Reducing Design Time and Promoting Evolvability using
Domain-specific Languages in an Industrial Context

Benny Akesson*, Jozef Hooman*T, Jack Sleuters*, and Adrian Yankov*
*ESI (TNO), Eindhoven, the Netherlands
fRadboud University, Nijmegen, the Netherlands
iAltran, Eindhoven, the Netherlands

Abstract—The complexity of contemporary systems is increas-
ing, driven by integration of more functionality and trends to-
wards mass-customization. This has resulted in complex systems
with many variants that require long time to develop and are
difficult to adapt to changing requirements and introduction
of new technology. New methodologies are hence required to
reduce development time, simplify customization for a particular
customer, and improve evolvability both during development and
after deployment.

This chapter explains how these challenges are addressed by an
approach to model-based engineering (MBE) based on domain-
specific languages (DSLs). However, applying the approach in
industry has resulted in 5 technical research questions, namely
how to: RQ1) achieve modularity and reuse in a DSL eco-
system, RQ2) achieve consistency between model and realizations,
RQ3) manage an evolving DSL eco-system, RQ4) ensure model
quality, RQS5) ensure quality of generated code. The five research
questions are explored in the context of the published state-of-
the-art, as well as practically investigated through a case study
from the defense domain.

Index Terms—Model-based Engineering, Domain-specific Lan-
guages, Evolvability, Simulation, Validation, Co-evolution, Mod-
ularity

I. INTRODUCTION

Development of contemporary systems is becoming increas-
ingly complex, time consuming and expensive. This happens
in response to a number of trends. Firstly, more and more
dependent software and hardware components are being in-
tegrated to realize a wider range of functionality. Increased
integration results in systems with complex behaviors that
are difficult to design and validate, increasing development
time. This problem is exacerbated by an increasing system
diversity due to recent trends towards mass-customization of
systems [1], which increasingly creates situations where every
manufactured system has a unique hardware configuration
and feature set. Lastly, system requirements frequently change
as new technology is being introduced, or because of new
expectations from the market. This means that substantial
effort goes into reengineering systems to ensure they match
customer needs throughout their life-cycle.

These trends in development of complex systems result in
three key challenges:

C1) Development time needs to be shortened to reduce cost
and time-to-market.

C2) Systems must be quick and easy to customize for a
particular customer to manage increasing diversity.

C3) System functionality must be evolvable to assert that it
continuously matches the needs of the customer during
its life-cycle.

Model-based Engineering (MBE) is an engineering ap-
proach where models play an important role in managing
complexity by providing abstractions of the system that sepa-
rate the problem domain from the implementation technologies
of the solution space. This has helped bringing development
closer to domain experts, enabling them to express their ideas
using familiar notations from their domain and automatically
generate system artifacts, such as documentation, simulation
models, and production code [2]-[4]. MBE can take many
forms as there is a plethora of development methodologies
used in industry with as much as 40 modeling languages and
100 tools being reported as commonly used [5]. The most
commonly used modeling languages, at least in the embedded
systems domain, are UML and SysML for software engineer-
ing and system engineering, respectively [6], [7]. However,
domain-specific languages (DSLs) are becoming increasingly
prevalent in narrow and well-understood domains [4].

This chapter is an experience report about addressing the
increasing system complexity in an industrial context using an
MBE development approach based on DSLs. First, Section II
discusses how DSL technology addresses the three complexity
challenges mentioned above, as well as stating five techni-
cal research questions related to this approach. Section III
then discusses the five research questions in context of the
published state-of-the-art to determine the extent to which
they are recognized in literature and identify the range of
available solutions. We continue in Section IV by presenting
our approach to practically investigate the research questions
in the context of a case study from the defense domain.
The design of a DSL eco-system developed for this case
study is discussed in Section V, after which we explain how
the research questions were addressed by the case study in
Section VI. Section VII presents an intermediate evaluation of
the work before we end the chapter by discussing conclusions
in Section VIIIL.

II. DOMAIN-SPECIFIC LANGUAGES

Determining whether a particular design methodology is a
good fit for a given problem is not easy. This problem has also
been recognized in the context of MBE [8], [9]. This section
discusses how an MBE methodology based on DSLs addresses
each of the three challenges outlined in Section I and presents

five research questions related to the approach that will be
investigated through a literature study (Section III) and a case
study (Section VI).

A. Reducing Development Time (Cl)

Compared to general-purpose programming, DSL-based de-
velopment approaches require an initial investment in terms of
effort [6], [7]. This investment involves defining the abstract
and concrete syntaxes of the language and implementing
model validation, as well as model-to-text transformations that
can generate artifacts for all supported variants. However, once
this investment has been done, development time is ideally
reduced, resulting in return on investment on longer term if
sufficiently many model instances are created [6]. Note that
this assumes that the considered variants are not so different
that they constantly require the DSL and its transformations
to be extended, limiting reuse and increasing development
effort. For this reason, DSLs are particularly well-suited in
the context of (mass-)customization, since a potentially large
number of variants are needed that fit within the confines
defined by product lines. In this context, which is the context
of this work, DSLs efficiently address Challenge CI.

B. Improved Customization (C2)

Customization of a system or component can also be
addressed using feature models [10]. However, a limitation
of feature models is that they are context-free grammars that
can only specify a bounded space that is known a priori. This
means that feature models are only suitable for a restricted
form of customization, i.e., selecting a valid combination of
features that are known up front [11]. However, it is not possi-
ble to use a feature model to specify new features that were not
previously considered at an abstract level. If this is necessary,
an alternative approach is to specify variability using general-
purpose programming languages, which are fully flexible, but
expose low-level implementation details and do not separate
the problem space and solution space. DSLs bridge the gap
between feature models and general-purpose programming
languages, as they are recursive context-free grammars that
can specify new behavior from an unbounded space, while
keeping problem space and solution space separate [11]. DSL
technology is hence a good fit for systems with a high degree
of variability, addressing Challenge C2.

C. Improved Evolvability (C3)

Since DSLs make it quick and easy to customize systems
or components by modifying model instances of DSLs and
then generate artifacts, it also follows that the instance can
be easily modified, and artifacts regenerated if the system
is evolved, e.g. due to changing requirements. In contrast, a
change in the underlying implementation technology does not
require DSL instances to be changed, as the specification in
terms of domain concepts has not changed. Instead, changes
to implementation technology implies a change only in the
model-to-text transformations that express the semantics of
the models, e.g. in terms of code. This provides a rather clean

separation of concerns, which is reflected in surveys [9], [12]
and case studies [6] listing improved flexibility, reactivity to
changes, and portability as benefits of DSLs. DSL technology
hence also addresses Challenge C3.

D. Industrial Research Questions

The above reasoning suggests that a design methodology
based on MBE and DSLs might be suitable to address all
three challenges stated in Section I. However, any design
methodology has its drawbacks and it is essential to make
sure that these do not offset the benefits [5]. Although there are
surveys suggesting that the benefits of MBE often outweigh
the drawbacks [7], leading to adoption of the approach, there
are also examples of the opposite [4], [13]. A credible business
case hence has to be built on a case-by-case basis. It is
widely recognized that this involves not only technical, but
also organizational and social, considerations [4], [5], [13]-
[15]. A list of 14 industrial research questions, or pains,
can be found in [16]. These research questions are based
on experiences from our partner companies that are active in
different application domains in the high-tech industry, e.g.,
defense, healthcare and manufacturing. In this work, we limit
the scope to discuss a subset of five research questions that
are relevant in the context of our case study.

RQ1) How do you achieve modularity and reuse in a DSL eco-
system?

RQ2) How do you achieve consistency between model and
realizations?

RQ3) How do you manage an evolving DSL eco-system?

RQ4) How do you ensure model quality?

RQ5) How do you ensure quality of generated code?

III. STATE-OF-THE-ART

This section continues by discussing the five research ques-
tions and the extent to which they are recognized in the state-
of-the-art. We choose to focus on state-of-the-art work in an
industrial context, i.e. empirical studies, case studies, and best
practices in industry, and review the proposed solutions. We
choose this focus to limit the discussion to relevant indus-
trial problems and proven solutions. A broader exploration
including more academic solutions is highly relevant, but is
left as future work. Note that many of the research questions
correspond to broad research areas and that an exhaustive
discussion is outside the scope of this chapter.

