
An Efficient Configuration Methodology for
Time-Division Multiplexed Single Resources

Benny Akesson1, Anna Minaeva1, Přemysl Šůcha1, Andrew Nelson2 and Zdeněk Hanzálek1

1Czech Technical University in Prague, 2Eindhoven University of Technology

Abstract—Complex contemporary systems contain multiple
applications, some which have firm real-time requirements while
others do not. These applications are deployed on multi-core
platforms with shared resources, such as processors, interconnect,
and memories. However, resource sharing causes contention
between sharing applications that must be resolved by a resource
arbiter. Time-Division Multiplexing (TDM) is a commonly used
arbiter, but it is challenging to configure such that the bandwidth
and latency requirements of the real-time resource clients are
satisfied, while minimizing their total allocation to improve the
performance of non-real-time clients.

This work addresses this problem by presenting an efficient
TDM configuration methodology. The five main contributions
are: 1) An analysis to derive a bandwidth and latency guarantee
for a TDM schedule with arbitrary slot assignment, 2) A
formulation of the TDM configuration problem and a proof
that it is NP-hard, 3) An integer-linear programming model
that optimally solves the configuration problem by exhaustively
evaluating all possible TDM schedule sizes, 4) A heuristic method
to choose candidate schedule sizes that substantially reduces
computation time with only a slight decrease in efficiency, 5)
An experimental evaluation of the methodology that examines its
scalability and quantifies the trade-off between computation time
and total allocation for the optimal and the heuristic algorithms.
The approach is also demonstrated on a case study of a HD video
and graphics processing system, where a memory controller is
shared by a number of processing elements.

I. INTRODUCTION

Modern consumer-electronics systems feature an increasing
number of applications. Some of these applications have firm
real-time requirements and must always satisfy their deadlines,
while other non-real-time applications are more concerned
about average performance to feel responsive to the user. To
realize the application requirements with low cost and energy
consumption, platforms are implemented with heterogeneous
processing cores and hardware accelerators sharing resources,
such as memories, buses, and peripherals [1], [2]. The pro-
cessing cores and accelerators are hence clients competing for
shared resources, resulting in contention that must be resolved
by a resource arbiter. Time-Division Multiplexing (TDM) is a
commonly used arbiter for many types of resources ranging
from processing elements via buses and networks-on-chips
to memory controllers and peripherals. The reasons for its
popularity is that it is conceptually easy to understand and
analyze and has efficient implementations both in hardware
and software. Additionally, it provides temporal isolation be-
tween clients when used in a non-work-conserving manner [3].
Example platforms relying extensively on TDM for a variety
of resources are PRET [4] and CompSOC [3].

An important problem with TDM arbitration is to find a
schedule that efficiently satisfies the bandwidth and latency
requirements of the clients, while minimizing their resource
utilization (maximizing slack capacity) to improve perfor-
mance of their non-real-time counterparts. Such a configura-

tion requires both choosing a suitable schedule length (frame
size) and assigning time slots to the clients. This configuration
process must be efficient in terms of minimizing utilization to
reduce cost and must finish within reasonable time, even for
complex systems, to avoid negatively impacting design time.

The five main contributions of this paper are: 1) We present
a novel approach to derive a latency-rate (LR) [5] service
guarantee on bandwidth and latency for a single resource
shared by a TDM arbiter with arbitrary slot assignments and
prove its correctness. 2) We formulate our TDM configuration
problem and prove that it is NP-hard, 3) We present an
optimal integer-linear programming (ILP) model that assumes
the TDM frame size to be given, requiring many iterations
to synthesize the best frame size, 4) We propose a heuristic
algorithm for choosing a limited set of frame sizes to evaluate
with the ILP model, providing a trade-off between the com-
putation time of the solver and efficiency that is useful when
non-optimal solutions are acceptable. 5) We experimentally
evaluate the scalability of the approach and quantify the trade-
off between efficiency and computation time of the optimal
and heuristic solutions. The methodology is also demonstrated
on a case study of a HD video and graphics processing system,
where 7 memory clients share a memory.

The rest of this paper is organized as follows. Related
work is discussed in Section II. Section III then proceeds by
presenting necessary background about the LR server frame-
work and its application to TDM arbitration. The analysis that
extends the LR framework to cover arbitrary slot assignments
is presented in Section IV, before the configuration problem
is formalized and its complexity determined in Section V. The
ILP model is then introduced in Section VI, followed by the
heuristic filtering algorithm in Section VII. The experimental
evaluation and case study are presented in Section VIII, before
concluding the paper in Section IX.

II. RELATED WORK

There are many examples of work relying on TDM arbitra-
tion in the context of timing analysis of platform resources,
such as memory controllers and buses. These can be divided
into two classes; those using fine-grained [6]–[9] and coarse-
grained [10]–[15] TDM arbitration, respectively. A slot in a
fine-grained TDM schedule corresponds to a single resource
access, while coarse-grained TDM arbitration considers slots
with fixed or variable duration that are typically much longer.
A similarity between all the above-mentioned works is that
they assume the TDM schedule to be given and hence require
an efficient configuration methodology to provide good results,
showing the relevance of research in this area.

A TDM configuration methodology has been proposed
in [10] that heuristically determines and optimizes bus sched-
ules to satisfy the response time requirements of task graphs.

Key differences with our work is that it primarily targets
coarse-grained schedules and relies on application information
about when requests are issued. In contrast, our work considers
fine-grained TDM arbitration and provides a service guarantee
that is independent of the application model.

Other methodologies to configure fine-grained TDM ar-
biters have been proposed in the context of off-chip and on-
chip networks. An approach for synthesizing TDM sched-
ules for TTEthernet with the goal of satisfying deadlines
for time-triggered traffic, while minimizing the latency for
rate-controlled traffic is proposed in [16]. The methodologies
in [17], [18] furthermore consider slot allocation in contention-
free TDM networks-on-chips. Just like [10], the approaches
in [17], [18] are heuristic and their efficiencies have not been
quantified compared to optimal solutions. Furthermore, the
problem of scheduling networks is different from ours as it
considers multiple resources (network links) and is dependent
on the problem of determining paths through the network.

Our work is different from the aforementioned methodolo-
gies in that it provides a latency-rate guarantee, while opti-
mally minimizing the total allocated rate for single resources
shared by a fine-grained TDM arbiter. The only previous
solution to this problem is the configuration methodology for
multi-channel memory controllers in [19]. Just like our work,
this approach to TDM configuration is based on integer-linear
programming, although the formulation is limited to continu-
ous slot assignment and assumes the frame size to be given.
These restrictions result in significant over-allocation that often
prevents a given set of requirements from being satisfied. In
contrast, our methodology supports arbitrary slot assignment
and synthesizes the frame size. As we experimentally show
in Section VIII, this causes our methodology to consistently
outperform the work in [19].

III. BACKGROUND

This section presents relevant background information to
understand the work in this paper. First, we present the concept
of latency-rate servers, which is an abstraction of the service
provided to a client by a shared resource. We then proceed by
discussing how TDM arbitration fits with this abstraction.

