr; < DPry R? 7é 9
v %] R =0

5.4. ARBITER ANALYSIS 107

5.4 Arbiter analysis

We have now introduced the CCSP arbiter and defined its rgidater and static-priority
scheduler in terms of our formal analysis framework basedamice curves. In this
section, we use the definition of the rate regulator and sdeedo derive analytical
properties of the CCSP arbiter. We start by defining and uppand the interference
experienced by a requestor during an interval. We then usebtiund to derive the
service guarantee of CCSP, which later enables us to praeCBSP belongs to the
class ofLR servers in Section 5.5.

Definition 5.25 states that the maximum interference expesgd by a requestor in
an interval consists of two parts. The first part is concemitd the potential of higher
priority requestors at the start of the interval, and theosdawith the increase of their
upper bounds on provided service during the interval. tiveely, this definition of inter-
ference corresponds to the maximum number of service cgcteguestor can wait for
higher priority requestors accessing the resource.

Definition 5.25(Maximum interference in an intervall he maximum interference expe-
rienced by a requestor € R during an interval[ry, 72] is given by, (71, 72) : Nx N —
R, and is defined as

in(r,) = Y (m (1) + 0, (11,72))

vr;€R;

We need to compute an upper bound on interference that hmidsy interval This
is done by bounding the two parts of Definition 5.25 sepayat#ke start in Lemma 5.4
by bounding the increase in the upper bound on provided ceiiring an interval,
corresponding to the second part of Definition 5.25. Thinisaby first showing that the
maximum increase of the provided service bound happens Wigerequestor is active
throughout the entire interval. After deriving this impamt result, it is straight-forward
to bound the maximum increase of the upper bound.

Lemma5.4. @) (1,t) < pl. - (t — 7+ 1).

Proof. We prove the lemma by showing that the inequality holds wibgfr, ¢) is max-
imal. This occurs when, ¢ € [r, 72|, where[r, 72] is an active period. This in turn is
proved by showing that the first rule of Equation (5.1) implig (¢ + 1) > @/.(¢), while
the second rule implieg!.(t + 1) < @.(t).

The first rule in Equation (5.1) implies that.(¢ + 1) > @/.(¢), since it follows from
Definition 5.12 thap!. > 0.

We split the analysis of the second rule in Equation (5.1 tato cases. In the first
case, the requestor is inactive at both 1 andt, corresponding to multiple cycles of
inactivity. In the second case, the requestor is active-at and inactive at, meaning it
is ending its active period.

Case lir ¢ R} | Ar ¢ R}

108 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

From the second rule in Equation (5.1), we get thatt + 1) = w..(¢) + o... Since an
inactive requestor cannot be scheduled, it must holddhét) = w!.(t — 1). It hence
follows thatw!.(t + 1) = w.(t) if r ¢ R¢_; Ar ¢ RY.

Case2:ir € R¢ AT ¢ RY
We proceed by showing that this case impliggt + 1) < @/..(¢). Lett = 72 + 1, where
[1, T2] defines an active period. We must hence show that

W12+ 2) < (12 + 1) (5.4)

According to Definition 5.4/, (T2 +1) = w,.(71)+ @, (11, 72). From Lemma 5.1 and the
second rule in Equation (5.1), we get thigt(r;) = w!.(11 —1)+0. = w.. (1) +oL, since
r ¢ R$. We furthermore know from the first rule in Equation (5.1)tthé (7, 72) =
pr - (o — 1 + 1), sincevt € [m, 7] : r € RE. This results in

W, (12 + 1) = wy.(11) + 0.+ p).- (T2 — 71 + 1) (5.5)

The second rule in Equation (5.1) states thatrs + 2) = w).(12 + 1) + o’ sincer ¢
R¢, ;. Rewriting this using Definition 5.4 resultsif. (7o 4-2) = w).(71) + w;.(11, 72) + 0.
From Definition 5.13 and Lemma 5.1, we know tha¢ R? ., = w,. (71 —1,72) =

w, (11 — 1,7) < pl. - (12 — 71 + 1), as the requestor is neither live nor backlogged at
79 4+ 1. Putting these results together gives us

W (2 +2) <wl(m)+o,+p. (1o —71+1) (5.6)
By substituting Equations (5.5) and (5.6) into Equatiord)5we see thaii.(m2 + 2) <

w..(m2 + 1). We hence conclude that/.(7,t) is maximal whenr,t € [, 2], where
[11, 2] is an active period. According to Definition 5.18 and the fiide of Equa-

tion (5.2), this implies that!.(7,t) < p’ - (t — 7+ 1). O

Having derived an upper bound on the second part of Defingi@s, our next goal
on our path to bound interference in an arbitrary interved isound the remaining part of
the definition. To accomplish this, we require some add#itemmas that relate the live,
backlogged and eligible states using potential. We begireinma 5.5 by establishing a
relation between potential and provided service that fedldirectly from the definitions
of the upper bound on provided service and potential. Negtskow in Lemma 5.6 that
there is a connection between potential and being live forlmacklogged requestors.
The key insight is that the requested service curve and gedvservice curve are equal
in the absence of backlog, which allows us to use the previesigt from Lemma 5.5
to bound the requested service curve. We then demonstratechase potential to
determine if an active requestor is backlogged in Lemma B/é.use the result from
Lemma 5.6 to show that the requestor cannot be live, givepoitsntial. We then con-
clude that the requestor is backlogged, since it cannot tieeamtherwise. Lastly, we
show in Lemma 5.8 that it is possible to determine if an aatdguestor is eligible by
looking at the potential. An active requestor must have damum potential and a back-
log to be eligible. Thanks to Lemma 5.8, we can determine ¢ifi fdhese conditions
are satisfied by only looking at potential.

5.4. ARBITER ANALYSIS 109

Lemma 5.5. For a requestorr € R during an active periodr;, 7], it holds that
Vi€ [r,] im(t) <ol —pl. <= w.(rn,t—=1)>p,-(t—1+1).

Proof. We know that the equation in Lemma 5.2 holds during an actréog |71, 72).
Definition 5.17 and the fact that the requestor is inactivg at 1 results in

Wl (1) — wl.(m) = o), andw].(r,t — 1) = (t — 71) - p,.. Substituting these results into
the equation in Lemma 5.2 yields (¢) = o, + (t — 1) - p,. —wi.(11,t — 1) < g} — pl.
The proof is concluded by solving far].(71,¢ — 1). O

Lemma 5.6. For a requestorr € R during an active periodr;, 2], it holds that
Vi€ [m,)¢ t)=0:7m.(t) <o.—pl <<= w.(n—-1t—=1)>p.-(t—7+1).

Proof. According to Lemma 5.5, we know!.(¢) — w/.(11) > p. - (t — 11 +1) <—
7-(t) < ol — pl.. Definition 5.10 states that!.(t) = w,(t), sinceq,.(t) = 0. From
Lemma 5.1, we additionally know that.(71) = w,.(7; — 1). We conclude the proof by
substituting these results into the result from Lemma 5.5. O

Lemma 5.7. For arequestor € RY : m.(t) > ol. — pl. = ¢,(t) > 0.

Proof. We prove the lemma by contradiction. We know from Definitiob®that- € R$
implies thatg,.(t) > 0 or w, (1 — 1,6 — 1) > pl. - (t — 71 + 1), wherer is the start
of the last active period. However, it follows from Lemma Bt if ¢.(¢) = 0, then
m(t) > o, —pr. = wp(m1 — 1,t — 1) < pl. - (t — 7 + 1). This implies that- ¢ R,
which is a contradiction. O

Lemma5.8.Vr € Ry : w.(t) > ol. — pl. = r € RS.

Proof. We must show that for a requestore RY : m,.(t) > o, — pl. implies that
the two conditions in Definition 5.20 are satisfied. The fikmtdition is satisfied since
Lemma 5.7 states that € R¢ andn,.(t) > o, — p, impliesg,.(¢t) > 0. The second
condition is satisfied since,(t) > o/. — p,. > 1 — p/., according to Definition 5.12. [

The next stop towards our goal to bound the first part of Défimib.25, being the
aggregate potentiadf the higher priority requestors. We define the concept gfegpte
potential of a set of requestors in Definition 5.26 and showamma 5.9 that it cannot
increase, as long as a requestor in the set is scheduledaaey The key observation
is that the aggregate potential is reduced by one every timexjaestor in the set is
scheduled, while it can maximally increase by the sum of tleeated rates, which is
less or equal to one. This is an important result that endt#esma 5.10 to bound the
first part of the maximum interference equation in DefinittoR5.

Definition 5.26 (Aggregate potential) The aggregate potential of a set of requestors
R' C Risdefined as ,cp 7 (t) = D vrer Wr(t) = D yrer W (t).

Lemma5.9. For asetof requestor®’ C R, itholdsthatvt € N: (Irp € R : y(t) =) =
Yovrer Tr(t+1) < 3 vrep mr (D).

110 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

Proof. According to Definition 5.4 and the definition of aggregateéeptial in Defini-
tion 5.26

SoomtA) =Y mt)+ Y) — Y wi(tt)

VreR’ VreR’ VreR’ VreR’

According to Lemma 5.4y ", ., @' (t,t) < > \,.cp Py, Where equality is reached if
all requestors are active ait We also know from Definition 5.12 that, .. p,. < 1.
From Definition 5.9, we get that, ., w;.(t,t) = 1 if a requestor ink’ is scheduled
att. Hence, ifvr € R’ : r € R} and3r, € R’ : ~(t) = ry, then

Yomt+) =Y m)+ > p—1< Y m()

VreR’ VreR’ VreR’ VreR!

O

Lemma 5.10. For a requestorr; € R, it holds thatvi € N = 3., p+ m () <
> wr,ert Or,- The equality occurs at any tintdor whichVr; € R : r; ¢ RY_,.

Proof. We prove the lemma by induction on t.

Base case:The lemma holds at = 0, since Definition 5.19 states th&t € R :
7 (0) = ol..

Inductive step:At ¢ + 1, we examine two different cases for the premisé. aln the
first case there exists a higher priority eligible requesdod in the second case there
does not.

Case 1:(R NRf) # @

Pickingry, € (R N Ry), according to Definition 5.24 and applying Lemma 5.9 results
in the first inequality in Equation (5.7). The second ineguédbllows from the induction

hypothesis.
Soomt+< Y mB< Y o (5.7)

Vr; R, Vr; R, VrjeRY,

Case 2:(R} NRy) =&
No higher priority requestor is eligible in this case. Welwhow that this implies that
7(t + 1) < o’ both for requestors with(¢t) > o' — p’ andn(t) < o’ — p'.

According to Lemma 5.8, it must hold tha; € RfAr; ¢ Ry : m (1) >
o, — py, = r; ¢ R{. The third rule of Equation (5.2) hence states tiat € R/ :
T, (t) > oy —p;, = 7, (t+1) = o7.. For the other case by Definition 5.19;; € R}, :
T (t) < o7 =i, = 7, (t+ 1) < o). Hencevr; € R« . (t+1) < oy . This
means thaﬁ:\meﬁ 0, (t+1) < 3y, et 07, Which proves the second case.

The aggregate potential of higher priority requestors isimal whenvr; € R; :
7, (t) = oy, which occurs at any timefor whichvr; € RY : r; & Rf_,. O

5.4. ARBITER ANALYSIS 111

We proceed by combining the derived bounds on the differenswf Definition 5.25
to upper bound the maximum interference in any interval imbrea 5.11. This result
allows us to derive the service guarantee of the CCSP aditdto compute its service
latency. This is shown in Theorem 5.1, which is the main dbuation of this section.
Note that the service latency derived in Equation (5.9) isodeled from the allocated
rate by the priority level. Low service latency can hence tmiged to latency-critical
requestors by assigning high priorities, while lower pties are assigned to latency-
tolerant requestors.

Lemma 5.11(Maximum interference in any interval)lhe maximum interference expe-
rienced by a requestor, € R during any intervalr, 73] occurs when all higher-priority
requestors start an active period &t and remain active/t € [, 72], and equals

iy, (T1,72) = Z O P, (2 =1+ 1) (5.8)
vrjeR},

Proof. We know from Definition 5.25 that the maximum interferenceaminterval is
ir (T1,72) = v e R (7, (T1)+y, (71, 72)). Lemma5.10 states that,, . RE T (1) <
EvTjeR,t ov.,» Which is maximal when all higher priority requestors arditive atr; —1.
We furthermore know from Lemma 5.4 thEvTjeRii Wy (T1,72) < ZVTjGRj; o -
(12 — 71 + 1), which is maximal whervt € [,] : r; € Rf. Hence,%m (11, 72) =
Z\meRf oy, + pp, - (12 — 71 + 1) when all higher priority requestors start an active
period atry, and remain activet € |71, 72). O

Theorem 5.1 (Service guarantee)An active requestor; € R is guaranteed a mini-
mum service during an active perigd,, 72| according tovt € [y, 7] : ., (11,t) =
max(0, p;.. - (t — 71 +1—6,,)), where

!/
ZVrj GRZ 0',,,]_

— /
1 ZVT‘]' ER;Z. ij

e (5.9)

Proof. It suffices to show that the theorem holds for intervals where 7 +1 > ©,.,
as these are the only intervals for whigh (71, 72) > 0. For these intervals, we must
show that

Vt € [r, 7o Wy, (T1,t) =py, - (t—T1+1-0,,) (5.10)

We prove the theorem by splitting the active period intoriveés [7;, 7,], based on the
potential of the active requestor. We are interested in @8es, namely intervals where
the potential is larger tham; and intervals where it is not. These cases correspond
to when the provided service curve is located in the areageabobelow the live line,
marked case 1 and case 2 in Figure 5.4, respectively. We gutdme showing that the
service guarantee is satisfied during both types of interval

Case 1.Vt € [r;,75] : 7 € Rf A w(t) > o)., — ph,

112 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

According to Lemma 5.8 this case implies thét € [r;,7;] : r; € Rf. There are
(15 — 7 + 1) units of service available in the interval. An eligible regtor in a static-
priority scheduler cannot access the resource wheneveugedd by higher priority re-
guestors, as stated by Definition 5.24. The minimum serweéable tor;, denoted by
wy , is hence expressed accordingitp (7;,7;) = 7; — 7, + 1 — ir, (15, 7). Sincer; is
continuously eligible in the interval, it follows that, (7;, 7;) = wy, (7;, 7;). We proceed
by using the result from Lemma 5.11 to bound the maximum ptessiterference.

w;l(Ti,Tj) :Tj — T; +17

Yoo = > P (r—m+1) (5.11)

vrjeR, vri€R/,

Combining Equation (5.10) and Equation (5.11) results in

Pro (T —Ti+1-6,,) =
heTiAl= Y o= Y o (Tt

Vr; R, Vr;ERY
k3 B k3

We replacep;., by 1 — va eRt, py,» Which is valid sincel — va R} Pr, = P,
according to Definition 5.12. Solving f@,., results in Equation (5.9), proving the first
case.

Case 2.Vt € [r;,7j] : ri € Rf A 7(t) <o, —p,.

It follows from Lemma 5.5 that this case implies. (71, — 1) > p;. - (t — 71 + 1).
We proceed by noting that;. (71,t) > w;. (71, — 1), according to Definition 5.9, and
hence that alsa,. (71,t) > p}., - (t — 71 + 1). This concludes the proof of the second
case, since this expression satisfies Equation (5.10)lfpossible values 0®,.,. O

- —
- _ Liveline

P 2
A P 5
- T _w

.~ -
LT T
!/ Lo -

Lo
-

/

Accumulated
service units
\

o - o
o -3 p -
= .
o Service cycles

Figure 5.4: lllustration of the two cases in Theorem 5.1.

5.5. LR SERVER 113

55 LR server

At this point, we have presented the CCSP arbiter, congistira rate regulator and a
scheduler. The regulator uses continuous replenishmesgreice based on active peri-
ods, which decouples allocation granularity and latenaytiermore, the scheduler uses
static priorities to decouple latency and rate. We analyiedcombination of rate regu-
lator and scheduler and derived a lower bound on the provddedce during an active
period. In this section, we connect the CCSP arbiter to therthof LR servers, which
is our shared resource abstraction. First, we defif®&aserver and discuss differences
and similarities with what we have explained about CCSP sd/f& then conclude the
section by proving that CCSP belongs to the clas§&fservers, enabling it to provide
predictable and composable service with any predictaliguree.

Our first step is to formally define AR server. We use the definitions from [104],
adapted to fit with our use of discrete, as opposed to conisutime. The concept
of busy periodsdefined in Definition 5.27 is central to the definition 6R servers.
A busy period is intuitively understood as a period in whictequestor requests more
service on average than it is allocated. Definition 5.29 dsf@lR server as a server
that guarantees a busy requestor its allocated servicepaadter a maximum service
latency,©, as illustrated in Figure 5.5. The requestor in the figurausylfromr; until
79, Since it is above the dash-dotted reference line with stdpleat we informally refer
to as thebusy line A second busy period startsatand lasts throughout the rest of the
shown interval.

busy period 2
ﬁ_/%
A w
o
9 2 _ busy line
&5 4
2 o busy period 1 7
Eo a -
58
= g
<8 ,
- ‘ 3 . =
e 7 13 Service cycles

Figure 5.5: Example service curves iL& server.

Definition 5.27 (Busy period) A busy period of a requestor € R is defined as a
maximum intervalr, 72|, such thawvt € [r1, 7] : w.(n—1,t—=1) > pl.- (t—71+1).
Requestor is busyvt € [, 72].

Definition 5.28(Set of busy requestorsYhe set of requestors that are busy &t defined
asR? = {r |Vr € R Arbusy att}.

Definition 5.29 (LR server) A server is aCLR server if and only if a non-negative
service latency,. can be found such that Equati@h.12) holds during a busy period

114 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

[1, T2] of a requestor-. The minimum non-negative const&ht satisfying the equation
is the service latency of the server.

Vt € [11, 7]+ W.(T1,t) = max(0,p. - (t—71 +1—6,)) (5.12)

The definition of a busy period is quite similar to the defanitiof liveness in Defi-
nition 5.14. The only difference between the definitionsis interval during which the
requested service is considered. Liveness is a state thtdgdo the start of an active
period, whereas business relates to the start of a busydpé&¥le also see that the defini-
tion of a LR server in Definition 5.5 is very similar to the service guaegnderived for
CCSP in Theorem 5.1, again the difference being fifatservers consider busy periods
as opposed to active periods. We proceed by discussing selatens between busy
periods and active periods. We then prove that CCSP belorths tlass oL R servers,
which is the main contribution of this section.

Next, we show that although the definitions of active periadd busy periods are
quite similar, the relations between the two are quite cacadd. Five such relations
are illustrated in Figure 5.6. For clarity, we use dashatbtines to indicate busy lines.
We furthermore use lines with double dots followed by a dasthlife lines. Lastly,
overlapping busy and live lines are drawn with dashed liffdgs convention is shown
in the legend in Figure 5.6f. Figure 5.6a illustrates thas possible for a busy period
and active period to start and stop at the same time. If a bessggpand an active period
start simultaneously, the requirements to be busy and teéantical until the first time
either state is lost. If the backlog is lost before livenéks,in Figure 5.6a, then the busy
period and active period ends at the same time. In Figure Bélsee that the second
active period contains a busy period. This means that the frerod starting at; both
starts and stops inside the active period. A third relatiotemonstrated in Figure 5.6c.
Here, a busy period starts inside an active periog aand finishes at; after the active
period has stopped. This figure is similar to Figure 5.6b,vith the difference that
the backlog is lost shortly after the busy period startssat The active period hence
finishes already at,, since no new requests arrive. Figure 5.6d shows that itdsiple
for a busy period to contain an active period. This may hagpausy period starts in
an earlier active period. In this case, the new active pdadeds its liveness before the
requestor stops being busy. The busy period hence contarective period if there is
no backlog. This is seen in Figure 5.6d, where liveness naugidi in the active period
starting atrs before the busy period startingatcan end. The final relation is illustrated
in Figure 5.6e. Here we see a busy period that starts insigectare period and ends
inside another active period. In total, eight states capillrcombinations of being busy,
live, and backlogged. Table 5.1 lists all these combinatieamd indicates the sub-figure
where they occur. We do not consider active as a separate state it is defined as
being backlogged or live. Two combinations in the table dohawe a reference, as they
do not occur in any of the sub-figures in Figure 5.6. In facksthtwo combinations
cannot occur, as we will explain later in this section.

Despite all the differences between active periods and pesipds, illustrated in
Figure 5.6, there are a few key relations. These relatidna/als to extend the service

5.5. LR SERVER 115

live |

X [X [] live X1 [[]
backlogged [X [[] backlogged [X[X [x 1] x|
active [X [X [] active [X[X [x 1] x|
busy | X [X [1] busy [X T [x 1 J
o b =
O = O =
= = g — w = =
© = w/ . - . © S
> T >
=] T EY
3z £ : g2
< 8- : - < G-
T1 T2 T3 T1
Service cycles Service cycles
(a) Active period and busy period start and stop (b) Active period contains busy period.
simultaneously.
live [X [T T l live [X [TIxX[xT]
backlogged [X X [X] [] backlogged [X X [T Ix] [1]
active [X[X [X] [] active [X[X [XTIx x 11
busy [X_] [XT x T] busy X1 B EEIEENE
A A
32 52
< € < €
Za £
€ 3 _ 1SS! _
32 32 o
<3 -- w’ <3 -- w’ P
T1 T2 7'377‘4 T5 T1 T2 7'377‘47'5 T6 T7T8
Service cycles Service cycles
(c) Busy period starts in active period, but finishes (d) Busy period contains active period.
after.
live X1 [TTxTT 1]
backlogged [X[X [XT T X x]
active [X[X [XT T X x]
busy X1 XXX X]
A
8 2 Live ling: =srmrmrrmrm e m e me e -
®© S
S S Busy line: =—-=-=mimimimimmme e
Q
§ Q - Overlapping live
8 2 - andbusylines: ~ T~ TTTTTTTTTT
O =
< n |-~ -
T1 T2 T3 TaTs TeTr T8
Service cycles
(e) Busy period starts in one active period and ends (f) Legend of line types in figure.

in another.

Figure 5.6: Relations between busy periods and active g&rio

116 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

Table 5.1: Reference to figure showing combinations of kgsnbusiness, and backlog.

Figure: 5.6a| 5.6¢c | 5.6b 5.6b 5.6a| 5.6a
live Y V]V |V
backlogged Vv Vv oV v
busy v v vV IV

guarantee in Theorem 5.1 to also cover busy periods, whipliésithat CCSP is &R
server. The first relation is that a requestor is always aciivthe start of a busy pe-
riod. The reason is that according to Definition 5.27, a bumyogl can only start if the
requestor is not already in a busy period and if there is axahmf a request. If the
requestor is already active, then the busy period staritdeiribe active period, as previ-
ously shown in Figure 5.6b and Figure 5.6d. However, if tlipiesstor is not active, then
the arrival also triggers a start of a new active period, asvshatr; in all sub-figures
in Figure 5.6. In either case, the requestor is active. Thersgrelation is that can-
not be the start of a busy period if the requestor was live-atl. The reason is that
a live requestor has requested enough service to be in a levieg @mtt. This relation
is the reason why two state combinations in Table 5.1 cantmiro a requestor cannot
be live unless it is busy. This is a key insight that allowsadund the potential of a
requestor at the start of a busy period. We do this in two steipst, Lemma 5.12 shows
that a requestor is live if the potential is less than or etu#tie allocated burstiness and
if there is an arrival in the service cycle (such as the sthe busy or active period).
Lemma 5.13 then uses this result to show that the potentiat beugreater than or equal
to the allocated burstiness at the start of a busy periodesawer potential would imply
that the requestor is live.

Lemma 5.12. During an active periodr, 73], it holds thatvt € [ry, 2] : #(t) < o’ A
w(t_lvt_1> 21:>w(7-1_1’t_1) Zp/‘(t—7'1+1).

Proof. We start by using the potential to compute the amount of semriovided in the
active period. Lemma 5.2 states thdt) = &'(my) —w’' (7)) +@' (71, t—1)—w' (71, t—1).
We rewrite the equation and substitute using Definition Bid @efinition 5.18, yielding

w'(t) —w'(n) = m(n) — w(t) + &' (11, ¢ — 1) (5.13)

We know from Definition 5.19 that(r;) = o’, sincer; is the start of an active period and
the requestor is inactive at — 1. Definition 5.17 furthermore states that(r,t — 1) =

p' - (t — 1), since the requestor is active throughout the entire iate@onsidering the
precondition thatr(t) < ¢/, we get

w'(t)—w'(n) > —d' +p - (t—m)=p" - (t—71) (5.14)

Having determined the amount of service provided duringatitere period, we pro-
ceed by using relations between the requested and provisteite curves and the pre-
condition of the lemma to draw conclusions about the regaeservice curve. Defini-
tion 5.20 states thav(¢t — 1) > w'(t), since a requestor cannot be scheduled unless it is

5.5. LR SERVER 117

backlogged. Moreover, the second precondition of this larsthatw(t) > w(t—1)+1,
which means that there is an arrivatatWe conclude by noting that(m — 1) = w’(7),
according to Lemma 5.1, and substitute the results into muéb.14). This results in
w(t)—w(m —1) >p - (t—m)+1>p -(t—m +1) The proof is concluded by
rewriting the left hand side of the expression using Defnits.4. O

Lemma 5.13. During an active periodr;, 2], it holds thatvt € [ry, 2] : w(t) > o' if
t is the start of a busy period.

Proof. We prove the lemma by contradiction. We proceed by showiagithr (t) < o’,
then the requestor is already busy armm@nnot be the start of a busy period.

We start the proof by bounding the amount of requested seracfar in the ac-
tive period. The precondition of this lemma states th@t) < ¢’. We also know that
w(t —1,t — 1) > 1, since a new busy period is triggeredtatLemma 5.12 hence im-
pliesw(r —1,t —1) > p' - (t — 71 + 1). This means that we know that the requested
service is above the live line in the active period. This atsgans that the requested
service curve is on or above the busy line,af the busy period started together with the
active period aty, as shown in Figure 5.7a. On the other hand, if the busy pstartied
at somer* < 71, as shown in Figure 5.7b, then we know that R’ _,. According to
Definition 5.27 this impliesv(7* — 1,7, —2) > p’- (71 — 7*). Combining what we know
about the requested service curve in the intefval- 1, ¢ — 1], results in Equation (5.15),
which shows the requested service curve is on or above tlydibasatt also in this case.

wr*—=1Lt—-1)=wr*"-1,n1 -2)+wln —-1,t—-1) >
pro(m—1)+p - t-m+1)=p (t-7"+1) (5.15)

We have now shown that the requested service curvésatbove the busy line of a busy
period that started at or before. However, Lemma 5.12 only guarantees that the re-
quested service curve is on or above the busy lineat notvt’ € [r; — 1, ¢ — 1], which

is required to stay in the busy period that started at or eefarWe identify two cases.

In the first case, the requested service curve was on or ahevausy line in the entire
interval and in the second case, it was not.

Case Lft' c[r —1,t —1]: w(n —1L,t' =1)<p -t =1 +1)

In this case, the requested service curve was on or abovesgdibeyt' € [r; — 1,¢ — 1],

as illustrated in Figure 5.7a and Figure 5.7b, and hencenthaew busy period started
after ;. We hence only have to consider busy periods that startedbagfore this time.
According to Definition 5.27, the definition of this case imeglthat the requestor is busy
at t if the busy period started at. On the other hand, if the busy period started at
T* < 71, then it follows that Equation (5.15) hold¢’ € [v* — 1,¢ — 1], and hence that

is still in the busy period that started#t. In either case, a new busy period cannot start
att.

Case2:3t' e[—1,t—1]: win -1, -1)<p - (t' =71 +1)
This case implies that the busy period that started at orreefoended at~’ < ¢, as

118 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

A
w(t)
8 j2] 4,—,7/ Live line = - u_'(f’)
= g e Busy line 51 .g _ Liveline
= P 85
g g -7 g 3 _.~ Busyline
g2 -7 32 o
- 8 -
< & 5 28 P
T1 t ‘ T T i t
Service cycles s Service cycles
(a) Requestor still in busy period that started-at (b) Requestor still in busy period that started at
T < 711,
w(t)
2] - Live line
% % ',-‘/“/_/ Busy line Live line: msmermerm i i e -
g 8 - Busy line: —:=—-=r=imimimimm
>
8 o Overlapping live
< o0 and busylines: "~ - TTTTTTT°~7
T A t
Service cycles
(c) Requestor still in busy period that started at (d) Legend of line types in figure.

Figure 5.7: Example of the cases in Lemma 5.13.

shown in Figure 5.7c. However, we know that one or more busipge have started
after7’, sincew(t) > w(7’). The latest such busy period befarstarted at some time
7" > 7', This means that ¢ R’, ,, and hencev(r; — 1,7 —2) < p' - (7" — 71).
The requested service in this busy period is expressed iatequ(5.16). According to
Definition 5.27, this result means thais in the busy period that started#t and that a
new busy period cannot startat

wir —Lt—1)=wlrn -1,t-1)—w(m — 1,7 -2) >
pt—m+1)—p - (7" =m)=p-t-7"+1) (5.16)
O

After deriving the key relations between active periods lamsly periods, we proceed
by showing that CCSP belongs to the clas€®&f servers in Theorem 5.2. The approach
is to examine sub-intervals during the active period andvsthat the service guarantee
provided during active periods is sufficient to cover busgiquis. To accomplish this, we
exploit the recently derived key relations between acteqals and busy periods.

5.5. LR SERVER 119

Theorem 5.2(LR server) A CCSP arbiter belongs to the class@R servers, and the
service latency of a busy requestor is equal to Equagtof).

Proof. According to 5.29, we must show that a busy requestor is gteed a minimum
service during a busy perida;, 72| according tovt € [r1, 2] : W' (71,t) = max(0, p’ -
(t—m+1-0)).

We prove the theorem by dividing the busy period into intkrVa,, 7] in which the
requestor is either active or inactive. We then show thasémeice guarantee is satisfied
during both kinds of intervals.