A. Modularity and Reuse (RQ1)

Software engineering has seen great increases in productiv-
ity by enabling software to be decomposed into reusable mod-
ules that can be used as building blocks. This practice allows
commonly used functionality to be implemented only once
and then gradually mature as it is gradually reused, extended,
and maintained. This same development is also desirable in
language engineering. As DSLs evolve to cover a broader and
broader domain, they inevitably reach the point where they
need to be split into multiple modules or sub-languages to
create a separation of concerns and reduce complexity. Since

multiple languages describing aspects of the same domain are
likely to share common concepts, further modularization is
often beneficial to enable reuse and improve maintainabil-
ity [17]. Examples of this can be found in industrial case
studies from a variety of domains [18]-[20]. In [20], it was
reported that modularizing a large DSL into a number of sub-
languages incurred an overhead of approximately 10% in terms
of grammar rules and 5% in terms of lines of code. However,
a great reduction of complexity was reported by separating
concerns, as well as improvements in maintainability.

The widespread use of small DSLs that can serve as
modules in a larger DSL eco-system, even within a single
project, results in an integration challenge [5]. The available
features for language composition vary significantly between
different language workbenches and the meta-meta-models
they support [21]. For example, composition features such
as language extension/restriction where a base language is
extended/restricted without modifying its implementation are
quite common. In contrast, language unification that allows
the implementation of both languages to be reused by only
adding glue code is relatively rare [22]. It is hence clear that
the problem of modularity and reuse is recognized and features
to address it are considered differentiating features of existing
language workbenches. We continue by briefly describing the
language composition features available in Xtext, which is the
language workbench used our in case study.

Xtext has quite limited and heavy-weight support for DSL
modularity [20]. Each module is created as a DSL in its
own right and results in five Eclipse projects being created.
A DSL eco-system hence quickly contains tens to hundreds
of Eclipse projects. Xtext supports single inheritance at the
level of grammars, which works similarly to the concept of
inheritance in many object-oriented programming languages.
This feature enables language extension or specialization by
overriding concepts in the inherited grammar. It also supports a
feature called mixin, which allows the meta-model defined by
another grammar to be imported and its elements referenced.
However, it is not possible to use the imported grammars by
referring to its rules, and the including language can thereby
not use its syntax to create objects. This is only possible
through inheritance. Lastly, Xtext also has a feature called
fragments that allows frequently occurring rule fragments to be
factored out and reused, reducing duplication and improving
reuse and maintainability. However, this feature is limited to
reuse within the particular grammar in which it was defined. In
addition to the features supported directly by Xtext, it is shown
in [20] how to creatively combine Xtext features to create a
notion of interface-based modularity, where unassigned rule
calls in Xtext can be used to create abstract rules that are later
implemented by languages importing the grammar.

The language composition features offered by the language
workbench affect the extent and at what granularity modularity
and reuse happens. The limited language composition features
provided by Xtext are sufficient to enable fine-grained reuse
within a single grammar (fragments) and coarse-grained reuse
between languages of the same DSL eco-system (inheritance

and mixins). However, an implication of these features is
that there is very limited reuse, at any granularity, between
languages in different domains, i.e. different eco-systems.
While this may sound natural, since DSLs are domain specific,
not even common language concepts, such as expressions or
concepts for date and time are typically reused. This shows
that the equivalence of libraries in regular software engineering
is missing from Xtext. Instead, reuse between languages in
different domains often happens by copying and pasting rules
and generator fragments from previous languages. Although it
is stated in [23] that this type of reuse already goes a long way,
we believe that further improvements to Xtext are necessary to
achieve the required productivity and maintainability benefits
offered by DSLs. We hence conclude that for industrial cases
where advanced language composition features are required,
it may be worthwhile to consider other mature language
workbenches than Xtext. A suitable candidate in this case
may be JetBrains MPS!, where modularization and language
composition are fundamental design concepts [24].

B. Consistency between Model and Realizations (RQ2)

The problem of inconsistencies between software artifacts
is mentioned as a current challenge for MBE in [25], [26].
A concrete example of this is that software designs, modeled
in languages like UML, often quickly becomes forgotten and
inconsistent once development starts. This problem may occur
for multiple reasons, one being that many practitioners do not
take diagrams seriously and see them as doodles on the back
of a napkin before the real implementation work starts with
textual languages [27]. Another reason for inconsistencies is
that many tools are not able to keep models at different levels
of abstraction synchronized. This problem is recognized in
a survey about MBE engineering practices in industry [4],
which suggests that 35% of respondents spend significant time
manually synchronizing models and code. The problem of
manually synchronizing artifacts is also explicitly mentioned
in a case study at General Motors [28]. In this case, lacking
tool support for merging and diffing models, resulted in
tedious and error-prone manual workarounds that would lead
to inconsistent artifacts.

Consistency between models and realizations (or other
artifacts) can bridged by generating all artifacts from a single
source. In fact, this way of working is considered a best
practice of MBE [15] and is a key benefit of MDE approaches
that easily and efficiently support generation, which is a core
purpose of DSLs. This benefit was explicitly highlighted in [6],
where both code and documentation were generated from
models specified using DSLs. This means that the model was
always consistent with the generated artifacts. Similarly, [19]
generates a simulation model, C++ code, visualizations, run-
time monitoring facilities, and documentation that is consistent
with an interface description based on a family of DSLs. These
works suggest that DSL technology is appropriate for ensuring
consistency between model and realizations.

Uhttps://www.jetbrains.com/mps/

Generation of artifacts can ensure that they are always up-
to-date with respect to the model, but this does not necessarily
mean that they all correctly and consistently implement the
semantics of the DSL. This is because the semantics of the
DSL is typically hidden inside the generators and there are
no simple ways to ensure that these semantics are consistent
with each other [17]. This problem is addressed in [29],
which combines formalizing (parts of) the semantics of a DSL
with conformance testing to validate that these semantics are
correctly implemented by generated artifacts, in this case code
and an analysis model. The approach is demonstrated through
case study using a DSL for collision prevention developed
by Philips. A drawback of this approach is that it requires
substantial effort (possibly years) and very particular expertise
to formalize two non-trivial languages to the point where
equivalence can be proven. Proofs furthermore often become
(partially) invalid as models or generators change, making
software evolution more costly and time-consuming. Using
this approach to address RQ2 may hence exacerbate problems
related to RQ3. For this reason, formally proving semantic
equivalence between realizations is not considered practical
for complex industrial systems.

C. Evolving DSL Eco-systems (RQ3)

Just like regular software, DSL eco-systems evolve over
time. This may be in response to required changes in syn-
tax, semantics, or both [30] as domain concepts are added,
removed or modified. While evolution is often positive and
helps the DSL stay relevant in a changing world, it creates
a legacy of old artifacts, such as models, transformations,
and possibly editors, that may no longer conform to the
evolved meta-model and cannot be used unless they co-
evolve [31]. This problem is well-recognized in the literature
and is explained with examples from popular meta-models,
such as UML and Business Process Model and Notation
(BPMN), in [31]. Although it is possible to manually co-
evolve models and transformations to reflect changes in the
meta-model, this manual process becomes tedious, error-
prone, and costly when the legacy is large [31], [32]. For
example, the Control Architecture Reference Model (CARM)
eco-system [33] developed at ASML consists of 22 DSLs, 95
QVT transformations, and 5500 unit test models to support
development of those transformations. Co-evolving a DSL
eco-system is more difficult than a single language, due to
dependencies between its constituent parts [32]. Manually co-
evolving a large industrial eco-system like CARM is hence
not feasible in terms of time and effort, but requires extensive
automation.

Co-evolution of meta-models and artifacts has been an
active research topic for many years. A list of 13 relevant
aspects that can be used to classify co-evolution approaches,
such as the type of artifact they consider or the technique used
to determine the evolution specification for the meta-model, is
presented in [31]. Furthermore, an overview of five existing
representative co-evolution approaches and a classification
using the 13 aspects is presented. Together, the five presented

approaches cover co-evolution of all artifacts, i.e. models,
transformations, as well as editors. No precise conclusions
are drawn about the state of existing tools. However, it is
suggested that there is no single tool that adequately considers
all cases of co-evolution and that dealing with the problem
requires modelers to learn use different tools and techniques
to co-evolve their artifacts. It is mentioned that co-evolution
of transformations is intrinsically more difficult than models,
which is reflected in the availability of mature approaches.
In rest of this section, we focus on co-evolution of models,
an easier problem for which industrial strength tools exist.
For example approaches for co-evolution of model transfor-
mations, refer to e.g. [34], [35]. Other interesting aspects of
evolution, such as its impact on code generation are relevant
and challenging, but outside the scope of this work.