A. Latency-Rate Servers
Latency-rate (LR) [5] servers is a shared resource abstrac-

tion that guarantees a client ci sharing a resource a minimum
allocated rate (bandwidth), ρi, after a maximum service la-
tency (interference), Θi, as shown in Figure 1. The figure
illustrates a client requesting service from a shared resource
over time (upper solid line) and the resource providing service
(lower solid line). The LR service guarantee, the dashed line
indicated as service bound in the figure, provides a lower
bound on the amount of data that can be transferred to a
client during any interval of time. This makes a LR server
suitable for performance analysis of streaming applications
concerned with the time to serve sequences of requests rather
than just single requests. Examples of such applications are
audio and video encoders/decoders [9], [20], [21], and wireless
radios [9], [22]. The values of Θi and ρi of each client
depend on the particular choice of arbiter and how it is
configured. Examples of arbiters that belong to the class of
LR servers are TDM, several varieties of the Round-Robin
and Fair-Queuing algorithms [5], as well as priority-based

A
c
c
u

m
u

la
te

d

re
q

u
e

s
ts

Clock cycles

service bound

provided service

busy line

requested service

busy period

busy period

szki

Θi

ρi

arrki fink
i

szki /ρi

Fig. 1. A LR server and associated concepts for a client sharing a resource.

arbiters like Credit-Controlled Static-Priority [23]. The main
benefit of the LR abstraction is that it enables performance
analysis of systems with shared resources in a unified manner,
irrespective of the chosen arbiter and configuration, using well-
known performance analysis frameworks, such as network
calculus [24] and data-flow analysis [25].

The LR service guarantee is conditional and only applies
if the client produces enough requests to keep the server
busy. This is captured by the concept of busy periods, which
intuitively are periods in which a client requests at least as
much service as it has been allocated (ρi) on average. This is
illustrated in Figure 1, where the client is in a busy period
when the requested service curve is above the dash-dotted
reference line with slope ρi that we informally refer to as
the busy line. The figure also shows how the service bound
is shifted when the client is not in a busy period. A client
is casually referred to as a busy client during a busy period.
We now have all the necessary ingredients to provide a formal
definition of a LR server in Definition 1.

Definition 1 (LR server): A server is a LR server if and
only if a non-negative service latency Θi can be found such
that the provided service, wji , of a client ci is bounded
by Equation (1) during a busy period with duration j. The
minimum non-negative constant Θi satisfying the equation is
the service latency of the server.

wji ≥ max(0, ρi · (j −Θi)) (1)

It has been shown in [26] that the worst-case finishing time
of the kth request from a client i can be bounded using the
LR abstraction according to Equation (2), where szki is the
size of the request in number of required slots, arrki is the
arrival time, and fink−1

i is the worst-case finishing time of the
previous request from the client. This bound is visualized for
the kth request in Figure 1.

finki = max(arrki + Θi, fink−1
i) + szki /ρi (2)

B. Time-Division Multiplexing
Having introduced LR servers as a general abstraction of

shared resources, we proceed by showing how the abstraction
applies to resources shared using TDM arbitration.

A fine-grained TDM arbiter operates by periodically repeat-
ing a schedule, or frame, with a fixed number of slots, f . The
schedule comprises a number of slots, each corresponding to
a single resource access with bounded execution time. Every
client ci is allocated a number of slots φi in the schedule at
design time.

The rate (bandwidth) allocated to a client, ρi, is determined
purely by the number of allocated slots in the schedule and
is computed according to Equation (3). The service latency,
on the other hand, depends on the slot assignment policy
that determines how the allocated slots are distributed in the
schedule. A commonly used slot assignment policy is to use
a continuous allocation [6]–[9], [19], where slots allocated
to a client appear consecutively in the schedule, as shown in
Figure 2a. For this policy, the service latency of a client (in
slots), Θco, can simply be computed according to Equation (4).
The service latency assumes that the busy period starts just
after the last slot allocated to the client to maximize the
number of interfering slots. If the busy period starts at any later
point in the TDM schedule, the service latency is reduced.

Θco
1 = 4

c1c1

(a) Continuous slot assignment.

c1c1

Θeq
1 = 2

(b) Equidistant slot assignment.

Fig. 2. TDM schedule with frame size f = 6 and φ1 = 2 allocated slots to
client c1 for two different slot assignment policies. The allocated rate of c1
is ρ1 = 2/6.

ρi = φi/f (3)

Θco
i = f − φi = f · (1− ρi) (4)

The main benefit of the continuous slot assignment policy
is that it is simple to understand and implement, and that
both the service latency and the rate are straight-forward to
compute. However, it is provably also the policy that results
in the longest possible service latency for a given number
of allocated slots. In contrast, the shortest service latency is
achieved by using a schedule where the allocated slots are
placed equidistantly, as shown in Figure 2b. This assignment
results in a service latency, Θeq , according to Equation (5).
Although the service latency of an equidistant schedule is
minimal, it is not always possible to create such a schedule
for all clients, since several of them may require the same slot
to make their allocations equidistant. As a result, the optimal
schedule for a given set of clients and requirements is more
complex and irregular, and requires a more sophisticated slot
assignment policy and service latency analysis.

Θeq
i = f /φi − 1 = 1/ρi − 1 (5)

IV. LATENCY COMPUTATION

This section proposes a method to compute the service
latency and rate parameters of a client from an arbitrary
schedule and proves its correctness. The key idea is to break
down a TDM schedule with an arbitrary slot allocation for
client ci into Ni sub-schedules, each with a continuous al-
location. Sub-schedule j ∈ [1, Ni] hence comprises φ̃ji idle
slots (slots not allocated to client ci under analysis), followed
by φji allocated slots. In case the first slot in the first sub-
schedule is allocated to the client, then φ̃1

i = 0. For each sub-
schedule, we can apply a local analysis, corresponding to the
analysis for continuous TDM allocations previously presented
in Equations (3) and (4), to determine the local service latency,
Θj
i , and rate, ρji , of client ci. However, these bounds are not

guaranteed to be conservative for busy periods starting and
ending in arbitrary sub-schedules. This section hence presents
a global analysis to determine the global service latency that
is valid for arbitrary TDM allocations. In the remainder of this
paper, we will omit the index of the client under analysis in
the interest of readability unless required to disambiguate.

We start by presenting a motivational example that explains
why deriving the service latency of an arbitrary TDM schedule
requires a global analysis. Intuitively, it is just a matter of
identifying the largest gap between slots allocated to the client
in the schedule, i.e. using the local analyses, although this
is not correct. The difficulty lies in the definition of service
latency; that it is about the maximum time before the allocated
rate is guaranteed to be continuously provided during a busy
period and that this busy period may start at any point in the
schedule and last for an arbitrary number of sub-schedules.

The problem is illustrated in Figure 3, which shows a TDM
schedule, repeated twice, along with its corresponding service
bound. The schedule has a frame size f = 10, where five slots
are allocated to client c1 resulting in a global rate of ρ = 0.5.
The schedule comprises two sub-schedules with continuous
allocations, one with a local size of f 1 = 4, where c1 is
allocated 1 slot (φ1 = 1), and one with a local size of f 2 = 6
and c1 has an allocation of φ2 = 4 slots. Given Equations (3)
and (4), the local service latencies and rates are Θ1 = 3,
ρ1 = 0.25, Θ2 = 2, ρ2 = 0.67, respectively. The provided
service line in Figure 3 corresponds to the actual worst-
case provided service by the schedule without considering the
LR abstraction. The dotted line starting after the third TDM
slot shows that assuming the service latency of the schedule
to be equal to the largest local service latency results in a
non-conservative service guarantee, as it is intersected by the
provided service line. The reason is that although Θ1 = 3 is
the longest gap between allocated slots, there is not enough
allocated slots in sub-schedule 1 to maintain the allocated rate
during the idle slots in the following sub-schedule. Hence,
the global service latency does not only depend on a single
sub-schedule, but also on the following ones.

Clock cycles

A
c
c
u

m
u

la
te

d
 r

e
q

u
e

s
ts

provided

service

service bound

busy line

requested service

ρ1 = 0.25 ρ2 = 0.67

c1 c1 c1 c1

Θ1 = 3 Θ2 = 2

Θ = 4

ρ = 0.5

c1

δ1 = 1

δ2 = −1

ρ1 = 0.25 ρ2 = 0.67

c1 c1 c1 c1 c1

Fig. 3. A TDM schedule with f = 10 comprising two sub-schedules and
an example of the corresponding LR server.