Case 1.Vt € [1,, 7] : 7 € R}

The requestor is active throughout the interval and theicemuarantee from Theo-
rem 5.1 hence applies. This guarantee is identical to thewanare proving in this
theorem, except that it is based on active periods instednu®§ periods. We pro-
ceed by showing that the two cases in Theorem 5.1 also apjlgtitee intervals during
which the requestor is busy. The first case in Theorem 5.liegpptraight-forwardly

to anyt € [1,, 7], Wheren(t) > o’/ — p’. The second case, however, guarantees that
w'(11,t) > p' - (t — 7 + 1) and hence that the required amount of service is provided
with respect to the start of the active periad)(as opposed to the start of the overlap
between the busy period and the active petipd

We proceed by showing that our bound on potential at the sfaat busy period
ensures that enough service is provided during the secaalinalheorem 5.1. The
intuition is that the provided service is guaranteed to bevalihe live line, which is
above the busy line, as seen in the examples in Figures 564, %6d, and 5.6e. We
know from Lemma 5.13 that(7,) > o’. We also know from Definition 5.17 that
W' (1q,t — 1) = p’ - (t — 74), Since the requestor is active throughout the entire iaterv
It furthermore follows from the second case in Theorem 5at #it) < ¢’ — p’. We
conclude this part of the proof by using Equation (5.13) aedirition 5.9, resulting in
W (re,t) > w' (gt —1) 20" — (0" —p)+p - (t—7a)=p - (t —Ta +1).

Case 2.Vt € |14, 7| = 70 & RY

The proof of this case is similar to the second case in The&rénDefinition 5.27 states
thatr € R? impliesw(r, — 1,t — 1) > p' - (t — 7 + 1), wherer, is the start of a busy
period. We know from Definition 5.13 that an inactive reqoes$t not backlogged, and
hence that

w’(71—17t—1)2p/-(t—7'1+1) (517)

We note thatw’(r1,t) > w’'(m1,t — 1), according to Definition 5.9, and’(r;) =
w'(mp, — 1) by Lemma 5.1. Substituting these results into Equation7(5cbncludes
the proof of the second case, since this expression sati&fiestion (5.10) during busy
periods for all possible values 6f. O

120 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

5.6 Hardware implementation

We have now introduced the CCSP arbiter and shown that itngsl¢o the class of
latency-rate servers. The service latency of the arbitde@upled from the allocated
rate using priorities, allowing it to distinguish latencsitical and latency-tolerant re-
guestors. The challenge in this section is to provide a fadtsanall hardware implemen-
tation of the arbiter that decouples allocation granufeaitd latency. This allows over
allocation to be made negligible, which is useful when mamggcarce resources. First
in Section 5.6.1, we discuss how to represent the allocaedcs, (o, o’), in the rate
regulator using finite precision and present two allocasivategies that address different
aspects of over allocation. We proceed in Section 5.6.2 @wiging tight bounds on over
allocation of the two strategies and comparing these e8uthose of a frame-based ar-
biter. An implementation of the CCSP rate regulator basesimiple integer arithmetic
is derived in Section 5.6.3, and we formally prove the edeivee between this imple-
mentation and the definition of active period rate regutafiom Section 5.3.1. The
architecture of the arbiter is presented in Section 5.7thegewith synthesis results in-
dicating that our implementation provides an exponengdlction in maximum over
allocation at the cost of a linear increase in area.

5.6.1 Service representation

The hardware implementation of the rate regulator onlyreffmite precision for repre-
senting the service allocation of a requestor, potenti@lysing it to be discretized. We
hence associate each requestor with a discrete serviaatadio, denoted byp”, o),
thatconservatively approximateke real-valued allocation in Definition 5.12. The dis-
crete allocated rate is represented as a fraction of irdegerproposed in [86], whose
maximum size is limited by the number of bits used to repreeam in the implemen-
tation. This provides a design time trade-off between pieniand area, as we will see
in Section 5.7. The discrete allocated rate and burstinestemally defined in Defini-
tion 5.30 and Definition 5.31, respectively.

Definition 5.30 (Discrete allocated rate)The discrete allocated rate of a requestor
r € R in an arbiter with a precision of? bits is denoted by!! € Q*, and is repre-
sented a9 = n,./d,, wherep! > p!, n,,d,. € Nt andn, < d, < 2°.

Definition 5.31 (Discrete allocated burstinessyhe discrete allocated burstiness of a
requeston € R is denoted by € Q*, and is defined as’ = “’zli‘d”.

T

The conservative approximation of the allocated servicg caaise the allocated rate
and burstiness to be over allocated. We define the overaafidcrate of a requestor
according to Definition 5.32. This definition shows us how matthe resource capacity
is wasted when service is allocated to a requestor. We apergtkrested in the over-
allocated burstiness, defined in Definition 5.33, since #rwice latency of CCSP in
Equation (5.9), depends on both the allocated rate and theatdd burstiness. This
allows us to study how over allocation impacts the servigenley of the arbiter. It

5.6. HARDWARE IMPLEMENTATION 121

follows from these definitions that the total over-allochtate and burstiness are obtained
by summing over the set of requestors sharing the resource.

Definition 5.32 (Over-allocated rate)The over-allocated rate of a requestore R is
given byo,(p!, pl.) : QT x RT — R, and is defined according w,(p!/, p.) = p)! — pl.

Definition 5.33 (Over-allocated burstinessYhe over-allocation of a requesterc R is

given byo, (0!, 0.) : QT xR* — R, and is defined according to, (¢, o..) = 0!/ — o...
There are multiple strategies when selectingrttandd of a requestor to allocate its

service. It follows directly from Definition 5.31 and Definit 5.33 thato, (0", 0’) =

WT‘C” —o' < 5 and hence that a largéreduces the over-allocated burstiness. How-
ever, this may not provide the closest approximation of flecated rate, resulting in
wasted resource capacity. Considering this, we presenaliwoation strategies The
first strategy, calle€losest Rate Approximation (CRAY)volves approximating the allo-
cated rate as closely as possible to reduce wasted res@raeity, with a secondary ob-
jective to reduce the over-allocated burstiness. Conlettbe second strategy, referred
to asClosest Burstiness Approximation (CBA}tempts to reduce the service latency by
closely approximating the allocated burstiness, and liedube over-allocated rate as a
secondary objective.

CRA chooses the andd, such that” is the minimum rate that satisfie§ > p'.
If there are multiplen andd pairs providing equal approximations of the allocated rate
(e.q. % = %), the one with the largest is preferred to improve the approximation of
the allocated burstiness. CBA, on the other hand, picksatgeét possibld to reduce
the over-allocated burstiness. To provide the best passitshservative approximation
of the allocated rate, given the selecttdhis means: = [p’ - d]|. Next, we derive the
allocation properties of these strategies.

5.6.2 Allocation properties

In this section, we analytically examine the propertieshef CRA and CBA allocation
strategies and compare them to those of a frame-basedraWéetartin Lemma 5.14 by
bounding the over-allocated rate of both strategies, fegethat it reduces exponentially
with the number of bits3, used to represemtandd.

Lemma 5.14. The over-allocated rate of a requestor in a CCSP arbiter wittrecision
of 3 bits is upper bounded according #§*R(p”, p') < 57

Proof. The over-allocated rate is defined @gp”, p’) = p” — p/, according to Def-
inition 5.32. We know from Definition 5.30 that’ = n/d. For CBA, it holds that

d =2° —1andn = [d-p']. CRA also falls back on this allocation, unless there is
anothern, d pair that yields a tighter approximation. By substitutihgge results into
Lemma 5.14 and performing basic algebraic manipulationamige atoS ™% p"”, p’') <

Ldﬂ'] - d'T"/ < 1/d. The proof is concluded by substitutidg= 2° — 1. O

122 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

The derived bound on over-allocated rate is tight for CBAr ERA, however, it is
only tight for requestors with' = ¢, wheree is close to zero. In this case, the closest
approximation for both strategies is given by choosing: 1 andd = 27 — 1, which
is the smallest rate that can be represented, given a dartigeecision. This results in
oo, p') = ﬁ —& = ﬁ corresponding to the worst case. The worst-case

reoccurs for CBAwhetwk € NT,1 < k <20 —1: p/ = £ +¢, asitresults in
a discrete allocation according ¢ = 2’?“_11. Fork > 1, CRA is guaranteed to find

a solution that results in a tighter approximation. CRA teergsults in a smaller over-
allocated rate than suggested by the bound for larger #fidaates, as we will see in
Section 5.8. However, since the bound is already tight, itebbound exists for this
strategy that supports arbitrary allocations.

We proceed by bounding the over-allocated burstiness fegaeastor using the two
allocation strategies. Since a requestor always usesrtjestgpossible under the CBA
strategy, it follows directly thas®(c”’, o’) < & < z7'~. The over allocation of a re-
guestor using the CRA strategy is derived in Lemma 5.15.

Lemma 5.15. The over-allocated burstiness of a requestor using the GR#egy in a
CCSP arbiter with a precision gf bits is upper bounded according#§®(p"”, p') < %

Proof. We know that the over-allocated burstiness for CCSP is uppanded byé.
The CRA strategy uses the and d pair with the largesti that provides the tightest

approximation ofp’. We note that for any < 217*1 there exists & € N*, k£ > 1 such

that% is an equivalent allocation ¢f with a largerd. We hence get that > 252‘1 and
thatof?(c"”,0’) < O

_2
261"

The bounds computed in this section show thatier-allocated rate and burstiness
monotonically reduce with increased precisfonboth strategies. Hence, increasing pre-
cision cannot result in more resource capacity being wastattreased service latency.
This property is essential for effective design-spacdesgtion and optimization algo-
rithms. We compare this result to that of an arbiter with ddgpframe-based regulator,
previously discussed in Section 2.1.3, together with acsgatority scheduler. We refer
to this combination as Frame-Based Static-Priority (FB&Bitration in this thesis.

FBSP allocates service to a requestor by assigning it a nuoftsots, ¢, propor-
tional to the allocated rate, in a frame of sfz&vhich is the same for all requestors. The
arbiter only has a single allocation parameter and thusatailocate rate and burstiness
separately. Instead, the allocated burstiness followdiditlp from the allocated rate
and the frame size. The number of slots allocated to a regussassigned according
to ¢ = [p - f]. This implies that FBSP allocates service in the same wayBss i€
f = 27 — 1, and hence that the over-allocated rate'f&"p”, p') < 1/f. We observe
that the maximum over allocation of a requestor is invergpebportional to the frame
size, implying that a large frame size is required to prowdefficient allocation. How-
ever, the service latency of this arbiter is computed adngrtb Equation (5.18), and
is proportional to the frame size. Increasing the frame gizeduce the over-allocated
rate increases the implicitly allocated burstiness, asdltge in a trade-off between low

5.6. HARDWARE IMPLEMENTATION 123

service latency and over allocation. The over-allocatéslaad service latency do hence
not monotonically reduce with increased frame size for FB@#ch is typical for frame-
based arbiters.

oPP=2. Y g z2t Y 4, 518)

Vr;eRE Vr; R,
e k3 k3

5.6.3 Credit-based rate regulation

In this section, we derive a simple hardware implementaticthe rate regulator model
in Section 5.3.1, based on the discrete representatioredadltbcated service in Defini-
tion 5.30 and Definition 5.31.

The main difficulty in efficiently implementing the potertizased accounting in
Definition 5.19 lies in knowing if a requestor is active or ndb accomplish this, Def-
inition 5.13 states that we need to know if a requestor is logged or live during a
particular service cycle. It is easy to determine if a retpreis backlogged in hardware
by checking if there are any requests waiting to be serveawltrg how therequested
serviceduring an active period relates to the allocated rate, orother hand, is more
challenging, especially considering that CCSP enforcegper bound oprovided ser-
viceand is only aware of the request at the head of the requegrtmffeach requestor.
Although this design has a number of benefits, as we will ldigcuss in Section 8.1,
it complicates the hardware implementation. The reasohas the regulator cannot
directly observe the requested service, since the bus anarliiter are placed after the
Request Buffer, as previously shown in Figure 1.7. They b@mty know if there is a re-
quest pending or not, but are for the rest unaware of arrrgéggests. The solution to this
problem is to use the potential to determine if a requestacise. We already showed
in Lemma 5.6 that it is possible to use the potential to deitegrif a non-backlogged re-
questor is live. Lemma 5.16 provides another piece to thelpuderiving a lower bound
on potential of an inactive requestor. These results amnéatto derive the hardware
implementation of the rate regulator, which is done next.

Lemma 5.16. For a requestor ¢ R = m,.(t) > ol — pl.

Proof. By negating Definition 5.13, we know that iff ¢ R¢ theng,.(t) = 0 and
wp(m — 1,6t —1) < pl. - (t — 71 + 1), wherer; is the start of the last active period. From
Definition 5.10, we get that.(t) = 0 impliesw,(t) = w..(¢). Substituting this into the
expression results i) (r, — 1,¢t — 1) < pl - (t — 7 + 1). Lemma 5.1 states that
wh(n —1,t = 1) = w.(m,t — 1), giving usw,.(m,t — 1) < pl. - (¢ = 71 + 1), which
according to Lemma 5.5 implies that(¢) > o, — pl. O

The credit-based accounting used by the hardware impletiembf the rate regula-
tor is presented in Definition 5.34, and the formal proof afeotness is provided in The-
orem 5.3. Note that the accounting is simple and only nee#tadw the current credit
state (potential) of each requestor, if they are backloggedot, and which requestor
was scheduled in the service cycle when updating the stagenmechanism furthermore

124 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

only uses integer arithmetic, making it suitable for hardwianplementation. Note that
the underlying ideas behind this mechanism, as well as fiwesit integer representa-
tion of the allocated rate and the allocation strategiespyaeful to implement other rate
regulators that use continuous replenishment and enfarearlbounds, such ds, p)
regulators [25].

Definition 5.34 (Credit-based accounting)'he number of credits of a requestoe R
is given bye,.(t) : N — N, wherec,.(0) = ¢/ - d, and

Cr(t) +ny — dr ’Y(t) =7
et +1) = { erlt) +my 2t) £ 7 A gr(t) > 0
min(c, (t) +nr, ¢r(0)) y(t) # 7 Agr(t) =0

Theorem 5.3. The credit-based accounting is an implementation of patebased ac-
counting, where the service allocation of a requestar R equals(p!’, o!/), and it holds
thatVvt : c.(t) = m.(t) - d,.

Proof. We rewrite the equation in Definition 5.19 by splitting the@ed case, where
r € R?, in two, according to Definition 5.13. In the first caggt) > 0 and in the
otherg,(t) = 0 andr € R!. According to Definition 5.14 and Lemma 56¢< R! and
q(t) = 0 implies thatr,.(t) < o)/ — p//. We use the results from Lemma 5.16 to rewrite
the case where ¢ RY, resulting in

T (t)+p =1 yt)=r
™ (t) + py () #rAg(t) >0
_) m@) + (Y(t) #£rAg(t) =0A
m(t+1) = o (t) < o7 — o) (5.19)
o, (v@®) # 7 Ag(t) =0 A
T (t) > o)l — p})

Multiplying both sides of Equation (5.19) witf). and substituting.(t) = =-(¢) - d;-,
n, = pf - d, ande,.(0) = o/ - d,, according to Definitions 5.30, 5.31, and 5.34 yields

() +npr—d. ~y(t)=7
cr(t) + np v(t) #7r Age(t) >0
)e(t) + e (v(#) #rAg(t)=0A
et 1) =) 0 (5.20)
CT‘(O) (V(t) #rA QT(t) =0A
cr(t) > ¢.(0) — n,.)

To simplify the accounting, we merge the two last cases inaqgn (5.20) into
cr(t + 1) = min(c,(t) + n,, c-(0)), where the third case in Equation (5.20) is covered
by the first operand and the fourth case by the second oper@hih concludes the

5.7. ARCHITECTURE AND SYNTHESIS 125

proof, as we have now arrived at the simple credit-baseduetitey mechanism in Defi-
nition 5.34. O

The introduction of the credit-based accounting mechaitsm affects the enforce-
ment. Similarly to the proof of Theorem 5.3, we multiply thiggibility criterion in
Section 5.3.1 withl and use that(t) = 7(¢) - d andn = p” - d, which results in that a
requestor require§t) > d — n to be considered eligible at

5.7 Architecture and synthesis

The proposed arbiter has been implemented in synthesixati_ according to the
architecture presented in Figure 5.8. We proceed with d @hiseussion on the architec-
ture after which we present synthesis results. The ard¢biteand its implementation are
presented in full detail in [106].

T
Rate regulator | Scheduler
|
Update] (®)
state |
qr(t) >0 L \
from i Y g : 4 §)
Data Bus g 39 y(t
= [>
cf 3 21 %%’ o
4g>[7 - 5 Lr-; cr(t) 30 k] Data Bus
from J =z I
Config Bus - I ?
T Dr :

Figure 5.8: The architecture of the CCSP arbiter.

First, we look at the input and outputs of the architecturbe Tpper input port in
Figure 5.8 and the output port are connected to the Data BEgjime 2.11. The input
port contains a single bit per requestor that indicatedid# a request pending and wants
to be scheduled by the arbiter. The output port returns teetity of the scheduled re-
guestor to the Data Bus, which forwards the appropriateesiio the resource. There
is furthermore a DTL port that is connected to the ConfigoraBus, enabling run-time
(re)configuration during use-case transitions using mgmapped 10. The configura-
tion of the arbiter is stored in a register bank containing fagisters per requestor. Four
of these relate to the credit-based accounting mechanisi:c(t), andc(0). The fifth
register is used by the static-priority scheduler and dostthe priority level p. After
programming these values, the priority relations betwéenréquestors are computed
and stored in the register file as a binary matrix structuf®s]1 An entry i, j in this
matrix is set to one iffp,, > p,,. The idea with this structure is to speed up the im-
plementation of the arbiter by exploiting the fact that dties do not change during a
use-case, and hence only compare the priorities of the seageonce immediately after
a new configuration has been programmed.

126 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

The architecture is divided into a rate regulator and a sdeedfollowing the dis-
cussion in this chapter. The scheduling process startsamitbligibility test in the rate
regulator, following Definition 5.20. This test samples therent credit state of the
requestors, as well as checking if they are backlogged, atplits a binary eligibility
vector, indicating which requestors that may be scheduwethé static-priority sched-
uler. The scheduler then determines which requestor talséhéy checking the matrix
with priority relations and performing a simple and-opematwith a corresponding ele-
ment in the eligibility vector. The highest priority eligéorequestor is then quickly found
by finding a row containing only entries with zeroes [106].eTtheduled requestor is
output from the arbiter, but also fed back to a unit insidertite regulator that updates
the register bank according to Definition 5.34 to reflect tee oredit state.

We have synthesized our implementation of the CCSP arbiter 90 nm CMOS
process using Cadence RTL Compiler. Synthesis is done asi@§o clock duty cycle,
and with 20% of the cycle time as input and output delay witkel€lock skew. Both
clock-gate insertion and scan insertion are disabled, angywthesize under worst-case
commercial conditions. The area of the implementation hediaximum frequency are
determined by the supported number of requestors and teesiore used by the credit-
based accounting mechanism to represent, ¢(¢) andc(0). For a memory controller,
we consider the interesting range to be between 4-10 reapsestlany memory con-
trollers only support the lower end of this range, due to tiraglexity of their scheduling
mechanisms, and add additional multiplexors and arbitefsont of the memory con-
troller if more requestors need to access the memory. WitQ dequestors, we consider
precisions between 4-10 bits to be interesting. Four bitsikshresults in considerable
over-allocation already with four requestors, and with 6 bver-allocation should be
completely negligible even with 10 requestors.

We start by looking at how the area of the implementation gkaras the number of
requestors and the precision increase. The histogram urd-Ig9a shows the cell area
for different instances of the arbiter with varying numbérequestors and precisions.
These instances have been synthesized with a speed taf# MHz, suitable for our
example DDR2-400 memory. We note that the cell area of théeimentation grows
linearly with the number of requestors and that it approxetyadoubles as the number
of requestors doubles from four to eight. This result is nopssing, since more re-
guestors result in more registers with configuration detayell as larger structures to
store intermediate state. The effects of increasing gmcere somewhat more subtle,
but still noticeable. Again, we see a linear trend with iasieg precision, but doubling
precision only results in a 30-40% increase in cell area.

Next, we consider the maximum operating frequency of théeartand study how
it scales with increasing requestors and precision. Theman operating frequency
is found by a binary search algorithm that looks for the highdock frequency that
synthesizes successfully. The accuracy of the algoritheetiso 5 MHz. The results of
this experiment are shown in Figure 5.9b. We immediatelyenlesthat the maximum
clock frequency is relatively stable around 570 MHz and destschange much as the
number of requestors is increased. The credit managemeionis in parallel for all
requestors and should not be significantly affected whemthmber of requestors is

5.8. EXPERIMENTAL RESULTS 127

30000 900
800
700
600
500
400
300
200
100

4 bits
6 bits &
25000 8 bits &

10 bits
20000

15000

Cell area [um?]

10000

5000

Maximum frequency [MHz]

4 6 8 10
Requestors Requestors

(a) The area of the arbiter for different number ofb) The maximum frequency of the arbiter for dif-
requestors and precisions. ferent number of requestors and precisions.

Figure 5.9: Synthesis results for the CCSP arbiter.

scaled. The static-priority scheduler on the other handppas operations on vectors
and matrices whose sizes are determined by the number @dstgs, and should be the
limiting factor. Since the arbiter is not pipelined, thetical cycle goes through the entire
design. It starts in the register bank where the operandbdaligibility tests are fetched,
and ends in the same place as the updated credits are stteed afquestor has been
scheduled. Increasing the precision of the accounting arésim above 4 bits causes
a drop in maximum frequency with almost 100 MHz, but furthecreases have little
impact. From this result, we conclude that the CCSP arbytethesizes in frequencies
well above 400 MHz. This should enable it to make scheduliegisions in a single
clock cycle for the entire range of DDR2 memories, even & glowed down after place-
and-route. The arbiter cannot keep up with the fastest DDB&ony, which currently
runs at 800 MHz. However, it should be possible to increasdrétquency by pipelining
the arbitration. Another option is to run the memory cornécht a slower frequency than
the memory interface and schedule multiple SDRAM commaneésyeclock cycle in the
back-end. Neither of these paths has been explored.

For our last synthesis experiment with CCSP, we increaspri@sion to show how
the bound on over-allocated rate is traded for area. Figur@ presents this trade-off
for an instance with six requestors as the bit widtha,of, ¢(t) andc(0) are uniformly
changed. The figure shows the bound on over-allocated nagixfoequestors and hence
corresponds to the bound in Lemma 5.14 multiplied by six. eNbbat the exponential
reduction in the bound on over-allocated rate comes at alimesr increase in area.

5.8 Experimental results

The time has come to experimentally evaluate the theory ampleimentation of the
CCSP arbiter. First, we present an experimental setup viherECSP arbiter provides
access to a shared SDRAM memory. We then demonstrate thd® @&Duples latency
and rate using priorities. The service guarantee of CCSkeis ¢valuated, both in the
presence of well-behaved requestors, and when a malfmintgioequestor is asking for
more bandwidth than specified. Then, we examine the tightneSCSP’s bound on ser-

128 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

20000 T 0.5

Cell area —+

Bound over-allocated rate -
15000 T, 1 o
NE %, ©
s g
§ 10000]
= {02
8 5000 * 2
e o1 ©

......... N
0 D —— 0
4 6 8 10

Precision [bits]

Figure 5.10: The trade-off between over-allocation antarela.

vice latency, both when it is expressed in abstract seryickes and actual clock cycles.
We then focus on the hardware implementation of the CCSRegtdator and compare
the CRA and CBA allocation strategies. Lastly, we concludeaxperiments by experi-
mentally demonstrating that CCSP decouples allocatiomuaaity and latency, and that
the allocation behavior of CCSP improves monotonicalljhwiitcreased precision.

5.8.1 Experimental setup

The experimental setup consists of a SystemC simulatiorefradda predictable multi-
processor SoC. The processing elements are representeafflyygenerators that gen-
erate requests according to a normal distribution. Thea@eetime between requests is
determined by the generated bandwidth and request size, eeriance of 10 ns is used
to prevent requests from being issued periodically. The amgroontroller architecture
used in these experiments corresponds to the setup prvehewn in Figure 2.8. The
CCSP arbiter provides access to the predictable SDRAM badkpreviously presented
in Chapter 4. The back-end is connected to our example 1BENR2-400 memory, and
uses the memory pattern set wii. = 8 and BC' = 1 generated by the bank scheduling
algorithm, previously shown in Table 4.3. This pattern set &n access granularity of 64
B and guarantees a minimum gross bandwidth of 660 MB/s. Am#ger chops arriving
requests into atoms, whose size are equal to the accesdagignof the memory. An
arriving request with a size of 256 B is hence be split up iotar fequests with size 64 B
that arrive back-to-back in the Request Buffer, waiting ¢osibheduled. The processing
elements communicate with the memory through the Athe3&aNoC. The network is
both predictable and composable and hence provides idalatsections that guarantee
a minimum bandwidth and a maximum latency. Arbitration ia tretwork is by means
of pipelined Time-Division Multiplexing (TDM), which maydd a small amount of jitter
to the issued requests before they arrive at the memoryattemtr

5.8. EXPERIMENTAL RESULTS 129

5.8.2 Decoupling latency and rate

The goal of the first experiment is to demonstrate that CC®Bug#es latency and rate
by comparing the bound on service latency to that of a TDMtarbiFor this purpose,
Table 5.2 presents a simple use-case with four requestavs. ol the requestors only
issue read requests, and the other two only issue write sexjuEhree of the requestors
process rather large quantities of data, and request bdtidaccording td, = 210
MB/s, while 20 MB/s suffices for the last requestor. The resiois have different request
sizes, but all requests are aligned and an integer multitleecaccess granularity of the
memory. Data efficiency is hence 100%, making the providedgyand net bandwidths
the same. The requested service rates of the requesto=re determined by dividing
the requested net bandwidths with the total net bandwiditiged by the memory. The
allocated service rates of all requestors are set equaéetretfuested service raig, =
pr. In total, 98.8% of the net bandwidth is allocated to the estors, including over
allocation, indicating a high load. For all requesters,= 1.0 service units (su), which
is the smallest valid allocation according to DefinitionA.1We return to experiment
with this parameter later. The allocated rajgs,and the allocated burstinesses, may
suffer from over allocation due to discretization. Thisulesin the discrete allocated
rates,p!” and the allocated burstinesse$, that are used in the experiment. We will not
discuss this further for now, but we return to this in latepesments.

Table 5.2: Requestor configuration and service latency dsun

Requestor Type b, Size o/ ol elm @ase gdes
[MB/s] [B] [su] [sulsc] [sc] [sc] [sc]
ro Read 210.0 512 1.0 0.319 3 0 9
71 Write 2100 128 1.0 0.319 3 1 3
r9 Read 210.0 64 1.0 0.319 3 5 1
r3 Write 20.0 256 1.0 0.031 32 70 0

Using a TDM scheduler, the best-case service latency ieeetiif the reserved slots
of a requestor are placed equidistantly in the scheduldigrcase@@™ = [1/p” — 1].
The service latencies of the requestors in the use-casg TBIM are shown in Table 5.2.
We note that the low allocated service ratergfresults in a rather high service latency
of 32 service cycles (sc). The reason is that TDM couplesitgtand rate, which causes
problems forr; who only has an allocated rate of 0.031. The only way to redbee
service latency using TDM is to increase the allocated semate, wasting scarce band-
width. CCSP, on the other hand, uses priorities to decoapdnty and rate. Table 5.2
shows the service latencies of the requestors when prilengils are assigned in both
ascendingP®*¢, and descending)?**, order. These service latencies are computed us-
ing Equation (5.9). We observe the service latencies oféfjaestors are monotonically
increasing with the priority level, and that the highesbgty requestor enjoys a ser-
vice latency bound of zero service cycl&¥e conclude from this experiment that CCSP

130 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

decouples latency and rate using priorities, allowing latehcy to be provided to any
requestor without wasting bandwidth

5.8.3 Evaluation of service guarantee

The second experiment evaluates the service guaranteglgroby the CCSP arbiter.
The use-case in Table 5.2 with descending priorities is lsitad during 100 ms and the
provided bandwidths},., and maximum latenciesax ©,., are measured and compared
to the requested bandwidths,, and the bounds on service laten€),. The results
of this experiment, shown in Table 5.3, indicate that alluestors get their requested
net bandwidth and that the maximum measured service latsrnegs or equal to the
computed bound. This experiment hence suggests that th® @@Ber delivers on its
service guarantee.

Table 5.3: Bandwidth and service latency results.

Requestor p, by by max©, O,
[MB/s] [MB/s] [sc] [sc]
To 3 210.0 210.0 5 9
o] 2 210.0 210.0 2 3
T 1 210.0 210.0 1 1
r3 0 20.0 20.0 0 0

A limitation of our evaluation so far is that all requestonstie use-case are well-
behaved and do not ask for more bandwidth than specified. dioae the robustness
of the service guarantee, we modify the highest priorityuestor,r3, to ask for 400
MB/s instead of 20 MB/s, without changing its resource at@n in the network or
the memory controller. Table 5.4 shows what happens whanntioidified use-case is
simulated during 100 ms with a regular static-priority &é&bithat does not have a rate
regulator. We see that gets 323.4 MB/s out of the requested 400 MB/s, since there is
no rate regulator to enforce the allocated 20 MB/s. The me#sat the requestor is not
getting its full 400 MB/s is because the network connectiots @as a bottleneck, since
it is not dimensioned for 400 MB/s. Requestergets its requested bandwidth, but the
memory cannot supply enough bandwidth to deliver on theireauents ofr; andr.

In fact, g, is completely starved by other requestors and does ndvesagry bandwidth
at all! The results also show that the service latency bowfiddl requestors except
are violated in this experiment. We repeated the same erpatiwith the CCSP arbiter,
which features a rate regulator. The results of this expamtrare essentially equivalent
to the results previously shown in Table 5.3. The only défere is that the bandwidth
provided tors increases from 20.0 MB/s to 22.3 MB/s. The reason is that temany
offers slightly more bandwidth than suggested by its bosimte the simulation contains
fewer read/write switches than the worst caBmm this experiment, we conclude that
the CCSP arbiter provides a service guarantee that is rédialdso in the presence of
misbehaving requestors.

5.8. EXPERIMENTAL RESULTS 131

Table 5.4: Bandwidth and service latency results with nralfioning requestor using a
regular static-priority arbiter.