Apart from manual co-evolution of artifacts, there are
four (semi-)automated approaches for obtaining an evolu-
tion specification [36], [37]: 1) Operator-based approaches,
where evolution of the meta-model is manually specified in
terms of reusable operations representing frequently occurring
patterns of evolution. Based on the specified sequence of
operators, a co-evolution specification for artifacts can be
automatically derived. The usability of this approach is to a
large extent determined by the completeness of libraries with
reusable operators. Edapt?, the standard co-evolution tool for
the Eclipse Modeling Framework (EMF), previously known
as COPE [38], is a prominent example of a well-known tool
in this category. 2) Recording approaches that record modifi-
cations to the meta-model and automatically creates a specifi-
cation reflecting the performed changes. This approach is also
supported by Edapt. 3) State-based differencing approaches
that compare the original and evolved version of the meta-
model and derives an approximate specification of the changes.
Example approaches in this category include EMFMigrate [39]
and EMFCompare®. 4) By-example approaches [40], where
the user manually migrates a number of model instances and
the specification is derived by looking at the changes. The
strengths and weaknesses of these four approaches are further
discussed in [36].

The mentioned methods for co-evolution apply to co-
evolution of models that have been manually specified by a
user. However, another method applies to models that have
been automatically created using static or dynamic techniques
for model inference, e.g. using the Symphony process [41].
In this case, it may be faster to simply update the software
creating the models to comply with the new meta-model and
just rerun it to infer the models again. Of course, this method
assumes that the data from which the models are inferred is
stored.

It is clear that several methods and tools exist to address the
co-evolution problem, although there are only limited studies
that evaluate their applicability in the context of industrial
DSL eco-systems. The extent to which Edapt could be used

Zhttps://www.eclipse.org/edapt/
3https://www.eclipse.org/emf/compare/

to perform DSL/model co-evolution in the CARM eco-system
was investigated in [42]. It was concluded that the standard
operators could fully support 72% of the changes, with another
4% being partially supported. Implementing a set of model-
specific operators increased the supported changes to around
98%. With these extensions, the authors concluded that Edapt
is suitable for maintenance of DSLs in an industrial context.
Further extensions to improve the usability of Edapt in industry
have also been proposed in [43]. Based on this evidence,
we consider Edapt and its extensions relevant candidates
for managing evolution of EMF-based meta-models in cases
where the workflow used to modify the meta-models supports
the usage of such tools.

Determining the required operators by means of case stud-
ies, even on a large DSL eco-system like CARM, is not
necessarily sufficient to make statements about the suitabil-
ity for other eco-systems. This was shown in [37], where
a theoretically complete operator library for specifying any
sequence of evolutionary steps for the EMF meta-meta-model
was derived. This investigation showed that state-of-the-art
operator libraries could only specify 89% of DSL evolutions
and that most of the remaining deficiencies could not be
identified using a case study of the CARM eco-system.

D. Ensuring Model Quality (RQ4)

If models are used as the sole source of all generated
artifacts, it is essential to validate models to ensure their
correctness. In addition, it is frequently stated as a best practice
to test and find defects as early as possible [44], since this has
been shown to increase quality and reduce the total time and
effort required to develop or maintain software [6], [45].

There are several ways to improve the quality of models and
ensure correctness. For DSLs, a good starting point is to use
the validation features of the language workbench. Features
for model validation exist in all language workbenches, al-
though the supported validation features vary [21]. Validation
of structure and naming in model instances are relatively
common features, while built-in support for type checking is
less commonly supported. Many language workbenches have
a programmatic interface allowing domain-specific validation
routines to be implemented to make sure the model makes
sense in the domain where it will be used, which is considered
a best practice [44].

A more refined approach to model validation may involve
tools and methods external to the language workbench. In [14],
the quality and correctness of models is established by simulat-
ing the models against an executable test suite. The methodol-
ogy proposed in [46] generates POOSL [47] simulation models
connected via a socket to custom-made visualization tools
for the considered system. The main benefit of this is that it
helps make interactions between components and the behavior
of the system explicit to reach an early agreement between
stakeholders. Another example is to generate formal models
to validate domain properties. For this purpose, the work
in [48], [49] generated satisfiability modulo theories problems
that were solved by an external solver. The results from

this solver were then fed back into the validation framework
of the language workbench to interactively notify the user
directly in the development environment. Lastly, one best
practice is to review models, just like source code [44]. This is
currently done by many practitioners to build confidence in the
quality of code generators and the generated code [45], [50],
[51]. Based on this brief review, we conclude that suitable
validation methods are available both internally in language
workbenches and through external tools. The exact choice of
method, as well as criteria for validation, is highly problem
specific and should be determined on a case-by-case basis.

E. Quality of Generated Code (RQS5)

Quality of generated code is a very broad research question,
since software quality can mean a lot of different things [52].
A tertiary study, i.e., a study of literature surveys, in the
area of quality in MBE is presented in [53]. The study
considers as many as 22 literature surveys, many of which
choose maintainability as the quality metric of choice. They
conclude that the field is not yet fully mature as most surveys
target researchers and focus on classifying work, rather than
targeting industry practitioners and aggregating quantitative
evidence according to established quality metrics. We proceed
by discussing a few relevant primary studies, most of which
conclude that code generation leads to quality improvements.

A case study [6] in the Dutch IT-industry showed that intro-
ducing MBE in the maintenance phase of a software project
improves software quality. More specifically, they showed that
a lower defect density was achieved using modeling, although
at the expense of increasing time to fix a defect. However, the
total result of these effects was a decrease in the total effort
spent on maintenance of versions of the software. A reduction
of defects is also claimed in [23], [54], although the latter does
not substantiate this with any quantitative evidence. A similar
observation was made by Motorola in [14], which states that
it is sometimes faster and sometimes slower to find the root
cause of a software defect using MBE. They also provide
quantitative estimates suggesting a reduction in the time to
fix defects encountered during system integration, overall
reduction of defects, and improvements in phase containment
of defects (i.e. that defects are more likely to be detected and
fixed in the development phase in which they are introduced)
and productivity.

Motorola also points out a problem related to code quality
using MBE. They state that code generation using off-the-
shelf code generators can become a performance bottleneck
unless it is possible to customize the generation [14]. The
problem of generated code not being of desirable quality is
also recognized in surveys with more than 100 participants [7],
[26]. In the most recent of the two surveys, 21% of participants
is negative or partially negative about the quality of the
resulting code [7]. While this number shows that there are
practitioners that are not satisfied with the quality of generated
code, the number of practitioners that are neutral (30%) or
(highly) positive (49%) is much higher. From this, we conclude
that the quality of generated code is a problem worth investi-

gating further, especially for performance-critical applications
designed with tools that provide little or no control over code
generation.

Another aspect of generated code quality is the extent to
which it is readable by humans. Best practices state that
generated code should follow acceptable style guides. This
may seem like a waste of time, since other best practices
suggest that generated code should not be modified [44].
However, people still benefit from readable code in several
ways: 1) Just like for any other code, generated code is
inspected by developers trying to track down the root cause
of a defect and this goes faster if the meaning of the code is
clear. 2) Manual code reviews of generated code are part of the
development practice in many places to ensure correctness of
the code and its generators [45], [50], [55]. 3) Readable code
provides an exit strategy in case the company decides to stop
using MBE by simply checking in the generated code and
continue using it manually [50]. A case where this did not
work out was reported in [2], where generated Simulink code
was not human readable, making the adoption of MBE hard
to roll back.

Testing is an essential way to ensure the quality of software.
However, code generation complicates testing, since there are
often many possible paths through the code generator. There
are two fundamental approaches to address this issue. The
first approach implies testing the code generator itself. The
challenge with this approach is to achieve sufficient coverage
of the possible paths. Testing all possible (combinations of)
paths through the generator is typically not feasible, due to
the combinatorial explosion of possibilities. However, it may
be possible to exercise all possible control flows in the code
generator (i.e. every outcome of every single if statement), or
use Pairwise Independent Combinatorial Testing* to exercise
pairwise combinations of control flows. If the desired number
of test models is too large to generate manually, a genera-
tor can be implemented to generate models that trigger the
appropriate paths through the code generator.

The second approach is to ignore the code generator and
test the generated code. In this case, all existing testing
practices remain valid, but testing needs to be repeated for
each generated variant. Although this suggests that the overall
testing effort is increased, it is important to recognize that
the quality of the generated code increases over time as the
generator matures. This approach is common for software in
safety-critical domains, such as healthcare, automotive and
avionics, since it is often more practical and cost-effective to
certify generated code than trying to qualify the code generator
itself [55].