The solution to this problem is to use a global analysis
that considers the interaction between sub-schedules. For this
purpose, Definition 2 defines a parameter called service latency

offset, δj , for each sub-schedule j that represents the ability
of the allocated slots in the sub-schedule to maintain the
global rate guarantee through the idle part of the following
sub-schedule. If the offset of sub-schedule j is positive, its
value indicates how much the local service latency Θj must
be increased for the guarantee to be valid also throughout
sub-schedule j + 1. This can intuitively be understood as the
analysis shifts the allocated slots in sub-schedule j δj steps to
the right in the TDM schedule. This shift reduces the number
of idle slots in sub-schedule j + 1 in the analysis, while
increasing the number of idle slots in sub-schedule j. As a
result, the guaranteed rate is now consistent with the allocated
rate at cost of an increase in service latency.

Definition 2 (Service latency offset): The service latency
offset of a sub-schedule j for a client is denoted by δj and is
defined as δj = φj + φ̃j+1 − φj · 1/ρ.

Computing the offset for the example in Figure 3 gives
δ1 = 1, implying that the service latency has to be increased by
one for the global rate to be maintained without interruption.
This is illustrated by the service bound in Figure 3, where
increasing the local service latency by one to Θ = 4 is just
enough to make the global rate guarantee conservative during
the second sub-schedule.

Lemma 1 shows an important property of the service latency
offset, namely that the sum of offsets for all sub-schedules is
equal to zero. Intuitively, this means that the combinations of
the local rates always converge to the global rate, which is
true by definition. This property can also be seen in Figure 3.

Lemma 1 (Convergence of local rates): The sum of ser-
vice latency offsets of a client for all N sub-schedules equals
zero, i.e.,

∑
j∈N δ

j = 0.

Proof: The proof of the lemma is divided into three
small steps, as shown in Equation (6). The first step simply
substitutes δj for its definition from Definition 2. The second
step then uses the fact that the sum of φj and φ̃j+1 of the
client over all sub-schedules are equal to its global φ and φ̃,
respectively. The final step then exploits that φ+φ̃ = f and that
ρ = φ/f , and then the proof follows by algebraic reduction.

∑
j∈N

δj =
∑
j∈N

(φj + φ̃j+1 − φj · 1/ρ) =

φ+ φ̃− φ · 1/ρ = f − φ · f /φ = 0 (6)

The global service latency can finally be computed accord-
ing to Theorem 1. Equation (7) in the theorem computes the
maximum latency for busy periods starting in any sub-schedule
(variable j) and ending in any sub-schedule (variable l). Note
that it is sufficient to consider N (the number of sub-schedules)
possible end-points, since it follows from Lemma 1 that the
same offsets reoccur for every sub-schedule for every iteration
of the TDM schedule. For clarity, the indices in Theorem 1
do not show wrapping around the N sub-schedules, although
this is just a matter of a simple modulo operation.

Theorem 1 (Service latency for arbitrary TDM schedules):
The service latency of a client for an arbitrary TDM schedule
is determined according to Equation (7).

Θ = max
j∈[1,N]

(
Θj + max

(
0, max
k∈[1,N]

j+k−1∑
l=j

δl
))

(7)

Proof: We prove the theorem by showing that the LR
guarantee in Definition 1 holds during a busy period starting in
any sub-schedule j and ending in any sub-schedule k ≥ j. We
will show this assuming the worst-case start and end points
within the sub-schedules, which is in the beginning of the
starting sub-schedule j and just before the set of consecutive
slots allocated to the client in sub-schedule k.

The proof will show that the provided rate during the busy
period, ρ∗, is greater than or equal to the allocated rate, i.e.
ρ∗ ≥ ρ. The provided rate during the busy period is computed
by considering the number of allocated slots in the interval
over the total number of slots after waiting for the global
service latency, as shown in Equation (8). Here, the number of
slots indicated by the sum of offsets are discounted from the
total number of slots. The reason is that these slots are added
to the global service latency and should hence not be included
in the rate component of the service bound, since there is no
obligation to deliver on the allocated rate during the initial Θ
slots. However, the slots allocated during this time still counts
towards the guarantee, even though service is provided early,
since it is just a matter of staying above the guaranteed service
line of the LR server.

ρ∗ =

k−1∑
m=j

φm/
(
φm + φ̃m+1 −max

(
0, max
n∈[0,k−j−1]

j+n∑
m=j

δm
))
(8)

We distinguish two mutually exclusive and jointly exhaus-
tive cases considering the starting and ending sub-schedules.

Case 1: j < k
This describes the general case where the busy period starts
in a sub-schedule j and ends in a later sub-schedule k. From
Equation (7), we get that the service latency in this case is
expressed by Θj,k = Θj + max(0,

∑k−1
m=j δ

m) ≤ Θ.
The provided rate is expressed according to Equation (8).

Removing the max expressions and just summing up the
offsets from j to k−1 results in a conservative minimum rate,
shown in Equation (9), since the same number of allocated
slots are provided over a potentially larger number of total
slots.

ρ∗ ≥
k−1∑
m=j

φm/
(
φm + φ̃m+1 −

k−1∑
n=j

δn
)

(9)

In the final step, we substitute δj for its definition from
Definition 2 and conclude the proof by algebraic reduction.

ρ∗ ≥
k−1∑
m=j

φm/
(
φm+φ̃m+1−

k−1∑
n=j

(φn+φ̃n+1−φn ·1/ρ)
)

= ρ

Case 2: j = k
We now consider the special case where the busy period
starts and stops in the same sub-schedule j, confining the
busy period to a single sub-schedule with continuous slot

assignment. This makes the case identical to the simple case
previously discussed in Section III-B and the service latency
can hence be computed according to Equation (4). This is
covered by Equation (7), for the case where k = N , since∑
j∈N δ

j = 0 by Lemma 1.
Assuming the worst-case start and end points in sub-

schedule j, ρ∗ = 0, which satisfies the LR guarantee since
no service is expected to be provided until after the global
service latency Θ ≥ Θj according to Definition 1.

Together, the two cases prove that even under worst-case
alignment with the TDM schedule, a busy client is guaranteed
a minimum rate of ρ after a global service latency Θ, given
by Equation (7). The global service latency, Θ, is furthermore
minimal, since any smaller value would result in ρ∗ < ρ for
the case where n is maximal in Equation (8).

V. PROBLEM FORMULATION

So far, we have discussed how to derive the LR guarantees
provided to a client from a given TDM schedule with an
arbitrary slot assignment. However, we have not yet addressed
the problem of finding a frame size and TDM slot allocation
that satisfies the requirements of a set of clients, while min-
imizing the rate allocated to real-time clients. Towards this,
this section first formulates the problem, which we refer to as
the TDM Configuration Problem/Latency-Rate (TCP/LR), and
then shows that it is NP-hard. Section VI later proposes an
integer-linear programming formulation to solve the problem.

An instance of the TCP/LR problem is defined by a tuple
of requirements 〈C, Θ̂, ρ̂〉, where:
• C = {c1, ..., cn} is the set of real-time clients that share

a resource, where n is the number of clients.
• Θ̂ = [Θ̂1, Θ̂2, ..., Θ̂n] ∈ Rn and ρ̂ = [ρ̂1, ρ̂2, ..., ρ̂n] ∈ Rn

are given service latency (in number of TDM slots)
and rate (bandwidth) (required fraction of total available
slots) requirements of the clients, respectively.

