
Virtual Platforms for Mixed Time-Criticality Applications:
The CoMPSoC Architecture and SDF3 Design Flow

Benny Akesson1, Sander Stuijk1, Anca Molnos2, Martijn Koedam1, Radu Stefan1,

Andrew Nelson2, Ashkan Beyranvand Nejad2, and Kees Goossens1
1 Eindhoven University of Technology, 2 Delft University of Technology

I. INTRODUCTION

Systems-on-Chip (SoC) complexity increases as a grow-

ing number of applications are integrated and executed on

contemporary systems. These applications consist of com-

municating tasks mapped on heterogeneous multi-processor

platforms with distributed memory hierarchies that strike a

good balance between performance, cost, power consumption

and flexibility [1], [2]. Complexity is further increased by an

increasing number of use-cases, which are different combi-

nations of concurrently running applications. The applications

have mixed time-criticality, which is a mix between firm, soft,

and no real-time requirements. Firm real-time requirements

must always be satisfied to prevent unacceptable output quality

loss, while occasional failures to meet soft requirements can be

tolerated. Lastly, non-real-time applications do not have well-

defined timing requirements, but must still be responsive.

Applications from different domains and that have different

time criticalities use different design and verification meth-

ods. After applications are developed, the verification process

begins. Verification of real-time requirements is traditionally

performed using formal analysis, simulation, or a combination

of the two. Firm real-time applications demand rigorous formal

verification, since their requirements must always be met.

In contrast, soft real-time applications are often verified by

simulation for a large set of inputs, as they are often dynamic

by nature and difficult to verify by formal methods in a cost-

effective manner.

To reduce cost, platform resources, such as processors,

interconnect, and memories, are shared between applications.

However, resource sharing causes interference between ap-

plications, making their temporal behaviors inter-dependent.

This results in three problems with respect to system design,

verification, and integration. Firstly, accurate system-level sim-

ulation and several approaches to formal analysis in complex

SoCs are infeasible, because of the state-space explosion

resulting from the many use-cases, application inputs, and

resources states. Secondly, use-case verification becomes a

circular process that must be repeated if an application is

added, removed, or modified [3]. Thirdly, it is difficult to

support various automatic analysis and design flows. As a

result, the integration and verification process is a dominant

part of SoC development, both in terms of time and money [3].

The CoMPSoC platform [4] addresses these problems by

executing each application in an independent virtual platform,

and by using the SDF3 design flow [5] that automatically

analyses firm real-time applications and maps them on a

virtual platform. The CoMPSoC virtualization technology

Fig. 1. CoMPSoC architecture and SDF3 design flow.

relies on two complexity-reducing concepts: composability and

predictability, detailed as follows.

Composable virtual platforms are completely isolated and

cannot affect each other’s temporal behaviors by even a single

clock cycle. They are hence virtualized in terms of actual

execution time, enabling applications to be designed, devel-

oped and verified in isolation. This alleviates the verification

problem in the mixed time-criticality domain in three ways:

1) verification becomes a non-circular process, 2) the time

required by simulation-based verification is reduced, since

only a single application in its virtual platform has to be

simulated, and 3) the use of different design and verification

methods is enabled.

The virtual platforms are also predictable, which means that

all platform and application interference is bounded. This

makes them virtualized in terms of performance bounds, such

as upper bounds on latency or lower bounds on throughput.

This enables firm real-time applications to be verified using

formal performance analysis frameworks, such as data-flow

analysis [5]. Composability and predictability are hence com-

plementary concepts that both solve important parts of the

verification problem for mixed time-criticality systems, and

provide a complete solution when combined.

II. PLATFORM ARCHITECTURE

The CoMPSoC platform, illustrated in the bottom part of

Figure 1, has a tiled architecture consisting of processor tiles,

network-on-chip, and memory tiles. Each of these tiles and

the interconnect are virtualized to implement a set of virtual

platforms. We first briefly describe each resource in turn



and then present the techniques to achieve composable and

predictable virtualization.

A processor tile is equipped with a MicroBlaze proces-

sor running the CompOSe real-time operating system [6].

CompOSe provides composable and predictable services, such

as application scheduling and power management [7]. A

processor tile furthermore contains non-shared local memory

(Lmem) for instruction and data, as well as communication

memories (Cmem) used by a DMA for communication with

remote tiles. The memory tile is subdivided into a front-end

and a back-end. The front-end is independent of memory

technology and contains buffering and arbitration. The back-

end interfaces with the actual memory device and is different

for different types of memories. It is possible to use an off-the-

shelf SRAM back-end, but a customized SDRAM back-end [8]

is used to enable efficient performance virtualization. The tiles

in the system are interconnected using the Æthereal network-

on-chip [9]. The architecture of the network comprises net-

work interfaces that packetizes and buffers incoming data, and

control access to the network, and routers that forward packets

towards the destination network interface.