IV. APPROACH TO PRACTICAL INVESTIGATION

Having discussed the relevant state-of-the-art for the five
research questions related to our MBE approach based on
DSLs, we proceed by explaining the organization of the prac-
tical investigation into these questions. We start by motivating

“https://github.com/Microsoft/pict

our choice of modeling technology, before presenting our case
study from the defense domain.

A. Modeling Technology

The five research questions in this work are practically
investigated using an MBE approach based on DSLs. This
is because Section II suggested that DSL technology is an
intuitive fit with the three challenges stated in Section I,
assuming the five stated research questions could be answered.
The review of the state-of-the-art in Section III suggests
that there are promising solutions that answer many of those
questions. In addition, we have many years of experience of
transferring DSL technology to industry and applying it in
different domains, e.g., [18], [19], [56], [57]. There are many
approaches [58] and tools [21] for developing DSLs. This
work uses Xtext, which is a mature language workbench that
has been around for more than a decade and has relatively
high coverage in terms of important features for language
development [21]. It is additionally open source and available
as a plugin for the Eclipse IDE, one of the most commonly
used tools for MBE [7]. Generators are defined in the Xtend
language, which is a DSL built on top of Java that can be
combined with regular Java code. Details on how to develop
DSLs and generators based on Xtext and Xtend can be found
in [59].

B. Case Study

A suitable case study is needed to drive the practical
investigation into the five industrial research questions stated
in Section II. We start by presenting the general context of
our case study from the defense domain. This study is cen-
tered around the engagement chain of a Combat Management
System, shown in Figure 1. This work considers a single
ship, referred to as the own ship, with a number of sensors,
e.g., surveillance radars and tracking radars, and a number of
effectors to counteract possible threats.

The engagement chain consists of a number of steps that
execute periodically, e.g., every few seconds. The input to
this chain is the current state of the world. In the first step,
surveillance radars are observing the world and produce sensor
tracks, which can be intuitively understood as a radar blip with
a position and speed corresponding to e.g., another ship, a
missile, or a jet. The sensor track is then passed on to a track
management process that fuses sensor tracks from multiple
sensors to generate a single, more accurate, system track. The
system tracks are sent to the threat evaluation process, which
determines the types of threats, investigates their intentions,
and produces a ranking that indicates the relative threat level.
A sorted list of threats is then sent to the engagement planning
process, which determines the combinations of sensors and
effectors that should be used against each threat and at what
time. Depending on the choice of planning algorithm, it may
plan actions to counteract the threats strictly following threat
ranking, or it may plan more flexibly using the ranking as a
guideline. The generated engagement plan is then executed,

Current State System Tracks Engagement Plan

Engagement
Execution

Engagement
Planning

Track
Management

Threat

Sensing Evaluation

Threat Ranking

Sensor Tracks Actions

Fig. 1. Overview of the engagement chain

and the actions of the sensors and effectors close the loop by
interacting with the world, affecting its state.

For this case study, we have implemented two DSLs (par-
tially) corresponding to two steps of the engagement chain
in Figure 1. The first DSL covers threat ranking, which is a
part of threat evaluation, and the second covers engagement
planning.

V. DSL ECcO-SYSTEM DESIGN

This section presents the design of the DSL eco-system that
was developed for the case study driving our investigation
into the five research questions. First, we explain the rationale
behind the design of this eco-system, followed by a description
of the Threat Ranking DSL. This particular DSL was chosen
because it is the smallest and conceptually simplest language
to discuss, allowing us to describe it in limited space, yet give
a feeling for the level of abstraction chosen in this work. A
complete and detailed description of the entire eco-system is
left as future work.

A. Design Rationale

In terms of the classification of DSL development patterns
in [58], this work used informal domain analysis, primarily
based on discussions with relevant domain experts and ar-
chitects, to identify suitable domain models for the different
components. The design of the languages followed the lan-
guage invention pattern, i.e., new DSLs were designed from
scratch. The two DSLs were developed one at a time, starting
with Threat Ranking, to incrementally build trust in the overall
approach and evaluate its benefits and drawbacks [16].

The DSL design process was incremental and iterative
through a series of meetings with domain experts and archi-
tects, being the main technical stakeholders. The meetings dis-
cussed relevant domain concepts and possible variation points
in the languages. After the meetings, there was a formal design
phase where we prototyped the DSL by specifying the abstract
and concrete syntaxes through a grammar in Extended Backus-
Naur form (EBNF), which is the starting point for DSL
design in Xtext. The proposed grammar and a few example
instances were then discussed in the following meeting along
with new possible concepts and variation points that could be
introduced in the next iteration. This process was repeated until
the languages were considered sufficiently expressive. Only
at this point, generators with model-to-text transformations
were implemented. In our experience, this incremental way
of working with frequent prototypes helps drive development
forward, as well as mitigate analysis paralysis [60].

JET assign level SEVERE
MISSILE assign level MODERATE
OTHER assign level NONE

If JET isInbound then INCREASE level
If ANY distance < 1 km then assign level CRITICAL

Weight a = 1.5

Weight b = .9

Metric custom = a ¥ keepOutRange + b * lethality
Tiebreaker: custom higherIsMoreDangerous

Objective: protectOwnShip

Fig. 2. Example instance of the Threat Ranking DSL

In terms of implementation pattern, we used the compiler
/ application generator approach to translate constructs of our
DSL to existing languages. This choice of implementation
pattern was motivated by the desire to enable analysis and
validation of DSL instances, as well as being able to tailor
the notation to the specific domain. In that sense, the choice
of implementation pattern is consistent with recommendations
in [58]. Since the intended users of the language are domain
experts and system engineers, rather than software developers,
it was decided that the language should look and read more
like text than code. This means some extra keywords have
been added to make it easier to read better and understand, at
expense of slightly longer specifications. This is not expected
to be an issue as specifications are quite short. It was also
decided to give the languages a common look and feel by
using the same structure and notation, wherever possible.

B. Threat Ranking DSL

This section aims to give a feeling for the DSLs created in
this work by discussing the concepts of the Threat Ranking
DSL in the context of an example instance. The basic idea
behind our Threat Ranking DSL is to assign priority levels
to each threat and to use a tiebreaker metric to resolve the
order in which threats with the same priority level are ranked.
As seen in Figure 2, instead of using numbers to indicate
priority, we use six threat levels, going from higher to lower:
CRITICAL, SEVERE, SUBSTANTIAL, MODERATE, LOW, and
NONE. The first five levels (CRITICAL to LOW) indicate threats
that will appear in the output threat ranking, while threats with
the last level (NONE) are filtered out and are not considered
for engagements. The benefit of this use of threat levels over
priority levels represented by numbers is that it ties into an
existing classification that is used in the domain.

Threat levels are assigned in two ways in the language:
1) statically per threat type (e.g., JET and MISSILE), and
2) dynamically per individual threat. The static assignment
associates each threat type with a threat level that initially
applies to all threats of that type. The proposed DSL requires
all threat types to have a statically assigned threat level and
is hence a common feature among all instances. To facilitate
this in a simple way without explicitly listing all 10 currently

supported threat types, the types OTHER and ANY have been
introduced. ANY covers all types, whereas OTHER captures all
threat types that have not been listed (i.e., neither explicitly or
by an ANY).

The static threat level assignment can be dynamically mod-
ified per threat during each execution of the Threat Ranking
algorithm based on properties of the threat at that particular
time, e.g. kinematic information or the distance to the own
ship. This is done using optional if-statements, making this a
variable feature of the language. Values representing distances,
speeds or times are required to have an appropriate unit to
improve readability and remove ambiguity that can lead to
incorrect implementation. A number of units are available in
each category, allowing the user to choose whatever feels more
natural. Behind the scenes, the generators convert all values
into common units, i.e. meters for distances, seconds for time,
and meters per second for speed.

The DSL instance in Figure 2 contains two examples
dynamic threat level modifications. First, it states that any
inbound jet, i.e., a jet flying towards the own ship, should
have its threat level increased by one step, i.e., from SEVERE
to CRITICAL in this case. This is an example of a relative
threat level assignment, as the resulting threat level depends
on the level before this assignment. Secondly, it states that any
threat that is less than 1 km from the own ship should have its
level reassigned to CRITICAL. This is an absolute threat level
assignment that is independent of the previous threat level. It
is possible to have any number of if-statements and they are
executed in order. If a relative INCREASE or DECREASE of
the threat level is done on a threat with the highest or lowest
threat level, respectively, the level remains unchanged.