To satisfy the given requirements of a problem instance, we
proceed by formalizing a TDM schedule and its associated
parameters:
• f denotes the TDM frame size, f ∈ Z+. It is bounded

according to f ≤ f ≤ f , where f and f are lower and
upper bounds, respectively. The set F = {1, 2, · · · , f }
denotes TDM slots.

• S = [s1, s2, ..., sf] is a schedule we want to find, where
si ∈ {C ∪ ∅} indicates the client scheduled in slot i or
∅ (empty element) if the slot is not allocated.

• φ = {φ1, φ2, ..., φn} is the number of slots allocated to
each client, i.e. φi =| {sj} : sj = ci |.

• Θ = [Θ1,Θ2, ...,Θn] ∈ Rn and ρ = [ρ1, ρ2, ..., ρn] ∈ Rn
are the service latency and allocated rate, respectively,
provided by the TDM schedule.

The goal of TCP/LR is to find a schedule S for n clients
sharing the resource such that the service latency and rate
constraints (Constraints 1 and 2 below) are fulfilled and the
objective function, Φ, being the total allocated rate to the real-
time clients in C is minimized, as shown in Equation (10).
This ensures that all real-time requirements are satisfied while
maximizing the unallocated resource capacity available to non-
real-time clients, thus maximizing their performance.

Constraint 1: The bandwidth (rate) requirements of all
clients must be satisfied, i.e. ρi ≥ ρ̂i, ci ∈ C

Constraint 2: The service latency requirements of all
clients must be satisfied, i.e. Θi ≤ Θ̂i, ci ∈ C

Minimize:
∑
ci∈C

ρi = Φ (10)

After formulating the TCP/LR problem, Theorem 2 states
that TCP/LR is NP-hard, which justifies our ILP-based ap-
proach to find optimal solutions. The proof is based on
a polynomial transformation from the Periodic Maintenance
Scheduling Problem (PMSP) [27] and is found in Appendix A.

Theorem 2 (NP-hardness): TCP/LR is NP-hard.

VI. ILP MODEL

Having established that TCP/LR is NP-hard, we know that
there exist no algorithms with polynomial complexity that
solves the problem optimally unless P=NP. An approach to
find optimal solutions based on integer-linear programming
(ILP) is hence justified, as there are available solvers to effi-
ciently explore the vast solution space. In this section, we start
by presenting an ILP model of our problem using only four
simple constraints. After this, we present five optimizations of
the model that significantly reduce the solution space and the
computation time of the solver.

A. Basic Model

We now present the basic ILP formulation. This model
assumes that the frame size, f , is fixed and that the optimal
frame size is found by simply running the model for all
possible values of f in [f , f] and picking the value that
minimizes the criterion. Later, we will introduce both exact
and heuristic methods for pruning the number of different
frame sizes to try. The proposed model is based on the time-
indexed scheduling approach [28]. This means that for each
client ci ∈ C, there are exactly f binary variables xji , defined
according to:

xji =

{
1, if slot j is allocated to client ci.
0, otherwise.

Reformulating the minimization criterion from Equa-
tion (10) in terms of this variable, results in Equation (11)
that aims to minimize the total number of allocated slots in
the given frame size f .

Minimize:

∑
ci∈C

∑
j∈F x

j
i

f
(11)

The solution space is defined by four constraints. The first
two constraints consider slot allocation. Constraint 3 simply
states that a slot can be allocated to maximally one client.
Constraint 4 then dictates that enough slots must be allocated
to a client to satisfy its rate requirement, which is computed
according to Equation (3).

Constraint 3: Each slot is allocated to at most one client.∑
ci∈C

xji ≤ 1, j ∈ F.

Constraint 4: The number of slots allocated to a client ci
must be greater than or equal to the number of slots required
to satisfy its rate requirement, ρ̂i.

f∑
j=1

xji ≥ f · ρ̂i, ci ∈ C.

The following two constraints focus on the worst-case
provided service offered by the TDM schedule to a client,
w (w ≤ w). Constraint 5 states that the worst-case provided
service to a client ci during a busy period of any duration j
starting in any slot k cannot be larger than the service provided
by its allocated slots. The worst-case provided service corre-
sponds to the solid line labeled ’provided service’ in Figure 3.
Constraint 6 states that the worst-case provided service of the
client, wji , must satisfy its LR requirements and is a straight-
forward implementation of Definition 1.

Constraint 5: The worst-case provided service of client ci,
wji , cannot exceed the service provided by the TDM schedule
during a busy period with duration j.

wji ≤
(k+j) mod f∑

l=k

xli, k ∈ F, ci ∈ C, j ∈ F.

Constraint 6: The worst-case provided service of a client ci
must satisfy the LR guarantee corresponding to its required
service latency and rate, ρ̂i and Θ̂i, for a busy period with
duration j.

wji ≥ ρ̂i · (j − Θ̂i), j ∈ F, ci ∈ C.

B. Optimization of Computation Time
After introducing the basic ILP model of TCP/LR, we pro-

ceed by presenting five optimizations to the formulation that
reduce the computation time of the solver, while preserving
the optimality of the solution. The key is exploiting more
information about the problem to further constrain the solution
space, or to remove constraints when they are not useful.

The first optimization exploits that an increased lower
bound on the number of slots allocated to a client, φ

i
, may be

found by considering the number of slots required to satisfy
its service latency requirement instead of solely focusing on
the rate requirement. However, the number of slots required
to satisfy the latency requirement depends on where the slots
are allocated in the frame, which is not yet known. This
optimization conservatively addresses this by assuming an
equidistant allocation, previously shown in Figure 2b, since
this optimal assignment lower bounds the required slots to
satisfy the service latency requirement. This optimization
effectively prunes the solution space in cases where the
required rate is low, but the service latency requirement is
tight. Constraint 7, which replaces Constraint 4, captures this
optimization.

Constraint 7: The minimum number of slots allocated to a
client ci, φi, is the minimum number required to satisfy both
its service latency requirement and its rate requirement.

f∑
j=1

xji ≥ φi = max(dρ̂i · f e ,
⌈

f

Θ̂i + 1

⌉
), ci ∈ C.

The second optimization removes redundant constraints
generated by Constraints 5 and 6, thereby reducing compu-
tation time. As one can see, f 2 ·n constraints are generated by
Constraint 5 and f ·n constraints by Constraint 6. However, it is
not necessary to generate Constraints 5 and 6 for j < Θ̂i, since
the service bound provided by the LR guarantee is always zero
in this interval by Definition 1. This is clearly seen in Figure 1.
Removing these unnecessary constraints is particularly helpful
in cases where the service latency requirement is large.

Additional constraints can be removed if more slots are re-
quired to satisfy the service latency requirements than the rate
requirements, i.e. when the second term in the max-expression
in Constraint 7 is dominant. In the remainder of this paper,
we refer to clients with this property as latency-dominated,
as opposed to bandwidth-dominated, clients. Lemma 2 shows
that the offsets of all sub-schedules must be equal to zero
for latency-dominated clients, which means that their service
latency becomes equal to the largest gap in the TDM schedule.
This case allows Constraints 5 and 6 to only be generated for
a single point per client, namely j = bΘ̂ic+ 1, ci ∈ C. This
confirms that the client never waits longer than its service
latency requirement for an allocated slot and since all offsets
are equal to zero, we know that the allocated rate is guaranteed
no matter in what sub-schedule the busy period ends.