Requestor p, b, b, max 0, O,
[MB/s] [MB/s] [sc] [sc]
ro 3 2100 0.0 N/A 9
1 2 2100 173.2 10 3
r9 1 210.0 210.0 3 1
T3 0 400.0 323.2 0 0

5.8.4 Tightness of service latency bound

The third experiment evaluates the tightness of CCSP’'sceelatency bound from Equa-
tion (5.9). We use the use-case in Table 5.2 with descendiogtjes as a starting point,
and uniformly vary the discrete allocated burstinessgspf all requestors in the range
[1, 5]. Again, the system is simulated during 100 ms. The maxh measured service
latencies and the analytical bounds of the requestors aversim Figure 5.11. Three ob-
servations are made from the results in the figure. 1) The unedservice latency and
the bound for-3 are both zero cycles for all values@f. The bound is hence both conser
vative and perfectly tight for the highest priority reques®) The service latency bound
becomes less tight with decreasing priority. There are t@measons for this behav-
ior. The first reason is that the service latency bound in Egu#5.9) does not take into
account that service is provided in a discrete manner. Tgoastors providing 1.5 ser-
vice cycles of interference in an interval hence resultstiota interference of 3 service
cycles. The actual maximum interference is 2 service cyslase there is no such thing
as half service cycles. The bound is hence over-estimatédugito one service cycle
per higher priority requestor, resulting in less tight basinThis issue is inherent to how
the bound is computed. The second reason is that it becomresgingly unlikely with
lower priority that all requestors display their worst-ed®havior at the same time. This
issue is not related to CCSP, but rather an effect of thaegliestors are not constantly
backlogged, much like in a realistic use-case. 3) The sefaiency bound becomes less
tight as the allocated burstinesses increase. This hafygeasise the requestors do not
ask for service in a bursty enough manner to fully use th&cation. This is understood
by realizing that requests are issued almost periodicaligpugh with some jitter from
the requestor itself and from the network. The largest regise256 B, not considering
the lowest priority requestor that cannot interfere witly@re. 256 B correspond to 4
service units given the access granularity of the patternAcating a higher bursti-
ness than this to the requestors hence only affects the lwiuoder priority requestors,
according to Equation (5.9), but not the actual interfeeer®ome of the other requestors
have smaller request sizes than 256 B, contributing to ighstiounds of lower priority
reqguestors as the allocated burstiness incred&&ased on this experiment, we conclude
that the service latency bound of CCSP is tight for high ptyarequestors, but becomes
less tight with decreasing priority and increasing alloedtburstiness.

132 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

Max measured service latency —+— Max measured service latency —+—
Service latency bound --+->¢-- Service latency bound --+->¢--
3 50 . . . 3 . . .
© ©c 14 N
3 3
© o 12
L L
2 = 10
[[
2, 2 g
))
c c 6
2 2
k] B 4
[[}
2 2
I 2
S 0 . . . 5 . . .
i 1 2 3 4 5 o 1 2 3 4 5
Allocated burstiness [service units] Allocated burstiness [service units]

(a) Maximum measured service latency and bour(h) Maximum measured service latency and bound

for rg. forrq.
Max measured service latency —+— Max measured service latency —+—
Service latency bound ---->¢-- Service latency bound -
T s : : : T 1 : : :
%} [&]
> >
o o
8 3 o5} |
2 2
Q Q
2)
= - 0 * * *
> >
o o
f= [=
2 2
© 8 05t 4
@ [
L L
2
¢ 0 E -1
R | 2 3 4 5 o 1 2 3 4 5
Allocated burstiness [service units] Allocated burstiness [service units]

(c) Maximum measured service latency and boun@d) Maximum measured service latency and bound
for ra. for rs.

Figure 5.11: Maximum measured latency and bound, exprésseavice cycles, for the
requestors in the use-case.

5.8. EXPERIMENTAL RESULTS 133

5.8.5 Service latency bound in clock cycles

This far, we have only reasoned in abstract service cycleswveder, we are actually
interested in latencies measured in clock cycles. Thistlioexperiment evaluates the
tightness of Equation (4.8) that translates a bound in sewycles into a bound in clock
cycles, considering the particular pattern set. We hernpeatethe previous experiment,
but now we use Equation (4.8) convert the results into clogites at 200 MHz. The
results are shown in Figure 5.12. At a first glance, we seeahegyeneral trends in
tightness as discussed in the previous experiment; thedsobecome less tight with
decreasing priority and with increasing allocated buestses. However, we also note a
bigger difference between the maximum measured servieadatand the bound. This
is especially apparent fox andrs, whose service latency bounds, measured in service
cycles, are relatively small. There are three reasons wipdunds expressed in clock
cycles are less tight than the bounds in service cycles. @ ittual simulation may have
fewer read/write switches than assumed by the bound. 2) ®hadin service cycles,
tot(x) in Equation (4.8), adds an extra service unit to the interfee to account for
blocking when a request arrives just after a schedulingstathas been taken. However,
the actual blocking time may be shorter. Limitations in mstiumentation furthermore
prevent us from measuring interference due to blocking. ddtaal maximum service
latencies may hence be up to 20 clock cycles longer with titiem set. 3) The bound in
clock cycles accounts for worst-case interference fromeséf, although the actual case
may perform better. Our instrumentation captures refragirference in the general
case, but does not include refreshes after the request kassbkeeduled by the arbiter.
It hence does not cover the special case of a requestor thlvays scheduled in zero
service units, such as in this use-case. This explains why the service latency éhoun
for r3 is 52 clock cycles, although the maximum measured valueris deck cycles!
Blocking accounts for 20 clock cycles out of the 52, and rior the other 32, neither
which can be measured with our instrumentation. Looking paestwo limitations of
our measurements, the results in Figure 5.12 are very sitoithose in Figure 5.1\e
hence conclude that Equatidd.8) performs a useful conversion of bounds in service
cycles to clock cycles.

5.8.6 Comparison of allocation strategies

For our final two experiments, we focus on the hardware implaation of the CCSP
rate regulator. We start by comparing the Closest Rate A@miation (CRA) and Closest
Burstiness Approximation (CBA) strategies by looking atttbe average and maximum
measured over-allocated rates and burstinesses relaaehmeher and to the analytical
bounds computed in Section 5.6.2. For each number of remygeist 2, 4, 6, and 8,
we randomly generate 1000 synthetic use-cases with urlifadtistributed loads in the
interval [0, 100]%. We are interested in the total over ataan of all requestors and
hence sum their individual over-allocated rates and mastes. Similarly, all derived
bounds are multiplied with the number of requestors in theeaase to capture the total

134 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

Max measured service latency —+— Max measured service latency —+—
Service latency bound -+ Service latency bound -+

1000 T T T

Service latency [clock cycles]
Service latency [clock cycles]

1 2 3 4 5 1 2 3 4 5
Allocated burstiness [service units] Allocated burstiness [service units]

(a) Maximum measured service latency and bour(h) Maximum measured service latency and bound

for rg. forrq.
Max measured service latency —+— Max measured service latency —+—
Service latency bound - Service latency bound -
E E 70 T - .
S 2 60]
o o
x x 50
8 8
e 5 40]
? ? 30 R
3 g 20]
K K}
g g 10 R
s s 0 —+ + +
& o & -10
1 2 3 4 5 1 2 3 4 5
Allocated burstiness [service units] Allocated burstiness [service units]

(c) Maximum measured service latency and boun@d) Maximum measured service latency and bound
for ra. for rs.

Figure 5.12: Maximum measured latency and bound, expréassedck cycles at 200
MHz, for the requestors in the use-case.

5.8. EXPERIMENTAL RESULTS 135

over allocation. Five bits of precisiofs (= 5) are used for both strategies, arflare real
numbers in the range [1, 5] service units. The over-allatedte is shown in Figure 5.13.

0.35

Max CRAg ———
Avg CRA
03¢ Max CBA, &
Avg CBAg
0.25 | Bound CRA CBA -

0.2

0.15

Over-allocated rate

0.1r

0.05

Requestors

Figure 5.13: Over-allocated rate for the CRA and CBA striateg

We see in the figure that the CRA strategy indeed results irlaverage over-
allocated rate than CBA. In facthe CRA strategy reduces the average over-allocated
rate with a factor three compared to CBAhe choice of allocation strategy may hence
have a significant impact on the how much precious bandwslthaisted, especially if
the precision is kept low to reduce area. For example, theageeover-allocated rate
in the use-cases with six requestors is 3% of the bandwidtiCRA, while it is 10%
with CBA. The corresponding maximum values are 9% and 16%paetively, while the
bound for both strategies is 19% with five bits of precisiorhe Thaximum measured
over-allocated rate is close to the analytical bound fohlsttategies for use-cases with
two requestors, although the difference increases witmthmeber of requestors. This
reflects that the worst-case over allocation becomes isicrgls unlikely as the number
of requestors increases. In particular, we note that tlerdiice between the maximum
over allocation and the bound becomes very large for CRA jsextremely unlikely that
a generated use-case, much like a realistic one, only eantaguestors with allocated
rates close to zero.

The over-allocated burstinesses of the two strategieharmrsin Figure 5.14. We see
that the CBA representation does reduce the average deertdd burstiness, although
the difference between the two strategies is less signifiteam for the over-allocated
rate. We conclude thaeducing the average over-allocated rate by a factor thremal
CRA comes at the cost of a 25% increase in the average ovaraadid burstinessThe
maximum over-allocated burstiness is close to the boundCfh, but not for CRA,
reflecting the unlikeliness that = 22*1 for all requestors, which is required for its
worst case.

Next, we compare the behavior of the CRA and CBA strategiesi$e-cases with
high loads and service latency requirements. The use-edldesve six requestors and
are randomly generated with the total load divided in a nurobbins (91%, 93%, 95%,
97%, and 99%, respectively). In this experiment, we geret800 use-cases for each

136 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

07 ™ Max CRA; =

Avg CRAg
0.6 rBound CRA;
Max CBAg
0.5 | Avg CBAg

Bound CBAg
0.4

0.3

02

Over-allocated burstiness

0.1r

Requestors

Figure 5.14: Over-allocated burstiness for the CRA and CB#&tagies.

bin. The service latency requirements of the requestorsi@fermly distributed in the
interval [0, 10000] ns. This range is chosen as it providgsirements that are feasi-
ble to satisfy with our SDRAM back-end with the consideredwoey and loads. The
requirements are then transformed from ns to service cydieg) the inverse of the la-
tency functions of the SDRAM back-end, presented later ictiSe 7.3. This results in
requirements varying in the range [0, 120] service cyclasaddition to allocating ser-
vice for the use-case, priorities are assigned in an attéorgutisfy the service latency
requirements of the requestors. For this purpose, we usptanad priority assignment
algorithm, further discussed in Section 7.4. We compardwoeallocation strategies by
measuring the percentage of use-cases in which the rateeweunts of all requestors
are satisfied and the total allocated rate is less than 10t¥igating successful alloca-
tion. Additionally, we compare the percentage of use-cagdemre the service latency
requirements of all requestors are satisfied. Lastly, wabystite total success rate, being
the percentage of use-cases where both service allocatibipréority assignment are
successful, indicating that both rate and latency requérémare satisfied. The results of
this experiment are shown in Figure 5.15.

140 Rate allocation CRA; ——
Priority assignment CRAg

Rate allocation CBAg
Priority assignment CBAg
Total CRAg —— -
_. Total CBAg e

120

100

80

60

Success rate [%)]

40 -

20

91 93 95 97 99
Load [%)]

Figure 5.15: Successful allocations and priority assignsi#or CRA and CBA.

5.8. EXPERIMENTAL RESULTS 137

We note that all use-cases with up to 93% load, and 99.1% aftbe&ases with 95%
load, are successfully allocated when using CRA. The ssaeds is reduced to 89.1%
and 54.8% for use-cases with 97% and 99% loads, respectislgxpected, CBA per-
forms worse, and only allocates 66.4% of the use-cases W#t16ad successfully. The
success rate is significantly reduced for higher loads aaches zero for loads higher
than 95%. We see that CRA also performs better when prisidtie assigned to satisfy
the service latency requirements. The latency requiresremet satisfied for 95% of the
use-cases with 91% load and drops towards 82.4% for use-eage99%. The trend
is similar when using CBA, although it starts at 84.7% for 9tb#d and ends at 68.3%
for loads of 99%. The answer to why CRA is better at satisfyatgncy requirements,
even though CBA provides a closer approximation of the alled burstiness, is found in
Equation (5.9). We note in the equation that over allocatiegourstiness results in a lin-
ear increase of the service latency, while over allocatiegate causes a faster increase,
favoring the CRA strategy. The total success rate showshbaCRA strategy performs
better than CBA for all tested loads, primarily because thalker over-allocated rate
allows more use-cases to be successfully allocated. Omg&eCRA results in more
than four times as many use-cases with high loads havingtbethservice and latency
requirements satisfied compared to CBWe conclude from this experiment that hav-
ing a close approximation of the allocated rate is esseribamanage heavily loaded
resources.

5.8.7 Increasing precision

In our last experiment, we study the effects of increasirgrigion to achieve a finer
allocation granularity. Use-cases are randomly genefatedrding to the previous ex-
periment, but we now compare CCSP with five and six bits, resy, using the CRA
strategy.

160 " Rate allocation CRA; ——
140 | Priority assignment CRAg

Rate allocation CRAg
120 | Priority assignment CRAg
Total CRAg

100 - Total CRA,

80 -
60 -

Success rate [%)]

40 |

20

93 95 97 99
Load [%]

Figure 5.16: Success rate when increasing precision witA.CR

As seen in Figure 5.16, increasing precision improves b@mtimber of successful
allocations and priority assignments. This is because thwtover-allocated rate and

138 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

burstiness of CCSP are monotonically reduced with inciabpsecision, as explained in
Section 5.6.2. We experimentally compare this behavionab of FBSP in Figure 5.17,
where the frame sizd, is increased from 31 to 63. These particular frame sizes are
chosen, as they provide the same bounds on over-allocdéasér CCSP with five and

six bits of precision, used in Figure 5.16. We first note thatpercentage of successful

1 T — T
&0 Rate allocation FBSP3; ———

L Priority assignment FBSP;; ©
140 Rate allocation FBSPg3 E
120 | Priority assignment FBSPg

Total FBSP;; —4— |

100 | Total FBSPgy wwidgee |

80
60 -

Success rate [%]

40
20 +

0

91 93 95 97 99
Load [%]

Figure 5.17: Success rate when increasing precision withH-B

allocations is much lower for FBSP than for CCSP using the GR#tegy. Using a frame
size of 31, only 63.7% of the use-cases with a load of 91% areessfully allocated
and the success rate drops dramatically for higher loaggpaphing zero at loads of
97%. However, the percentage of successful priority agségs is stable at about 80%
across all loads. Doubling the frame size to increase pogcigsults in a significant
improvement in the percentage of successful allocatiorid@ads up to 95%, all being
above 80%. However, this causes the percentage of suckgessfity assignments to be
less than 20% for all loads. This is because both the allmegtianularity and the service
latency depend on the frame size, causing one to be tradebdather.We conclude
from this experiment that having an allocation granulatitat is decoupled from latency
is essential when sharing highly loaded resources in thegiree of applications with
real-time requirements.

5.9 Summary

Predictability in our approach is achieved by combiningdp®ble resources with pre-
dictable arbitration. The previous chapter addressed theart by showing how to
design a memory controller back-end that makes an SDRAMMgelma predictable
manner. This chapter discussed the second part, namelycshate a predictable re-
source among multiple requestors using a predictableearbit

There are three main requirements on the hardware implet@mibf an arbiter to
make it generally applicable in the System-on-Chip (SoGjtext. 1) It must run at
high clock frequencyo keep up with the resource and allow scheduling at a finé &dve
granularity. 2) It must have samall hardware implementatior8) The arbiter must be

5.9. SUMMARY 139

able to provide the required service to a requestor witbeat allocating which means
reserving more capacity than required. To fit with the rezmients from our application
domains it must furthermore be ableaocommodate both latency-critical and latency-
tolerant requestorsA Credit-Controlled Static-Priority (CCSP) arbiter wamposed to
deliver on these requirements.

A CCSP arbiter consists ofrate regulatorand ascheduler The rate regulator iso-
lates requestors by enforcing an upper bound on the prowdedce based on two pa-
rameters, being anllocated rateand allocated burstinessrespectively. The service
bound is incremented durirgrtive periodswhich are intervals in which the requestor
is backloggedor live. A requestor is backlogged if it has outstanding requesidiaa if
it requested more service than allocated on average, siecgtart of the active period.
An important benefit of the CCSP arbiter is thatlécouples allocation granularity and
latency which enables over allocation to become negligible. CC&# @ static-priority
scheduler, since the priority levediecouple latency and rateThis enables low latency
to be provided to any requestor, regardless of its allocatts] without over allocating.
A static-priority scheduler simply schedules the highekirfly requestor that igligible
for scheduling. A requestor is considered eligible if it @cklogged and has been pro-
vided less service than supported by its upper bound. Théication of rate regulator
and scheduler was analyzed and the maximum interferenteahae experienced by
a requestor in any interval was bounded. This bound was wssdaw thatan active
requestor is guaranteed its allocated rate after a maximemvise latencyas required
by hard real-time applications. Based on this guarant@&gstshown thaCCSP belongs
to the class of Latency-RatéR) servers which is the shared resource abstraction used
in this work.

A fast and small hardware implementation of the CCSP ratelaégy, based on sim-
ple integer arithmetic was presented along with an effioreay of representing the al-
located service in hardware with finite precision. Two ses\allocation strategies were
defined based on this representation. Tiesest Rate Approximation (CRa&lrategy
attempts to approximate the allocated rate as closely ashpe@so reduce both latency
and wasted capacity, while tf@osest Burstiness Approximation (CBgtjategy finds
the best approximation of the allocated burstiness to mag@rtatency. The allocation
properties of the two strategies were compared both analijtiand experimentally, and
it was shown that the CRA strategy is better at satisfyingliaaith and latency require-
ments for highly loaded resources, such as memories. It \gasdemonstrated that
the allocation behavior of CCSP, unlike most traditionahfie-based arbiters, improves
monotonically with increased precision. Synthesis of tl&Se arbiter with six ports
using a precision of six bits in a 90 nm CMOS process resutied total cell area of
14231 pm?. The instance was synthesized with a speed target of 200 Midigble
for a DDR2-400 memory. The maximum frequency of the arbitas wetermined to be
approximately 570 MHz, enabling the arbiter to keep up withstrDDR2 and DDR3
memories. It was shown that in increasing the precisionef#te regulator results in an
exponential reduction in maximum over allocation at thet ods linear increase in the
cell area of the implementation.

140 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATIN

CHAPTER O

Composable resource front-end

We have now arrived at a point where we have a predictable 3 B#ck-end that of-
fers hard real-time guarantees on net bandwidth and onrniett serve a scheduled
memory request. We have also presented a Credit-Contistheet-Priority (CCSP) ar-
biter that allows the memory to be shared in a way that boumel$ime until a request
is scheduled. The arbiter furthermore distinguishes ttemitical and latency-tolerant
requestors without wasting scarce bandwidth, fitting witin @quirements. Together,
these predictable components enable formal verificatioimmiughput and latency re-
quirements at the application level. However, this requagerformance model of the
application, which is not always available. Some appla@ihave behaviors that can-
not be modeled, while others are written in ways that makeeatiogl very complicated.
An example of the latter, are applications that communithateugh shared memory
using a programming model where communication is not ekplito deal with these
applications, we require a complementary verification apph that does not have any
restrictions on the application. For this purpose, we relgimulation-based verification.
However, to manage the increasing verification complexity tb the growing amount
of use-cases in embedded systems, we require composalitegerenable independent
verification of applications, as previously explained irci8m 1.3.3.

There are currently three approaches to composable systsgnd The first involves
not sharing any resources, which is trivially composablg poohibitively expensive for
systems not running safety-critical applications. Theoseds to statically schedule all
interaction between components in the system [60] at ddsig;e. This approach re-
quires a global notion of time and is limited to applicatiared hardware that can be
statically scheduled. Although our SDRAM back-end is petatile and can be statically
scheduled, we want to ensure that our approach applies apglications, including

141

142 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

those that cannot be verified using formal methods. The #pmtoach is to dynamically
share resources at run-time, which is limited to combimetiof inherently composable
resources and arbiters [15, 39]. It is hence not suited tdlke®DRAM memories, since
the time to serve a request is variable and depends on otfpeestrs. We have pre-
viously mentioned Time-Division Multiplexing (TDM) as axamnple of an inherently
composable arbitration scheme. However, we concludeddtidhes.8.2 that TDM can-
not distinguish latency-critical requestors without virgtandwidth. We hence require
a new approach to composable resource sharing that is moeea@nd works in com-
bination with our proposed SDRAM back-end and CCSP arbiter.

In this chapter, we present a fourth approach to composaisteurce sharing that
works with any combination of predictable resource and hejeRate LR) arbiter with-
out any restrictions on the application, thus widely extegdhe class of systems that
can offer composable service. We start in Section 6.1 byigiray an overview of our
approach. Our formal model is extended in Section 6.2, &igws to provide a defini-
tion of composable service. We then show in Section 6.3 B&\servers can be used to
provide service according to this definition, both for reses with constant and variable
service cycle times. In Section 6.4, we propose an archited¢or a resource front-end
that implements the presented concepts when combined wjtipr@dictable resource.
We experimentally show in Section 6.5 that our front-enédittvith a CCSP arbiter pro-
vides composable service when paired with both a simple SRé&roller and with our
SDRAM back-end. The chapter is concluded with a summary ati&e6.6.

6.1 Overview of approach

We explained in Section 1.3.3 that composability meansapptications cannot influ-
ence each other’s temporal behavior by even a single clocke cyThe problem with
providing composable service in the general case is thatestqrs interfere with each
other by changing the state of stateful resources and esbiféhis interference results
in jitter in the provided service that causes both arrivadets and finishing times of a
requestor to change, due to the behavior of others. The leayhdhind our approach is
to make the provided service composable by removing thes.jiThis is accomplished
by delaying all signals sent to the requestor to always etmwi@rst-case interference
from other requestors. This creates an interface towards remuestor that is indepen-
dent from others in the temporal domain, as shown in Figute Bhe figure shows that
the resource communicates with the requestors in two ways filst one is through the
flow-control signal that accepts incoming requests. Thersgone is via responses that
are returned. We hence need to make sure that both of thesssjsplay compos-
able behavior. This makes the system composable on thedévetuestors, which is
a sufficient condition for it to be composable on the level pplecations. A drawback
of making the system composable on this level is that it ispusssible to benefit from
slack that is generated within the application. The apgrascon the other hand, less
complex to implement, since requestors do not require @natf to which application
they belong.

6.1. OVERVIEW OF APPROACH 143

A benefit of our approach to composability is that it can beadyitally enabled or
disabled per requestor at run-time by turning the emulatioworst-case interference
on or off. This introduces the notion gfrtially composable systemahere some ap-
plications are free from interference and others are note ddivantage of a partially
composable system is that slack can be used to improve pefame of requestors that
do not require composable service, such as non-real-timeestors, or those belonging
to applications that are verified using formal approaches.

dJ

Request Buffer L\

juswia|g
Buissasoi

Response Buffer
requests

A

flow control
responses

sng

Request Buffer

=] L~

: Response Buffer
]

=

Temporally independent
interfaces

Figure 6.1: Temporally independent interfaces are crebyedelaying responses and
flow control.

223Inosay
a|qeloIpald

flow control

uswa|3
uISS820.1d

L

Our approach to composable resource sharing relies oncpabdity, since it is not
possible to emulate worst-case interference unless ibwkrand bounded. More specif-
ically, we require predictable resources, where the timgetve a scheduled request is
upper bounded, such as an SRAM or our proposed SDRAM backWadurthermore
require an upper bound on interference from other requesiBiven a predictable re-
source, this requirement can be satisfied in three ways: ThByacterizing the amount
of service requested by each requestor in an interval andruppinding the size of a
request. This allows any predictable arbiter to be usedishutt robust without support
for preemption in case the characterization is wrong or aestpr malfunctions. 2) Pre-
empt a request in service after a maximum time. This soli§onbust and can handle
requests whose sizes are initially unknown, but is limiegredictable preemptive ar-
biters. 3) Use a hardware block to split up requestsatéonic service unitgreferred to
as atoms, with known maximum service time, as proposed ih B&h the second and
the third solution assume that the resource supports geremguests in smaller pieces,
which is typically the case for transaction-based res@liike memories and peripherals.
We choose this option for our approach, since it enablesigrden of requests at the
granularity of atoms using any predictable arbiter, thusjging maximum flexibility.

Themain benefibf our approach is that it is built on th&R server abstraction. This
enables composable service to be providedafty combinatiorof arbiter in the class
of LR servers and predictable resource. An additional benefitfofservers is that the
latency metric, service latenc®], accounts for interference from other requestors, but
not for self interferencewhich is the time a request waits for other requests from its

144 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

own requestor. This separation is advantageous, sinceasahility only requires us to
eliminate the effects of interference from others.

6.2 Formal model

Our discussion on composability requires us to furtherrextaur formal model, allowing
us to properly define the concept. Since our approach to csaly® resource sharing
applies to a variety of predictable resources and arbiterstick to the abstract resource
view introduced in Section 5.2. Data is hence still measimesgtrvice units and time in
service cycles, unless otherwise noted.

We previously defined the arrival time of a request in Defimitb.6. Now we de-
fine two more events in the life of a request, being the stattiitme and the finishing
time. The starting timet,(w*) is the first service cycle in which* is scheduled by
the arbiter. Since atoms in the proposed memory controdge la request size of one
service unit, it follows that the starting time correspomaishe one and only time it is
scheduled. The finishing time of a request corresponds tfirieservice cycle in which
a request is completely served and available in the Resguifger, formally defined in
Definition 6.2.

Definition 6.1 (Starting time of a request)The starting time of a request® is given by
ts(wk) : Q, — N, and is defined as the smallesit whichw? is scheduled.

Definition 6.2 (Finishing time of a request)The finishing time of a request is given
byti(wk) : Q, — N, and is defined ag(w?) = min({t | t € NAw!.(t) = wl.(ts(wk)) +
s(wi)}).

The definitions of arrival time and finishing time allow us t@yide a definition of
composable service. Definition 6.3 states that the provededice is considered com-
posable if the arrival times and finishing times of all reqadsom a requestor are in-
dependent of other requestors. This definition implemdrgseémporally independent
interface previously illustrated in Figure 6.1. Note that &urrival time is defined with re-
spect to available space in both the Request Buffer and thpdrRee Buffer, and is hence
not independent of other requestors. This creates a depemtbetween the arrival time
and both the starting and finishing times. Composable sadcording to Definition 6.3
is hence implemented by assuring that both the startingstand finishing times emulate
worst-case behavior.

Definition 6.3 (Composable service)The service provided to a requestor by a resource
is defined as composable if both the arrival times and fingskimes of all requests from
the requestor are independent of other requestors shahagesource.

6.3 Timing analysis

To provide composable service with our approach, we neednidage worst-case in-
terference by delaying flow-control signals and respongesexplained in the previ-

6.3. TIMING ANALYSIS 145

w

busy line

-

busy period P ’

Accumulated
service units

Figure 6.2: lllustration of worst-case starting time andsfiing time in alR server.

ous section, this is achieved by emulating worst-caseirsgaitnes and finishing times,
which requires these to be bounded. This is done next in@e6tB.1. We then proceed
in Section 6.3.2 by discussing how to convert these bourmts frervice cycles to clock
cycles in an efficient manner for resources with variablgisercycle length, such as our
SDRAM back-end.

6.3.1 Bounding starting time and finishing time

We bound the starting time and finishing times using & server abstraction, which
enables our solution to work with any arbiter belonging te thass. From the work
in [114], we derive that the worst-case starting time of auest is expressed according
to Equation (6.1). We see that it is determined by the sefaieacy of the arbite®, or
by the worst-case finishing time of the previous request fiteerequestor, whichever is
larger. The first case happens if the arrival of the requiggidrs a new busy period, and
the second case if the requestor is already busy. This caodeeved in Figure 6.2, where
the arrival ofw* triggers the start of a new busy period and hefi¢e”) = t,(w*) + ©.
On the other hand,**+! arrives during a busy period, resultingfi{w**') = #t(w*).

o (wF) = max(t, (wF) + O, H(wF 1)) (6.1)

Next, Definition 6.4, defines the time it takes for a requeat th scheduled at the
worst-case starting time to finish receiving service as thapietion latency of the re-
quest. The bound on completion latency that is stated indfiaition, follows immedi-
ately from the service guarantee provided bg7 server. The graphical interpretation
of completion latency is also shown in Figure 6.2.

Definition 6.4 (Completion latency) The completion latency of a requesf from a
requestorr € R is given byl(wF) : Q, — N, and is defined according tfw*) =
ti(wk) — ts(wF), which is equal tas(w¥) /pl..

146 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

We have now defined everything we need to compute an uppedtmutihe finishing
time of a request in £R server. It follows directly from Definition 6.4 that the wors
case finishing time is computed according to Equation (&vB)ch is equivalent to the
result presented in [114]. This equation is visualized émjuest.” in Figure 6.2.

fi(wy) = falwr) + Uwy) (6.2)

A

Note that bounds on starting time and finishing time compite@&quations (6.1)
and (6.2) are based on worst-case interference from otheestors through, but only
on actual-case self interference through the dependengyewious requests from its
requestor. This means that the maximum time between theahtiine and finishing
time is not constant for all requests, but changes deperatirthe number of requests
in the Request Buffer of the requestor. This behavior isnadtand can be seen in Fig-
ure 6.2 by observing the difference between the arrivalgiarel the worst-case finishing
times of the different requests. Enforcing a constant dé&tay arrival time to finishing
time requires a conservative bound on the requested sensog for instance éo, p)
characterization [25], to compute the worst-case selffiatence for every request. This
results in very pessimistic finishing times, as we will se8éttion 6.5. It is furthermore
very difficult to obtain an accurate characterization withonnecessarily restricting the
application, which does not fit with our approach to compd#gbWe hence choose to
compute the worst-case starting times and finishing timesuaycally at run-time.

6.3.2 Clock cycle conversion

The service latency and completion latency have to be ctetdérom service cycles to
clock cycles to be of any practical use in a hardware implgati&m. For a resource
with constant service cycle length, such as an SRAM cotetrathis is easily done by
multiplying the values in service cycles with the serviceleyength. For our SDRAM
back-end, we use Equation (4.8), to convert the servicadgteHowever, this solution
does not work for the completion latency, as it would accdanan interfering refresh
for every request. This would result in extremely pessiimiishing times, and more
seriously, it would reduce the net bandwidth provided torwpiestors. This leaves us
with two options. The first option is to program multiple cdetion latencies, e.g. one
for reads and one for writes, and choose among them dyndynétalin time. However,
this option has the drawback of making the implementatigreddent on the particular
resource, since different resources may have a differenbeuof interesting cases. In-
stead, we opt for the second option, which is to use a singigtation latency that is
consistent with our computation of net bandwidth. We acd@hyhis by using thev-
erage service cycle length during worst-case conditiéie conveniently refer to this as
the average service cycle length and denote However, using the average service cycle
length to convert the completion latency to clock cycles mesult in non-composable
behavior, since some actual service cycles are longer. i$lilisistrated in Figure 6.3,
where the provided service curve!, is often behind the dotted lower bound on pro-
vided service starting at.t(©). We address this issue by adding an offg®t,to the

6.3. TIMING ANALYSIS 147

service latency, giving us increased bandwidth at the costcoeased service latency.
This trade-off is illustrated in the figure, where a lower thardth is provided by en-
forcing a service cycle length* > X. This is represented by the dashed line denoted
*. However, we enforce the dash-dotted line dendtétht has an additional offset and
starts ati(©) + A. This enables us to provide the intended bandwidth by isonga
latency. We proceed by explaining how to compute the avesagece cycle length and
the required service latency offset.