All threats will be assigned a final threat level based on the
combination of static and dynamic threat level assignments.
To arrive at a final ranking, the order in which to rank threats
with the same threat level must be decided. This is done by
either choosing any of 9 pre-defined tiebreaker metrics or by
specifying a custom metric as an expression consisting of
different threat properties, such as kinematic information (e.g.,
speeds and distances). The latter possibility vastly increases
the possibilities for how to rank threats with the same threat
level, as custom metrics can specify arbitrarily complex ex-
pressions, which as previously discussed in Section II form
an unbounded space of behaviors that cannot be captured
by feature models. This is a key argument for modeling the
Threat Ranking algorithms using DSLs. The example instance
in Figure 2 defines a new metric as a weighted combination of
the specified keep out range and the lethality of the threat type.
For each metric, it is possible to indicate whether a higher or
a lower value is more dangerous.

Lastly, there is the concept of a High Value Unit (HVU),
which is a critical unit, e.g., a cargo ship or an aircraft carrier,
that may require protection by the own ship. The DSL is
extended with the ability to specify an objective related to
an HVU, i.e., to protect the HVU, protect the own ship, or
protect both.

In conclusion, the presented Threat Ranking DSL defines

Threat
Ranking DSL

Engagement
Planning DSL

Fig. 3. DSL eco-system for parts of a Combat Management System.

threat ranking algorithm at a high level of abstraction using
terminology from the application domain, which is commonly
considered a best practice [13], [44], [61]. The DSL is fur-
thermore so narrowly defined that it is impossible to use it to
model different domains, which is a useful test to determine
if the right balance between generic and specific has been
found [60].

VI. RESULTS OF PRACTICAL INVESTIGATION

This section explains the techniques employed and lessons
learned from applying our MBE approach using DSLs to the
case study with the goal of addressing the five industrial prob-
lems highlighted in Section II. Note that a less complex DSL
eco-system than e.g. the CARM [33] eco-system sufficies for
our case study, which may impact some of the conclusions in
this section. We proceed by discussing each research question
1n turn.

A. Modularity and Reuse (RQ1)

The structural design of the DSL eco-system developed
for the case study is shown in Figure 3. The eco-system
comprises three DSLs, one for each of the two considered
functions in the Combat Management System, Threat Ranking
and Engagement Planning, and an additional language that
factors out common domain concepts that are shared among
the other two languages. Examples of concepts that are shared
between the languages are expressions, units, objectives, met-
rics, threat types and threat properties. As suggested by the
figure, the languages are composed by means of Xtext’s
single inheritance mechanism, where Threat Ranking DSL and
Engagement Planning DSL are both inheriting the grammars
of Common DSL. Our eco-system is neither making use of
Xtext’s mixin feature, nor the fragment feature. Mixins are
not used because there is no need for either Threat Ranking
DSL or Engagement Planning DSL to refer to the meta-model
of the other language. Fragments are not used as there are
no repetitive patterns in the rules of any of the individual
grammars.

Although the language composition features of Xtext are
limited, we conclude that they are sufficient for the needs
encountered during our case study. However, it is easy to see
the world through the limitations of tools [60] and it is possible
that another language workbench with more and lighter-
weight language composition feature would have encouraged
us to modularize at finer granularity to enable reuse of, e.g.
expressions and units in other languages outside this work.

Evolved DSL
Grammar

[Instance 11] [Instance 15] [Instance 31] [Instance 34]

EIEIENE]
2lelaus.
EIEIEDE]
|jesaus;
ajesaus:
Qlelaua:
2lelaus!

ESCIEDE]

ESCIETE]
2)elauai
2jesaus;
ECIENE]

envl { env2 | env3

Fig. 4. Generation of models for multiple simulation environments, as well
as production code. Model-to-text transformations migrate DSL instances to
newer versions as the DSL grammars evolve.

B. Consistency between Model and Realizations (RQ?2)

The proposed DSL-based approach to MBE generates both
simulation models and code, reflecting the observation in [7]
that code generation and simulation are the most common
uses of models in the embedded domain. The DSL instance is
the sole source of truth from which both simulations models
and code are generated, following best practices from [15].
Code generators have been implemented for the relevant
programming and modelling languages and their execution
environments (env), corresponding to different simulators at
different levels of abstraction, or the system itself. This ensures
that simulation models and production code are always con-
sistent with their corresponding DSL instance, as illustrated in
Figure 4. The fact that multiple artifacts are generated from a
single DSL instance means that our approach is consistent with
“the rule of two”, i.e. that DSL instances should be used for
at least two different purposes to fully benefit from a model-
based design approach [15]. We do currently not any generate
documentation from the DSL instance, but an additional gen-
erator could be implemented to generate documentation using
IZTEX. There are also available tools for automatic generation
of Word documents, e.g. Gendoc® and m2doc®. However, we
leave this as future work.

Generation of artifacts from a single source does not ensure
that the semantics of the DSL is consistently implemented
in the generators. This means that simulation models and
production code may be consistent with the model, but have
inconsistent views on what the model actually means. In our
particular case, a consistent interpretation of the semantics
implies that generated simulation models and production code
always produce the same ranking, given the same input.
Ensuring consistent semantics hence boils down to validating
that this is really the case. The challenge is that the models
and code execute in different environments that use different
languages and model some system components at different
levels of abstraction. As a result, even if the exact same Threat
Ranking algorithm is used in all environments, the inputs of
the Threat Ranking component are not expected to be the
same. For example, a threat may be detected slightly earlier or
later, impacting the set of threats to rank at a particular point

Shttps://www.eclipse.org/gendoc/
Shttp://www.m2doc.org/

in time, which in turn affects the scheduled engagements and
the set of threats later in the scenario. For this reason, it is not
always possible to compare results across environments and
draw meaningful conclusions about consistency of semantics
between generators.

Our solution to mitigate this concern is to remove the
differences in environment and execute all implementations in
a single execution environment. This is achieved by wrapping
the generated production code and run it in one of the sim-
ulation environments as software-in-the-loop, which ensures
that all generated implementations have the same inputs and
that all other components are implemented identically. This
in turn enables us to establish the consistency of semantics
between generators by extensive regression testing through
comparison of results, following the recommendation in [17].
Over time, through extensive testing and use, this approach
builds confidence that the different generators implement the
same semantics of the DSL and hence that the Threat Ranking
component works correctly.

There are two main drawbacks of this approach: 1) The
semantics are implemented in each generator and any semantic
change must hence be consistently implemented in all gener-
ators manually, which is error prone. 2) It is limited to cases
where the exact same result is expected from all realizations,
or slightly more generally, where results maximally differ
by some known maximum bound, which is often not the
case. An interesting option could be to specify the semantics
on an abstract level and generate implementations that are
consistent by construction. This would ensure that changes in
semantics would only be made in a single place, which could
be advantageous for highly evolvable systems. This direction
is considered future work.

C. Evolving DSL Eco-systems (RQ3)

The DSL eco-system in our case study consists of three
DSLs (Threat Ranking DSL, Engagement Planning DSL,
and Common DSL), four model-to-text transformations that
generate simulation models and production code in a variety
of languages, as well as an analysis model for custom metrics,
described later in Section VI-D. Our DSL eco-system is
hence considerably smaller than the CARM eco-system [33],
previously discussed in Section III-C, resulting in a smaller
legacy as meta-models evolve. The evolution of our eco-
system has taken place entirely during the development phase
of the DSLs, which has been approximately two years.

We considered using Edapt [42], since it is relatively
mature and has been positively evaluated for other industrial
DSL eco-systems. However, Edapt works directly with the
EMF meta-model, which Xtext generates from the specified
grammars. The grammars will hence become inconsistent with
the evolved meta-model, unless a formal link is established
that propagates the changes to the grammar. To the best of
our knowledge, there is currently no tooling implementing
this link, removing Edapt from further consideration in this
work. Instead, we focused on solutions available within Xtext
itself. We only needed to consider co-evolution of models and

transformations, since Xtext regenerates the editor based after
changes to the meta-model. Due to the limited evolvability
burden in our case study, we have opted for the simplest option
that satisfied our needs. This involved manually implementing
a generator with a model-to-text transformation whose input
was a model conforming to the non-evolved grammar and
output a textual representation of that instance conforming to
the evolved grammar, as shown in Figure 4. This corresponds
to a largely manual approach, as the mapping between con-
cepts in the non-evolved and evolved meta-model, as well their
semantics, was done manually. However, the implemented
transformation could quickly and easily be applied in a batch
run to evolve all existing model instances. This simple ap-
proach is hence not limited to eco-systems with a few models,
but is primarily restricted by the number and complexity of
the languages in the eco-system and the complexity of their
dependencies.