Lemma 2 (Offsets of latency-dominated use-cases): All
offsets of all sub-schedules for latency-dominated clients are
equal to zero, i.e. ρ̂i · f ≤ f

Θ̂i+1
→ δli = 0, l ∈ Ni, ci ∈ C

Proof: The proof comprises four simple steps, where the
first three are shown in Equation (12). The first step substitutes
δl for its definition from Definition 2. The second step then
exploits that ρ̂i · f ≤ f

Θ̂i+1
implies Θ̂i + 1 ≤ 1

ρ̂i
and makes

a substitution. The third step is an algebraic reduction and
realizing that the expression is less than or equal to zero, since
the idle slots in each sub-schedule is bounded according to
φ̃l+1 ≤ Θ̂i and that φji ≥ 1 by the definition of a sub-schedule.

δl = φli + φ̃l+1
i − φli · 1/ρ̂i ≤ φli + φ̃l+1

i − φli · (Θ̂i + 1) =

φ̃l+1
i − φli · Θ̂i ≤ 0 (12)

Lastly, we know from Lemma 1 that
∑
l∈Ni

δl = 0, which
implies that there cannot be a δji < 0 unless there is a
δki ≥ 1, j 6= k. This proves the lemma, since the only remain-
ing possibility is ∀l ∈ Ni, δli = 0.

The third optimization reduces the solution space by reduc-
ing rotational symmetry. This means that for any given TDM
schedule, f −1 similar schedules can be generated by rotating
the given schedule and wrapping around its end. The problem
is that all these schedules have the same criterion value and
only one of them needs to be in the considered solution space.
Constraint 8 addresses this problem by adding a constraint
that fixes the allocation of the first slot to the client with the
smallest φ

i
(defined in Constraint 7). This particular choice

of client has been experimentally determined to significantly
reduce the computation time of the solver.

Constraint 8: The first slot in the TDM schedule is allo-
cated to client ck, who has the smallest lower bound on number
of allocated slots, i.e. x1

k = 1, k = argminci∈C φ
i
.

Since the considered model works with a given frame size,
finding the frame size that minimizes the criterion requires

f − f + 1 invocations of the model. To speed up this iteration,
the fourth optimization exploits value propagation by passing
the minimum criterion value found so far to future iterations.
This optimization allows the solver to terminate an instance
of a model with a particular frame size as soon as it realizes
that it cannot outperform the previously best value, Φ. To
maximize the benefit, frame sizes are considered in increasing
order with the aim of quickly finding reasonable values to
propagate from smaller problem instances. This optimization
is stated in Constraint 9.

Constraint 9: The criterion for the considered frame size
must be less than or equal to the lowest criterion found using
any previously tested frame size.∑

ci∈C
∑
j∈F x

j
i

f
≤ Φ

The fifth and final optimization tries to quickly prune frame
sizes that cannot result in feasible or improved solutions due
to discretization. The problem is that the frame size defines
the minimum allocation granularity for the rate (steps of 1/f),
which results in that smaller frame sizes offer coarse-grained
allocations. This causes considerable discretization of the rate,
which can be seen in the first term of the max-expression in
Constraint 7. They key idea here is to quickly check if this
discretization causes the total rate that must be allocated to
satisfy the rate requirements of all the clients to be larger
than the total available rate or the best total allocated rate
with a previously tested frame size. Formally, this means that
Equation (13) must hold for the particular frame size to be
evaluated by the solver. The benefit of this optimization is
that it may allow many smaller frame sizes to be skipped for
use-cases with high total load from real-time clients.∑

ci∈C φi
f

≤ Φ (13)

VII. HEURISTIC FRAME SIZE FILTERING

The previous section presented a simple ILP formulation
of our NP-hard TCP/LR problem using only four constraints.
Five optimizations were then presented to reduce the compu-
tation time required by the solver to find an optimal solution.
However, despite the presented optimizations, the optimal ap-
proach may suffer from scalability problems when considering
more complex systems with more clients and larger frame
sizes. To address this problem, this section presents a heuristic
frame-filtering approach based on a simple notion of goodness
to provide near-optimal solutions in just a fraction of the time.

The heuristic, called the K-heuristic, is shown in Algo-
rithm 1. The algorithm has two inputs, the set of possible
frame sizes, F , and an integer K that determines how many
of the |F | candidate frame sizes to explore with the solver.
The output is an ordered set F ′ of selected candidates. The
K-heuristic starts by quickly evaluating the goodness, g, of all
possible frame sizes. The notion of goodness, expressed on
Line 3, is determined by how well the allocation granularity
of each frame size fits with the minimum required rate
to satisfy both bandwidth and service latency requirements
(Constraint 7) of all clients. This is computed by subtracting
the minimum required rates of the clients, φ

j
/f , from their

non-discretized counterparts to get the total amount of over-
allocation due to discretization. Next, the set of frame sizes
is sorted in ascending order based on the computed goodness,
gi, (Line 5) and concludes by returning the K first entries,
the ones with the least potential for over-allocation due to
discretization, in the ordered set F ′ of candidate frame sizes.

Algorithm 1 K-heuristic
1: Inputs: F ;K ∈ N,K ≤ |F |
2: for all f i ∈ F do
3: gi =

∑
cj∈C(φ

j
−max(ρ̂j · f , f

Θ̂j+1
))/f

4: end for
5: sort F ascending based on gi
6: F ′ = F [1 : K]
7: Output: F ′

The simple goodness metric used by the K-heuristic to
minimize the total allocation is particularly well-suited for
bandwidth-dominated clients (first term is dominant in max-
expression in Constraint 7) whose allocation is often com-
pletely determined by the discretization of the bandwidth
requirement. For these clients, the K-heuristic gives optimal
results unless the slot assignment causes additional slots to
be allocated to satisfy service latency requirements. This is
only expected to happen if a bandwidth-dominated client is
on the border of being latency dominated. Latency-dominated
clients may need additional slots to satisfy their service
latency requirements, as it may be difficult to find equidistant
schedules, and the number of added slots depends on the frame
size as well as the requirements of all other clients. There
hence is no simple way to statically determine which frame
size is better for these clients. However, as we experimentally
show in Section VIII, the K-heuristic still provides good results
in these cases as it tends to prefer larger frame sizes, which
generally perform well with respect to over-allocation.

VIII. EXPERIMENTAL RESULTS

This section experimentally evaluates the proposed TDM
configuration methodology. First, the experimental setup is
explained, followed by an experiment that evaluates the scal-
ability of the approach and shows the trade-off between
criterion value and computation time with and without the
heuristic frame-filtering method. These approaches are further-
more compared to the continuous slot assignment algorithm
used in [6]–[8], [19]. The approach is also demonstrated for
a case study of a HD video and graphics processing system,
where 7 clients share a memory.

A. Experimental Setup
Experiments are performed using two sets of 3 × 500

synthetic use-cases, each comprising 4, 8 or 16 clients. The
two sets are bandwidth-dominated use-cases and latency-
dominated use-cases, respectively. We proceed by explaining
how bandwidth (rate) and service latency requirements are
generated for the two sets.

Parameters for synthetic use-case generation are given in
Table I. Here, α is an interval from which rate requirements for
each client are uniformly drawn. Firstly, rate requirements of
each client in a use-case is generated. The use-case is accepted
if the total required rate of all clients is in the range [0.8,

0.95] for bandwidth-dominated use-cases and [0.35, 0.5] for
latency-dominated use-cases. Otherwise, it is discarded and the
generation process restarts. The bandwidth requirements are
lower for the latency-dominated set to leave space for over-
allocation to satisfy the tighter service latency requirements.
Each time the number of clients is doubled, the range of band-
width requirements is divided by 2. This is to make sure the
total load is comparable across use-cases with different number
of clients, which is required to fairly evaluate scalability.