The CoMPSoC platform uses three main techniques for

composability and predictability, respectively. The techniques

for composability are [4]: 1) use preemption after a fixed

time to prevent large or infinite requests from one application

from starving other applications, 2) delay scheduling until

the end of a time slice to prevent requests that finish early

from affecting when the following request is scheduled, and 3)

use composable scheduling, such as time-division multiplexing

(TDM), where the presence or absence of requests from

one application cannot affect when other applications are

scheduled. The techniques for predictability [4] are: 1) enable

worst-case analysis per resource by requiring that all data for

a request is available and that there is sufficient memory space

to store responses before scheduling it, 2) use predictable

resources with bounded worst-case execution times, such as

the CoMPSoC processing tiles, network-on-chip, and memory

tiles, and 3) use predictable scheduling to bound worst-case

response times, such as TDM or Round-Robin.

III. DESIGN FLOW

Programming heterogeneous systems, such as the CoMP-

SoC platform, is a very challenging task. Model-based design

approaches using the dataflow Model-of-Computation have

emerged as a promising solution to address this challenge.

For example, [10] presents a design flow that maps a through-

put constrained application, modeled with a scenario-aware

dataflow graph, to an MPSoC. This design flow is implemented

in the SDF3 tool set [5]. We adapted this design flow for

use with CoMPSoC. As shown in Figure 1, our flow takes

an application modeled with a Cyclo-Static Dataflow (CSDF)

graph [11] as an input. The nodes in a CSDF graph, called

actors, model application tasks and the edges model control

or data dependencies. In the CoMPSoC design flow, each

actor is associated with C code that implements its func-

tionality. When determining the mapping of the actors on

the platform resources, the design flow abstracts from this

functional behavior. To provide timing guarantees, it only

needs to consider the worst-case execution time and worst-

case memory requirements of an actor. Currently, a designer

is responsible for providing these inputs to our flow.
To implement a CSDF graph, its actors and edges should

be bound and scheduled on the resources of an MPSoC.

This process is handled by our design flow. Our flow first

analyzes the trade-off between the storage-space assigned to

the edges and the throughput of the graph. After constraining

the storage space of the edges, the flow binds the actors to the

MPSoC resources. Next, static-order schedules are constructed

for all processors to which actors have been bound. Finally,

the flow computes the minimal TDM time slices needed on

these processors to guarantee the timing requirements of the

application. By minimizing the TDM time slices, processor

resources are saved for other applications. Once the complete

mapping is known, the CoMPSoC design flow generates a set

of C source files that together with the C source code of the

actors implement the complete application on the CoMPSoC

platform. The generated C code contains all required function

calls to CompOSe to initialize arbiters in the processor tiles,

network-on-chip and memory tiles, and execute the application

within its timing constraints.

IV. CASE STUDY

A case study was performed in which an H.263 decoder,

modeled with a CSDF graph, is automatically mapped to a

two-tile CoMPSoC instance using our automated design flow.

The flow was able to find a mapping of our application within

seconds that satisfied its timing constraints as well as the

resource constraints imposed by our platform instance. After

running our flow, the CoMPSoC instance and our mapped

application were implemented on an FPGA board using an

automated synthesis trajectory. Experiments on the FPGA

board confirmed that our platform provides a composable and

predictable behavior when running the H.263 decoder.

V. CONCLUSIONS

This paper presents the CoMPSoC architecture, which com-

bined with the SDF3 design flow can be used to realize

virtual platforms for mixed time-criticality applications. The

CoMPSoC virtualization technology combines composability

and predictability in a single platform and design trajectory.

REFERENCES

[1] STMicroelectronics and CEA, “Platform 2012: A Many-core programmable accel-
erator for Ultra-Efficient Embedded Computing in Nanometer Technology,” 2010,
white paper.

[2] C. van Berkel, “Multi-core for Mobile Phones,” in Proc. DATE, 2009.
[3] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc. IEEE, vol. 91,

no. 1, 2003.
[4] B. Akesson et al., “Composability and predictability for independent application

development, verification, and execution,” in Multiprocessor System-on-Chip —
Hardware Design and Tool Integration, M. Hübner and J. Becker, Eds. Springer,
2010, ch. 2.

[5] S. Stuijk et al., “SDF3: SDF For Free,” in Proc. ACSD, 2006.
[6] A. Hansson et al., “Design and Implementation of an Operating System for

Composable Processor Sharing,” MICPRO, vol. 35, no. 2, 2011.
[7] A. Nelson et al., “Composable power management with energy and power budgets

per application,” in Proc. SAMOS, 2011.
[8] B. Akesson et al., “Predator: a predictable SDRAM memory controller,” in Proc.

CODES+ISSS, 2007.
[9] K. Goossens and A. Hansson, “The aethereal network on chip after ten years:

Goals, evolution, lessons, and future,” in Proc. DAC, 2010.
[10] S. Stuijk et al., “A predictable multiprocessor design flow for streaming applica-

tions with dynamic behaviour,” in Proc. DSD, 2010.
[11] G. Bilsen et al., “Cyclo-static dataflow,” IEEE Trans. Signal Process., vol. 44,

no. 2, 1996.