D. Ensuring Model Quality (RQ4)

In the proposed DSL-based approach to MBE, the model is
the sole source of truth from which both simulations models
and code are ultimately generated, following the best practice
from [15]. It is hence important that the quality of these models
is high and that any problems are detected as early as possible.
Towards this, we experimented with three ways to improve
model quality:

1) The Eclipse-based IDE for the Threat Ranking DSL,
which is automatically generated from the DSL grammar
by Xtext, ensures syntactic correctness and immediately
validates that the syntax of an instance complies with the
grammar.

2) A number of model validation rules have been imple-
mented that exploit knowledge about the domain to detect
problems with instances. These validation rules can either
lead to warnings, which only alert the user but still allows
generation of artifacts, or to errors, which prevent the
generators from running altogether until the problem is
resolved. This is generally a good place to address dep-
recation issues as the DSL is evolving. A warning can be
triggered when a deprecated construct is encountered in
a model, assuming an appropriate model transformation
is available to map it to an equivalent construct in the
evolved DSL. In contrast, if a model transformation is
not available (anymore), an error is triggered.

More specifically for our Threat Ranking DSL, one
validation rule triggers a warning if there are multiple
static threat level assignments to a single threat type to
alert the user that only the last assignment is useful. In
contrast, another rule throws an error in case not all threat
types have a static threat level assignment, since this
violates a fundamental assumption of the ranking algo-
rithm. Yet another validation rule checks the correctness
of units, i.e., that metrics related to time or distance are
only compared to values whose units relate to time and
distance, respectively. This prevents comparing apples to
pears, or more literally, seconds to meters by raising an

Analysis of custom metric: Example: 5-MISSILE
Weights: smallNumber := 0.000001
Expression: timeToOwnShip * timeToKOR +

keepOutRangeViolated * smallNumber / speed

Parameters:
CPADistance : 48.30 m
altitude : 19.86 m
speed : 799.93 m/s
timeToKOR : 22.82 s
timeToOwnShip : 0.06 s

Ranking by custom metric
(lower is more dangerous):

1) [1.37] 5-MISSILE Substituted: 0.06 * 22.82 +
2) [2.07] 3-MISSILE 0.0 * 0.000001 / 799.93
3) [2.08] 1-MISSILE

4) [2.29] 4-MISSILE Evaluated: 1.37

5) [2.56] 2-MISSILE

Fig. 5. Generated analysis showing result of applying a custom metric to a
particular set of threats. The numbers in the example are not indicative of any
real systems.

error. For many of these validation rules, quick fixes
were built into the editor to help the developer resolve
violations quickly and reliably.

3) An analysis tool was also implemented in a generator that
immediately produces a report providing visibility on the
results provided by custom metrics, previously introduced
in Section V-B, without having to run the simulator.
The generated report is based on a single given list of
threats to be ordered. Representative lists of threats are
easily obtained by recording inputs to the Threat Ranking
components during simulation. The report, shown in
Figure 5, demonstrates how the custom tiebreaker metric
is computed for each threat. This immediately shows the
user an example outcome when applying the metric and
gives insight into what caused that outcome. For example,
it could show that a particular parameter is typically
dominating the metric and that weights should be adjusted
to make the metric achieve the desired goal. This is
particularly helpful when experimenting with complex
custom metrics.

E. Quality of Generated Code (RQS5)

Most of our practical work related to quality of generated
code is related to testing, which is done at three different
levels: 1) unit testing, 2) component testing, and 3) integration
testing. Unit testing of the DSLs follows the method described
in [59] and performs low-level validation of the generators by
asserting that particular model constructs result in the expected
code being generated. In contrast, the component-level testing
focuses on the semantics of the generated code and validates
that this is consistent across implementations, as previously
described in Section VI-B. Note that comparing results from
multiple implementations is useful to validate consistency,
but it does not necessarily imply that any implementation is
correct. However, following this approach, all implementations
must provide the same incorrect result in order for it to pass the
test, which is rather unlikely. Lastly, we perform integration
testing in the complete system to verify that components
communicate correctly and that system-level results, such as
when and where threats are neutralized in a particular scenario

for a given DSL instance, do not unexpectedly change during
development. For this purpose, golden reference results have
been generated for relevant threat scenarios and DSL test in-
stances and are used for comparison during testing. To further
increase confidence in the results, different generators can be
implemented by independent developers based on a common
specification, following requirements for certification of soft-
ware components in safety-critical avionics systems [62].

Manual validation is tedious and time-consuming labor,
especially when software is being developed in parallel on
many different branches. Following the GitFlow workflow’,
our repository has two main branches, master and develop-
ment. New features are developed on feature branches that
are integrated into development after passing testing at all
three levels mentioned above. Despite passing all tests, the
development branch contains newly integrated experimental
features and is not considered perfectly stable. Once it is time
to make a new release, additional manual validation is done on
this branch and once it is considered to be sufficiently stable
for users, it is integrated into the master branch.

To reduce the manual effort of all commits on these
branches, testing has been automated to make it possible to run
all combinations (or a chosen subset) of DSL instances and
scenarios by pushing a single button. As recommended in [44],
the DSL instances used for testing have been designed in such
a way that they exercise as many constructs of the DSLs as
possible to improve coverage. Since we are preparing for a
situation where the DSL itself evolves over time, it is important
that integration testing is always done with the latest versions
of the eco-system and its generators. However, Xtext does not
support automatic generation of a command line DSL parser
and generator that can be used for integration testing after
each commit. As a contribution of this work, we have defined
a method for automatic generation of such a command tool
that can be used with any Xtext project without even requiring
an Eclipse installation. A description of this method and an
example project is available online®.

To automate all aspects of testing and enable continuous
integration, we have set up a Jenkins Automation server that
checks out the latest version of the code after each commit
on any branch, builds the compiler and runs all tests. General
benefits of this setup include enabling defects to be caught
early, improving phase containment of defects, and ensuring
that only the latest changes must be reviewed and debugged
when a bug is detected. There are also specific benefits with
respect to Challenge 3. For example, it allows DSL instances
of deployed systems to be stored in branches and continuously
validate that evolved versions of the DSL do not accidentally
change their behavior. This makes it easier to maintain and
upgrade systems after deployment.

The automation server also provides continuous deployment
by automatically generating Eclipse plugins based on both the
development branch and master branch for Threat Ranking

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-
workflow
8https://github.com/basilfx/xtext-standalone-maven-build

DSL and Engagement Planning DSL as soon as a commit to
either of these branches has passed all tests. These plugins
are then made available on an internal update site. Experi-
enced users or developers can hence subscribe to the latest
development version and experiment with the latest features,
while regular users can subscribe to the latest stable version.
This setup ensures that the plugins used by both of these
communities are always up-to-date.

Unlike Motorola [14] and some of the survey participants
in [7], [26], previously discussed in Section III-E, we have
not experienced problems with the performance of generated
code during our case study. The two main reasons for this are:
1) our models are relatively small, making them less prone to
performance problems, and 2) DSL development using Xtext
gives full control over the model-to-text transformations used
for code generation, which means that the differences with
hand-written code are typically small. When these differences
do occur, it is mostly to simplify the structure of the generators
and avoid complex control flows that slow down development
and complicate testing.

VII. EVALUATION

As a part of an informal evaluation of an intermediate
version of the DSL eco-system, an event was organized on the
premises of the industrial partner where about 20 employees
with various functions ranging from software and system
engineers to domain experts and even a director participated.
Some of the participants were familiar with the domain from
before, but many of them were not. The event consisted of a
30-minute introduction after which participants were divided
into four groups that experimented with the DSL eco-system.
After a short tutorial that explained the basics of the DSLs
and the associated tooling for simulation and visualization, the
teams were tasked with using the DSL eco-system to solve a
particular assignment. It turns out that a short tutorial was
sufficient to get three out of the four groups to productively
experiment with making their own model instances to solve
the assignment, at which point we only needed to answer a
few simple questions, e.g., about the definitions of keywords
in the language. The last of the four groups completed the
tutorial, but did not get off the ground with making their own
instances. This was due to a combination of lacking motiva-
tion, insufficient domain knowledge, and group dynamics.