~

Accumulated
data

tiot(©) A Clock cycles

Figure 6.3: The trade-off between service latency and nedwalth.

The average service cycle length is defined according to Mefir6.5. The intuition
behind the definition is that gross memory efficiency is therage fraction of time dur-
ing which requested data is transferred to and from the mgnidre product of gross
efficiency and the average service cycle length should heorespond to the average
numbers of cycles with data transfer during a service cyekervice cycle only transfers
data during the access pattern, making the average numisgcles with data transfer
constant and equal tansfer, previously computed in Equation (4.4). Gross memory
efficiency can hence be expressed accordingf't5° = t"%“e’ By solving for the av-
erage service cycle length, we arrive at the expression finilien 6.5. Note that the
length of the service cycle is independent of whether or hetdata is requested by a
requestor, and does hence not depend on data efficiencitivielfy the average service
cycle length works like a savings account. The length of eservice cycle budgets
a constant amount of time to pay for overhead, such as reiel/switches or refresh.
Assuming this amount of time is saved for every service uaitrdy tREFI cycles as-
serts that the provided gross bandwidth equél$S that all possible overhead due to
read/write switches is paid for, and that there ggeclock cycles left to pay for the
refresh.

Definition 6.5 (Average service cycle length during worst-case condifiohe average
service cycle length during worst-case conditions, exggésn clock cycles is denoted
by A € R*, and is defined ag = “rarster,

The service latency offsefy, must assert that the lower bound on provided service re-
mains valid, despite the use of the average service cydgHefihe offset corresponds to
the difference between the maximum and the average semwte length, as expressed

148 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

in Definition 6.6. This offset is tight if a requestor receswaorst-case interference as
predicted by its service latency bound, starting with aer and is scheduled close to
the next refresh. In this case, there has not been any timetébamortize the second re-
fresh, hence requiring the offset in Definition 6.6. Howeifghe service latency is short
and only contains a blocking and a refresh, theaimost entirely amortizes the follow-
ing refresh by the time it happens, making the service |gteffset appear pessimistic.
This is experimentally shown in Section 6.5.

Definition 6.6 (Service latency offset)The service cycle offset, expressed in clock cycles,
is denoted byA € N, and is defined as

tref + twtr + tread — [A] if read-dominant or mix-read-dominant
tret + trw + twrite — (M if write-dominant or mix-write-dominant
For the computed finishing times to be correct, the numbeipsElipe stages in the

architecture between the Request Buffer and the Respori$er,Bupe, must be con-
sidered. The pipeline stages add a constant delay to thaifigisime and are hence
included in the service latency of the requestor. All pieassnow in place to define
service latency and completion latency, expressed in algcles. This is done in Def-
inition 6.7 and Definition 6.8, respectively. The complatiatency is defined as a real
number, resulting in real starting times and finishing tinmethe implementation. We
return to address this issue in Section 6.4.3.

Definition 6.7 (Service latency (clock cycles)The service latency of a requestoe R,
expressed in clock cycles, is denoteddsy € N, and is defined a®¢¢ = t,(0,.) +
A + npipe.

Definition 6.8 (Completion latency (clock cycles))The completion latency of a re-
questorr € R, expressed in clock cycles, is denotediffye R, and is defined as

1¢¢ = [\ - 1(wF)], which is equivalent t({/ﬂ

6.4 Architecture and synthesis

In this section, we introduce the architecture of our pregosesource front-end that
implements the concepts from Section 6.1 based on the moatal $ection 6.2. We

start by presenting an overview of the architecture in $acf.4.1, followed by brief

descriptions of the functional blocks in Sections 6.4.2tigh 6.4.4. The design and
implementation of all blocks in the implementation are dibsa in full detail in [106].

6.4.1 Architecture overview

The proposed resource front-end is located in front of aiptalole resource, as shown
in Figure 6.4. The architecture is comprised of three maimpk and reusable blocks:

6.4. ARCHITECTURE AND SYNTHESIS 149

an Atomizer, a Delay Block, and a Data Bus with an arbiter. ifddally, there is a
Configuration Bus that allows registers inside the diffel#acks to be programmed via
memory mapped I/O during use-case transitions [38]. Theklsleommunicate using
a Device Transaction Level (DTL) protocol [88], which is arstlardized communica-
tion protocol similar to Advanced eXtensible Interface (AKL3]. All ports shown in
Figure 6.4 are DTL ports.

P
_temporally Resource front-end

independent
interfaces

3 3

requestor 1 <-——» o

3 5]

| g 5

fud (=)

o)

: @ 2

‘ ®

requestor 2 --——»| 9

: <

®

Arbiter
cfg —»Q 77777777777777777777 ‘

Figure 6.4: An instance of the proposed architecture sujpygpotwo requestors.

The architecture achieves composability by combining tppraaches to compos-
able system design at the block level. The Atomizer and DBlagks are composable
because they are not shared with other requestors, condigigoto the first approach
presented earlier. The Data Bus shares the predictablaroesasing an arbiter in the
class ofLR servers. The Delay Block hides the interference caused lgdsding and
accessing the resource by emulating worst-case intedersam other requestors, ac-
cording to our proposed fourth approach. This creates anfatte per requestor that is
temporally independent of the behavior of other requesésrshown in Figure 6.4. Note
that this architecture is similar to the conceptual imagEigure 6.1, since the Request
Buffer and Response Buffer are located inside the DelaykBloc

6.4.2 Atomizer

The Atomizer is responsible for splitting requests intanagawith a fixed programmable
size. This ensures that requests have a known size that csemis in a bounded time
by the resource. The design is hence predictable withoyingebn a characterization
of the maximum request size or requiring explicit supportdeeemption in the arbiter.
Fixed-sized requests furthermore simplify other blockihmarchitecture. The size of an
atom corresponds to the service unit of the resource, asaonedtin Section 5.2. For a
typical SRAM, the natural service unit is a single word, lrtdur predictable SDRAM
back-end it is equal to the granularity of the access patternpreviously defined in

150 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

Definition 4.2. The original sizes of the requests are stardde Atomizer to allow it to
merge arriving responses back into the size expected bythesstor.

6.4.3 Delay Block

The most complex block in the architecture is the Delay Blatiown in Figure 6.5, and
we hence explain this block in greater detail than the resé. gurpose of the Delay Block
is to absorb interference created by other requestors iredmirce or arbiter to provide
a composable interface towards the Atomizer. This makesntieeface of the entire

front-end composable, since the Atomizer is not shared.Déday Block is composable
if all arrows on the interface in Figure 6.5 pointing left axds the Atomizer exhibit
composable behavior, which implies that both response aladaflow control signals

must emulate maximum interference. We proceed by disagi$siv the Delay Block

accomplishes this, based on the results from Section 6.t&r &fis, we discuss how to
configure the Delay Block.

config data Register
Bank ———— o=

! Request !

| Buffer

! i
command | cmd

I
I
request data . ;
q Request | % | Request . command
Receiver D caan— ! Sender write data
flow control

responsedata - | | T == .
£ Response . E= ! Response
| | " read data
Sender ! cmd 1 Receiver
flow control
data

| Response
——— . Buffer | ~———

Figure 6.5: Delay Block architecture.

Composable responses

Requests are received by the Request Receiver according T protocol. Incoming
requests are split into a command (read/write informatind sequest size) and data
(for write requests), and are stored in the Request Bufféle Request Receiver then
waits until the request has completely arrived in the RegBefer and there is enough
space to store its response in the Response Buffer, imptergehe definition of arrival
in Definition 5.6. At this time, it computes the worst-casarshg time and the worst-
case finishing time, according to Equations (6.1) and (@29, stores the results in two
respective FIFO buffers.

6.4. ARCHITECTURE AND SYNTHESIS 151

The Request Sender pops the request at the head of the RBgffestand presents
it to the Data Bus, such that it can be scheduled for resowwnesa by the arbiter. This
is further discussed in Section 6.4.4.

Responses are received by a Response Receiver and arérstbeeResponse Buffer.
The Response Sender pops the worst-case finishing time fierhdad of the FIFO
buffer and waits until the appropriate clock cycle to retetige response, thus emulating
maximum interference according to ti& server model. This ensures that the finishing
times of the requestor are unaffected by the interfererma thers, which is one of the
two requirements to be composable according to Definiti8n 6.

The notion of time in the Delay Block is implemented using ealdy running wrap-
ping cycle counter. The counter has to be wide enough tosept¢éhe maximum number
of clock cycles between the arrival time and finishing timaoéquestor. Refer to [106]
for more details on the implementation of this time base.

Composable flow control

Having taken care of composable responses, we proceeddusdisg the issue of com-
posable flow control, which is required to make the arrivakts of a requestor indepen-
dent of others. The arrival time of a request is assigned vitheas completely arrived in
the Request Buffer and there is enough space to store a mEsjpotine Response Buffer,
and it is hence determined by the state of both of these Isuffdowever, the time at
which a request leaves the Request Buffer and enters theoRssBuffer depends on
the starting time and the completion latency, which may fecéfd by other requestors.
We must hence make sure that space in these buffers is clanteteleased indepen-
dently of others. This is done by a Flow Controller block. Hue Request Buffer, we
base the flow control on the worst-case buffer filling. TheaF@ontroller has a counter
that is initialized to the size of the Request Buffer. Thigmtr is decremented whenever
a request enters the Request Buffer and incremented at tfyguted worst-case starting
times, removing the dependence on the actual starting tiff@sthe Response Bulffer,
the Flow Controller reserves space at the arrival time ofjaest, since this is required
to ensure that the bounds on starting times and finishingstane valid. However, this
also removes the dependency on the starting time and tleeddttite resource, thus ef-
fectively serving a double purpose. Together, these bufamragement strategies ensure
that the arrival times of a requestor are unaffected byfitence from others, which is
the remaining requirement to provide composable servicerding to Definition 6.3.

Discrete approximation mechanism

A problem arises if the completion latenéy;, is not an integer multiple of clock cycles,
which it typically is not. Rounding off the value causes théoeced worst-case finishing
times to diverge from the exact values over time for a busyestpr. As we will see

in Section 6.5, this divergence is significant for requesteith high allocated rates for
resources with small service units, where completion EHemnare in the order of a few
clock cycles. Similarly to what we discussed in Sectiong.8unding the value down-

152 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

wards makes the finishing times too optimistic, leading to-nomposable behavior. On
the other hand, rounding upwards makes the finishing timpéssimistic and causes the
actual provided bandwidth to be less than the allocatedveiitial, o’ - . This problem

is illustrated in Figure 6.6. Note that the requestor in ther is busy throughout the
entire shown interval, although the busy line has been ethittr clarity.

[(w*) - A]
wl

I(w®) - A
~_-- approximation

F e W) AT

Accumulated
data

P
e

Qce Clock cycles

Figure 6.6: Diverging finishing times prevented by disctapproximation of the com-
pletion latency.

Our solution to this problem is to implement a mechanism tetnges between
using the rounded up and rounded down completion latengiasweighted fashion to
conservatively approximate the actual value, as showngnrgi6.6. The fraction of
the service units for which the rounded down value shoulddeslus expressed gs=
[A-1(wF)] — X - 1(w*). Sincen € Rand0 < 5 < 1, our mechanism requires a
discrete approximation based on integer arithmetic thatahfast and simple hardware
implementation. For this purpose, we reuse the serviceseptation introduced for the
CCSP rate regulator in Section 5.6.1. We hence represasta fraction of integers
according toy = n*/d*, wheren*,d* € N andn* < d*. The values of,* andd* are
chosen to be then*, d*) pair that provides the closest approximatiompforresponding
to the Closest Rate Approximation (CRA) strategy in Sechidhl. The accuracy of this
approximation is only limited by the number of bits used foresent:* andd*. Then*
andd* are computed for all requestors at design time and are progeal at run time.

The behavior of the mechanism is such that the approximategpletion latency is
[1°]l — n =~ [l°“] — n*/d*. The implementation is based on a credit counrteras
described by the pseudo code in Algorithm 6.1. The credintans set to zero at the
start of a busy period, which is detected by checking if th&t fdiarameter of the max
expression in Equation (6.2) is larger than the second. Téehamism then alternates
between the rounded up and the rounded down completiorciatehased on the value
of the counter. The approximation done by the mechanisnmisavative and guarantees
that the maximum difference between the approximated atudboompletion latency is
less than one clock cycle at any time.

6.4. ARCHITECTURE AND SYNTHESIS 153

Algorithm 6.1 Mechanism for discrete approximation of completion layenc
for all wk € 0, do
if £, (wF) + O > f(wk~1) then // Start of busy period
cr—0
end if

if & < d} —n} then// Rounding up

cy —cp+n;

fi(wh) — max(ta(wh) + O fi(wh 1) + 1]
else// Rounding down

ch—ch+nl—dr

fi(wy) — max(ta(wr) + O, fi(wy ™)) + 1]
end if

end for

Configuring the Delay Block

The Delay Block is programmed with the service latency andpletion latency of its
requestor to facilitate run-time computation of the warase starting times and finish-
ing times. Note that the Atomizer ensures that all requesée Ithe same size and that
we only have to program one completion latency per reque$toe presence of an At-
omizer thus reduces the amount of computation required namycally determine the
completion latency of a particular request, or the spacaired to store precomputed
values.

The programmed service latencies and completion lateacgesomputed according
to Definitions 6.7 and 6.8, respectively. The completioenat/ is rounded upwards to
the closest integer before programming, although the elis@pproximation mechanism
asserts that this does not negatively impact throughpuée robinded down completion
latency, required by the mechanism, is easily obtained byracting one from the pro-
grammed value. Every block in our implementation is outmgistered, resulting in
a total of four pipeline stages between the Request BuffdrResponse Buffer. Four
clock cycles are hence added to the service latency to atéomuthe pipelining in the
implementation, as stated by Definition 6.7.

Composable service is dynamically disabled by programnbioity the service la-
tency and completion latency to zero clock cycles. Thisueabhas two advantages.
First, it allows requestors that do not require composadfeice to use slack generated
by others, as mentioned in Section 6.1. The second advaisttg# it enables requestors
that require composable service to share hardware wittestgrs that do not by enabling
or disabling composable service on use-case transitions.

154 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

6.4.4 Data bus

The Data Bus is a regular DTL bus that schedules requestsdiegdo the policy of an
attached arbiter that belongs to the clas€®f servers. The Data Bus is a very general
building block with multiple DTL input ports and a single DTautput port. A chal-
lenge with using such a general block is that it is not awarthettype of resource it is
providing access to. This makes it difficult to know when igder a new scheduling
decision, since it is not known in advance when the previegmest is finished. We
proceed by discussing five options: 1) Schedule a request teeresource raises the
accept signal on the DTL interface. This results in that #source is idle during one
clock cycle when the arbiter schedules the next request. skaidl requests, such as
word-sized requests for an SRAM, this may reduce throughpub 50%. 2) Make a
new scheduling decision periodically, where the periodeists the worst-case service
cycle length. This approach works well for resources witb@stant access time, such as
an SRAM. In this case, the best-case completion latencylethmworst case, resulting
in a periodic simple periodic counter. However, for our SCNRAack-end, this would
assume a switching pattern and a refresh pattern for evegsagcreducing the provided
net bandwidth as discussed previously. 3) Schedule theraguest immediately after
the previous has been accepted. This way, a request is abghgsluled when the re-
source is ready to accept. However, arbitration may be donadstate, missing later
arrivals from critical requestors. This approach incregbe average latency of critical
requestors unnecessarily. 4) Reevaluate the arbitragoisidn every clock cycle to en-
sure that it is always up to date, improving the average @sady of critical requestors.
A drawback with this approach is that it complicates therat&on with the accounting
mechanism in the arbiter. This is because the accountingdbe updated exactly once
every service cycle to preserve the net bandwidth guarafitiwe requestors. 5) Sched-
ule a new requestor based on the minimum service cycle lengfth this approach,
a new scheduling signal is generated based on a programnmechumi service cycle
Iength,X For our SDRAM back-end, this corresponds to the time reglio execute
the shorter of a read and a write pattern, as expressed irtitgé.3). This ensures
that a scheduling decision has been made when the resoueadig to accept without
committing to a decision unnecessarily early. The resomm&g not accept the scheduled
request immediately. This happens for instance in case ibex refresh or a read/write
switch. The timer generating the scheduling signal is hemteeset until the resource
accepts the request, causing the service cycle to dyndynstedtch with the behavior
of the resource. This approach, employed in our implemiemats hence a compro-
mise between scheduling only once and using the most upttidformation possible.
It furthermore makes exactly one scheduling decision pericee unit, simplifying the
interaction with the accounting mechanism in the arbiter.

A= min(treada twrite) (6-3)

When the arbiter schedules a request, the Data Bus storesraifiat to the sched-
uled port so that responses are demultiplexed to their cispeDelay Blocks. These

6.4. ARCHITECTURE AND SYNTHESIS 155

25000

20000 F
700 Max. freq. —+—
~ Cell area -
< 600 20000
15000 Z —
b 3 500)
E 2 X 15000 S
3
§ 10000 g 400 « g
S ‘E 300 10000 S
S g 200 < S
5000 2 5000
S 100
0 0 ‘ ‘ ‘ ‘ o
1 20 40 60 80 100 1 20 40 60 80 100
Buffer size [words] Buffer size [words]
(a) Cell area for different buffer sizes. (b) Maximum frequency and corresponding cell

area for different buffer sizes.

Figure 6.7: Synthesis results for the Atomizer.

identifiers are stored in separate FIFO buffers for read aité vequests, since the DTL
protocol does not enforce ordering between reads and writes

6.4.5 Synthesis results

The proposed front-end has been implemented in VHDL [106]ymthesized in a 90
nm CMOS process, using the procedure presented in Sectioig.proceed by walking
through the synthesis results for each of the blocks in thetfend, starting with the
Atomizer. Figure 6.7 shows the cell area of the Atomizer vetBpeed target of 200
MHz, as the size of the buffer storing the original sizes gjuests is varied in the range
[1, 100] words. We conclude from the figure that the Atomizeaismall and simple
block with a cell area of less than 50p? occupied by logic, while the rest is buffering.
The maximum frequency and the corresponding cell area oAtbmizer are shown in
Figure 6.7b. We observe that the Atomizer synthesizes abB00eMHz with a buffer
size of one word. The area of the implementation grows ligess the buffer size is
increased, while the maximum frequency reduces, endin@@tNHz for the instance
with a buffer size of 100 words.

Next, we look at the Delay Block, which is a considerably mawenplex block. The
size and maximum frequency of this block depends on the sizé® many buffers, on
the width of time stamps, and on the precision of discreta@pmation mechanism.
For the synthesized instance, we have used 15 bits for treediamps, and varied the
buffer sizes and precision. The considered buffers are lR®$-with starting and fin-
ishing times, and the Request and Response Buffers, whithHawe separate queues
for commands and data. For simplicity, we vary the sizesldhabke buffers uniformly.
This is reasonable assuming an atom size of a single wortdpéaiifor an SRAM, since
the buffers for data and commands should have equal sizbssindase. The cell area at
200 MHz for different buffer sizes and precisions are shawfigure 6.8a. We note that
the Delay Block is more complex than the Atomizer, consittgthat it is three times
larger with minimum buffering. We also see that the many dnsficause the area to in-
crease quickly as the buffer depths are increased. Unlik€E&SP, the impact on area

156 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

500000 - 450 500000
4 bits RXXA ~ Max. freq. ——
6 bits EEa ¥ w~ 400 [Cell area - e
400000 [8 bits mm—m < ~ 1 400000
— 10 bits S 30 _
e 3 300 €
S 300000 | 5 X 4 300000 5
= g 250t P
2 8 00l o
S 200000 - = X { 200000 =
3 5 150 r 3
100000 |- g w0y X 1 100000
= 50
0 . 0 0
1 20 40 60 80 100 1 20 40 60 80 100
Buffer size Buffer size [words]

(a) Cell area for different buffer sizes and preci{b) Maximum frequency and corresponding cell
sions. area for different buffer sizes with 10 bits of preci-
sion.

Figure 6.8: Synthesis results for the Delay Block.

when changing the precision used in the discrete approxdimatechanism are hardly

noticeable in the Delay Block. The reason is that the DelacBls a larger block, thus

reducing the relative impact. Increasing precision froro 4Q bits adds just below 10%
to the area for a Delay Block with buffer sizes of a single edatmand the effect is negli-

gible for larger buffer sizes. Figure 6.8b shows that theimaxn frequency of the Delay

Block is relatively stable around 340 MHz as the buffer sizeange. The precision is

10 bits for all synthesized instances in this figure, althosgnthesis results omitted here
indicate that reducing precision to 4 bits increases theimam frequency by less than

5% for all buffer sizes.

The last block is the Data Bus, combined with a CCSP arbitee drea and maxi-
mum frequency scales with the number of requestors for bidtese components. The
CCSP arbiter is additionally affected by the chosen pregjsas shown in Section 5.7.
We see in Figure 6.9a how the cell area changes with the bethumber of requestors
and precision. By comparing the results in this figure to ¢hiosFigure 5.9a, we see
that the total area is dominated by the arbiter, constigusiome 60-70% of the area of
the combination. We see in Figure 6.9b that the combined Bataand CCSP arbiter
runs significantly slower than the CCSP arbiter alone. Tlasae is that a command
is scheduled by the arbiter and moved from the input of thea[Bats to the output in
a single clock cycle. Although the maximum frequency of thatar does not change
much as the number of requestors increases, the Data Busadaesing the combina-
tion to synthesize between 350-450 MHz, depending on thebeuwf requestors. This
frequency is fast enough to keep up with most DDR2 memoriesjprovement is
required to keep up with any memory in the DDR3 generatioris fiossible that the
maximum frequency can be improved by pipelining the artidra although no attempts
have been carried out in this direction. In conclusion, fiears that the Delay Block is
the bottleneck in the current implementation, limiting thaximum clock frequency to
approximately 350 MHz. However, judging from the trend iguiie 6.9b, it seems like
the Data Bus may become the limiting factor if the number gluestors is scaled up
further, beyond the needs of our memory controller.

6.5. EXPERIMENTS 157

50000 - 500 50000
4 bits XA 1 Max. freq. —+—
6 bits =z ~ Cell area g
40000 8 bits m— S T 400 40000
— 10 bits =Ry = _
s > p <
£ 3 =
5. 30000 $ 300 o 30000 5
© = ©
o] I
S 20000 = 200%” 20000 =
8 2 8
10000 ¥ 100 10000
s
0 4 0 : : 0
4 6 8 10 4 6 8 10

Requestors Requestors

(a) Cell area for different number of requestors antb) Maximum frequency and corresponding cell
precisions. area for different number of requestors with 10 bits
of precision.

Figure 6.9: Synthesis results for the Data Bus with a CCSkearb

6.5 Experiments

We proceed by experimentally evaluating our approach toposable resource sharing,
using both a simple SRAM controller and our proposed SDRAMkbend. The be-
havior of the resource front-end together with these ressuis studied to increase the
understanding of our approach. We furthermore evaluatéightness of the bound on
finishing time, look at the added average latency and bufferequirements of our ap-
proach, and examine the benefits of distributing slack baditto requestors that do not
require composable service. Most importantly, we also destrate that the arrival times
and finishing times of a requestor are independent of otlygrestors and hence that our
design provides composable service according to Defin@idn

6.5.1 SRAM experiments

For our first set of experiments, we use a simple SRAM comrelith constant service
cycle length. This is a simpler case than our SDRAM back-eitd variable service
cycle length, allowing us to build up the complexity of theperiments gradually. The
SRAM controller is running at 200 MHz with a 32-bit data padffering a gross band-
width of 800 MB/s. The service unit size of this controlleraisingle word (4 bytes),
and the length of a service cycle is one clock cycle. The megaesource front-end
is fitted with a CCSP arbiter and is located in front of the SRAbtroller. The ex-
perimental setup with SystemC models from Section 5.8 igl @sea starting point for
the experiments in this chapter. Traffic Generators geingraéquests according to a
normal distribution are used to represent processing elentieat are interconnected us-
ing a model of the Athereal [31] Network-on-Chip (NoC). Fontinuity, we reuse the
use-case with four requestors from Section 5.8. Howeverseade down the request
sizes in proportion to the reduction in access granulasikeep the sizes in service units
constant. The access granularity of the SDRAM back-end @ti@e5.8 was 64 B, while
it is 4 B for the SRAM controller in this section. The requeiges in the original use-

158 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

case are hence divided Ioyi/4 = 16. The data efficiency of the requestors is 100%,
making the offered gross and net bandwidths equal. Thea@vise-case is presented in
Table 6.1. Since the SRAM controller in this experiment jieg higher net bandwidth
than the DDR2-400 memory in the previous chapter, the akatetes of the requestors
are decreased to remain the fraction between their reqlieatelwidths and the total net
bandwidth. With these changes, the total allocated barttivicthis use-case is 81.4%
of the provided net bandwidth, indicating a moderate loatoriy levels are assigned
in ascending order and the service latencies in clock cycles computed according to
Definition 6.7, are listed in the table. The service laterftyet in this setup is zero clock
cycles, since we are using an SRAM with constant serviceedyitie. The completion
latencies of-y, r1, andr, are 3.80 clock cycles. As mentioned in Section 6.4.3, raupdi
this value downwards might lead to non-composable behaamt rounding it upwards
results in that the provided bandwidth is reduced from 2109B 200 MB/s (1 word /
4 clock cycles), failing to satisfy the bandwidth requirertgeof the requestors. This is
prevented by our proposed approximation mechanism, wiistires that each requestor
receives their allocated bandwidth in a composable manner.

Table 6.1: SRAM use-case specification and configuration.

Requestor Type b, Size p, ol o, CI S
[MB/s] [B] [su] [sulsc] [cc] [cc]
o Read 2100 32 0 1.0 0.263 5 3.80
71 Write 210.0 8 1 10 0.263 6 3.8(
To Read 210.0 4 2 10 0263 9 3.80
T3 Write 20.0 16 3 1.0 0.025 19 40.00

General observations

For our first experiment, we simulate the use-case in Talile@ing 100 ms to observe
the behavior of the front-end and the SRAM controller. We silt buffers to 255 words
to prevent overflow, thus enabling us to evaluate both the@ddatency and buffering
that follows from delaying responses. Figure 6.10 plotsvibest-case finishing times,
the actual finishing times and the actual starting timesugetise arrival times of the first
200 requests from requestay.

By studying the figure, three general observations can benfécst, that it is possi-
ble to see which requests that start a new busy period byrigaitithe bound on finishing
time. The starting times of these requests are determin#deetservice latency in the first
term in Equation (6.1), as opposed to by the finishing timénefgrevious request. The
finishing time in this case hence equals the sum of the selatieecy and the rounded up
completion latency, which is 13 clock cycles in total for uegtorr,. This corresponds
to the lowest bounds on finishing time in the figure, while-gaiérference during busy
periods increases the bound. The second general obseristiat the number of clock
cycles between the starting times and the finishing timeeristant for all requests and

6.5. EXPERIMENTS 159

Worst-case finishing time
Actual finishing time -
Actual starting time -

Clock cycles (200 MHz)

0O 20 40 60 80 100 120 140 160 180 200
Request number

Figure 6.10: The first 200 requestsrefin the SRAM use-case.

equal to three clock cycles. This is expected, since the SRAMroller has a constant
service cycle time. One out of the three clock cycles is wherréquest is served, while
the other two are due to the two pipeline stages between thdVSgontroller and the
Response Buffer. The third observation is that the numbetauk cycles between the
worst-case finishing times and the arrival times in FigurE@s not constant for all
requests, as mentioned in Section 6.1. The drawback of@nfpa constant time be-
tween the arrival time and finishing time is that the constemtld have to be at least
equal to our worst case, which is 523 clock cycles in this &tman. However, analyt-
ically computing this value as the worst case assumes agbeti@racterization of the
requested service and its resulting self interferenceghvisi very difficult to obtain. Ac-
tual analytical results are likely to add pessimism, furtinereasing this delayFrom
this observation, we conclude that enforcing a constang thetween the arrival time
and finishing time of a request results in very pessimistenaies.

Tightness of bound on finishing time

We proceed by focusing our attention on the bound on finistimg. We see in Fig-
ure 6.10 that the worst-case finishing times are larger tharattual finishing times,
indicating that the bound is conservative in the shown wateThe minimum difference
between the worst-case and actual finishing times durisgthiulation is 7 clock cycles.
There are three reasons why the bound is not perfectly tige. first reason is that the
requestor does not experience the maximum interferenclicped by the CCSP arbiter.
The service latency bound of the requestor is 4 service,unitde the arbiter measures
a maximum interference of 2 service units. The reason tlead¢gtbound provided by
CCSP is not tight in this case is because it assumes thateeasvprovided in a continu-
ous manner, as discussed in Section 5.8.4, while it is dgtahe discretely. The second
reason the bound is not perfectly tight is also related terdte versus continuous service.
The finishing time of a request is computed based onCtReservice guarantee provided

160 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

by the arbiter. This bound assumes that a requestor redtsvakbocated bandwidth in
a continuous fashion after the service latency, as showrgiar& 6.11. The computed
finishing time, i (w*), is hence after the completion latency when the next redmst
the requestor is scheduled. However, atom-sized requessee/ed in a non-preemptive
manner and either receives service at the full capacityefriemory, or not at all. They
are hence guaranteed to finish one service cycle after tiagiing times, corresponding
to (w*) in Figure 6.11. The next request from the requestor is theedided at the
originally computed finishing time when the server becomeslable again to the re-
guestor. The impact of this effect is that the computed finggtime over-estimated by
[1(wF)] —1=T[1/p'] — 1 service cycles for atom-sized requests. For requestiorthe
use-case, this corresponds to 3 service cycles, which &l ég3 clock cycles with our
SRAM memory. This problem can be addressed by programmiregansl completion
latency of one service cycle that is used when computinghiingstimes, while keeping
the regular one for starting times. However, we did not imy#at this optimization. The
third reason the bound is not tight is related to blocking. ektra service unit is added
to the service latency in Equation (4.8) to account for thegtcauest may arrive just after
a scheduling decision is taken. This actually over-ests#tie blocking with one clock
cycle, considering that a request must arrive at least ooke @fter a scheduling deci-
sion is taken to be blocked. Since a service cycle is a sigkcycle for the SRAM
controller, blocking actually cannot occur, although isigl included in the bound. To-
gether, these three reasons explain why the service latenayd is not perfectly tight
in this simulation.We conclude that the bound on finishing time is conservativenot
tight.