TABLE I
PARAMETERS FOR USE-CASE GENERATION

Clients Bandwidth dominated Latency dominated
α β α β

4 [0.12, 0.32] [0.7, 1.05] [0.04, 0.14] [1.4, 3.2]
8 [0.06, 0.16] [0.6, 0.9] [0.02, 0.07] [1.35, 3.1]
16 [0.03, 0.08] [0.5, 0.75] [0.01, 0.035] [1.3, 3]

Service latency requirements are uniformly distributed ac-
cording to 1

β·ρ̂ , where a larger value of β indicates a tighter
requirement. The β values are given in Table I. Each time
the number of clients doubles, the lower bound is reduced by
0.1 and 0.05 for bandwidth-dominated and latency-dominated
use-cases, respectively, and the upper bound for bandwidth-
dominated use-cases by 0.15 and for latency-dominated use-
cases by 0.1. This reduction of service latency requirements
is empirically determined to provide comparable difficulty by
having similar total allocated rates for the final optimal sched-
ules. Lastly, for latency-dominated use-cases, if the total load
due to the service latency requirements (second term in max-
expression in Constraint 7) is outside the interval [0.7, 0.95],
new latency requirements for the use-case are generated. For
both sets, generated use-cases that are found unfeasible using
the optimal approach are discarded and replaced to ensure a
sufficient number of feasible use-cases. Lastly, the maximum
frame size is set to f = n · 8 to make sure that the number of
slots available to each client is constant across the experiment.

All in all, this generation process ensures that all use-
cases are feasible, have comparable difficulty, and that all
clients in bandwidth-dominated use-cases are bandwidth-
dominated and all clients in latency-dominated use-cases are
latency-dominated. Experiments were executed on a high-
performance server equipped with 2x Intel Xeon E5-2620
processor (2.10 GHz, 12 cores total) and 64 GB memory.
The ILP model was implemented in IBM ILOG CPLEX
Optimization Studio 12.6 and solved with the CPLEX solver.

B. Results
The experiment evaluates the scalability of the approach

and the trade-off between computation time and the total rate
allocated to 4, 8, and 16 real-time clients (the criterion) for
the ILP formulation with and without the K-heuristic. Without
heuristic filtering, the ILP formulation was executed for all
possible frame sizes from f = n to f = n·8 to find the optimal
solution. In contrast, the K-heuristic only considered the frame
size with the highest goodness (K = 1). Other values of K
are briefly discussed later.

Figure 4 shows the distributions of the criterion (left
axis) and log10 of the computation time (right axis) for the
bandwidth-dominated use-cases for the optimal approach and
the K-heuristic for 4, 8 and 16 clients, respectively. Both the
optimal approach and the K-heuristic found solutions for all

1500 use-cases. The results show that although the optimal
approach provides the lowest criterion values, it takes approx-
imately 4 days to solve all 1500 use-cases with the total time
for 4, 8 and 16 clients being 80 seconds, 2 hours, slightly less
than 4 days, respectively. The linear increase of computation
time in the figure suggests exponential growth with the number
of clients and the frame size, as expected, reflecting the NP-
hard nature of the TCP/LR problem. Considering the heuristic
approach, we see that the K-heuristic requires less than 31.5%
of the computation time compared to the optimal approach
(about 30 hours). The total computation time is 40 seconds
for 4 clients, 56 minutes for 8 clients, and slightly more than
one day for 16 clients. The criterion value found by the K-
heuristic is optimal for all instances with 8 and 16 clients.
However, it gives sub-optimal results in 8 cases out of 500
with 4 clients, although this just amounts to a negligible loss
of less than 0.03% of criterion value for those 500 cases. The
reason for the sub-optimal results is that the clients in these 4
cases are on the border of being latency dominated.

Fig. 4. Results for the bandwidth-dominated use-cases.

The results for the latency-dominated use-cases are shown
in Figure 5. Here, the K-heuristic failed to solve 1/500 use-
cases with 4 clients, 3/500 with 8 clients, but successfully
solved all use-cases for 16 clients. The total computation time
for these 1500 use-cases is 44 hours for the optimal solution.
For the 1496 use-cases where solutions were found, the K-
heuristic used less than 17.8% of the computation time, while
sacrificing less than 0.5% in terms of median criterion value.
The heuristic hence shows a larger deviation from the optimal
criterion for the latency-dominated than for the bandwidth-
dominated use-cases. This result is intuitive as the clients
in these use-cases are more likely to need more than the
minimum number of slots, φ

j
, assumed by the heuristic, since

it may not be possible to find equidistant schedules.
Increasing the value of K enables the quality of the K-

heuristic to converge to that of the optimal solution at cost of
higher computation time. For example, letting K = 2 reduces
the number of failed use-cases with 8 clients from 3 to 2 while
only increasing computation time with 36 seconds. In this case,
all use-cases are successfully solved by using K = 7, which
results in a total increase in computation time of 41 seconds.

From this experiment, we confirm the exponential com-
plexity of the problem, although our implementation solves
instances with 16 clients and 128 slots in less than 9 minutes
on average for the 1000 use-cases. We furthermore conclude
that the K-heuristic provides near-optimal results in 28% of
the time required to find an optimal solution on average.
In contrast, the commonly used continuous slot assignment
algorithm only found a solution in 87/1500 (81, 6, 0) use-
cases for the bandwidth-dominated set and 365/1500 (311,
53, 1) for the latency-dominated set and the criterion values

Fig. 5. Results for the latency-dominated use-cases.

of these solutions were always worse than for our heuristic
approach. This poor result suggests that the applicability of
the continuous assignment policy is limited.

C. Case Study
We now proceed by demonstrating our proposed TDM con-

figuration methodology by applying it to a simple case study of
an HD video and graphics processing system, where 7 memory
clients share a 64-bit DDR3-1600 memory DIMM [29]. The
considered system is illustrated in Figure 6. Similarly to
the multi-channel case study in [19], we derive the client
requirements from a combination of the industrial systems
in [30], [31] and information about the memory traffic of
the decoder application from [32]. However, we assume 720p
resolution instead of 1080p and that all memory requests have
a fixed size of 128 B to be able to satisfy the requirements
with a single memory channel.

Input
Processor (IP) GPUVideo

Engine (VE)
HDLCD Controller

(HDLCD)

Memory Controller

DDR3‐1600 DIMM

CPU

IPout VEoutVEin GPUoutGPUin LCDin

Fig. 6. Architecture of the HD video and graphics processing system.

The Input Processor receives an H.264 encoded YUV 4:2:0
video stream with a resolution of 720 × 480, 12 bpp, at a
frame rate of 25 fps [30], and writes to memory (IPout) at
less than 1 MB/s. The Video Engine (VE) generates traffic by
reading the compressed video and reference frames for motion
compensation (VEin), and writing decoder output (VEout).
The motion compensation requires at least 285.1 MB/s to
decode the video samples at a resolution of 1280 × 720,
8 bpp, at 25 fps [32]. The bandwidth requirement to output
the decoded video image is 34.6 MB/s.

The GPU is responsible for post-processing the decoded
video. The bandwidth requirement depends on the complexity
of the frame, but can reach a peak bandwidth of 50 MB/frame
in the worst case [31]. Its memory traffic can be split into
pixels read by GPU for processing (GPUin) and writing the
frame rendered by the GPU (GPUout). For GPUin, we require
a guaranteed bandwidth of 1000 MB/s, which should be
conservative given that the peak bandwidth is not required
continuously. GPUout must communicate the complete un-
compressed 720p video frame at 32 bpp within the deadline
of 40 ms (25 fps). With a burst size of 128 B, this results
in a maximum response time (finishing time - arrival time)

of 1388 ns per request. To provide a firm guarantee that all
data from this client arrives before the deadline, we separate
this into a service latency and a rate requirement according to
the LR server approach. There are multiple (Θ, ρ) pairs that
can satisfy a given response time requirement according to
Equation (2), where a higher required bandwidth results in a
more relaxed service latency requirement. Here, we require a
bandwidth of 184.3 MB/s, twice the continuous bandwidth that
is needed, to budget time for interference from other clients.
According to Equation (2), this results in a service latency
requirement of 718 ns (574 clock cycles for an 800 MHz
memory).