The feedback from the participants was largely positive.
Some participants had domain knowledge and suggested fea-
tures that could be included in future versions of the DSL.
It was also reported that the participants found experimenting
with the DSL an effective way to learn about the domain, as
the DSL and associated tooling made it and easy to customize,
deploy, and evaluate model instances. This suggests that our
DSL was on its way towards delivering on Challenges C2 and
C3. This feedback also resonates with the claim that MBE
empowers users without software background, e.g. domain
experts and system engineers, by enabling them to work
productively without having to rely on software engineers to
implement their ideas [2]-[4].

As the work was concluded, a final evaluation was orga-
nized to assess the potential of the DSL-based development
methodology. The goal of the evaluation was to let a number of
intended DSL users experience with the DSL way-of-working
and assess its potential within the organization. The means
to achieve this was to let them experiment with the DSL
eco-system. These experiments took place in the intended
application context, in this case together with suitable tools
for simulation and visualization. Although this is a specific
example of a DSL in context, the participants were asked to
assess the general potential of DSLs and not limit themselves
to the particular DSL or the domain of engagement planning.
10 participants considered representative for the potential users
of DSLs were asked to join the evaluation. Some partici-
pants in the evaluation were system engineers/architects with
only limited software development experience, corresponding
to the primary audience of the developed DSL eco-system.
Others had experience with implementing algorithms directly
in general-purpose programming languages and could hence
provide a complementary perspective. The setup of the final
evaluation was nearly identical to that of the intermediate
evaluation, but featured newer versions of the DSL eco-system
and the tutorial to reflect improvements made during the six
months between the two events.

The participants identified a number of classic gains of
DSLs during the session, e.g.: 1) the demonstrated DSL-based
environment was easy to use and accessible to non-technical
people, 2) the DSL hides the implementation technology,
allowing the problem to be decoupled from its implementation,
3) DSLs enable faster customization and prototyping, at least
of variants that fit within the boundaries of the language, 4)
DSLs may improve communication within a group of people,
but also with the outside world. These observations relate to
known benefits of DSLs, previously discussed in Section II,
and together they address all three challenges identified in
Section I. This is an encouraging result! A number of pains
were also identified during the evaluation, e.g. DSLs require
higher upfront investment compared to traditional software
development, modeling requires different skills, and adopting
a DSL-based methodology requires organizational support.
These pains have been previously identified and mitigation
techniques have been documented and shared with the indus-
trial partner.

VIII. CONCLUSIONS

This chapter addressed the problem of reducing design time
and improving evolvability of complex systems through a
Model-based Engineering (MBE) approach based on Domain-
specific Languages (DSLs). Five research questions raised by
our industrial partner related to the approach were investigated
by means of a literature study and a practical case study from
the defense domain, namely how to: RQ1) achieve modularity
and reuse in a DSL eco-system, RQ2) achieve consistency
between model and realizations, RQ3) manage an evolving
DSL eco-system, RQ4) ensure model quality, RQS) ensure
quality of generated code.

A DSL eco-system with two DSLs inheriting common
concepts from a third language was developed for the case
study. The eco-system also features four model-to-text trans-
formations to generate an analysis report and code for a
variety of programming and modeling languages. Further
transformations have been developed to support migration of
models as the DSL eco-system evolves. We discussed how
the generated analysis report and model validation rules help
ensuring correctness of models and how the quality of code
generated by the eco-system is improved using continuous
integration and continuous deployment practices.

Both intermediate and final evaluation results suggest that
the proposed DSL-based development methodology and ex-
ample DSL eco-system deliver on their design goals and
addresses the aforementioned challenges for complex systems.
A number of relevant pains related to DSL-based development
were explicitly identified by the users of the eco-system, but
they were already known and had been discussed along with
existing mitigation techniques within the company. Based on
this work, next steps involve the industry partner deciding
whether the gains of DSL-based development outweigh the
pains, and for what application domains the gains are maxi-
mized.

REFERENCES

[1] H. Geelen, A. van der Hoogt, W. Leibbrandt, and F. Beenker, “HTSM
Roadmap Embedded Systems,” 2018.

[2] J. Aranda, D. Damian, and A. Borici, “Transition to model-driven
engineering,” in International Conference on Model Driven Engineering
Languages and Systems. Springer, 2012, pp. 692-708.

[3] H. Burden, R. Heldal, and J. Whittle, “Comparing and contrasting
model-driven engineering at three large companies,” in Proceedings
of the S8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2014, p. 14.

[4] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-driven engineer-
ing practices in industry: Social, organizational and managerial factors
that lead to success or failure,” Science of Computer Programming,
vol. 89, pp. 144-161, 2014.

[5] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice
in model-driven engineering,” IEEE software, vol. 31, no. 3, pp. 79-85,
2014.

[6] N. Mellegard, A. Ferwerda, K. Lind, R. Heldal, and M. R. Chau-
dron, “Impact of introducing domain-specific modelling in software
maintenance: An industrial case study,” IEEE Transactions on Software
Engineering, vol. 42, no. 3, pp. 245-260, 2016.

[71 G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain: an industrial survey
on the state-of-practice,” Software & Systems Modeling, vol. 17, no. 1,
pp. 91-113, 2018.

[8] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal, “A
taxonomy of tool-related issues affecting the adoption of model-driven
engineering,” Software & Systems Modeling, vol. 16, no. 2, pp. 313-331,
2017.

[9] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Em-

pirical assessment of MDE in industry,” in Proceedings of the 33rd

international conference on software engineering. ACM, 2011, pp.

471-480.

D. Beuche, H. Papajewski, and W. Schroder-Preikschat, “Variability

management with feature models,” Science of Computer Programming,

vol. 53, no. 3, pp. 333-352, 2004.

M. Voelter and E. Visser, “Product line engineering using domain-

specific languages,” in Software Product Line Conference (SPLC), 15th

International. 1EEE, 2011, pp. 70-79.

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio, “Rele-
vance, benefits, and problems of software modelling and model driven
techniques — a survey in the Italian industry,” Journal of Systems and
Software, vol. 86, no. 8, pp. 2110-2126, 2013.

D. Wile, “Lessons learned from real DSL experiments,” Sci. Comput.
Program., vol. 51, no. 3, pp. 265-290, Jun. 2004.

P. Baker, S. Loh, and F. Weil, “Model-driven engineering in a large
industrial context - Motorola case study,” Model Driven Engineering
Languages and Systems, pp. 476491, 2005.

P. F. Smith, S. M. Prabhu, and J. Friedman, “Best practices for
establishing a model-based design culture,” SAE Technical Paper, Tech.
Rep., 2007.

B. Akesson, J. Hooman, R. Dekker, W. Ekkelkamp, and B. Stottelaar,
“Pain-mitigation techniques for model-based engineering using domain-
specific languages,” in Proc. Special Session on Model Management And
Analytics (MOMA3N), 2018, pp. 752-764.

M. Voelter, “Architecture as language,” IEEE Software, vol. 27, no. 2,
pp. 56-64, March 2010.

J. Verriet, L. Buit, R. Doornbos, B. Huijbrechts, K. Sevo, J. Sleuters, and
M. Verberkt, “Virtual prototyping of large-scale IoT control systems us-
ing domain-specific languages,” in Proceedings of the 7th International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2019), 2019.

I. Kurtev, M. Schuts, J. Hooman, and D.-J. Swagerman, “Integrating
interface modeling and analysis in an industrial setting.” in Proceedings
of the 5th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2017), 2017, pp. 345-352.

C. Rieger, M. Westerkamp, and H. Kuchen, “Challenges and opportuni-
ties of modularizing textual domain-specific languages,” in Proceedings
of the 6th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2018), 2018, pp. 387-395.

S. Erdweg, T. Van Der Storm, M. Voelter, L. Tratt, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh et al., “Evaluating
and comparing language workbenches: Existing results and benchmarks
for the future,” Computer Languages, Systems & Structures, vol. 44, pp.
24-47, 2015.

S. Erdweg, P. G. Giarrusso, and T. Rendel, “Language composition
untangled,” in Proceedings of the Twelfth Workshop on Language
Descriptions, Tools, and Applications. ACM, 2012, p. 7.

F. Hermans, M. Pinzger, and A. Van Deursen, “Domain-specific lan-
guages in practice: A user study on the success factors,” in International
Conference on Model Driven Engineering Languages and Systems.
Springer, 2009, pp. 423-437.