Accumulated
service
\
\
\
\
\

\
AN
[«
b\
/

0 ty(wh) . Service cycles
G(WF) iwh) = G

Figure 6.11: Atoms finish before the computed bound, siney #ire served non-
preemptively.

Added latency and buffering

We now examine the cost of composable service for our obdebguestor in terms of

added latency and buffering. The average actual finishing find the average worst-
case finishing time for, during the simulation are 59.5 and 68.6 clock cycles after th
corresponding arrivals, respectively. This correspondmtincrease of 15.2%, support-

6.5. EXPERIMENTS 161

ing the intuition that delaying responses makes it moreatliffito satisfy requirements
on average-case latency. Delaying responses furthermptas that more data has to be
stored in the Response Buffer to prevent reducing throughhe amount of extra data
to buffer is related to the tightness of the bound on finistimg, since this determines
the extra time an atom spends in the Response Buffer befimg beleased. Without
delaying responses, the read requestors have a maximuroigespuffer filling of one
command and one data word each, since responses are imehedagsed on to the At-
omizer. When enabling delays, the maximum buffer filling éases with one command
and one data word fory and two commands and two data words/fgr These results are
not unexpected, since the requestspére buffered an extra 9 clock cycles on average,
roughly corresponding to slightly more than two completiamienciesWe conclude that
enabling composable service according to our approacheases the finishing times of
the requestors, thus requiring larger buffers to sustanotghput.

Composable SRAM controller

For our second experiment, we experimentally demonsthatiethe resource front-end
makes the service provided by the SRAM controller compasdhlthis experiment, we
illustrate the consequences of small changes in applitatdtware by simulating the
use-case twice (case 1 and case 2) with different variancéeirequest generation for
0. We additionally increase the allocated burstinesgoh Table 6.1 tar;, = 8. This
creates larger service variations for lower priority restoes, allowing us to visualize our
point more clearly. The results for requestgrare shown in Figure 6.12a. We see that
changing the variance causes the actual finishing time®oEtjuests to change, making
the system non-composable. However, the requests arerméhe iDelay Block until
their worst-case finishing times, which are completely tamping for the two cases,
indicating that requests are released from the Delay Blodkeasame time regardless
of these changes. Making the finishing times of requestatspgandent of each other
in this way delivers on one of the two requirements in Defimit6.3 for the service
provided by the front-end to be considered composable. €hmining requirement
is that also the arrival times of the requestors should begaddent. As previously
explained in Section 6.4.3, this is accomplished by badiedglow-control on the worst-
case Request Buffer filling, rather than the actual case.wdrst-case buffer filling is
stored in a counter in the Delay Block and is computed basdteworst-case starting
time of a requestor, making it independent of actual interfee from other requestors.
Figure 6.12b shows that the worst-case Request Bufferfitlfn, is unaffected when the
behavior ofry changes, although the actual filling changes. This impliesthe arrival
times of the requestor are also unaffected. Similar expartsare performed with the
RTL implementation in [106]. The front-end is shown to paicomposable service
with an SRAM controller, both in behavioral simulation and BPGA. We conclude
that the service provided by the resource front-end conbivieh an SRAM controller is
composable.

162 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

Case 1: Actual finishing time
Case 1: Worst-case finishing time -

Case 2: Actual finishing time -
Case 2: Worst-case finishing time ~ +

Clock cycles (200 MHz)

0 20 40 60 80 100 120 140 160 180 200
Request number

(a) Request releases are unaffected by other requestors.

Case 1: Actual free space
Case 1: Worst-case free space -
Case 2: Actual free space -~

Case 2: Worst-case free space +

o |
e

Request Buffer space (words)

246 - ok W g
L
244 +
242 L L L L L L L L L

0O 20 40 60 80 100 120 140 160 180 200
Request number

(b) Worst-case Response Buffer space is unaffected by other
questors.

Figure 6.12: SRAM controller behaving in a composable manne

6.5. EXPERIMENTS 163

Distributing slack bandwidth

The third experiment shows how to increase the performah@®aestors that do not re-
guire composable service. We now consideas a non-real-time requestor and program
its service latency and completion latency to zero clockesyto disable the emulation
of worst-case interference. This causes requests to basegleat the actual finishing
time, as opposed to the worst-case finishing time. This regltlte release time of the
requests fromy by 13.2%, as we have seen in our first experiment. Howevepéehe
formance of the requestor may be further improved by distirlg the slack bandwidth
in the use-case, corresponding to the 18.6% of unallocatedviidth and any allocated
bandwidth that is not used by its requestor. To demonsthateéenefit of slack distribu-
tion, we compare a work-conserving instance of CCSP to omsvmark-conserving one.
As previously discussed in Section 5.3.2, a work-consgraitbiter always schedules a
request when there is a backlogged requestor. The highestypbacklogged requestor
is hence scheduled if there are no eligible requestors. $hecase in Table 6.1 is sim-
ulated twice for 100 ms, the first time with a work-conservarbiter, and the second
time with a non-work-conserving instance. Figure 6.13iitates the results for the first
500 requests from,. It is clear that disabling the emulation of worst-caserifiet@nce
causes requests to finish earlier. However, we note thaipeadt of distributing the
unallocated net bandwidth is more significant in this ussecdn fact, the average fin-
ishing time of request from, is reduced from 59.5 clock cycles after the arrival to 5.5
clock cycles, corresponding to a reduction of 90.7%. Thigdaifference is probably
due to that bandwidth is allocated very closely to the averaguested bandwidth, thus
causing self interference to increase quickly if the retpebservice is bursty-rom this
experiment, we conclude that disabling emulation of woeste interference reduces the
finishing times of requestors that do not require composaéleice. The finishing times
may further reduce significantly by using a work-consenanigjter to distribute slack
bandwidth.

6.5.2 SDRAM experiments

For our second set of experiments, we evaluate our approacimtposable service when
pairing our resource front-end with the predictable SDRAAHKend proposed in Chap-
ter 4. The setup used in this experiment hence corresportie tustration previously
shown in Figure 2.11. Just like in our experiments in Sechi@, the SDRAM back-end
is connected to our example 16-bit DDR2-400 memory, usiegptiitern set generated
by the bank scheduling algorithm withL = 8 and BC = 1 from Table 4.3. The ac-
cess granularity of the memory is hence 64 B and the SDRAM-eackguarantees a
minimum gross bandwidth of 660 MB/s. We keep the same use-assn the earlier
experiments, but we scale up the request sizes to fit withaitget access granularity
of the SDRAM back-end. All request sizes remain an integeltiple of the access
granularity of the memory, resulting in a data efficiency 80%, making gross and net
bandwidth the same. We furthermore increase the allocated in response to the re-
duced gross bandwidth provided by the memory to satisfy #relWwidth requirements

164 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

Worst-case finishing time

Actual finishing time without slack -
Actual finishing time with slack -

Clock cycles (200 MHz)

0 50 100 150 200 250 300 350 400 450 500
Request number

Figure 6.13: Using a work-conserving arbiter to distributellocated bandwidth may
significantly reduce finishing times.

of the requestors. The total allocated net bandwidth ec&R% of what is provided
by the SDRAM memory, indicating a high load. The use-cashimdxperiment, shown
in Table 6.2, is hence identical to what we previously use8ention 5.8. The service
latencies,©¢¢, and completion latencies;, expressed in clock cycles, are computed
according to Definition 6.7 and Definition 6.8, respectiveljhe completion latencies
are determined based on the average service cycle lengit il considered memory
pattern, corresponding to = 16/0.825 = 19.4 clock cycles. The intuition behind this
value is that our pattern set is mix read dominant, causiegubrst-case bandwidth and
latencies to be provided with alternating read and writauests. For our pattern set
twir + tread = 18 clock cycles and,, + twrite = 20 clock cycles, resulting in an average
of 19 clock cycles. The remaining 0.4 clock cycles\iaccounts for refresh by ensuring
that 32 clock cycles can be lost once every 1560 when the meneads to refresh. Note
that the completion latencies are much longer for SDRAM mesaowith large access
granularities, making the discrete approximation medraress significant. Rounding
the completion latencies @f, r1, andr, upwards, reduces their provided bandwidths by
approximately 1 MB/s, and the provided bandwidth-gby just a couple of KB/s. The
service latencies include a latency offset of 32 clock cytdecompensate for the use of
the average service cycle time when computing the complédiency.

General observations

For our first experiment with SDRAM, we simulate the use-ahgéng 100 ms to make
some general observations about the behavior of the frathtaed the back-end. The
results of this simulation for the first 200 requests-pare shown in Figure 6.14. There
are two interesting differences compared to the resultsi®ISRAM controller, previ-

6.5. EXPERIMENTS 165

Table 6.2: SDRAM use-case specification and configuration.

Requestor Type b, Size p, o/ o o I«
[MB/s] [B] [su] [sulsc] [cc] [cc]
ro Read 2100 512 0 10 0319 88 60.8
r1 Write 2100 128 1 10 0.319 106 60|8
To Read 2100 64 2 1.0 0.319 182 60.8
3 Write 200 256 3 1.0 0.031 1418 621

ously shown in Figure 6.10. The first difference is that tharabon finishing time is
flatter, indicating less self interference. This is exptaiby that requests are generated
with the same variance in both cases, although the avenageb@tween generated re-
guests increases with the request size. Requests in thisasseare hence generated in
a less bursty fashion. The second difference is that the auwftclock cycles between
the starting times and finishing times is no longer constaut varies between 20 and
54 clock cycles with an average of approximately 24. Thisat@m is explained by the
introduction of read/write switches and refreshes. Theatdfof read/write switches are
difficult to see, since they are in the range of a few clockeyclThe 54 cycle difference
due to refresh is somewhat more noticeable, although it bajypens approximately
once per 100 requests. In Figure 6.14, there is interfertooe refresh for request 50
and request 178.

Worst-case finishing time
Actual finishing time -
Actual starting time -

Clock cycles (200 MHz)
=
o
o

0O 20 40 60 80 100 120 140 160 180 200
Request number

Figure 6.14: The first 200 requestsrgfin the SDRAM use-case.

Tightness of bound on finishing time

When looking at the bounds on finishing times in Figure 6.14 not that they seem
less tight than for the SRAM in Figure 6.10. In fact, the minimdifference between
the actual finishing times and the corresponding bounds4sci®k cycles. The same

166 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

reasons for the bound not being tight in the case of the SRAIMagpplies to the case
of SDRAM. Increasing the allocated rates of the requestarthérmore increases the
possible interference from other requestors, accordiriggimation (5.9). The bound on
interference from other requestors is 150 clock cyclefoalgh the arbiter only mea-
sures 70 clock cycles, excluding blocking, loosening thenolowith 60-80 clock cycles
out of the total 134. Blocking is over-estimated by one clogkle, although this is neg-
ligible in the case of SDRAM, where latencies are much lortyes to the larger access
granularity. The impact of computing the finishing time todree completion latency
after the starting time, as opposed to one average senite, ¢y quite significant also in
this case. The completion latency is 61 clock cycles, wisetiea average service cycle
length rounds up to 20 clock cycles, loosening the bound agtiroximately 40 cycles.
For the case of SDRAM, there are also two new reasons why tinedois not tight. The
first reason is that the bound assumes the maximum numbetedfering refreshes and
read/write switches, where the actual case may contain [Ess second reason is the
added latency offset, which is very pessimistic unless theah service latency is very
close to a multiple otREFI. According to measurements in the arbiter, the requestor
actually experiences interference that is less than 588 8%, which means thaX used
to compute the completion latency has already amortized aidke refresh by the time
it happens. Together, all these factors contribute to thebmot being tight We con-
clude that the bound on finishing time for SDRAM is consereabiut less tight than the
bound for SRAM, due to the extra uncertainties introducethbyariable service cycle
length.

Added latency and buffering

The fact that the bounds on finishing time are less tight felSBRAM than the SRAM,
implies that the added latency and buffering by delayingiests increase. The aver-
age actual finishing time and average worst-case finishing tf 5 in this use-case
are 49 and 254 clock cycles after the corresponding arriveds, respectively. Delay-
ing responses hence increases the average latengybgfa factor 4.2 in this use-case.
However, this added latency can be reduced by at least 25%thysing the comple-
tion latency to compute the bound. It is also important tosider that generating the
requests in a burstier manner may increase the average eatogletion latency, while
the bound remains unaffected, hence reducing the coststefadded average latency.
The Response Buffer of the read requestors has a maximung fiifione command and
16 data words, corresponding to a single atom, when resparsenot delayed. En-
abling emulation of worst-case interference increaseftsponse Buffer filling to four
atoms forry and slightly less than six atoms feg. We conclude that the larger access
granularity and looser latency bound when using SDRAM the relative cost in
terms of average latency and required buffer capacity casgphto SRAM when enabling
composable service.

6.5. EXPERIMENTS 167

Case 1: Actual finishing time
Case 1: Worst-case finishing time -

Case 2: Actual finishing time -~
Case 2: Worst-case finishing time ~ +

400 1

Clock cycles (200 MHz)

0 20 40 60 80 100 120 140 160 180 200
Request number

(a) Request releases are unaffected by other requestors.

Case 1: Actual free space
Case 1: Worst-case free space -

Case 2: Actual free space -~
Case 2: Worst-case free space +

254 §

252 fi

250

248 |4 1

Free space (words)

246 - g g i g sy 1
244 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Request number

(b) Worst-case Response Buffer space is unaffected by other
questors.

Figure 6.15: SDRAM controller behaving in a composable neann

Composable SDRAM controller

For our second experiment with SDRAM, we demonstrate thattithe requests are
released from the Delay Block and the worst-case ResporféerBpace are independent
of other requestors. We follow the same procedure as wittSRRAM controller and
simulate the use-case twice, changing the burstinegs loétween the runs. The impact
of this change on, is shown in Figure 6.15. We note that the actual finishing $ime
and Response Buffer filling changes, while the worst-cabeegeemulated by the Delay
Block are unaffectedThis leads us to conclude that the service provided by thaures
front-end combined with our SDRAM back-end is composable.

168 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

6.6 Summary

A predictable memory controller enables formal verificataf latency and throughput
requirements of applications. However, this requires foperance model of the appli-
cation, which is not always available. A complementaryfietion approach based on
simulation ofcomposable systenis proposed in this chapter. Applications in a com-
posable system cannot affect each other’'s temporal bahbyi@ven a single clock
cycle. This enables independent verification of applicationsuatg the verification
effort. Existing approaches to composable system design are edteicted to appli-
cations that can be statically scheduled, or share inHgreminposable resources using
Time-Division Multiplexing (TDM), which cannot efficientlsatisfy the requirements
of latency-critical requestors. Neither of these appreacipply to an arbitrary appli-
cation in a platform with our proposed SDRAM back-end andd@+€ontrolled Static-
Priority (CCSP) arbiter.

This chapter proposes a new approach to composable reshadeg that applies to
any combinatiorof predictable resource and Latency-Raf&R() arbiter without any re-
strictions on the application. The key idea is to delay ajhals sent from the resource to
a requestor bymulating worst-case interference from other requestdtis makes the
system composable on the level of requestors, which is agufticondition for it to be
composable on the level of applications. Our approach stppooviding composable
service to a subset of the requestors by dynamically ergblirdisabling emulation of
worst-case interferenc@his enables slack bandwidth to be used to improve the perfor
mance of requestors that do not require composable serficequest is scheduled at its
starting timeand finishes receiving service at fimishing time Providing composable
service in our approach requires these to be bounded. Bawreésderived based on the
service guarantee of the combined predictable resourcéhamn®iR arbiter. We further-
more showed how to adapt these bounds for resources witihlaiservice cycle length,
such as our SDRAM back-end.

The ideas presented in this chapter are implemented¢asposable resource front-
endthat is placed in front of the predictable resource. Theitgcture of the front-end
has three main building blocks: 1) #&tomizer 2) aDelay Block and 3) aData Bus
with an arbiter in the class of R servers The Atomizer chops requests into smaller
pieces fitting with the access granularity of the resourakrarrges responses into the
expected size. This prevents malfunctioning requestors friolating latency guaran-
tees of other’s by sending large requests, and simplifiesei$teof the architecture. The
Delay Block makes the front-end composable by delayingadgio emulate worst-case
interference from other requestors. The Data Bus schedetpgests for resource ac-
cess according the policy of its attach@® arbiter. It was experimentally demonstrated
that the resource front-end fitted with a CCSP arbiter pesicbmposable service when
combined with both a SRAM controller and our SDRAM back-eBdsed on our exper-
iments, we concluded that the bounds on finishing times ameerwative, but not tight.
We also demonstrated the benefits of distributing slack Wwaditl to requestors that do
not require composable service by disabling the delays amdj&a work-conserving ar-
biter.

CHAPTER [

Configuration

Our journey towards a predictable and composable memonyatitam is approaching its
end. A predictable SDRAM back-end has been presented thbtenet bandwidth and
latency to be bounded. The memory controller architectuas @ompleted by a front-
end that enables the SDRAM back-end, or any other predetasiource, to be shared
among multiple requestors in a predictable and composabltmer using an arbiter in
the class of Latency-Rate&LR) servers. While presenting this architecture, a number
of instantiation parameters and configuration settingeweentioned. The remaining
problem is to automatically derive these parameters anithggt such that the requestor
requirements are satisfied, thus delivering on our autemagquirement.

This chapter introduces a configuration flow that autombyickerives architecture
parameters and configuration settings, given requestaireggents and a specification
of the memory and arbiter. The discussion is structuredratdbe different steps in
the configuration flow, illustrated in Figure 7.1, and releswvily on results from earlier
chapters. This chapter hence acts as a summary that brimggeites together to satisfy
requestor requirements. First in Section 7.1, we formakzpiestor requirements and
define a metric that is used to evaluate the quality of a gianfiguration. We then
proceed by walking through each of the steps in the configurdlow in Section 7.2
through Section 7.6. A running example is used throughoesélsections to clearly
illustrate what happens in the different steps of the flow.e Tlow is experimentally
evaluated with a large number of use-cases in Section 7ardile chapter is concluded
with a summary in Section 7.8.

169

170 CHAPTER 7. CONFIGURATION

Provided
. normalized Provided Provided
Normalized bandwiths & bandwiths & bandwiths &
requirements latencies latencies latencies

Normalize Arbiter Denormalize Verify
7 Requirements Configuration Allocation Requirements
Requestor =0) —

requirements Memory Slack bandwidth

patterns increased and
latency requirements
satisfied

Pattern Increase burst count
Generator
Memory

specification

Figure 7.1: Overview of the automated configuration flow.

7.1 Formal model

The discussion in this chapter is focused around satisfgggestor requirements, mak-
ing it prudent to include these in our formal model. Definitib.1 states that a requestor
requires a maximum service laten@©, measured in clock cycles, and a required min-
imum net bandwidth). These requirements are provided by the first part of the mgpp
process, discussed in Section 1.1.4, which is considersifleuthe scope of this thesis.
The requirements of a requestor are assumed to be derivétéiedt ways depending on
its real-time classification. The requirements of hard ama feal-time requestors are as-
sumed to be derived based on a conservative model of thecappii that guarantees that
the application requirements are satisfied if the requestprirements are met. Soft real-
time applications are often more complex than their hardf@ndreal-time counterparts
and a conservative application model may hence not exidt.r&al-time requirements
may hence be derived based on estimates or simulation thgésts that the application
meets its real-time requirements often enough to be coregideseful. The requirements
of non-real-time requestors, on the other hand, just halve tterived in a way that makes
the application seem responsive to the user. A non-rea-tégquestor may hence have
an infinite latency requirement and use only slack bandwittimay not be possible to
derive suitable requirements if there is no model of theigppbn. For this reason, it is
possible to side-step parts of the configuration flow and raywaonfigure a requestor.
This can be used as a fall-back mechanism together with atrootbased verification to
ensure that all applications meet their requirements.

Definition 7.1 (Requestor requirementsyhe requirements of a requestorc R are
denoted by(©¢°,b,.), where©S is an upper bound on service latency in clock cycles
andb,. the required net bandwidth in MB/s.

We proceed in Definition 7.2 by defining a use-case as vallttéfd requirements are
satisfied: 1) The allocated bandwidths for all requestgrsnust be at least as large as the
required bandwidths,.. 2) The provided service latenci€3:“, cannot be larger than the
corresponding bound@f.c. 3) The requestors cannot be allocated more bandwidth than

7.2. MEMORY PATTERN GENERATION 171

what is provided by the memory. The goal of the flow is to deimgtantiation parameters
and settings for the memory controller, such that all ussesare valid. However, the
current implementation of the configuration flow is limitedt single use-case. General-
izing the flow to remove this limitation is considered imgort future work. There may
be many configurations that result in a valid use-case. ;d#ise, the one configuration
with maximum slack bandwidth, defined in Definition 7.3, iferred. The rationale
behind this decision is that slack bandwidth can be used podwe the performance of
requestors that do not require composable service, asopidyishown in Section 6.5.
Note that slack bandwidth is computed based on gross battgvgithce the net usage
depends on the request size of the requestor the slack éatbbto.

Definition 7.2 (Valid use-case) A use-case is defined as validVff ¢ R é;ic >
O A bl =>br A D yrepn by < O™

Definition 7.3 (Slack bandwidth) The slack bandwidth in a use-case is definebfa% =
b= 5 e b

The configuration flow will be demonstrated step by step uaimgxample use-case.
For this purpose, we revisit the use-case with four requegiteviously used in Sec-
tion 5.8 and Section 6.5. Service latency requirements ddedito the use-case, as
shown in Table 7.1, to provide a starting point for the configion flow. The consid-
ered memory controller is using our resource front-enddfittéth a Credit-Controlled
Static-Priority (CCSP) arbiter with six bits of precisicamd an SDRAM back-end in-
terfacing to our example 16-bit DDR2-400 memory. The pregosonfiguration flow
runs at design time and only configures the memory contrdllee configuration of the
network-on-chip is covered in [35].

Table 7.1: Use-case specification.

Requestor Type b, Size ©¢°
[MB/s] [B] [cc]
o Read 210.0 512 300
T Write 210.0 128 110
T9 Read 210.0 64 90
r3 Write 20.0 256 200

7.2 Memory pattern generation

The first step of the configuration flow is to generate a set ahorg patterns. For
an SDRAM controlled by our proposed back-end, any of therdlyns presented in
Section 4.5 can be used. However, we have chosen to intetpeateank scheduling
algorithm into our tool flow, since it provides a favorablade-off between run-time and
memory efficiency, as experimentally shown in Section 4.7.

172 CHAPTER 7. CONFIGURATION

The memory architecture and timings, previously defined éfiriitions 3.1 and 3.2
are supplied as inputs to the memory pattern generatiomitdgo These are provided
as parts of a system architecture specification file, showippendix B. The final input
to the pattern generation is the burst count, although th&ipplied automatically by
the configuration flow, since the optimal burst count is naivn up front. Larger burst
count results in more gross bandwidth, as previously show®eiction 4.7. Increasing
burst count thus provides an opportunity to create morekddandwidth, and hence a
better configuration. However, it was also shown that irgirepthe burst count increases
access granularity, potentially reducing net bandwidthdjuest sizes are not sufficiently
large. Increasing burst count furthermore increases thgtheof the access patterns,
making it more difficult to satisfy latency requirements.olr configuration flow, this is
addressed by starting to generate patterns With= 1 and later visit other options by
iteration in the flow. This is further explained in SectioB.7.

No memory patterns are needed if the memory is an SRAM, diedrby an off-
the-shelf SRAM controller. However, a pattern specificai®generated that describes
the characteristics of accesses to the memory. For thisfigagion, we setteaq = 1,
twite = 1, twr = 0, trw = 0, andies = 0, reflecting that a simple SRAM reads or writes
a burst of one word in a single clock cycle. It furthermoresloet require any time to
switch from reads to writes, and a refresh is performed in #ere. The advantage with
this specification is that it abstracts from the detailedrigrbehavior of the memory, al-
lowing the same configuration flow to be used with severaédifit memory types. This
approach fits well with our abstraction requirement. Cutyewe use the configuration
flow with both SRAM and SDRAM, although we believe that thetgat specification is
general enough to also cover other types of memories, suitésas

The memory pattern generation step determines the settefpsithat should be im-
plemented in the Command Generator of the SDRAM back-end. pElttern specifica-
tion determines two instantiation parameters used in theuree front-end: 1) The min-
imum service cycle time), used by the Data Bus to determine when the next scheduling
decision should be made. This parameter is computed aogptdiEquation (6.3). 2)
The access granularity of an access pattgrmhich is the atom size used by the Atom-
izer, is calculated according to Definition 4.2.

Applying the memory pattern generation step to our exampéeaase and system
results in the output shown in Table 7.2. The generatedmpadtt withBC = 1 is the
same as we previously generated for this memory with the ahkduling algorithm
in Section 4.7. This pattern set has an access granularliy & and provides a gross
bandwidth of 660 MB/s. The minimum service cycle length i<ld&k cycles, resulting
from either a read pattern or a write pattern, since they guelty long.

Table 7.2: Output from pattern generation stage.

tread twrite frew bt bref A g
[cc] [cc] [ec] [ec] [cc] [cc] [B]
16 16 2 4 32 16 64

7.3. NORMALIZATION OF REQUIREMENTS 173

7.3 Normalization of requirements

The second step in the configuration flow is to normalize tlyestor requirements,
thereby making them independent of the target memory. Therddge of this abstrac-
tion is that it makes the choice of memargmpletely transparerib the arbiter configu-
ration step, allowinginysupported arbiter to be configured forysupported memory in
a streamlined fashion. The requirements are normalizeabyerting the requirements
to service units according to Definition 7.4. The requestguirements are provided by
the user as an input to this stage using a use-case speoififitej shown in Appendix B.
The second input is the description of the generated menaitgmp set.

Definition 7.4 (Normalized requestor requirementd)he normalized requirements of a
requestor € R are defined a$0©,., p,.), where®,. is an upper bound on service latency
in service cycles ang, the required service rate.

Definition 6.7 states how to convert a service latency exgaesn service units to
clock cycles. Since normalizing the service latency regquent is the inverse of this
operation, we proceed by inverting the expression andrglfar the service latency in
service units. Equation (7.1) starts the inversion bysgatiatocc > ©° and solving for
the pattern dominant expressimx(é+1). The inversion is conservative, but somewhat
pessimistic, since it adds up to an additional refreégh,to the worst-case latency when
removing a ceiling.

i >0 = ttot(é) +A+ Npipe =
{ taux(© + 1)

-t ta(©® + 1)+ A e >
tREFI_tref_tblock—‘ ref + tau(© + 1) + A + npjpe >

< taun(© + 1)

1| - e+ tanx(© + 1) + A + npipe =
tREFI—tref_tblock+) ref aux(*)+ +np|pe

taux(é + 1) . tref

tret + taun(© + 1) + A + 1ipipe =
tREFI_tref_tblock+ ref +taud(© + 1) + + Tpipe

tref
tREFT — tret — tblock

O% — tref — A — Npipe

tret
1 e
+ tREFT —tref—tolock

taux(é+ 1) : <1 +) ‘|’tref‘|'A‘|'npipe:>

> tan(© +1) (7.1)

We proceed by solving fa® for the different dominance classes according to the dif-
ferent cases in Equation (4.7). Equation (7.2) and Equdfid) derive upper bounds on
6 for read-dominant patterns and mix-read-dominant patteespectively. The cases
of write-dominant and mix-write-dominant patterns areivist in the same manner, but
With treaq SWitched fortyie andtwy switched forty,, respectively. Equation (7.3) in-
troduces an over-estimation of the worst-case latency wheroving the ceiling and

174 CHAPTER 7. CONFIGURATION

floor operations. The pessimism introduced by the inveram added cost in terms
of latency attributed to our choice to use abstraction tadpte the configuration of the
memory and the arbiter.

O — trer — Npipe

tref
1 + tREFT—trei—A—tplock

O — tret — A — Npipe
tref
1 + tREFI —tret—tblock

Ace A — 1 A
(@ tref Tpipe — tread — tWtf) . >0 (72)

tref
1 rei
+ tREFT—tet—tplock

> taux(é + 1) = (é + 1) . tread + twtr =

— tread — twtr > © - tread =

O% — tret — A — Npipe

tref
1 + tREFT—tret—tbiock

6+1 6+1
’72-‘ * (twtr + tread) + {ZJ - (trow + twite) >

O+1 O+1
(2 + 1) : (twtr + tread) + (2) ’ (t”W + twrite) =

PN

6+3 O+1
T : (twtr + tread) + T : (trtw + twrite) =

> tax(©® +1) =

O%° — tret — A — npipe 3 1 .
= tref plpe_i'(twtr"’tread)_5'(trtw+twrite) > O-
1 + tREFI—tret—tblock

twtr + tread + trtw + twrite -
2
O°C —trer—A—
#trefnp'pe - % ' (twtr + tread) - % ' (trtw + twrite)
It mrrr————
tREFI—tref—tplock

6<

(7.3)

twtr +tread+rtw +twrite
2

Our SRAM pattern specification is technically mix-read-dioamt according to Def-
inition 4.8, and is hence normalized using Equation (7.8)s Bpecification i$;eaq = 1,
twrite = 1, twtr = 0, trw = 0, andter = 0, reducing the equation © < O — nppe — 2.
This is an over-estimation of two clock cycles, which is quiin acceptable loss for a
streamlined configuration flow. However, it can easily benglated by treating SRAM
as a special case.

The normalized bandwidth requirement of a requestois a service rate that rep-
resents the required fraction of the total available seruitits provided by the memory.
However, the size of a service unit equals the access graguwathe resource, which
may be larger than the request size of the requestor. Thidgmoof data efficiency must
hence be addressed in the normalization to ensure that tianéwidth requirement of

7.4. ARBITER CONFIGURATION 175

the requestor is satisfied. This is done by converting thbaetwidth requirement of a
requestor into a gross requirement by scaling it with theiestprs data efficiency, previ-
ously computed in Equation (4.6). The intuition behind thithat a requestor that cannot
use half of the data in a service unit hence requires twiceaas/rservice units to satisfy
its requirements. This implies that the normalized banttwidquirement may increase
with burst count, since a larger access granularity regultsver data efficiency, as pre-
viously shown in Equation (4.6). The normalized bandwidthuirement is computed
according to Equation (7.4). This equation reduceg,te- b’;—gak for the SRAM pattern
specification, since all categories of memory efficiencylf@%.

b, b,

Pr = ~dat = “dat k
edata. pgross ~ edata . cgross. ppea

(7.4)

The results of normalizing the requirements in our exampéeease are shown in Ta-
ble 7.3. Note that the service latency requirement,d§ zero service cycles. This sug-
gests that it is not possible to satisfy much lower latenguirements than its 90 clock
cycles with our example memory due to three factors: 1) uidaixe interference from
refresh oft.e; clock cycles for every startetREFI clock cycles, 2) the service latency
offset,A, and 3) the overhead introduced by the pessimistic inversithe requirement.
However, the requirements in service cycles scale bettir tvé requirements in clock
cycles after the first service cycle, as only effects of necur as requirements in clock
cycles increase. This is seen as the latency requiremertCotlbck cycles turns into a
requirement of 1 service cycle for, while 200 clock cycles results in a requirement of 5
service cycles for;. Computing the normalized bandwidth requirement is quitgght
forward, since the access granularity of the memory patsetd B. All request sizes are
hence integer multiples of the access granularity for thistocount, making gross and
net bandwidth equal. Normalizing the results shows tha 98.of the available gross
bandwidth is required by the requestors.

