
Generalized Extraction of Real-Time Parameters for
Homogeneous Synchronous Dataflow Graphs1

Hazem Ismail Ali
CISTER Research Centre/INESC-TEC
Polytechnic Institute of Porto, Portugal

Email: haali@isep.ipp.pt

Benny Akesson
Czech Technical University in Prague

Czech Republic
Email: kessoben@fel.cvut.cz

Luı́s Miguel Pinho
CISTER Research Centre/INESC-TEC
Polytechnic Institute of Porto, Portugal

Email: lmp@isep.ipp.pt

Abstract—Many embedded multi-core systems incorporate
both dataflow applications with timing constraints and tra-
ditional real-time applications. Applying real-time scheduling
techniques on such systems provides real-time guarantees
that all running applications will execute safely without vi-
olating their deadlines. However, to apply traditional real-
time scheduling techniques on such mixed systems, a unified
model to represent both types of applications running on the
system is required. Several earlier works have addressed this
problem and solutions have been proposed that address acyclic
graphs, implicit-deadline models or are able to extract timing
parameters considering specific scheduling algorithms.

In this paper, we present an algorithm for extracting real-
time parameters (offsets, deadlines and periods) that are
independent of the schedulability analysis, other applications
running in the system, and the specific platform. The pro-
posed algorithm: 1) enables applying traditional real-time
schedulers and analysis techniques on cyclic or acyclic Ho-
mogeneous Synchronous Dataflow (HSDF) applications with
periodic sources, 2) captures overlapping iterations, which is a
main characteristic of the execution of dataflow applications, 3)
provides a method to assign offsets and individual deadlines for
HSDF actors, and 4) is compatible with widely used deadline
assignment techniques, such as NORM and PURE. The paper
proves the correctness of the proposed algorithm through
formal proofs and examples.

Keywords-Multi- and Many-Core Systems; Real-Time Sys-
tems; Homogeneous Synchronous Dataflow (HSDF); Hard
Real-Time Streaming Dataflow Applications; Algorithms;
Cyclic Graphs;

I. INTRODUCTION

Streaming applications are an increasingly important
and widespread category of embedded system applications.
Many streaming applications have high processing require-
ments and timing constraints that must be satisfied, e.g.,
H.264 video decoders [1]. The high processing requirements
are satisfied through the adoption of parallelization models,

1This work was partially supported by Portuguese National Funds
through FCT (Portuguese Foundation for Science and Technology) and
by ERDF (European Regional Development Fund) through COMPETE
(Operational Programme ‘Thematic Factors of Competitiveness’), within
project FCOMP-01-0124-FEDER-037281 (CISTER) and by FCT and EU
ARTEMIS JU, within project ARTEMIS/0001/2013, JU grant nr. 621429
(EMC2), under PhD grant SFRH/BD/79872/2011, and Czech Ministry of
Education CZ.1.07/2.3.00/30.0034.

such as the dataflow model of computation [2], that enabled
streaming applications to use massive computational power
[3]. Dataflow applications traditionally use static scheduling
techniques, i.e. Time Division Multiple Access (TDMA) [2],
[4]–[8], however, they have recently been shown to work
well also with real-time scheduling techniques [9]–[12], run-
time budget schedulers [13], [14] and non-starvation-free
schedulers [15].

Future real-time embedded systems incorporate mixed ap-
plication models with timing constraints running on the same
multi-core platform. These application models are dataflow
applications with latency and throughput constraints and tra-
ditional real-time applications modeled as independent tasks.
These future mixed embedded systems, e.g. Automotive and
Unmanned Air Vehicles [16], require real-time guarantees
that all running applications will execute safely without
missing their deadlines. An interesting choice is applying
traditional real-time scheduling algorithms and associated
analysis techniques to achieve these real-time guarantees for
such mixed systems.

Mapping and scheduling mixed real-time applications
(dataflow and non-dataflow) requires a unified model to
represent both types of applications. A task τi in a tradi-
tional real-time application (non-dataflow) is represented by
four parameters. These parameters are execution time Ci,
start/release time si, period of execution Ti and Deadline
Di. These parameters enable us to apply efficient real-time
analysis techniques to verify the system. In contrast, an actor
in a dataflow application is represented by a different set
of parameters. These parameters are Worst-Case Execution
Time (WCET), Production/Consumption rate (P/C) of tokens
and the throughput requirement ζ of the application. We
need a method to extract the real-time properties of the actors
of dataflow applications in the form of τi = (si, Ci, Ti, Di)
to be able to apply traditional real-time scheduling tech-
niques.