The HDLCD Controller (HDLCD) writes the image pro-
cessed by the GPU to the screen. It is latency critical [30] and
has a firm deadline to ensure that data arrives in the frame
buffer before the screen is refreshed. Similarly to GPUout,
HDLCD requires at least 184.3 MB/s to output a frame every
40 ms. Note that each rendered frame is displayed twice by
the HDLCD controller to achieve a screen refresh rate of
50 Hz with a frame rate of 25 fps. Lastly, a host CPU and
its associated Direct Memory Access (DMA) controller also
require memory access with a total bandwidth of 150 MB/s
to perform system-dependent activities [31].

The derived requirements of the memory clients in the case
study are summarized in Table II. We conclude the section
by explaining how to transform the requirements into the
abstract units of rate and service latency (in slots) used by
our approach. The rate is determined by dividing the band-
width requirement of the client with the minimum guaranteed
bandwidth provided by the memory controller. The service
latency requirement in slots is computed by dividing the
latency requirement in clock cycles by the WCET of a memory
request. Given a request size of 128 B and assuming the
real-time memory controller in [33], the WCET of a memory
request to a DDR3-1600 is 46 clock cycles at 800 MHz and the
memory guarantees a minimum bandwidth of 2149 MB/s [34].
For simplicity, we ignore effects of refresh interference in the
memory, which may increase the total memory access time
over a video frame with up to 3.5% for this memory. The
total required bandwidth of the clients in the case study is
1839.3 MB/s. This corresponds to 85.6% of the guaranteed
bandwidth of the memory controller, suggesting a suitably
high load. In this use-case, all clients are bandwidth dominated
for all frame sizes.

TABLE II
CLIENT REQUIREMENTS

Client Bandwidth [MB/s] Latency [cc] ρ̂ Θ̂[slots]
IPout 1.0 - 0.0005 -
VEin 285.1 - 0.1326 -
VEout 34.6 - 0.0161 -
GPUin 1000.0 - 0.4652 -
GPUout 184.3 574 0.0858 12.5
LCDin 184.3 574 0.0858 12.5
CPU 150.0 - 0.0698 -
Total 1839.3 0.8558

We apply our configuration methodology to find the optimal
TDM schedule to satisfy the client requirements, while mini-
mizing the total allocated bandwidth. The range of considered
frame sizes is set to [7, 64]. The minimum value ensures
that there is at least one slot per client, while the maximum
provides a reasonable trade-off between access granularity and

total TDM schedule size for the number of clients in the
case study. Due to the relatively small size of the system, the
total computation time used by CPLEX is just over 5 seconds
with all optimizations enabled. Here, we conclude that the
reduction in computation time provided by the optimizations
is significant, as only 11 out of the 58 possible frame sizes
were run by the solver as others were rejected at an early
stage by the discretization check (Equation (13)). Disabling
only this optimization and the value propagation (Constraint 9)
increases the computation time by more than a factor 5 to over
33 seconds, showing the benefits of rejecting candidate frame
sizes that are not promising as early as possible.

The optimal solution was found with a frame size of 57,
resulting in a total allocated rate of 0.895. This value is 2.7%
lower than the value 0.922 achieved by using the largest
possible frame size to achieve the finest possible allocation
granularity. The minimal frame size that is able to satisfy the
client requirements is 21 slots, resulting in a fully assigned
TDM schedule and hence a total allocated rate of 1.

From this case study, we conclude that optimal approaches
matter. In terms of frame size selection, 17 out of the 58
candidate frame sizes are not feasible and the difference in
criterion value between the optimal and the worst feasible
frame size is 10.5%. Determining the optimal frame size is not
trivial and heuristically using the largest value to get the finest
allocation granularity does typically not give optimal results.
In contrast, our proposed K-heuristic gives optimal results for
this case study. We also conclude that it is important to have
optimal schedules for a given frame size, as the commonly
used continuous allocation policy fails to satisfy the client
requirements in this use-case for all frame sizes.

IX. CONCLUSIONS

This paper presents a methodology to configure resources
shared by Time-Division Multiplexing (TDM) in a way that
guarantees that bandwidth and latency requirements of real-
time clients are satisfied, while minimizing their total allo-
cation to improve performance of non-real-time clients. The
problem entails both determining the number of slots in
the TDM schedule (frame size) and to which clients the
slots are assigned. We formalize this problem and show
that it is NP-hard, and then propose an optimized integer-
linear programming model to optimally solve it. However, the
proposed model must be evaluated for all possible frame sizes
to find an optimal solution, which may be time consuming. A
heuristic algorithm, called the K-heuristic, is hence proposed
to determine suitable candidate frame sizes.

We experimentally evaluate the scalability of the approach
and quantify the trade-off between computation time and total
allocation for the optimal and the heuristic algorithms. The
results show that the heuristic provides near-optimal solutions
with an average allocated bandwidth less than 0.26% from the
optimum in less than 28% of the computation time. The ap-
proach is also demonstrated on a case study of a HD video and
graphics processing system, where a memory is shared among
7 memory clients. Here, we show that even for a smaller
system, optimal solutions can reduce the allocated bandwidth
with almost 3% compared to simpler approaches. Throughout
the experiments, our approach consistently outperforms the
commonly used continuous allocation algorithm, which also
fails to satisfy the requirements of the clients in our case study.

ACKNOWLEDGEMENT

This work was supported by the Grant Agency of the Czech
Republic under the Project GACR P103/12/1994, the Ministry
of Education of the Czech Republic under project num-
ber CZ.1.07/2.3.00/30.0034 and CATRENE project CA505
BENEFIC.

REFERENCES

[1] P. Kollig et al., “Heterogeneous Multi-Core Platform for Consumer Multimedia
Applications,” in Proc. DATE, 2009.

[2] C. van Berkel, “Multi-core for Mobile Phones,” in Proc. DATE, 2009.
[3] K. Goossens et al., “Virtual Execution Platforms for Mixed-time-criticality Sys-

tems: The CompSOC Architecture and Design Flow,” SIGBED Rev., vol. 10, no. 3,
2013.

[4] S. Edwards and E. Lee, “The Case for the Precision Timed (PRET) Machine,” in
Proc. DAC, 2007.

[5] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for analysis of
traffic scheduling algorithms,” IEEE/ACM Trans. Netw., vol. 6, no. 5, 1998.

[6] S. Goossens et al., “A reconfigurable real-time SDRAM controller for mixed time-
criticality systems,” in Proc. CODES+ISSS, 2013.

[7] S. Foroutan et al., “A general framework for average-case performance analysis
of shared resources,” in Proc. DSD, 2013.

[8] S. Goossens et al., “Conservative Open-page Policy for Mixed Time-Criticality
Memory Controllers,” in Proc. DATE, 2013.

[9] J. Vink et al., “Performance analysis of SoC architectures based on latency-rate
servers,” Proc. DATE, 2008.

[10] J. Rosén et al., “Bus access optimization for predictable implementation of real-
time applications on multiprocessor systems-on-chip,” in Proc. RTSS, 2007.

[11] S. Chattopadhyay et al., “Modeling shared cache and bus in multi-cores for timing
analysis,” in Proc. SCOPES, 2010.