Table 7.3: Output from normalization stage.

Requestor ©,. Or
[sc] [su/sc]
To 10 0.318
o] 1 0.318
To 0 0.318
r3 5 0.030

7.4 Arbiter configuration

The arbiter configuration is computed after the requestguirements have been nor-
malized. Due to the normalization, the arbiter configurai®completely independent
of the memory. The implementation of this step depends opadlcular arbiter, which

176 CHAPTER 7. CONFIGURATION

is specified in the system architecture specification pexvidy the user. It is possible
for the user to side-step the arbiter configuration for a subkthe requestors by man-
ually entering configuration settings in the use-case fipation file. As mentioned in
Section 7.1, this enables the user to manually search ftaldeisettings if requestor
requirements cannot be derived for an application. We by showing how the con-
figuration is done for the CCSP and Frame-Based StaticiBrifBSP) arbiters. We
split the configuration of these arbiters into two stepsdwadth allocation and priority
assignment, as shown in Figure 7.2 and solve the problenrdingato a waterfall ap-
proach. Decomposing the problem in this manner has the taly@anf making it easier to
solve at the expense of possibly not finding a valid configomatven if one exists. The
two steps are discussed in more detail in Section 7.4.1 aciib8€7.4.2, respectively.

Provided
normalized
bandwidth &
latencies

Arbiter Configuration

!
fequirements Bandwidth Priority
Allocation Provided Assignment
' normalized

bandwidth

Figure 7.2: Configuration of CCSP and FBSP consists of a baltldallocation step and
a priority assignment step.

7.4.1 Bandwidth allocation

The input to this step is the normalized bandwidth requireshef the requestorg,.. The
bandwidth allocation step needs to perform two tasks. Thketfisk is to determine the
allocated normalized bandwidths (allocated service yatés> p.., for the requestors.
Secondly, it has to find arbiter-specific settings to alle¢hese bandwidths. We discuss
each of these tasks in turn.

The first task is addressed in a very simple way by assigpjng- p, for all re-
questors. This ensures that each requestor has their kdthdwgiguirement satisfied,
assuming they do not request more bandwidth than is offeyettiéo resource in total.
This is checked in verification step at the end of the flow. Atition with this approach
is that it does not consider the fact that bandwidth allecaethay affect the ability to
satisfy latency requirements. Reserving additional badithweduces the latency of a
requestor if bandwidth and latency are coupled, such asercéise of Time-Division
Multiplexing (TDM). However, allocating additional banéhth to a requestancreases
the latency of lower priority requestors in priority-basathemes like CCSP and FBSP.
For simplicity, we choose to keep these steps decoupléahyuah we consider improve-
ments in arbiter configuration an important part of futurekvo

The second task is to find arbiter settings that provide tlhieated bandwidth. For
frame-based arbiters, such as TDM or FBSP, this involvesnignthe number of slots,
¢, guaranteed to a requestor in a frame of iz&he frame size is manually chosen
to balance to conflicting requirements of providing low tatg and over allocating, dis-
cussed in Chapter 5. The frame size is included as an inphistetep through the system

7.4. ARBITER CONFIGURATION 177

specification, listed in Appendix B, if FBSP is used. Givenanfe size, bandwidth is
allocated with FBSP by letting, = [p..-f], as discussed in Section 5.6.2. Bandwidth al-
location with CCSP, on the other hand, considers two parsiper requestofy,, p..),

as previously stated in Definition 5.12. These parameterstonly reserve a particular
bandwidth, but also explicitly define the maximum deviatianm this value through the
allocated burstiness. In contrast, this value is implicitllocated for a requestor with
FBSP when the slots are reserved. CCSP requiresrthatl for a requestor to act as a
LR server. The benefit of assigning > 1 is that a requestar; is temporarily served
with a higher ratep;, = 1 — (ZVUGR’& p;j) > p).., while 7(t),, > 1, as shown in
Figure 7.3. In essence, this means that a lower priorityestgu does not receive service
while a higher priority requestor is eligible. Assigniag > 1 increases the time eligi-
ble high priority requestors enjoys service at the hightr e the expense of increased
service latency of the lower priority requestors. The iasgein service latency is visible
in Equation (5.9) through the dependence on the allocatestibass of higher priority
requestors. In theory, the temporarily higher service, r@tecan be used to reduce the
worst-case finishing time of a request, since it results ifmngroved lower bound on
provided service in an interval;, as shown in Figure 7.3. However, this is not captured
by the LR server model, which assumes a constant serviceptatfer a service latency
O. Extending theCR server model to cover multiple provided service rates isviaght
future work that allows the behavior of CCSP and many otheiters to be more ac-
curately modeled. Since assigniag > 1 to a requestor increases the service latency
of lower priority requestors, without reducing worst-céency or worst-case finishing
times of the requestor itself, we choose to configtire- 1 for all requestors.

Once the allocation parameters have been determined, theljsaretized to fit with
the allocation granularity of the arbiter. For CCSP, actimgrfor over allocation results
in a discrete allocated burstinesse$, and a discrete allocated rate§, previously dis-
cussed in Section 5.6.1. These are determined as the @locitategy determines the
three parameters,, d,., andc,.(0) that approximate the service allocation of a requestor.
The bandwidth allocation of CCSP uses the Closest Rate Appetion (CRA) strategy
instead of the Closest Burstiness Approximation (CBA)¢sithe experiments in Sec-
tion 5.8 indicate an increased chance of satisfying a gietmfsrequirements with this
strategy.

The results of allocating bandwidth in our use-case for a&®iter using the CRA
allocation strategy are shown in Table 7.4. Choosifitp be integers implies that there is
no discretization of the allocated burstinesses and hémte’t = o/ = 1.0. From this,
it furthermore follows from Definition 5.34 that.(0) = d,.. Allocating the service rates
with a precision of six bits results in an over-allocatecraft 0.4%. The total allocated
service of all requestors, including over allocation, is¢®98.9% of the available service
units. Observe that the closest approximation of the aéateates,./d,., does not make
use the largest possible denominatér £ 63) for any of the requestors. This is in fact
rarely the case, which is why the CRA allocation strategyiced the over-allocated rate
over CBA.

178 CHAPTER 7. CONFIGURATION

v,
- w,
g w
s g w
S L
g 2 </
S @ w
o0
3]
<

y

@) Service cycles

Figure 7.3:LR servers cannot capture service provided with multiplesrat@ requestor.

Table 7.4: Results from the bandwidth allocation stage.

Requestor o o ny dr ¢(0)
[su] [su/sc]
ro 1.0 0.319 15 47 47
81 1.0 0319 15 47 47
T 1.0 0.319 15 47 47
r3 1.0 0.0312 1 32 32

7.4.2 Priority assignment

Priorities are assigned using the optimal priority assignhalgorithm proposed in [14].
This algorithm is reproduced in Algorithm 7.1, based on th@lementation in [107].
Note that|R| represents the number of elementsiin The algorithm first finds a re-
questor that meets its service latency requirement withidivest priority. If such a
requestor is found, it is assigned the lowest priority. [fitiple requestors are found, a
choice between them can be made arbitrarily. This procadtinen repeated for the next
higher priority. The algorithm terminates either if all guities are assigned, indicating
that a valid priority assignment has been found, or if nonta@femaining requestors can
meet their service latency requirement at a particulad Ja@waicating failure. It is shown
in [14] that this algorithm has a quadratic time complexitg @ optimal in the sense that
it is guaranteed to find a successful priority assignmenté exists. For the algorithm
to be correct, it is required that the service latency is nb@mioally non-increasing with
decreasing priority level, meaning that giving a requebtgher priority may not result
in increased service latency. This assumption holds fdr tha service latency equations
of CCSP and FBSP, previously shown in Equations (5.9) ariB)brespectively. Pri-
ority assignment concludes the arbiter configuration fahB2CSP and FBSP, since all
configuration settings have been derived. The configuratittings are stored pending
final approval in the last step of the flow. The discrete aledaervice rateg)’, and the
service latencies),., are output from the arbiter configuration.

7.5. DENORMALIZATION OF ALLOCATION 179

Algorithm 7.1 Optimal priority assignment algorithm.

prio— |R| -1
repeat
finished« false
failed «— true
j<0
repeat

assign priority prio ta-;
if ©,, <6,, then
prio — prio - 1
failed — false
finished« true
else
restore old priority of-;
end if
j <—J +1
until finished or j=prio - 1
until prio =0 or failed

The priority assignment for our use-case is shown in Tal@le Priorities happen to
be assigned according to the tightness of the latency ®meints, which seems intu-
itive, but does not always result in the best solution. Famegle, a requestor with high
allocated rate and burstiness may significantly increaséatiency of a requestor with a
low service allocation if given high priority. However, thequestor with the low service
allocation cannot significantly interfere with others ivgn high priority, making this
an interesting option, even if the latency requirement eftilgher priority requestor is

tighter.

Table 7.5: Results from priority assignment stage.

Requestor p. ©, O,
[sc] [sc]

To 3 9 10

el 1 1 1

T 0 0 0

T3 2 5 5

7.5 Denormalization of allocation

This step receives the discrete allocated rates and séat@ecies along with the gener-
ated memory patterns and transforms it from the normalizedain with service units

180 CHAPTER 7. CONFIGURATION

and service cycles to the domain of bytes and clock cycles SHEmvice latencies are
converted to clock cycles using Definition 6.7, and the ditrallocated rates to band-
widths in MB/s by Equation (7.5). The service latency in &agcles is one of the four
configuration settings for the Delay Blocks. The other ttsettings are related to the
completion latency. First, there is the integer p#ft, which is computed according to
Definition 6.8 and is rounded up when programmed. This i®fadd by the two num-
bers,n; andd}, that are used to approximate the fractional part. Theseparameters
are determined by the CRA algorithm to get tightest possipfgoximation of the exact
completion latency. The denormalized allocated bandwidtid service latenciesf¢,
b’), are forwarded to the next step in the flow.

b, = pll - b (7.5)

Denormalizing the arbiter configuration of our running exéerusing six bits to rep-
resent the fractional parts of the completion latency, gjiue the results in Table 7.6.
The denormalized bandwidths show the actual meaning ofwbeailocation resulting
from discretization in the CCSP arbiter. The over allocdiaddwidths are quite mod-
est, indicating that the chosen precision is suitable far tise-case. We observe that
the completion latency afs; is 621 clock cycles, which seems to be a rather long time.
This completion latency follows naturally from the low bavidth allocation of the re-
questor. Service latency is decoupled from rate usingifiger but completion latency
corresponds to the time it takes to serve an atom given apkatibandwidth allocation.
The only way to reduce this number is hence to increase theresbbandwidth.

Table 7.6: Output from denormalization stage.

Requestor bl o I nr df
[MB/s] [cc] [cc]
o 2105 258 60.8 11 50
71 2105 106 60.8 11 5(
T9 2105 88 60.8 11 50
T3 206 182 621 15 5§

7.6 Requirement verification

The requirement verification step asserts that the useisagdid according to Defi-
nition 7.2, meaning that all bandwidth and latency requénta are satisfied without
allocating more bandwidth than provided by the memory ailetr. If the use-case is
valid, the computed configuration is stored as a candidetegavith its associated slack
bandwidth, determined according to Definition 7.3. It isgibke that there exists a con-
figuration with a larger burst count that provides more slaakdwidth. This is investi-
gated by increasing the burst count to the next power of twbitemate in the flow, as

7.6. REQUIREMENT VERIFICATION 181

shown in Figure 2.12. For each iteration, the configuratidth the most slack band-
width is stored. The loop terminates in either of two caseS:he latency requirements
of a requestor could not be satisfied. Increasing the bursttaesults in larger access
granularity and thus longer latencies. The configuratiow fill hence not be able to
satisfy the failing latency constraint for any larger burstint. 2) The amount of slack
bandwidth is less than or equal to the slack bandwidth of teeipus iteration. If the
amount of slack bandwidth does not increase with the butsttcthe access granularity
of the memory is already too large considering the requessf the requestors. Any
gains in bank efficiency or read/write switching efficienag &ence cancelled out by
losses in data efficiency. The iteration is guaranteed toitete with these conditions,
since both latency requirements and request sizes are. fiRite all current practical
applications, burst size is unlikely to go beyond four, sititis already implies a large
access granularity and potentially long latencies.

The inputs for the requirement verification of our use-cagseshown in Table 7.7.
The configuration withBC' = 1 is valid, since all bandwidth and latency requirements
are satisfied and the total allocated bandwidth is appraeiné&52 MB/s, resulting in a
slack bandwidth of 8 MB/s. This configuration is stored as &pial candidate, while
we iterate in the flow to generate a configuration with' = 2. Only the most inter-
esting parameters and configuration settings are shownglthe iteration to keep the
discussion focused.

Table 7.7: Allocated bandwidths and service latenciesttayavith their corresponding
bounds.

Requestor by bl er o
[MB/s] [MB/s] [cc] [cc]
7o 210.0 2105 258 300
1 210.0 2105 106 11€
To 210.0 2105 88 90
r3 20.0 20.6 182 20(Q

Increasing the burst count to two results in the pattern saetegated by the bank
scheduling algorithm that was previously shown in Table 4TBis pattern set offers
a gross bandwidth of 716 MB/s, which is an increase of 8.5% twve pattern with
BC = 1. Normalizing the requirements with respect to the new pattet results in the
output in Table 7.8. Observe that the service latency reqments, expressed in service
cycles, are reduced compared to the previous iterationtaltiee longer service cycles
resulting from the new patterns. The latency requiremenf &f negative, meaning that it
cannot be satisfied for any priority assignment. We also thatethe required service rate
of 5 is doubled compared to before. This is because its requess®%4 B and the access
granularity of the pattern set increased from 64 B to 128 8yltang in a data efficiency
of 50%. The configuration flow bravely continues, althougé #nbiter configuration
fails to assign priorities. The requirement verificatioepst notes that the configuration
is not valid, since all latency requirements could not besBat and approximately 20%

182 CHAPTER 7. CONFIGURATION

more gross bandwidth than available has been allocatedhédeif these problems can
be resolved by increasing the burst count. Further itematithence not required and the
configuration withBC' = 1 is chosen for the use-case, concluding our running example.

Table 7.8: Output from normalization stage wif' = 2.

Requestor O, Or
[sc] [su/sc]
ro 5 0.294
1 0 0.294
ro -1 0.587
r3 2 0.0279

7.7 Experimental results

The running example in this chapter demonstrated how théigeoation flow works
with a single use-case. Now, we experimentally show how tve fflerforms with a large
number of use-cases with requestors accessing a 16-bit BIDR2nemory, connected
to the SDRAM back-end proposed in Chapter 4. The timingsisfrittemory device were
listed in Table 3.1. The memory is shared using a CCSP amitersix bits of precision
in the service allocation mechanism.

The experiment in this section evaluates the configuratmm #8nd show the bene-
fit of iterating over different burst counts. For this purpps/ie generate 5000 synthetic
use-cases, each with six requestors. The requestors expuests with size®4 - i bytes,
wheres is a uniformly varying integer in the range 1-8. Togetheg, thquestors require
660 MB/s in all use-cases. This corresponds to 82.6% of thk pandwidth offered by
the memory, which is very close to 100% of the gross bandwidtikided by the memory
with BC' = 1. The generated service latency requirements are randdrac®rding to
27 - j clock cycles at 200 MHz, whergis a uniformly varying integer in the range 1-100.
Some latency requirements may hence be quite tight, whileretmay be quite relaxed
and up to 50% longer than the refresh interval of the memouyilldstrate the benefits
of iterating over burst counts, we let the flow configure the-cases in four different
ways. First, using only memory patterns witC' = 1, then using only patterns with
BC = 2, followed by only usingBC = 4. Lastly, we use the iterating scheme presented
in this chapter that tries all of these and chooses the bssltréAll generated patterns
use a burst length{L) of eight words. Just like in Section 5.8, we look at the thres-
rics: 1) the percentage of use-cases where bandwidth ezqeirts are satisfied for all
requestors, 2) the percentage where latency requiremensatisfied for all requestors,
and 3) the percentage where both bandwidth and latencyreegents are satisfied for
all requestors. The results of this experiment are showrigarg 7.4. Bandwidth re-
quirements are only satisfied in 21% of the use-cases Bdth= 1, due to the high load
required by the requestors. The success rate increase%ttavid BC' = 2, because of

7.8. SUMMARY 183

60 T v
Bandwidth satisfied &xxxzx
Latency satisfied s

Bandwidth and latency satisfied mw—

BL8/BC4 Iterating

50

40

30 -

Success rate (%)

Setting

Figure 7.4: The percentage of use-cases with bandwidthadeddy requirements satis-
fied using pattern generators with fixed and iterating buoghts.

the extra 55 MBY/s provided by the longer patterns. At thi;mpaome requests may be
larger than access granularity of the memory, being 128 tBpagh the reducing data
efficiency does not eliminate the benefits of the increaseslsjsandwidth. However, fur-
ther increasing the burst count BC' = 4 reduces the percentage of satisfied bandwidth
requirements to 23%, since the access granularity of 25@Bvistoo large compared to
the sizes of the requests. This results in that more banbwsdiasted than is added by
the longer access patterns. While the percentage of use-aétbesatisfied bandwidth
requirements initially increases with burst count, thecpatage of latency requirements
monotonically decrease, starting at 55% wild' = 1, 11% for BC' = 2, and ending
at 0% with BC' = 4. Looking at the percentage of use-cases with both bandwiath
latency requirements satisfied, we conclude that it is kegpproximately 10% for both
BC = 1andBC = 2, in the first case because of unsatisfied bandwidth requiresne
and in the second case because of failing latency requirsmdime total success rate
with BC' = 4 is 0%, as it is totally killed by the latency requirementsstlg we look
at the results with the iterative approach that is normadlydiin the flow. We ignore the
separate results for bandwidth and latency requiremeintse shese depend on which
pattern set is chosen for a use-case if either set of reqaimenfail. Instead, we focus on
the percentage of use-cases where all requirements aséiezhtiThe iterative approach
satisfies the requirements of almost twice as many use-easaBy of the fixed burst
counts. This result is not surprising, since a larger sotusipace is considered. The only
drawback of this approach is increased run-time of the cordigpn flow. However, this
is negligible, since the time to configure a use-case is imtter of a few seconds.

7.8 Summary

This chapter presented a configuration flow that automética@imputes instantiation
parameters and configuration settings for the proposediresdront-end and SDRAM
back-end with the goal of satisfyinget bandwidth and service latency requiremenfts
the requestors. If there are multiple configurations thasfyethe requirements, the one

184 CHAPTER 7. CONFIGURATION

with themost slack bandwidtis preferred to improve the performance of requestors that
do not require composable service.

The configuration flow consists of five main steps:ni@mory pattern generation
2) normalization of requirement8) arbiter configuration 4) denormalization of alloca-
tion, and 5)requirement verificationThe pattern generation step first generates a pattern
with burst count one for the specified memory device. Othestlrounts are considered
later by iteration in the flow. No memory patterns are neeflgetimemory is an SRAM.
Instead, a pattern specification is generated that desdtileecharacteristics of accesses
to the memory. This enables the same configuration flow to ée bsth for SRAM and
SDRAM. The specification of the generated memory patterardenes the instantiation
parameters for the Atomizer and Data Bus in the resourcé-&nd. The requirements of
the requestors are then normalized to make them indepeatitig target memory. The
normalization is done by converting the requirements iheabstract domain of service
units and service cycle§his use of abstraction enables the same arbiter configumati
to be used for all supported memories at the expense of maghidatency requirements
somewhat more difficult to satisfy due to pessimism in theersion. The size of a ser-
vice unit equals the access granularity of the generatédrpatet. A requestor may have
a data efficiency of less than 100%, making it unable to us#sddi in a service unit. This
is addressed by dividing the net bandwidth requirement thighdata efficiency, turning
it into a gross bandwidth requirement before normalizatibinis technique enables net
bandwidth requirements to be satisfied for requestors wititrary data efficiencyThe
arbiter configuration tries to find settings that satisfy tleemalized requirements. For
our Credit-Controlled Static-Priority arbiter, this isroby first allocating bandwidth,
and then assigning priorities according to a waterfall apph. The service allocations
of the requestors are then denormalized back into bandwviditB/s and service latency
in clock cycles. The service latency and completion latereqyuired to configure the
Delay Block are derived in this step. The final step verifiealifequirements are satis-
fied and computes the slack bandwidth. Patterns with higinst bount are evaluated by
iteration in the flow if it can result in a valid configuratioritvmore slack bandwidth.

CHAPTER 8

Related work

This thesis proposes a predictable and composable memoiptier design and a sup-
porting configuration flow to satisfy real-time requirengat applications in embedded
systems. In this chapter, we position the proposed solutitim respect to the related
work. This is done in three parts. First in Section 8.1, watsethe Credit-Controlled
Static-Priority (CCSP) arbiter to the existing body of nesz® arbiters. We then compare
our predictable SDRAM controller to the state of the art innmeey controller design
in Section 8.2. Lastly, we position our way of achieving casgble service to earlier
approaches in Section 8.3.

8.1 Resource arbitration

Much work has been carried out in the real-time communityceoning server-based
processor scheduling with aperiodic and sporadic reqreRa]. First, it was assumed
that there was only a single server scheduling all aperimditsporadic requests, sharing
the resource with periodic requestors. In more recent paftitins [27, 65], the servers
are used as first-level schedulers to partition the respuvbde additional levels of
schedulers address the requirements of the requestoisgstiae server. The sporadic
server [99] was the first server to depart from the purelygucipolling server, and try-
ing to address the specific needs of sporadic requestorgallis is mostly theoretical,
since its practical applicability is limited due to its colmpaccounting mechanism. The
constant-bandwidth server [1] is similar to our CCSP arbit¢he sense that it provides
isolation between requestors and offers a lower bound oviged service. However,
just like many other processor scheduling algorithms, iisies an earliest-deadline-first
(EDF) scheduler. These schedulers are difficult to impldraehigh clock speed in hard-

185

186 CHAPTER 8. RELATED WORK

ware, since they must maintain a priority queue. This malkestgorithm too slow for
many System-on-Chip (SoC) resources, such as memories.

Many arbiters suitable for scheduling of transaction-daSeC resources, such as
memories, peripherals, and interconnects have been gdpnsthe context of com-
munication networks. Several of these are based on the RRahih algorithm [80],
because it is simple and starvation free. Weighted RourtalrR67] and Deficit Round-
Robin [98] are extensions of this algorithm that guaranteheequestor a minimum
service, proportional to an allocated rate (bandwidthy sommon periodically repeat-
ing frame of fixed size. This type dfame-based arbitratiofs easy to implement, but
suffers from aninherent coupling between allocation granularity and latg where
allocation granularity is inversely proportional to tharfte size [119]. Increasing the
frame size results in finer allocation granularity, redgcover-allocation. However,
this comes at the cost of increased latencies for all requesis demonstrated in Sec-
tion 5.8. Another common example of frame-based scheduirgiplines is Time-
Division Multiplexing (TDM) that suffers from the additiah disadvantage that it re-
quires a schedule to be stored for each configuration, whiah Ioe very costly if the
frame size or the number of use-cases are large.

The coupling between allocation granularity and latencyadslressed in [55, 56,
94] with hierarchical framing strategies that accomplighat allocation over multiple
frames. However, these algorithms, just as the family of Qaieuing algorithms [119],
are unable to distinguish different latency requiremessshe rate is the only parameter
affecting scheduling. This results in amwanted coupling between latency and rate
where latency is inversely proportional to the allocatee.raRequestors with low rate
requirements hence suffer from long latencies unless thts are increased, resulting
in over allocation. Our requirement that we must be able stirdjuish latency-critical
and latency-tolerant requestors implies that latency ateimust be decoupled, speaking
in favor of priority-based solutions.

Four approaches using static-priority scheduling areqmiesl in [17, 41, 43, 47].
Static-priority schedulers have the benefit of decouplitgricy and rate and being cheap
to implement in hardware. However, the arbiters in [41, #3 Have significant short-
comings, as the rate regulators are frame based and colpdatain granularity and
latency. In [17], service is allocated in discrete chunks,gize of which depends on the
priority of the requestor and the total number of requessbieing the resource. This
couples allocation granularity and latency. Moreover, asti84% of the resource ca-
pacity can be allocated to the requestors as guaranteddesefpriority-based arbiter is
presented in [86] for resource scheduling in SoCs. The egfelator uses an accounting
mechanism based on integers that is easily implementedridwhae, and inspired the
implementation of the CCSP rate regulator. However, it isahear if the proposed ar-
biter meet our requirements, as no results are presenterwid@d bandwidth, latency,
over allocation, or area and speed of the implementation.

We propose CCSP arbitration for scheduling access to Sa@@nees, such as mem-
ories and peripherals. CCSP resembles an arbiter with aegtdator that enforces a
(o, p) constraint [25] on requested service together with a satarity scheduler, a
combination we refer to as Sigma-Rho Static-Priority (SR&MBitration in this work.

8.1. RESOURCE ARBITRATION 187

regulator
: %i‘#:?
w, buffers le
regulator
L Rate
q(t) >0 Scheduler }- 7(t))>0 regulator SChedme’ "/(t)
(a) Requested service regulation. (b) Provided service regulation.

Figure 8.1: Two arbiters regulating requested service aodged service, respectively.

Similarly to SRSP, the CCSP rate regulator replenishes ¢hdce available to a re-
questor continuously, instead of basing it on frames, deloaoy allocation granularity
and latency. This allows over-allocation to become neblégiwhich is essential for
scarce SoC resources with very high loads, such as memBo#sarbiters furthermore
use priorities to decouple latency and rate. However, austd enforcing a burstiness
constraint ommequested servicas done by SRSP, CCSP enforces ipavided service
We proceed by discussing this difference in more detail.uféd@.1a shows an arbiter
that enforces an upper bound on requested service, such,89[220]. The rate regula-
tor is positioned before the Request Buffers, allowing itagulate the arriving requests
by holding them until a particular burstiness constrainthsas a minimum inter-arrival
time, is satisfied. Note that there is no communication betwe scheduler and the
rate regulator. A rate regulator that enforces an upperdourprovided service, such as
those in [23,29,47,57,98] and the CCSP rate regulatorowstin Figure 8.1b. As seen
in the figure, the rate regulator is positioned after the RegBuffers. It is hence only
aware of requests at the heads of the buffers, and cannaraionarrivals of requests
in any way. The scheduler communicates the identifier of theduled requestor(t),
back to the rate regulator every cycle to update the acaogimtiechanism. Enforcing
an upper bound on provided service has the benefit that tharsmbservice required
by a particular request does not have to be known in advanceexample, it is typ-
ically not possible for a processor scheduler to know the bmmof cycles required to
decode a video frame, since this is highly data dependenim#as problem occurs in
SDRAM controllers if the arbiter is scheduling memory cygclas opposed to a fixed
amount of transferred data, since the time to serve a requestt known in advance
for most SDRAM controllers. These situations cannot beiefiitty handled if requested
service is regulated, since the rate regulator determiribe request is eligible based on
the effort involved in serving it. It is possible to use wecstse assumptions to estimate
the amount of required service, although this is very inigfficif the variance is large.
This is efficiently handled when combining provided serviegulation with preemptive
arbitration, since the accounting is updated for everyisemmit, causing a requestor to
be preempted when it runs out of budget. Unlike SRSP, CC3R&tljis benefit without
any performance penalty. In fact, we conjectured in [10$dobon experimental results,
that CCSP and SRSP provide identical latencies for all reigue

188 CHAPTER 8. RELATED WORK

8.2 SDRAM controllers

Existing SDRAM controller designs are either staticallydgnamically scheduled, de-
pending on which kind of systems they target. Staticallyesictled memory controllers [92,
101] combine static front-end arbitration with static sthiéng of SDRAM commands in
the back-end. The command generator executes a statiageltdDRAM commands
that has been computed at design time. The read and writesliitke schedule are stat-
ically mapped to the requestors according to their requérégm These controllers are
predictable, since the latency of a request and the offesedandwidth can be bounded
at design time by analyzing the schedule and the mapping rstdto requestors. It
is hence possible to formally verify that all requestor liegments are satisfied at de-
sign time. For this reason, statically scheduled memoryrobtiers are most frequently
used in embedded systems with firm or hard real-time reqeinésn such as TV picture
improvement ICs [102]. The predictability of staticallyheziuled memory controllers
comes at the expense of flexibility. The precomputed scleeiduthe back-end makes
these designs unable to adapt to changes in the behavidne oéquestors. This lim-
its their applicability to applications whose requestoasédhregular access patterns and
where the request sizes and read/write ratio do not changegda use-case. Static
front-end arbitration furthermore couples latency andaated bandwidth, as previously
discussed in Section 8.1. This makes statically scheduksdary controllers unable to
satisfy the requirements of latency-critical requestoits Yow bandwidth requirements
without wasting bandwidth. Finally, many schedules areiireqgl, as the number of use-
cases grows exponentially with the number of applicatioftsese schedules may take
a long time to compute and require significant storage spsgee each schedule may
contain thousands of commands for newer memoriBisese properties prevent stati-
cally scheduled controllers from scaling to larger systemits more use-cases and more
dynamic applications.

Dynamically scheduled memory controllers, on the otherdhaombine dynamic
front-end arbitration with dynamic back-end schedulingieSe controllers target high
efficiency and flexibility to fit in high-performance systemigh dynamic applications
whose behaviors may not be known up front. Priorities are irséhe front-end arbitra-
tion in several dynamic memory controllers [43, 64, 78, I11P] to cater to the needs of
latency-critical requestors, often corresponding to pssors that stall while waiting for
cache lines. Some controllers provide additional mechasi® further reduce latency.
The design in [64] lets high priority requestors preemptdoriority requestors that
are receiving service in the back-end, which reduces Igtahthe expense of memory
efficiency. Another technique is to prefer reads over wiji€d§, which is beneficial if
reads are blocking while writes are posted.