M. Voelter, Language and IDE Modularization and Composition with
MPS. Springer Berlin Heidelberg, 2013, pp. 383-430.

G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. C. Cheng,
P. Collet, B. Combemale, R. B. France, R. Heldal, J. Hill, J. Kienzle,
M. Schottle, F. Steimann, D. Stikkolorum, and J. Whittle, The Relevance
of Model-Driven Engineering Thirty Years from Now. Cham: Springer
International Publishing, 2014, pp. 183-200.

A. Forward and T. C. Lethbridge, “Problems and opportunities for
model-centric versus code-centric software development: a survey of
software professionals,” in Proceedings of the 2008 international work-
shop on Models in software engineering. ACM, May 2008, pp. 27-32.
D. Harel and B. Rumpe, “Meaningful modeling: what’s the semantics
of”” semantics”?” Computer, vol. 37, no. 10, pp. 64-72, 2004.

A. Kuhn, G. C. Murphy, and C. A. Thompson, “An exploratory study
of forces and frictions affecting large-scale model-driven development,”
in International Conference on Model Driven Engineering Languages
and Systems. Springer, 2012, pp. 352-367.

S. Keshishzadeh and A. J. Mooij, “Formalizing and testing the consis-
tency of DSL transformations,” Formal Aspects of Computing, vol. 28,
no. 2, pp. 181-206, 2016.

J. Mengerink, L. van der Sanden, B. Cappers, A. Serebrenik, R. Schif-
felers, and M. van den Brand, “Exploring DSL evolutionary patterns in
practice: a study of DSL evolution in a large-scale industrial DSL repos-
itory,” in 6th International Confenrence on Model-Driven Engineering
and Software Development (MODELSWARD 2018), 2018.

D. Di Ruscio, L. Iovino, and A. Pierantonio, “Coupled evolution in
model-driven engineering,” IEEE software, vol. 29, no. 6, pp. 78-84,
2012.

J. Mengerink, R. Schiffelers, A. Serebrenik, and M. van den Brand,
“DSL/model co-evolution in industrial EMF-based MDSE ecosystems,”
in ME@ MODELS, 2016, pp. 2-7.

(33]

[34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(501

[51]

[52]

R. R. Schiffelers, W. Alberts, and J. P. Voeten, “Model-based speci-
fication, analysis and synthesis of servo controllers for lithoscanners,”
in Proceedings of the 6th International Workshop on Multi-Paradigm
Modeling. ACM, 2012, pp. 55-60.

J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio, “Dealing with
the coupled evolution of metamodels and model-to-text transformations.”
in ME@ MoDELS, 2014, pp. 22-31.

J. Garcia, O. Diaz, and M. Azanza, “Model transformation co-evolution:
A semi-automatic approach,” in International Conference on Software
Language Engineering. Springer, 2012, pp. 144-163.

L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack, “An analysis
of approaches to model migration,” in Proc. Joint MoDSE-MCCM
Workshop, 2009, pp. 6-15.

J. Mengerink, A. Serebrenik, R. R. Schiffelers, and M. van den Brand,
“A complete operator library for DSL evolution specification,” in 2016
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2016, pp. 144-154.

M. Herrmannsdoerfer, S. Benz, and E. Juergens, “COPE - automating
coupled evolution of metamodels and models,” in European Conference
on Object-Oriented Programming. Springer, 2009, pp. 52-76.

J. Di Rocco, L. Iovino, and A. Pierantonio, “Bridging state-based
differencing and co-evolution,” in Proceedings of the 6th International
Workshop on Models and Evolution. ACM, 2012, pp. 15-20.

G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wim-
mer, “Model transformation by-example: a survey of the first wave,” in
Conceptual Modelling and Its Theoretical Foundations. Springer, 2012,
pp. 197-215.

A. Van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva,
“Symphony: View-driven software architecture reconstruction,” in Soft-
ware Architecture, 2004. WICSA 2004. Proceedings. Fourth Working
IEEE/IFIP Conference on. 1EEE, 2004, pp. 122-132.

Y. Vissers, J. G. M. Mengerink, R. R. H. Schiffelers, A. Serebrenik, and
M. A. Reniers, “Maintenance of specification models in industry using
Edapt,” in 2016 Forum on Specification and Design Languages (FDL),
Sept 2016, pp. 1-6.

J. G. M. Mengerink, A. Serebrenik, M. van den Brand, and R. R. H.
Schiffelers, “Udapt: Edapt extensions for industrial application,” in Pro-
ceedings of the Ist Industry Track on Software Language Engineering,
ser. ITSLE 2016. New York, NY, USA: ACM, 2016, pp. 21-22.

M. Voelter, “Best practices for DSLs and model-driven development,”
Journal of Object Technology, vol. 8, no. 6, pp. 79-102, 2009.

M. Broy, S. Kirstan, H. Krcmar, B. Schitz, and J. Zimmermann, “What
is the benefit of a model-based design of embedded software systems
in the car industry?” Emerging Technologies for the Evolution and
Maintenance of Software Models, pp. 343-369, 2012.

J. Hooman, “Industrial application of formal models generated from
domain specific languages,” in Theory and Practice of Formal Methods.
Springer, 2016, pp. 277-293.

B. D. Theelen, O. Florescu, M. Geilen, J. Huang, P. van der Putten, and
J. P. Voeten, “Software/hardware engineering with the parallel object-
oriented specification language,” in proceedings of the 5th IEEE/ACM
International Conference on Formal Methods and Models for Codesign.
IEEE Computer Society, 2007, pp. 139-148.

A. J. Mooij, J. Hooman, and R. Albers, “Early fault detection using
design models for collision prevention in medical equipment,” in Inter-
national Symposium on Foundations of Health Informatics Engineering
and Systems. Springer, 2013, pp. 170-187.

S. Keshishzadeh, A. J. Mooij, and M. R. Mousavi, “Early fault detection
in DSLs using SMT solving and automated debugging,” in International
Conference on Software Engineering and Formal Methods. Springer,
2013, pp. 182-196.

A. J. Mooij, J. Hooman, and R. Albers, “Gaining industrial confi-
dence for the introduction of domain-specific languages,” in Computer
Software and Applications Conference Workshops (COMPSACW), 2013
IEEE 37th Annual. 1EEE, 2013, pp. 662-667.

A. J. Mooij, G. Eggen, J. Hooman, and H. van Wezep, “Cost-effective
industrial software rejuvenation using domain-specific models,” in Inter-
national Conference on Theory and Practice of Model Transformations.
Springer, 2015, pp. 66-81.

International Organization for Standardization, ISO-IEC 25010: 2011
Systems and Software Engineering-Systems and Software Quality Re-
quirements and Evaluation (SQuaRE)-System and Software Quality
Models. 1SO, 2011.

[53]

[54]

[55]

[56]

(571

[58]

[59]
[60]

[61]

[62]

M. Gouldo, V. Amaral, and M. Mernik, “Quality in model-driven
engineering: a tertiary study,” Software Quality Journal, vol. 3, no. 24,
pp. 601-633, 2016.

P. Mohagheghi and V. Dehlen, “Where is the proof? — a review of
experiences from applying MDE in industry,” Lecture Notes in Computer
Science, vol. 5095, pp. 432-443, 2008.

M. Voelter, B. Kolb, K. Birken, F. Tomassetti, P. Alff, L. Wiart,
A. Wortmann, and A. Nordmann, “Using language workbenches and
domain-specific languages for safety-critical software development,”
Software & Systems Modeling, pp. 1-24, 2018.

A. J. Mooij, M. M. Joy, G. Eggen, P. Janson, and A. Radulescu,
“Industrial software rejuvenation using open-source parsers,” in Inter-
national Conference on Theory and Practice of Model Transformations.
Springer, 2016, pp. 157-172.

R. Doornbos, B. Huijbrechts, J. Sleuters, J. Verriet, K. Sevo, and
M. Verberkt, “A domain model-centric approach for the development
of large-scale office lighting systems,” in Complex Systems Design &
Management (CSD&M) conference. 1EEE, 2018.

M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys (CSUR), vol. 37,
no. 4, pp. 316-344, 2005.

L. Bettini, Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd, 2016.

S. Kelly and R. Pohjonen, “Worst practices for domain-specific model-
ing,” IEEE software, vol. 26, no. 4, 2009.

G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and
S. Volkel, “Design guidelines for domain specific languages,” arXiv
preprint arXiv:1409.2378, 2014.

RTCA, Inc., RTCA/DO-178C. U.S. Dept. of Transportation, Federal
Aviation Administration, 2012.