[12] A. Schranzhofer et al., “Worst-case response time analysis of resource access
models in multi-core systems,” in Proc. DAC, 2010.

[13] ——, “Timing Analysis for TDMA Arbitration in Resource Sharing Systems,” in
Proc. RTAS, 2010.

[14] G. Yao et al., “Memory-centric scheduling for multicore hard real-time systems,”
Real-Time Systems, vol. 48, no. 6, 2012.

[15] T. Kelter et al., “Bus-Aware Multicore WCET Analysis through TDMA Offset
Bounds,” in Proc. ECRTS, 2011.

[16] D. Tamas-Selicean et al., “Synthesis of communication schedules for TTEthernet-
based mixed-criticality systems,” in Proc. CODES+ISSS, 2012.

[17] A. Hansson et al., “A unified approach to mapping and routing on a network-on-
chip for both best-effort and guaranteed service traffic,” VLSI design, vol. 2007,
2007.

[18] Z. Lu and A. Jantsch, “Slot allocation using logical networks for TDM virtual-
circuit configuration for network-on-chip,” in Proc. ICCAD, 2007.

[19] M. D. Gomony et al., “Architecture and Optimal Configuration of a Real-Time
Multi-Channel Memory Controller,” in Proc. DATE, 2013.

[20] S. Bhattacharyya et al., “Synthesis of embedded software from synchronous
dataflow specifications,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 21, no. 2, 1999.

[21] S. Stuijk et al., “Throughput-buffering trade-off exploration for cyclo-static and
synchronous dataflow graphs,” Computers, IEEE Transactions on, vol. 57, no. 10,
2008.

[22] O. Moreira et al., “Scheduling multiple independent hard-real-time jobs on a
heterogeneous multiprocessor,” in Proc. EMSOFT, 2007.

[23] B. Akesson et al., “Real-Time Scheduling Using Credit-Controlled Static-Priority
Arbitration,” in Proc. RTCSA, 2008.

[24] R. Cruz, “A calculus for network delay. I. Network elements in isolation,” IEEE
Trans. Inf. Theory, vol. 37, no. 1, 1991.

[25] S. Sriram and S. Bhattacharyya, Embedded multiprocessors: Scheduling and
synchronization. CRC, 2000.

[26] M. H. Wiggers et al., “Modelling run-time arbitration by latency-rate servers in
dataflow graphs,” in Proc. SCOPES, 2007.

[27] A. Bar-Noy et al., “Minimizing service and operation costs of periodic scheduling.”
Mathematics of Operations Research, vol. 27, no. 3, 2002.

[28] O. Koné et al., “Event-based milp models for resource-constrained project schedul-
ing problems,” Computers & Operations Research, vol. 38, no. 1, 2011.

[29] DDR3 SDRAM Specification, JESD79-3F ed., JEDEC Solid State Technology
Association, 2012.

[30] L. Steffens et al., “Real-Time Analysis for Memory Access in Media Processing
SoCs: A Practical Approach,” Proc. ECRTS, 2008.

[31] A. Stevens, “Qos for high-performance and power-efficient hd multimedia,” ARM
White paper, http://wwww.arm.com, 2010.

[32] A. Bonatto et al., “Multichannel SDRAM controller design for H.264/AVC video
decoder,” Proc. SPL, 2011.

[33] B. Akesson and K. Goossens, “Architectures and modeling of predictable memory
controllers for improved system integration,” in Proc. DATE, 2011.

[34] S. Goossens et al., “Memory-Map Selection for Firm Real-Time Memory Con-
trollers,” in Proc. DATE, 2012.

APPENDIX

A. Complexity Proof of TCP/LR
This section proves Theorem 2 and shows that TCP/LR

is NP-hard. The general strategy of the proof is to show
that the decision version of TCP/LR belongs to the NP class
of problems and that the Periodic Maintenance Scheduling
Problem (PMSP) [27] can be polynomially transformed to
the decision version of TCP/LR. Since the decision version
of PMSP is known to be NP-complete, this is sufficient to
prove NP-completeness of the decision version of TCP/LR.
If this is the case, it follows from complexity theory that the
optimization version of our problem is NP-hard. Definition 3
formulates the decision version of PMSP, followed by the
decision version of TCP/LR in Definition 4.

Definition 3 (Decision version of PMSP): PMSP considers
m machines with corresponding service intervals
l1, l2, · · · , lm ∈ N, such that

∑m
i=1 1/li ≤ 1. The problem is

to check whether or not there exists an infinite maintenance
service schedule of these machines in which consecutive
service slots of machine i are exactly li time-slots apart and
no more than one machine is serviced in a single time-slot.

Definition 4 (Decision version of TCP/LR): For a given
criterion value Φ∗, does there exist a TDM schedule such that
Constraints 1 and 2 are fulfilled and Φ ≤ Φ∗?

First, we show that the decision version of TCP/LR is in
NP. In this case, it is sufficient to show that a given schedule to
the problem can be verified in polynomial time, which implies
checking if Constraints 1 and 2 are satisfied and if Φ ≤ Φ∗.
By iterating over the schedule once, it is possible to determine
if both Constraint 1 is satisfied for all clients and if Φ ≤ Φ∗.
Checking these constraints hence has linear complexity with
respect to the maximum frame size, f . In contrast, checking
Constraint 2 using Equation (7) is linear with the number
of clients and quadratic with the number of sub-schedules.
Since the maximum number of sub-schedules is f /2 (a sub-
schedule has at least one idle and one allocated slot), it follows
that verifying the service latency constraints has a complexity
of O(n · f

2
). Since each client requires at least one slot, it

holds that f ≥ n, resulting in a complexity of O(f
3
). A given

solution can hence be checked in polynomial time, which
implies that the decision version of TCP/LR belongs to the
NP set of problems.

Next, we show how PMSP polynomially transforms to
TCP/LR. Consider an arbitrary instance of PMSP. The cor-
responding instance of TCP/LR is constructed by having
m clients with rate requirements ρ̂ = { 1

l1
, 1
l2
, · · · , 1

lm
} and

service latency requirements Θ̂ = {l1−1, l2−1, · · · , lm−1}.
Given an instance of the PMSP problem, it is possible to
construct such an instance of the TCP/LR in linear time with
respect to the number of clients, which implies there is a
polynomial transformation. For the solution of our problem to
be a valid solution to the corresponding PMSP instance, there
must exist a TDM schedule with

∑
ci∈C ρi ≤ Φ∗ =

∑n
i=1 ρ̂i.

If there exists a schedule that fulfills the requirements
of the PMSP instance, it means that it is a YES instance
and that consecutive service slots of machine i are exactly
li time-slots apart for each i. For TCP/LR, it implies a
TDM schedule that has a perfectly equidistant allocation for
each client. This means each client ci has an allocated rate

ρi = 1
li

by Equation (3) and service latency Θi = li − 1
by Equation (5). This schedule hence satisfies the created
instance of TCP/LR, which means that both problem instances
simultaneously answer YES.

On the other hand, if there is no schedule with perfectly
equidistant slot allocation in TCP/LR then additional slots
must be allocated to satisfy the service latency requirements
of the created instance. This causes the value of the objective
function to be Φ > Φ∗, making it a NO instance. However, the
corresponding instance of PMSP is obviously a NO instance
as well. The instances of PMSP and TCP/LR hence always
provide YES and NO answers at the same time. Since the
decision version of TCP/LR is in NP and there is a poly-
nomial transformation of the NP-complete decision version of
PMSP, this implies that the decision version of TCP/LR is
also NP-complete. From this, it immediately follows that the
optimization version of the problem is NP-hard.