A number of dynamic memory controllers use information almemory state when
scheduling to improve memory efficiency. This considerai® typically done in the
back-end, but some designs communicate memory state toothteeind arbiter, blurring
the distinction between the two. Typically, requests aefgred if they target an open
row in a bank [78,91,97], if they fit with the current directiof the data bus [20,43,112],
or a combination of the two [64, 67,111]. The idea behind ttfeeduler in [78] is to

8.2. SDRAM CONTROLLERS 189

exploit thread-level parallelism by scheduling burstsobging to the same requestor
simultaneously in all banks. It is shown that this approatuces the average latency
of the requestors, although it probably reduces memornyiefity. A disadvantage of all
the mentioned scheduling algorithms is that they are nadlaiapof long-term planning.
Instead, they make short-term scheduling decisions tefieadlata on the bus as fast as
possible, such as preferring a read or a write command ovates and precharges.
These decisions are clever on short term, but may resultbroptimal performance in
the long run. This issue is addressed by a self-optimizingiarg controller in [48]. The
proposed memory scheduler uses theory from reinforceraantihg to recognize which
scheduling decisions that result in high long-term memfdigiency.

Many dynamic designs [20, 43, 64,67,78,111, 112] use ragelators in the front-
end to protect requestors from each other. This is espgaigtiortant in controllers with
priority-based arbiters, since these are often prone toattan. The designs in [43, 67,
112] regulate the amount of requested service, while [20/841.11] regulate provided
service. The rate regulators in [20,43, 64, 78,111, 112}airfame-based and hence
couple allocation granularity, latency, and rate. An iegting difference between these
controllers is that [43, 112] only consider rate regulatdhigh priority requestors, cor-
responding to processors, while low priority hardware breg¢ors are assumed to be
well-behaved.

The problem with dynamically scheduled memory controllsrthat the interaction
between the front-end and back-end scheduler is complprcisdly in the presence of
reordering mechanisms. For this reason, neither of theiorad memory controllers
provides bounds on either latency or provided gross/nedvaith. This makes dynamic
memory controllers unsuitable for applications with firmhard requirements on worst-
case latency and bandwidtiA related problem is that there is often not a clear relation
between configuration parameters and the provided banldardt latency. This prevents
automatic generation of configuration parameters thatfgatquestor requirements. In-
stead, successful deployment of these controllers hasgyt@meextensive simulation to
measure the provided bandwidth and latency with differemtfiguration parameters.
This results in a significant verification effort as it has ®done for all use-cases and
must be repeated every time a requestor is added, removédioges behavior.

Our memory controller combines elements of statically aydadhically scheduled
memory controllers. The front-end uses predictable dynaaribiters in the class of
Latency-Rate £R) servers, which enables us to satisfy diverse latency reounts.
The command generator uses a hybrid approach based on mpattasns that is a mix
between static and dynamic command scheduling. Memorgmpattare precomputed
sub-schedules that are dynamically combined at run-timehleng the controller to ac-
commodate traffic that is not fully known at design time in adictable fashion. Our
memory controller offers bounds on both net bandwidth aeddtency of requestors at
design time, which enables configuration settings to beraatically synthesized for a
given set of requirement3he proposed memory controller significantly increases-flex
bility over existing predictable memory controllers andistable for systems with firm
and hard real-time requirements on worst-case bandwidthlatency.

190 CHAPTER 8. RELATED WORK

8.3 Composable service

A number of works in the field of high-performance computiiggdss performance iso-
lation of applications in predictable systems by providimger bounds on performance.
Fair Queuing Memory Systems [82] and Virtual Private Cad8d$§ are both part of
the Virtual Private Machine framework [83] for multi-coresource management. The
authors show that the service provided by a Virtual PrivatecMne running at an allo-
cated fraction of the original capacity is at least as goaal &=l machine with the same
resources. This allows real-time requirements to be vdrlie simulation in isolation,
assuming that the applications executing on the systemexfermance monotoni63],
which means that having additional resources cannot rieswibrse performance.

Two simulation-based approaches to verification of reaktrequirements in pre-
dictable systems are presented in [63,87]. The idea in thapers is to simulate the
execution of an application and verify that real-time regoients are satisfied when em-
ulating maximum interference from other applications blagig responses until their
worst-case latency. This is similar to our approach to caapiity, although with some
important differences. In contrast to our work, the authmgpose to disable emulation
of worst-case interference for all requestors when depipytie system to benefit from
slack and increase performance. This breaks the isolagomden applications, limit-
ing the approach to applications and systems that eithex paformance monotonic
execution, or can be captured in a performance monotoniemsdch as deterministic
data-flow graphs [16]. Furthermore, no hardware architecis presented for the ap-
proach in [63], although our proposed resource front-emdbzaused to implement the
methodology.

The drawback of relying on performance monotonicity is thegverely restricts both
the supported platform and application software. The ptaifhas to be free from timing
anomalies, which can appear in shared caches or in dyndynscdleduled processors,
such as PowerPCs [66]. Another example is that increassngidmory bandwidth allo-
cated to an application may lead to a net performance losgdtache pollution, caused
by an increased number of prefetches [81]. Timing anomal&sappear in some multi-
processor systems [33], making verification results ofithisted applications unreliable.
Applications can furthermore not have timing dependentbigh, such as adapting the
quality level of a video decoder based on the decoding tinpefious frames.

Verification of composable systems, on the other hand, doely on performance
monotonicity, since applications are completely indemendf each other in both the
value and time domains. There are currently three apprgattheomposable system
design. The first involves not sharing any resources, wisiciséd by federated architec-
tures in the automotive and aerospace industries [61]. Mkihod is trivially compos-
able, but prohibitively expensive for systems that do nettsafety-critical applications.
The second option is the time-triggered approach [60] tsasicomponent interfaces
where the time instances for communication are specifiedsigd time. This approach
requires a global notion of time and is limited to applicatidhat can be statically sched-
uled at design time. The third approach is to dynamicall\eddite resource access at run
time using TDM, as proposed in [15, 39]. Using run-time schied) has the benefit of

8.3. COMPOSABLE SERVICE 191

supporting event-triggered systems, although a limitetibTDM is that it couples the

worst-case latency and the allocated bandwidth of an egdfwiz. Another drawback of

this approach is that it only applies to inherently compésadsources, such as SRAM.
An SDRAM memory is an example of a resource that is not initgrenmposable, since

requestors can affect each other’s temporal behavior hygihg the memory state, such
as switching direction from read to write. We addressedithj405], where a compos-

able SDRAM controller based on memory patterns is proposée. idea is to enforce

a read/write switch between all requests, thus removingotissibility for requestors

to interfere with each other by changing the state of theureso A disadvantage of
this approach is that no slack is created by the resourdé i@Bely slack generated by
the arbiter can hence be used to improve performance of staysethat do not require
composable service.

This work adds a fourth approach to composability, basededaythg signals sent
from predictable shared resources to the requestors tcagenubrst-case interference.
The approach applies to any combination of predictable wes®and arbiter in the class
of LR servers, thereby widely extending the types of platformisc#in provide compos-
able service.Generalizing composability beyond arbiters and resoutttaisare inher-
ently composable affects the conditions for which the resmean continue to provide
composable service as more applications are integrated. pfoperty is known as sta-
bility of prior services [61]. When resources are sharingn@siDM [15, 39], stability
of prior services is guaranteed as long as the slots resénweah application remains
unchanged. Our approach has a more general requirementitesadhe diversity of
the supported arbiters. Stability of prior services is gnéged as long as the starting
times and finishing times of a requestor are unchanged as applé&cations are inte-
grated. If we use TDM, which is a predictable arbiter in thassl of LR servers, to
share a predictable resource, the requirement is satisfiemtchanging the slots re-
served by an application. On the other hand, if we use the GZFPame-Based Static-
Priority (FBSP) arbitration, stability is only guaranteiédower priority requestors are
added, since additional higher priority requestors ineesahe worst-case interference
that must be emulated.

Our approach to composable resource sharing makes thecesmmposable on the
level of requestors, which is a sufficient requirement todraposable on the level of ap-
plications. However, this is also a stricter requiremeinices requestors belonging to the
same application are allowed to interfere with each othlee dlatform in [39] capitalizes
on this by having two levels of arbitration. The first levekis intra-application arbiter
that does not have to be composable, and the second a corgimgabapplication ar-
biter. This type of arbitration enables requestors fromstéime application to use slack
created in the intra-application arbiter to boost perfarogawithout violating compos-
ability at the application level. A novel aspect of our aaro is that composable service
can be enabled or disabled per requestor at run-time byngithie emulation of worst-
case interference on or off. This introduces the notiopadtially composable systems
where some applications are free from interference andotre not. The benefit of
this distinction is that iallows requestors that do not have real-time requirememtsse
slack to improve performance.

192 CHAPTER 8. RELATED WORK

CHAPTER 9

Conclusions and future work

There is a growing mapping and verification problem in SystewChips (SoCs), as
an increasing number of applications with real-time regmients are mapped on het-
erogeneous multi-processor platforms with distributednmiey hierarchies. To reduce
cost, resources in the platform, such as SRAM and SDRAM migsoare shared be-
tween applications using a variety of arbiters. The mappigess is challenging as it
involves both binding application tasks and data strusttioeprocessing elements and
memories in the platform, and determining configuratiotirsgs such that all real-time
requirements are satisfied. Once a candidate mapping hasdeéermined, system-
level simulation is often used to verify the real-time regumients. However, resource
sharing introduces interference between applicationssiog their temporal behaviors
to become inter-dependent. As a result, all combinatiorooturrently executing ap-
plications have to be verified together, resulting in a veaifon complexity that grows
exponentially with the number of applications. This lintite verification to a subset of
use-cases with the most critical requirements, resultirgpior coverage. Formal verifi-
cation offers significantly better coverage, but is tydicabt an alternative, since many
resources, such as memory controllers, are not designédfavinal analysis in mind.
This problem is addressed in this thesis by designing a mepwottroller with require-
ments onpredictability, abstraction composability andautomation We conclude this
work by explaining how the proposed solution delivers orséheequirements in Sec-
tion 9.1, followed by a discussion on future work in Sectio®.9

193

194 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

Each of the four requirements predictability, abstractmmmposability, and automation
are discussed in turn, as we highlight the strengths anthiiions of the proposed mem-
ory controller and its configuration flow.

9.1.1 Predictability

This work presents a predictable memory controller, cdingj®f a back-end and a front-
end. The back-end makes a DDR2/DDR3 SDRAM behave in a peddéictmanner, en-
abling us to derive a tight bound on the provided gross badiithwi The provided net
bandwidth depends on the relation between the request gizbe requestors and the
access granularity of the memory. The back-end accesseamdéh®ry by interleav-
ing over the banks, which provides a high bound on gross baltikdvat the expense
of a large access granularity. To be efficient, requestsidhmave sizes in words that
are integer multiples of the product between the burst keagd the number of banks.
Other requests may significantly reduce the provided badittiwir he front-end contains
a Credit-Controlled Static-Priority (CCSP) arbiter, catepd of a rate regulator and a
static-priority scheduler, that allows the SDRAM back-d¢ade shared among multi-
ple requestors. The arbiter guarantees each requestolirauminguaranteed bandwidth
and a maximum latency. We experimentally demonstrate tiegbandwidth and latency
guarantee is conservative, even in the presence of misioghaaguestors. The latency
bound is furthermore shown to be tight for high-priority wegtors, but becomes looser
with lower priorities. This is partly inherent to how the bmlis computed, but also
because the worst case becomes increasingly unlikely adtpdecreases.

The proposed SDRAM controller providéscreased flexibilitycompared to cur-
rent predictable memory controllers. These controlleesstatically scheduled, while
our controller combines dynamic front-end scheduling wittombination of static and
dynamic scheduling in the back-end. The Credit-Contro8eatic-Priority (CCSP) ar-
biter improves on the state of the art by combining four proes: 1) It accommodates
latency-critical requestors with low bandwidth requirertsewithout wasting bandwidth.
2) Over-allocated bandwidth can be made negligible at are@sed area cost, without
affecting latency. 3) It has a small implementation thatsrtast enough to schedule re-
quests for all DDR2 memories, and most DDR3 memories, in@esiciock cycle. 4) It
supports requests where the associated work is not knowroop f

9.1.2 Abstraction

The combination of front-end and predictable back-end behdike a Latency-Rate
(LR) server, which means that a minimum bandwidth and a maxinatemty are guar-
anteed to a requestor. The memory controller and the assda@aalysis methods and
tooling are designed to use ti&R server model as shared resource abstractipwhich
makes our solution very general. It is possible to replaeeQCSP arbiter witlany
arbiter in the class ofZLR servers which enables the controller to cater to diverse sets

9.1. CONCLUSIONS 195

of requirements. There are many well-known arbiters betan¢p the class, such as
Weighted Round-Robin, Time-Division Multiplexing (TDMand several varieties of
Fair Queuing. It is also possible to remove the SDRAM badatt-@wmd use the front-end
with any other predictable memarguch as an SRAM.

The LR server model enables verification with several commonly deenal analy-
sis frameworks, such as network calculus, and data-flowsaisalOur memory controller
hence allowsany combinatiorof predictable memory andR arbiter to be used trans-
parently for formal verification of applications with any thiese frameworks. However,
we show that the benefits of abstraction come at the cost cfased latency. ThER
server model assumes that a request is served in a contimenuser according to the
allocated rated rate of its requestor, while it is actuaitiier served at the full capacity
of the memory, or not served at all. This causesdiserver model to over-estimate the
time when a request is served by an amount that is inversefyoptional to the allocated
bandwidth. The model is furthermore unable to capture thietpservice behavior of
CCSP and many other priority-based arbiters, which map&unteduce accuracy. These
issues can be mitigated by extending #i8 server model, although this is left as an
open issue.

9.1.3 Composability

The proposed front-end is made composable by adding a Débak Bhat delays all sig-
nals sent to a requestor to emulate constant worst-castenatece from other requestors.
Achieving composability in this wasemoves restrictionsnposed by earlier approaches
that are limited to applications and resources that candiieally scheduled, or sharing
inherently composable resources at run-time using TDM.olmtrast, our approach ap-
plies toany combinatiorof predictable resource and arbiter in the clas£®f servers
without any assumptioran the application.

Delaying signals to emulate worst-case interference miecaverage latency equal
to the computed worst case, which may significantly incréatsmcy if the two are far
apart. This furthermore increases the required bufferinguistain the allocated band-
width. Currently, our approach uses ti& server model to compute the worst-case
release time of delayed signals, which introduces somerpisss that adds to this cost.
However, a strength of our approach is that composablecgecan be dynamically acti-
vated and deactivated, and hence limited to requestorggatktime requirements. This
removes the added cost for requestors that do not requirpasable service, and fur-
thermore allows them to benefit from slack bandwidth to imprperformance.

9.1.4 Automation

The proposed memory controller is supported by a configamdtow that automatically
computes appropriate configuration settings for the fesxt-and back-end, given band-
width and latency requirements of the requestors. The fl@g abstraction to make the
memory and arbiter configuration independent of each offieis allows all supported
arbiters to be configured for all supported memories in asilimed fashion without a

196 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

special case for every combination. The configuration taplares different configu-
ration options for the back-end, but uses a simple banduvdillitication algorithm when
configuring the arbiter. The flow may hence be unable to finchéigoration that satisfies
a given set of requirements even if one exists. This is leftragpen issue.

9.2 Future work

For every door your close in research, two new doors are apdrtgs section discusses
interesting future work and open issues in the context afwhrk.

9.2.1 Reducing power consumption

The proposed memory controller accesses the memory in areiating manner. This
enables us to guarantee high gross bandwidth, but the fnequtivates and precharges
consume a lot of power, as explained in Section 3.4.3. We\xlit is important to
address this issue, since power consumption is of utmostriigapce for many embedded
systems. A simple technique that fits within the currentitéeckure is to let the back-end
benefit from locality to reduce power. The idea is to gate awt activate or (auto)-
precharge commands if the right row is already open. Thisaaracomplexity extension
of the back-end that reduces power by adding a degree of dgnmata the execution of
a memory pattern. Another direction is to exploit low-povieaitures of the memories
themselves and incorporate the predictable use of powendonodes [52, 53]. This
option is primarily interesting in systems where the menisrgot constantly utilized.
Power is saved by letting the SDRAM enter a low power statennibe. However,
powering up the memory incurs a latency penalty on the réqreshus making it more
difficult to satisfy latency requirements. This presentsrdaresting trade-off between
power and latency that deserves further exploration.

9.2.2 Opportunities with 3D integration

3D integration enables stacking SDRAM on top of one or mog<ayers and connect-
ing them with vertical wires called through-silicon-viaBSVs) [30], thus removing the
need to go off-chip to access the memory. Since TSVs regeg® drea and consume
less power than off-chip pins, the number of connectiondy®0SDRAM can signifi-
cantly increase. Removing the pin constraint has many lsriefimemory efficiency,
since sharing wires between memory banks can be reducechorvee. Three possible
scenarios are: 1) Every bank gets its own command bus, raegdesses due to com-
mand conflicts. 2) The data path is splitinto a separate neddvate channel, removing
lost cycles due to read/write switches. 3) Each bank getsitsdata path, removing all
conflicts on the data path. These changes incrementallg kach bank closer to being
separate memories. To what extent the sharing between mnéduced depends on
the cost and availability of TSVs, which is not yet fully knowinteresting future work,

9.2. FUTURE WORK 197

while this is being determined, involves investigating bemefits of the three scenarios
in proportion to the increase of signals on the memory iaterf

The impact of 3D integration may go well beyond the memoryices/themselves
and change the architecture of contemporary systems.dsiagthe number of connec-
tions to memory enables wider memory interfaces and highak pandwidths. How-
ever, wider interfaces increase the access granularitgeofrtemory, reducing data ef-
ficiency and net bandwidth [22]. An alternative to wider nféees is to use multiple
memory channels, each with their own memory controller.héddigh recent publica-
tions [4, 22, 84] propose using multiple memory channelspne has considered how
to do this in a predictable or composable way. Multi-charssdlitions enable more net
bandwidth and a reduction of memory contention. We hende\zethat extending our
approach to cover multiple channels is important futurelkwtormeet future real-time
requirements.

9.2.3 Improved arbiter configuration

The arbiter configuration attempts to automatically deexgiter settings, such that all
bandwidth and service latency requirements are satisfmdCESP, this involves finding
two allocation parameter§s’, p’), being an allocated burstiness and an allocated service
rate, per requestor. The current configuration approadther limited. First, we assign
p' = p, even though a higher allocated rate could help satisfyistgrgial throughput
requirements. The reason is that allocating a higher rapadts the latency of lower
priority requestors, and we currently cannot oversee howhrextra bandwidth that
can be allocated before the requirements of all requestonsat be satisfied anymore.
Similarly, we always assign’ = 1 for all requestors, effectively throwing away the
flexibility provided by a second allocation parameter. Téason for this assignment is
that theLR server model does not capture the benefits of a higher aflddatrstiness,
as discussed in Section 7.4.1. We believe it is importanktene theLR server model
to cover the effects of multiple service rates. Such an ext@nwould not only provide
better modeling of the CCSP arbiter, but many other, prilpgriority-based, arbiters
receiving service in a bursty manner. This extension woulabée us to set the two
allocation parameters freely. Since the service allonatibone requestor impacts the
service provided to another, a more refined allocation setismequired that considers
the allocation parameters and requirements of all requestmultaneously to improve
the possibilities of satisfying all requirements.

9.2.4 Reconfiguration

The proposed predictable and composable memory contlteently only offers lim-
ited support for multiple use-cases. Only a subset of thévirare blocks, namely the De-
lay Block and CCSP arbiter, have programmable configuratiaile other important
parameters are fixed at design time. The most prominent draohthis is the SDRAM
back-end, which generates the memory patterns with a haddecfinite-state machine

198 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

in the Command Generator. Making this block programmabsetiva important advan-
tages: 1) Itincreases the re-usability of the componemtesit can be used with different
memory devices without modification. 2) It allows the mempafterns to be changed
between use-cases, increasing the diversity of the useregsirements that can be ac-
commodated by the platform. A consequence of changing tmeanepatterns between
use-cases is that the service unit size used by the Atormizitha best-case service cycle
length used by the Data Bus also changes. These blocks hameedbe connected to
the configuration infrastructure and the parameters mau#ime programmable.

The current implementation of the configuration flow onlysonts a single use-case.
Generalizing it to support multiple use-cases should nee@my conceptual difficulties
as it involves iterating through the flow for every use-ca#fethe back-end is made
programmable, different memory patterns can be used foy exse-case. Otherwise, a
single pattern has to be chosen for all use-cases. We alddmekange verification step
to consider multiple use-cases and modify the quality metriconsider the total slack
in all use-cases or something more refined.

9.2.5 Data-flow model of memory controller

The memory controller acts like &R server, which enables formal verification using
well-known performance analysis frameworks, such as métwalculus and data-flow
analysis. Data-flow analysis is suitable for the SoC contarte it supports cyclic de-
pendencies between nodes in the graph. This is an esseatiatd that allows communi-
cation between tasks using finite buffers to be includedemtiodel, which is necessary
to capture the behavior of partitioned applications. Itfarmore enables modeling of
flow-control mechanisms that are common in communicatiatgeols used in contem-
porary SoCs. A data-flow model of the proposed memory cdetrafould bridge the gap
between the application and the memory controller by engliliem to be represented in
the same framework. This would allow throughput requiretsieh applications access-
ing the memory controller to be verified using traditionatadfiow techniques. There
are also benefits related to buffer sizing. Currently, bsftge sized by trial-and-error to
be large enough to prevent overflow. A data-flow model of tludigecture enables us
to extend the configuration flow with a buffer sizing step tinsgs an existing tool [113]
to find sufficient sizes for all buffers in the controller, givthroughput requirements of
the applications. This would further automate our appr@achreduce area by removing
unnecessary buffer space. This is work in progress.

Bibliography

[1] L. Abeni and G. Buttazzo. Resource Reservation in DymraReal-Time Systems.

Real-Time Systemg7(2):123-167, 2004.

[2] S. Adee. 37 years of Moore’s lalEEE Spectrum45(5):56, 2008.
[3] S. Adee. Thanks for the memorid&EE Spectrum46(5), 2009.

[4]

[5]

[6]

[7]

(8]

9]

E. Aho, J. Nikara, P. Tuominen, and K. Kuusilinna. A case multi-channel
memories in video recording. IRroc. Design, Automation and Test in Europe
Conference and Exhibition (DATE}009.

B. Akesson. An analytical model for a memory controlléiedng hard-real-time
guarantees. Master’s thesis, Lund’s Institute of TechmgliMay 2005.

B. Akesson, K. Goossens, and M. Ringhofer. Predator: egliptable SDRAM
memory controller. INCODES+ISSS '07: Proceedings of the 5th IEEE/ACM
international conference on Hardware/software codesigd aystem synthesis
pages 251-256, 2007.

B. Akesson, A. Hansson, and K. Goossens. Composablenessharing based
on latency-rate servers. [kth Euromicro Conference on Digital System Design
(DSD), 2009.

B. Akesson, L. Steffens, and K. Goossens. Real-Time &diveg of Hybrid Sys-
tems using Credit-Controlled Static-Priority Arbitratio Technical report, NXP
Semiconductors, 2007. http://www.es.ele.tue.nl/"ka&afublications/pdf/NXP-
TN-2007-00119.pdf.

B. Akesson, L. Steffens, and K. Goossens. Efficient SenAllocation in Hard-
ware Using Credit-Controlled Static-Priority Arbitratio In Int'l Conference on
Embedded and Real-Time Computing Systems and ApplicdRaii3SA) 2009.

199

200 BIBLIOGRAPHY

[10] B. Akesson, L. Steffens, E. Strooisma, and K. Gooss&®eal-Time Scheduling
Using Credit-Controlled Static-Priority Arbitration. limt'l Conference on Em-
bedded and Real-Time Computing Systems and ApplicatidiG3R) 2008.

[11] G. Amdahl. Validity of the single processor approachathieving large scale
computing capabilities. IfProceedings of the April 18-20, 1967, spring joint
computer conferen¢@ages 483-485, 1967.

[12] ARM Limited. http://www.arm.com, 2009.
[13] ARM Limited. AMBA AXI Protocol Specificatiqr2003.

[14] N. Audsley. Optimal priority assignment and feasilyilof static priority tasks
with arbitrary start timesReal-Time System$991.

[15] M. Bekooij, A. Moonen, and J. van Meerbergen. Predieand Composable
Multiprocessor System Design: A Constructive ApproacltBils&Chips Sympo-
sium on Embedded Systems and Softw2087.

[16] M. Bekooij, S. Parnar, and J. van Meerbergen. Perfoonaauarantees by sim-
ulation of process networks. Froc. Int'l Workshop on Software and Compilers
for Embedded Systems (SCOPES)5.

[17] T. Bjerregaard and J. Sparsg. A scheduling disciplorddtency and bandwidth
guarantees in asynchronous network-on-chip.Ptoceedings of the 11th IEEE
International Symposium on Asynchronous Circuits ande®ystpages 34-43,
2005.

[18] S. Borkar. Thousand core chips: a technology persgecti Proceedings of the
44th annual conference on Design automatipages 746—749, 2007.

[19] J.-Y. L. Boudec and P. Thiratetwork calculus: a theory of deterministic queuing
systems for the InterneSpringer-Verlag New York, Inc., 2001.

[20] A.Burchard, E. Hekstra-Nowacka, and A. Chauhan. A-teaé streaming mem-
ory controller. InProc. Design, Automation and Test in Europe Conference and
Exhibition (DATE) pages 20-25, 2005.

[21] G. Buttazzo.Hard Real-Time Computing Systems: Predictable Scheddligg-
rithms and ApplicationsSpringer, 2004.

[22] P. Casini. SoC Architecture to Multichannel Memory NMagement Using Sonics
IMT. White paper, 2008. Sonics, inc.

[23] H. Chao and J. Hong. Design of an ATM shaping multiplexéh guaranteed
output burstinessComputer Systems Science and Engineeri#§2):131-141,
1997.

BIBLIOGRAPHY 201

[24] T. Claasen. The logarithmic law of usefulnesSemiconductor international
21(8):175-184, 1998.

[25] R. Cruz. A calculus for network delay. I. Network elenteim isolation. IEEE
Transactions on Information TheqQr$7(1):114-131, 1991.

[26] W. Dally and B. Towles. Route packets, not wires: Ongdiniterconnection net-
works. InProceedings of the 38th Design Automation Conference (Dp&des
684-689, 2001.

[27] R. Davis and A. Burns. Hierarchical fixed priority prezptive scheduling26th
IEEE International Real-Time Systems Symposjpamges 389-398, 2005.

[28] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multigssor SOC for ad-
vanced set-top box and digital TV systentEEE Design and Test of Computers
pages 21-31, 2001.

[29] A. Francini and F. Chiussi. Minimum-latency dual-lgaiucket shapers for
packet multiplexers: theory and implementatiorQuality of Service, 2000.
IWQOS. 2000 Eighth International Workshop, pages 19-28, 2000.

[30] P. GarrouHandbook of 3D Integration: Technology and Application8Dbfinte-
grated Circuits volume 1. Wiley-VCH, 2008.

[31] K. Goossens, J. Dielissen, and AadRilescu. The Athereal network on chip: Con-
cepts, architectures, and implementatiofSEE Design and Test of Computers
22(5):414-421, 2005.

[32] K. Goossens, O. P. Gangwal, J. Rover, and A. P. Nirarijgerconnect and mem-
ory organization in SOCs for advanced set-top boxes and TVwvelUion, anal-
ysis, and trends. Iinterconnect-Centric Design for Advanced SoC and NoC
chapter 15, pages 399-423. Kluwer, 2004.

[33] R. Graham. Bounds on multiprocessing timing anomal&#M Journal on Ap-
plied Mathematicspages 416—429, 1969.

[34] P. Gumming. The TI OMAP Platform Approach to So@inning the SoC revo-
lution: experiences in real desigpage 97, 2003.

[35] A. Hansson.A Predictable and Composable On-Chip InterconndehD thesis,
Eindhoven University of Technology, 2009.

[36] A. Hansson, B. Akesson, and J. van Meerbergen. Muticessor programming
in the embedded system curriculuBIGBED Rey.6(1):1-9, 2009.

[37] A. Hansson, M. Coenen, and K. Goossens. Undisruptelitgpad-service during
reconfiguration of multiple applications in networks onghiln Proc. Design,
Automation and Test in Europe Conference and ExhibitionTiB)Apages 954—
959, 2007.

202 BIBLIOGRAPHY

[38] A.Hansson and K. Goossens. Trade-offs in the configuratf a network on chip
for multiple use-cases. IThe 1st ACM/IEEE International Symposium on
Networks-on-Chip2007.

[39] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. €86C: A template for
composable and predictable multi-processor system ors.cAPM Transactions
on Design Automation of Electronic Systert(1):1-24, 2009.

[40] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and Mkd®d§. Enabling
application-level performance guarantees in networletbas/stems on chip by
applying dataflow analysisSET Computers & Digital Technique2009.

[41] F. Harmsze, A. Timmer, and J. van Meerbergen. Memonjtration and cache
management in stream-based systemsPrbt. Design, Automation and Test in
Europe Conference and Exhibition (DATEPO0.

[42] W. S. Hayes jr. Memory pattern generation based on fipaton and environ-
ment. Master’s thesis, Eindhoven University of Techno|&§09.

[43] S. Heithecker and R. Ernst. Traffic shaping for an FPGgellesSDRAM controller
with complex QoS requirements. DAC '05: Proceedings of the 42nd annual
conference on Design automatjgages 575-578, 2005.

[44] J. Held, J. Bautista, and S. Koehl. From a few cores toynantera-scale com-
puting research overviewResearch at Intel white pape2006.

[45] J. Henkel. Closing the SoC design gdBEE Transactions on Computefzages
119-121, 20083.

[46] M. Hill and M. Marty. Amdahl’s law in the multicore erdEEE Transactions on
Computers41(7), 2008.

[47] S. Hosseini-Khayat and A. Bovopoulos. A simple and &ffit bus management
scheme that supports continuous strea®€M Transactions on Computer Sys-
tems (TOCS)13(2):122-140, 1995.

[48] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Selfiojting memory con-
trollers: A reinforcement learning approach. @Gomputer Architecture, 2008.
ISCA '08. 35th International Symposium,qages 39-50, 2008.

[49] International Technology Roadmap for Semiconduc{bffKkS) - Design, 2007.
http://www.itrs.net/reports.html.

[50] International Technology Roadmap for Semiconducf{tifRS) - System Drivers,
2007. http://www.itrs.net/reports.html.

[51] B. Jacob, S. Ng, and D. Wandvlemory systems: cache, DRAM, dis\dorgan
Kaufmann Pub, 2007.

BIBLIOGRAPHY 203

[52] JEDEC Solid State Technology AssociationDDR2 SDRAM Specificatipn
JESD79-2E edition, Apr. 2008.

[53] JEDEC Solid State Technology Association, JEDEC S8tiate Technology As-
sociation 2004, 2500 Wilson Boulevard, Arlington, VA 2228834. DDR3
SDRAM Specificatigresd79-3d edition, Sept. 2009.

[54] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, an8ppy. Introduction to
the Cell multiprocessoiBM Journal of Research and Developmetf2(4/5):589,
2005.

[55] C. Kalmanek, H. Kanakia, and S. Keshav. Rate contragkeders for very high-
speed networksProceedings of GLOBECOMages 12-20, 1990.

[56] S. S. Kanhere and H. Sethu. Fair, efficient and low-layepacket scheduling
using nested deficit round robilligh Performance Switching and Routing, 2001
IEEE Workshop onpages 6-10, 2001.

[57] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis.ighted round-robin cell
multiplexing in a general-purpose ATM switch chipEEE Journal on Selected
Areas in Communication®(8):1265-1279, Oct. 1991.

[58] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanme¢intelli. System-level
design: orthogonalization of concerns and platform-bateesign.|[EEE Transac-
tions on Computer-Aided Design of Integrated Circuits apst&ms19(12):1523—
1543, 2000.

[59] P. Kollig, C. Osborne, and T. Henriksson. Heterogesellulti-Core Platform
for Consumer Multimedia Applications. Rroc. Design, Automation and Test in
Europe Conference and Exhibition (DATEP09.

[60] H. Kopetz and G. Bauer. The time-triggered architeztuProceedings of the
IEEE, 91(1):112-126, 2003.

[61] H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, andP@ukovits. Com-
posability in the time-triggered system-on-chip arcttitee. InSOC Conference,
2008 IEEE Internationalpages 87-90, 2008.

[62] E. A. Lee. Absolutely positively on time: what would &ke? IEEE Transactions
on Computers38(7):85-87, 2005.

[63] J.Lee and K. Asanovic. METERG: Measurement-Based teAnd Performance
Estimation Technique in QoS-Capable Multiprocessor$rbt. of the 12th IEEE
Real-Time and Embedded Technology and Applications Spages 135-147,
2006.

[64] K. Lee, T. Lin, and C. Jen. An efficient quality-aware reasn controller for
multimedia platform SoC.IEEE transactions on circuits and systems for video
technology 15(5):620-633, 2005.

204 BIBLIOGRAPHY

[65] G. Lipari and E. Bini. Resource partitioning among reale applicationsReal-
Time Systems, 2003. Proceedings. 15th Euromicro Confe@mpages 151158,
2003.

[66] T. Lundgvist and P. Stenstrom. Timing anomalies in dyitally scheduled mi-
croprocessors. IfEEE Real-Time Systems Symposipages 12-21, 1999.

[67] C.Macian, S. Dharmapurikar, and J. Lockwood. Beyondiggmance: Secure and
fair memory management for multiple systems on a chiplEEE International
Conference on Field-Programmable Technology (FRBges 348-351, 2003.

[68] S. McKee. Reflections on the memory wall. Bnoceedings of the 1st conference
on Computing frontiers2004.

[69] T.F. Melham.Formalising Abstraction Mechanisms for Hardware Verifioatin
Higher Order Logic PhD thesis, University of Cambridge, 1990. Also available
as Technical Report UCAM-CL-TR-201.

[70] Calculating Memory System Power for DDR2. Technicglae, Micron Technol-
ogy Inc., 2005. TN-47-04.

[71] Calculating Memory System Power for DDR3. Technicgla, Micron Technol-
ogy Inc., 2007. TN-41-01.

[72] Micron Technology Inc. http://www.micron.com, 2009.
[73] MIPS Technologies. http://www.mips.com, 2009.

[74] A. Molnos and K. Goossens. Conservative dynamic energgagement for real-
time dataflow applications mapped on multiple processors12th Euromicro
Conference on Digital System Design (DS2009.

[75] G.Moore. Cramming more components onto integrateuiis. Electronics Mag-
azine 38:114-117, 1965.

[76] G. Moore. Progress in digital integrated electroniosElectron Devices Meeting
volume 21, 1975.

[77] O. Moreira, F. Valente, and M. Bekooij. Scheduling nplé independent hard-
real-time jobs on a heterogeneous multiprocessoEMESOFT '07: Proceedings
of the 7th ACM & IEEE international conference on Embeddétiveoe, pages
57-66, 2007.

[78] O. Mutlu and T. Moscibroda. Parallelism-Aware Batchh8duling: Enabling
High-Performance and Fair Shared Memory Controll#EEE Micro, 29(1):22—
32, 2009.

BIBLIOGRAPHY 205

[79] J. Muttersbach, T. Villiger, and W. Fichtner. Practiaesign of globally-
asynchronous locally-synchronous systems. Abfvanced Research in Asyn-
chronous Circuits and Systems, 2000.(ASYNC 2000) Praugedbixth Interna-
tional Symposium grpages 52-59, 2000.

[80] J. B. Nagle. On packet switches with infinite storag&EE Transactions on
CommunicationsCOM-35(4):435-438, 1987.

[81] K. Nesbhit, J. Laudon, and J. Smith. Virtual private cash InProceedings of
the 34th annual international conference on Computer aehure pages 57—-68,
2007.

[82] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. r Eaieuing memory
systems. IMICRO 39: Proceedings of the 39th Annual IEEE/ACM Interoiadl
Symposium on Microarchitectyrpages 208—222, 2006.

[83] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. &ad, and J. E. Smith.
Multicore resource managemehEEE Micro, 28(3), 2008.

[84] J. Nikara, E. Aho, P. Tuominen, and K. Kuusilinna. Perfance analysis of multi-
channel memories in mobile devices. litternational Symposium on System-on-
Chip 2009 Oct. 2009.

[85] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetoni-a federated to an
integrated automotive architectutEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systen#8(7), 2009.

[86] C. Otero Pérez, M. Rutten, J. van Eijndhoven, L. Steffeand P. Stravers. Re-
source reservations in shared-memory multiprocessor SID@s/namic and Ro-
bust Streaming In And Between Connected Consumer-ElggrDeviceschap-
ter 5, pages 109 — 137. Springer, 2005.

[87] M. Paolieri, E. Quifiones, F. Cazorla, G. Bernat, and lllevb. Hardware support
for WCET analysis of hard real-time multicore systemsPtaceedings of the 36th
annual international symposium on Computer architectyp@ges 57-68. ACM
New York, NY, USA, 2009.

[88] Philips Semiconductordevice Transaction Level (DTL) Protocol Specification.
Version 2.22002.

[89] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. Sdalalochitecture for fair
leaky-bucket shaping?roc. IEEE INFOCOM 3:1054-1062, 1997.

[90] M. Ringhofer. Design and implementation of a memorytealter for real-time
applications. Master’s thesis, Graz University of Teclogg| 2006.

[91] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and JOens. Memory access
scheduling. INSCA '00: Proceedings of the 27th annual international sgsipm
on Computer architecturgpages 128-138, 2000.

206 BIBLIOGRAPHY

[92] J. Roest. Spider project: Detailed design descriptibthe DDR SDRAM con-
troller. Technical Report 1.3, Philips Consumer ElectcanR004. Philips confi-
dential.

[93] B. Rumpler. Complexity Management for Composable Reaale Systems.
In Proceedings of the Ninth IEEE International Symposium orje€band
Component-Oriented Real-Time Distributed Computpages 365-373, 2006.

[94] D. Saha, S. Mukherjee, and S. K. Tripathi. Carry-ovemu robin: a simple cell
scheduling mechanism for ATM networkdEEE/ACM Transactions on Network-
ing, 6(6):779-796, 1998.

[95] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstré&t Lemieux, P. Pande,
C. Grecu, and A. lvanov. System-on-chip: Reuse and integraProceedings of
the IEEE 94(6):1050-1069, 2006.

[96] R. Selvaggi and L. Pearlstein. Broadcom mediadsp: Aqia for building pro-
grammable multicore video processolicro, IEEE, 29(2):30-45, 2009.

[97] J. Shao and B. Davis. A burst scheduling access reagi@nechanism. IfPro-
ceedings of the 13th International Symposium on High-Perémce Computer
Architecture pages 285-294, 2007.

[98] M. Shreedhar and G. Varghese. Efficient fair queueiniggudeficit round robin.
In Proc. SIGCOMM pages 231-242, 1995.

[99] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scitiad for Hard-Real-Time
systemsReal-Time System$(1):27—60, 1989.

[100] S. Sriram and S. Bhattacharyy@ambedded multiprocessors: Scheduling and syn-
chronization CRC, 2000.

[101] F. Steenhof. Columbus SDRAM interface. Technical &&ep.8, Philips Con-
sumer Electronics, 2002. Philips confidential.

[102] F. Steenhof, H. Duque, B. Nilsson, K. Goossens, andeRefLIopis. Networks
on chips for high-end consumer-electronics TV system &rchires. InProc.
Design, Automation and Test in Europe Conference and BidnliDATE) pages
148-153, 2006.

[103] L. Steffens, M. Agarwal, and P. van der Wolf. Real-Tiealysis for Memory
Access in Media Processing SoCs: A Practical Appro&®BRTS '08: Proceed-
ings of the 2008 Euromicro Conference on Real-Time Systpayes 255-265,
2008.

[104] D. Stiliadis and A. Varma. Latency-rate servers: aggahmodel for analysis of
traffic scheduling algorithmdEEE/ACM Transactions on Networking(5):611—
624, 1998.

BIBLIOGRAPHY 207

[105] E. Strooisma. A predictable and composable frontfendystem on chip memory
controllers. Master’s thesis, Delft University of Techogy, 2008.

[106] G. Teshome Woldegebreal. Front-end for composaldeuree sharing using
latency-rate servers. Master’s thesis, Delft Universftyechnology, 2009.

[107] K. Tindell, A. Burns, and A. Wellings. An extendibleach for analyzing fixed
priority hard real-time tasksReal-Time System&(2):133—-151, 1994,

[108] C. van Berkel. Multi-core for Mobile Phones. Rroc. Design, Automation and
Test in Europe Conference and Exhibition (DATE)09.

[109] B. Vermeulen and K. Goossendlulti-Core Embedded Systenthapter 5. CRC
Press/Taylor & Francis Group, 2010.

[110] J.Vink, K. van Berkel, and P. van der Wolf. Performanoalysis of SoC architec-
tures based on latency-rate servé®goc. Design, Automation and Test in Europe
Conference and Exhibition (DATH)ages 200-205, 2008.

[111] W.-D. Weber. Efficient Shared DRAM Subsystems for SO8snics, Inc, 2001.
White paper.

[112] S. Whitty and R. Ernst. A bandwidth optimized SDRAM aatier for the MOR-
PHEUS reconfigurable architecture. Rroceedings of the Parallel and Dis-
tributed Processing Symposium (IPDP3)08.

[113] M. Wiggers, M. Bekooij, and G. Smit. Efficient computat of buffer capac-
ities for cyclo-static dataflow graphs. Design Automation Conference, 2007.
DAC'07. 44th ACM/IEEEpages 658-663, 2007.

[114] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. Modetj run-time arbitra-
tion by latency-rate servers in dataflow graphs.SIBOPES '07: Proceedings of
the 10th international workshop on Software & compilersdorbedded systems
pages 11-22, 2007.

[115] N. Wingen. What if you could design tomorrow’s systerdag? InProc. Design,
Automation and Test in Europe Conference and ExhibitionTB®)Apages 835—
840, 2007.

[116] L. Woltjer. Optimal DDR controller. Master’s thesigniversity of Twente, Jan.
2005.

[117] D. Woo and H. Lee. Extending Amdahl’s Law for Energyfi€&iént Computing in
the Many-Core EralEEE Transactions on Computerl(12):24—-31, 2008.

[118] W. A. Wulf and S. A. McKee. Hitting the memory wall: inmiphtions of the
obvious.SIGARCH Computer Archiecutre New8(1):20-24, 1995.

208 BIBLIOGRAPHY
[119] H. Zhang. Service disciplines for guaranteed pertoroe service in packet-
switching networksProceedings of the IEEB3(10):1374-96, Oct. 1995.

[120] H. Zhang and D. Ferrari. Rate-controlled service igigees. Journal of High-
Speed Network$(4):389-412, 1994.

APPENDIX A

Glossary

This chapter provides a guide to the language used in théssth®ection A.1 contains a
list of abbreviations and Section A.2 a list of symbols.

A.1 List of abbreviations

This list of abbreviations explains the most commonly udagteviations in this thesis.
AXI Advanced eXtensible Interface
CBA Closest Burstiness Approximation
CCSP Credit-Controlled Static-Priority
CRA Closest Rate Approximation

DDR Double-Data-Rate

DRAM Dynamic RAM

DSP Digital Signal Processor

DTL Device Transaction Level

FAW Four-activate window

FBSP Frame-Based Static-Priority

IP Intellectual Property

209

210

LR
NoC
PE
RAM
RR
SC
SDRAM
SoC
SRAM
SRSP
SU
TDM

APPENDIX A. GLOSSARY

Latency-Rate
Network-on-Chip
Processing Element
Random Access Memory
Round-Robin

Service Cycle
Synchronous Dynamic RAM
System-on-Chip

Static RAM

Sigma-Rho Static-Priority
Service Unit

Time-Division Multiplexing

A.2 List of symbols

The list of symbols explains most of the symbols that comsithe formal framework
in this thesis. The symbols are sorted in alphabetical ondtlr the Greek alphabet
preceding the Latin.

Table A.1: List of symbols.

Symbol Description

a(wh) Address of request” (bytes)

8 Precision used by CCSP to approximate the allocated ratks
burstinesses (bits)

~(t) Scheduled requestor at a tirhe

A Latency offset (clock cycles)

Oread Minimum clock cycles between a read and a write command 84

Owrite Minimum clock cycles between a write and a read commanc

n Fraction of service cycles with rounded-down completion la 151
tency

O, Service latency of requestor(service cycles)

O, Service latency requirement of requestdservice cycles) 173

o Service latency of requester(clock cycles)

éi" Service latency requirement of requestdclock cycles)

Continued on next page

A.2. LIST OF SYMBOLS 211
Table A.1 — continued from previous page
Symbol Description Page
Awk t) Service cycle length when serving requeétstarting at timet 99
(clock cycles)
A Minimum service cycle length (clock cycles) 154
A Average service cycle length during worst-case conditfologk 147
cycles)
7 (t) Potential of requestar at timet (service units) 105
m(¢) Accounted potential of requestomt timet (service units) 105
Pr Requested service rate of requestdservice units/service cy- 99
cle)
v Allocated rate of requester(service units/service cycle) 101
" Discrete allocated rate of requesto(service units/service cy- 120
cle)
al Allocated burstiness of requesto(service units) 101
ol Discrete allocated burstiness of request{ervice units) 120
Oy The allocated slots of requestom a frame-based rate regulatc 122
wk K" request from requester 46
Q.. Set of requests from requestor 46
a(wk) Alignment of request’® (bytes) 46
BC Burst count. Number of read/write commands per bank per 63
cess pattern
BL Burst length (words) 46
b, Requested bandwidth of requestaiMB/s) 49
bl Allocated bandwidth of requester(MB/s) 49
pIross Gross memory bandwidth (MB/s) 49
pnet Net memory bandwidth (MB/s) 49
ppeak Peak memory bandwidth (MB/s) 47
pslack Slack memory bandwidth (MB/s) 171
cr(t) Credits of requestor at timet 124
c* Credits used to approximate completion latency 151
d Denominator used to approximate the discrete allocated rat 120
d* Denominator used to approximate completion latency 151
dr Data rate (words/clock cycle) 46
eghank Bank efficiency 48
I Command efficiency 48
edata Data efficiency 48
£910ss Gross memory efficiency 49
ehet Net memory efficiency 49
@ Refresh efficiency 47
e Read/write efficiency 47
f The frame size of a frame-based rate regulator 121
Continued on next page

212

APPENDIX A. GLOSSARY

Table A.1 — continued from previous page

Symbol Description Page
Sfrmem Clock frequency (MHz) 46
g Access granularity of a memory pattern (bytes) 63
ir(11,72) Maximum interference experienced by requestoran interval 107
(service cycles)
I(wF) Completion latency of request® (service cycles) 145
lee Completion latency of requester(clock cycles) 148
n Numerator used to approximate the discrete allocated rate 120
n* Numerator used to approximate completion latency 151
Tlace Remaining number of read or write commands to schedule 78
Tact Remaining number of activate commands to schedule 78
Tlbanks Number of banks in the SDRAM 46
TNipipe Number of pipeline stages between the Request Buffer and R&48
sponse Buffer
o,(pl,p,) The over-allocated rate of requesto(service units/service cy 121
cle)
os(c,ol) Over-allocated burstiness of requestdservice units) 121
Dy Priority level of requestor 106
q-(t) Backlog of requestor at timet 101
R Set of requestors sharing the memory 46
RY Set of requestors with higher priority than 106
RY Set of active requestors at time 102
R? Set of busy requestors at time 113
R Set of requestors eligible for scheduling at tile 106
R! Set of live requestors at tinte 102
R Set of backlogged requestors at time 101
s(wk) Size of request’ (service units) 99
sYeYWF) Size of request” (bytes) 46
to(wh) Arrival time of requestv® 99
taux(T) Maximum time to server service units, excluding refreshe 70
(clock cycles)
thlock Maximum blocking time (clock cycles) 514
tCCD Minimum time between two read commands or two write co 46
mands (clock cycles)
tCL Time after read command until first data is available on the bu 46
(clock cycles)
te(wk) Finishing time of request” 144
tFAW Window in which maximally four banks may be activated (clock 46
cycles)
st Cycle with first read command in a read pattern 84
tcvrfife Cycle with first write command in a write pattern 84

Continued on next pag

11%

A.2. LIST OF SYMBOLS 213

Table A.1 — continued from previous page

Symbol Description Page
tlast Cycle with last read command in a read pattern 76
tast Cycle with last write command in a write pattern 76
LN Cycle when last bank is precharged after a read pattern 76
e Cycle when last bank is precharged after a write pattern 76
tRC Minimum time between successive activate commands to 46
same bank (clock cycles)
tRCD Minimum time between activate and read/write commands on46
the same bank (clock cycles)
tRFC Minimum time between a refresh command and a successiv. 46
fresh or activate command (clock cycles)
tRAS Minimum time after an activate command to a bank until that 46
bank is allowed to be precharged (clock cycles)
tread Length of a read pattern (clock cycles) 64
tref Length of a refresh pattern (clock cycles) 64
tREFI Average refresh interval (clock cycles) 46
tRP Minimum time between a precharge command on a bank and a6
successive activate command (clock cycles)
tRRD Minimum time between activates to different banks (clock « 46
cles)
tRTP Minimum time between a read and precharge command (clock46
cycles)
triw Length of a read/write switching pattern (clock cycles) 64
ts(wh) Starting time of request® 144
tshortest Length of the shortest access pattern found so far (clodesyc 78
tiot(x) Total time to server service units (clock cycles) 72
thznair Clock cycles with data transfer in an access pattern 68
tWL Time after write command until first data is available onthe b 46
(clock cycles)
tWR Minimum time after the last data has been writtento a bankL. 46
a precharge may be issued (clock cycles)
twrite Length of a write pattern (clock cycles) 64
twtr Length of a write/read switching pattern (clock cycles) 64
tWTR Internal write to read command delay (clock cycles) 46
wy.(t) Requested service curve of requestait timet 100
w!.(t) Provided service curve of requesioat timet 100
Wl (t) Lower bound on provided service bound for requestat time 111
t (service units)
wl.(t) Upper bound on provided service bound for requestatrtime 103
t (service units)
Winem Width of the data bus (bits) 46

214 APPENDIX A. GLOSSARY

APPENDIX B

System XML specification

This chapter shows the XML specifications that are used a# itgpthe configuration
flow, presented in Chapter 7. First, we look at the architecgpecification in Sec-
tion B.1, followed by the use-case specification in Sectidh B

B.1 Architecture specification

The architecture specification lists a number of Intellatfroperty (IP) components,
each with a number of ports. For each port, type, protocoladiner relevant architecture
parameters are specified. The architecture does not spBafymponents that are auto-
matically synthesized, such as the Network-on-Chip (N@@yl the resource front-end.
However, some parameters are listed as directions for yhihissis. A number of such
parameters required to synthesize the NoC [35] have beeovezhior clarity. The most
interesting IP component in the context of this thesis istieenory controller, which is
our proposed SDRAM back-end. The memory controller has glesiport to which a
synthesized resource front-end is connected. Port pagasngetermine the arbiter that
is used in the front-end, as well as specify the timings ofSBRAM, used to generate
the memory patterns.

<architecture id="thesis">

<ip id="ip_0" type="IP">
<port id="pl" type="Initiator" protocol ="MM O DTL">
<paraneter id="w dth" type="int" val ue="32" />
<par aneter id="bl ocksize" type="int" val ue="32" />
<paraneter id="speed_var" type="double" val ue="10.2" />

215

216 APPENDIX B. SYSTEM XML SPECIFICATION

</ port>
<lip>
<ip id="ip_1" type="IP"'>
<port id="pl" type="Initiator" protocol="MM O _DTL">
<paraneter id="wi dth" type="int" value="32" />
<par aneter id="bl ocksize" type="int" value="32" />
<paraneter id="speed_var" type="double" val ue="10.2" />
</ port>
<port id="p2" type="Initiator" protocol ="MV O DTL">
<paraneter id="w dth" type="int" value="32" />
<paraneter id="Dbl ocksize" type="int" value="32" />
<paraneter id="speed_var" type="double" value="10.2" />
</ port>
<lip>
<ip id="ip_2" type="IP"'>
<port id="pl" type="Initiator" protocol ="MV O DTL">
<paraneter id="w dth" type="int" val ue="32" />
<par aneter id="bl ocksize" type="int" value="32" />
<paraneter id="speed_var" type="double" val ue="10.2" />
</ port>
<lip>
<ip i d="sdram backend" type="MenoryController">
<port id="pl" type="Target" protocol ="MM O DTL">

<paraneter id="width" type="int" value="32" />
<par aneter id="del ay" type="bool" val ue="1"/>

<!-- Arbiter Specification -->

<paraneter id="arbiter" type="string" val ue="CCSP"/>
<parameter id="preenptive" type="bool" value="1"/>
<par anet er id="workConserving" type="bool" val ue="0"/>

<!-- Menory Specification -->

<paraneter id="nenoryld" type="string" val ue="DDR2-400" />
<paraneter id="capacity" type="uint" val ue="65536" />
<par amet er id="nbrOf Banks" type="uint" value="4" />
<paraneter id="clk" type="uint" val ue="200" />
<paraneter id="dataRate" type="uint" value="2" />
<parameter id="tREFI" type="double" val ue="7800" />
<paraneter id="burstSize" type="uint" value="8" />
<par aneter id="wordSize" type="uint" value="2" />
<paraneter id="RC' type="uint" val ue="11" />
<paraneter id="RCD' type="uint" value="3" />
<paraneter id="CL" type="uint" value="3" />
<paraneter id="W'" type="uint" value="2" />
<paraneter id="AL" type="uint" value="0" />
<paraneter id="RP" type="uint" value="3" />

B.2. USE-CASE SPECIFICATION 217

<paraneter id="RFC' type="uint" value="21" />
<paraneter id="RAS" type="uint" value="8" />
<paraneter id="RTP" type="uint" value="2" />
<paraneter id="WR' type="uint" value="3" />
<paraneter id="FAW" type="uint" val ue="10" />
<paraneter id="RRD' type="uint" value="2" />
<paraneter id="CCD' type="uint" value="2" />
<paraneter id="WR' type="uint" value="2" />

</ port>
</ip>
</ architecture>

B.2 Use-case specification

The use-case specification specifies the applications aiddbnnections. Each con-
nection corresponds to a requestor. For each requestatypgbgread, write, or both)

is specified, along with burst sizes, required bandwidthlatehcy requirements. Each
requestor furthermore has a parameter that determinespbnses and flow-control sig-
nals should be delayed to emulate maximum interference &threr requestors. This
parameter hence determines if the resource front-end gs@uprogrammed to provide
composable service to the requestor. The use-case belogsponds to the running ex-
ample in Chapter 7. This simple use-case only has one rexqysst application and all

applications execute concurrently.

<conmuni cat i on>
<application id="Application_0">
<connection qos="GI" id="0">
<initiator ip="ip_0" port="pl"/>
<target ip="sdram backend" port="pl"/>
<read | atency="0" bw="210" burstsize="512"/>
<par anet er id="maxLatency" type="doubl e" val ue="1500"/>
<par aneter id="del ay" type="bool" val ue="1"/>
</ connecti on>
</ appl i cation>
<application id="Application_1">
<connection qos="GI" id="1">
<initiator ip="ip_1" port="pl"/>
<target ip="sdram backend" port="pl"/>
<wite latency="0" bw="210" burstsize="128"/>
<paraneter id="maxLatency" type="double" val ue="550"/>
<par aneter id="del ay" type="bool" val ue="1"/>
</ connecti on>
</ application>
<application id="Application_2">
<connection qos="GI" id="2">

218

APPENDIX B. SYSTEM XML SPECIFICATION

<initiator ip="ip_1" port="p2"/>
<target ip="sdram backend" port="pl"/>

<par anet er id="naxLatency" type="doubl e" val ue="450"/>
<paraneter id="delay" type="bool" value="1"/>

</ connecti on>

</ application>
<application id="Application_3">

<connection gos="GI" id="3">

<initiator ip="ip_2" port="pl"/>

<target ip="sdram backend" port="pl"/>

<wite latency="0" bw="20" burstsize="256"/>

<par anet er id="naxLatency" type="doubl e" val ue="1000"/>
<paraneter id="delay" type="bool" value="1"/>

</ connecti on>

</ application>
</ communi cat i on>

APPENDIX C

About the author

Benny Akesson was born in Landskrona, Sweden in 1977. Heveetthe M.Sc. degree
in Computer Science and Engineering from Lund Institute @fhihology, Sweden in
2005. The master project was carried out at Philips Reséafemdhoven, the Nether-
lands on the topic of predictable SDRAM controllers. In AsgR005, Akesson started
the journey towards a Ph.D. degree at the Technical UniyeséEindhoven in collabo-
ration with Philips Research later becoming NXP Semicotwhsc His research interests
are memory controller architectures, resource arbitnafiad performance analysis.

219

220 APPENDIX C. ABOUT THE AUTHOR

APPENDIX D

List of publications

This work has resulted in nine publications. More specificaine journal article, four
conference papers, one workshop paper, and one patentajpli There are further-
more two pending invention disclosures related to memongrotiers and resource arbi-
tration.

Journal articles

[1] Multi-Processor Programming in the Embedded Systemi€@uum. Andreas Hans-
son, Benny Akesson, and Jef van Meerberge®M SIGBED Reviewolume 6, Number
1, 2009.

Conference and workshop papers

[2] Efficient Service Allocation in Hardware Using Credib@trolled Static-Priority Ar-
bitration. Benny Akesson, Liesbeth Steffens, and Kees &aws Int’l Conference on
Embedded and Real-Time Computing Systems and ApplicdRaiSA) 2009

[3] Composable Resource Sharing Based on Latency-RateiSenBenny Akesson,
Andreas Hansson, and Kees Goosselzth Euromicro Conference on Digital System
Design (DSD) 2009

[4] Multi-Processor Programming in the Embedded Systemi@uum. Andreas Hans-
son, Benny Akesson, and Jef van Meerbergéth Workshop on Embedded Systems
Education (WESE) 2008

221

222 APPENDIX D. LIST OF PUBLICATIONS

[5] Real-Time Scheduling Using Credit-Controlled Sta@iderity Arbitration. Benny
Akesson, Liesbeth Steffens, Eelke Strooisma, and Keesggasednt'l| Conference on
Embedded and Real-Time Computing Systems and ApplicdRadiizSA) 2008

[6] Predator: A Predictable SDRAM Memory Controller. Berfklyesson, Kees Goossens
and Markus RinghoferInt’| Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS) 2007

Reports

[7] Real-Time Scheduling of Hybrid Systems using Credita€olled Static-Priority Ar-
bitration. Benny Akesson, Liesbeth Steffens, Eelke Stioai, and Kees GoosseMsXP
Semiconductors Technical Noteptember 2007.

[8] An analytical model for a memory controller offering ldareal-time guarantees.
Benny AkessonMaster Thesis May 200%.und Institute of Technology.

Patent applications

[9] Memory controller and method for controlling access tm@mory, as well as system
comprising a memory controller. Benny Akesson, Andrei Raesltu, Kees Goossens,
and Frits Steenhof. Applications: W02006117746, EP18802852008244135, and
JP2008541217. NXP B.V.

	Title page
	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1.1 Trends in embedded system design
	1.2 Problem statement
	1.3 Requirements
	1.4 Contributions
	1.5 Outline
	1.6 Summary

	2 Proposed solution
	2.1 Predictability
	2.2 Abstraction
	2.3 Composability
	2.4 Automation
	2.5 Summary

	3 SDRAM memories and controllers
	3.1 Introduction to SDRAM
	3.2 Formal model
	3.3 Memory efficiency
	3.4 Memory controllers
	3.5 Summary

	4 Predictable SDRAM back-end
	4.1 Overview of predictable SDRAM controller
	4.2 Memory patterns
	4.3 Memory efficiency bound
	4.4 Latency bound
	4.5 Memory pattern generation
	4.6 Architecture and synthesis
	4.7 Experimental results
	4.8 Summary

	5 Credit-Controlled Static-Priority arbitration
	5.1 Arbiter requirements
	5.2 Formal model
	5.3 Definition of CCSP arbitration
	5.4 Arbiter analysis
	5.5 LR server
	5.6 Hardware implementation
	5.7 Architecture and synthesis
	5.8 Experimental results
	5.9 Summary

	6 Composable resource front-end
	6.1 Overview of approach
	6.2 Formal model
	6.3 Timing analysis
	6.4 Architecture and synthesis
	6.5 Experiments
	6.6 Summary

	7 Configuration
	7.1 Formal model
	7.2 Memory pattern generation
	7.3 Normalization of requirements
	7.4 Arbiter configuration
	7.5 Denormalization of allocation
	7.6 Requirement verification
	7.7 Experimental results
	7.8 Summary

	8 Related work
	8.1 Resource arbitration
	8.2 SDRAM controllers
	8.3 Composable service

	9 Conclusions and future work
	9.1 Conclusions
	9.2 Future work

	Bibliography
	A Glossary
	A.1 List of abbreviations
	A.2 List of symbols

	B System XML specification
	B.1 Architecture specification
	B.2 Use-case specification

	C About the author
	D List of publications