In this paper, we propose an algorithm for extracting
timing parameters (offsets, deadlines and periods) of real-
time dataflow applications that assures real-time guarantees
for the system. The real-time dataflow applications are
represented as cyclic Homogeneous Synchronous Dataflow

(HSDF) graphs with periodic sources. Earlier works have
already considered applications represented as Directed
Acyclic Graphs (DAGs) [10], [17], pipelines [18], task mod-
els without deadlines [15] or limited to implicit-deadlines
[10], or application specific analysis [15], [19]. A main
advantage of our proposal is that the extraction of the
timing parameters is independent of the specific scheduler
being used, of other applications running in the system
and the details of the particular platform. The proposed
algorithm: 1) enables applying traditional real-time sched-
ulers and analysis techniques on cyclic or acyclic HSDF
applications with periodic sources, 2) captures overlapping
iterations, which is a main characteristic of the execution
of dataflow applications, by modelling actors as tasks with
arbitrary-deadlines, 3) provides a method to assign offsets
and individual deadlines for real-time dataflow actors, and
4) is compatible with widely used deadline assignment
techniques, such as NORM and PURE [18], [20], [21]. We
also show that our algorithm give the same results as earlier
work in the special case of pipeline applications.

The rest of this paper is organized as follows. Section II
provides an overview of related work. Afterwards, Sec-
tion III explains the main concepts necessary to understand
the system model and the proposed algorithm. The proposed
algorithm and its validation is detailed in Section IV and V,
respectively. Section VI briefly provides experimental re-
sults. Finally, we provide some conclusions in Section VII.

II. RELATED WORK

This section reviews techniques for extracting timing
parameters (unified model) of task graphs to enable applying
real-time schedulers and analysis techniques.

In [10]–[12], the authors provide an analytical frame-
work for computing timing parameters for actors of acyclic
Cyclo-Static Dataflow (CSDF) applications with single-input
streaming. The actors are considered as implicit-deadline
and constrained-deadline periodic tasks in [10] and [11],
[12], respectively. In contrast, the proposed approach is
more general and can deal with any HSDF graph (CSDF
can be converted to an HSDF), single/multiple input, and
actors are modelled as arbitrary-deadline tasks. Modelling
the application actors as arbitrary-deadline tasks allows
capturing overlapping iterations, a main characteristic of
dataflow applications that increases the throughput.

Another solution is presented in [18]. The authors pre-
sented a deadline assignment approach called ORDER for
dependent tasks composing real-time pipeline applications
executing on a multi-core system. The proposed approach
was considering the problem of scheduling a pipeline such
that the end-to-end deadline is met and the amount of
required resource capacity was minimal. Contrarily, in this
paper we consider the general problem of deadline assign-
ment for dependent tasks composing real-time application
graphs, such as DAGs and Directed Cyclic Graphs (DCGs),

which are not supported by [18], [20], [21].
In [17], the authors also address the problem of scheduling

periodic DAG tasks, each consisting of subtasks. They are
assigned individual deadlines and release times such that
all subtasks have equal densities. They are scheduled using
global Earliest Deadline First (EDF) and partitioned deadline
monotonic scheduling. Another approach presented in [19]
calculates offsets and deadlines for subtasks in a DAG task
based on computing the interference between each subtask
and the higher-priority subtasks of all DAG tasks running
on the system. In contrast, we consider a more general
problem where applications are represented as DCGs and
the extraction of the timing parameters is independent of the
scheduling algorithm being used. In addition, two different
deadline assignment strategies rather than just equal task
densities [17] is supported and the calculation of offsets and
deadlines is not dependent on other applications running on
the system as in [19].

Another technique is presented in [22]. The authors pro-
pose an exact characterization of EDF-like schedulers that
can be used to correctly schedule dependent tasks, and show
how preemptive algorithms, even those that deal with shared
resources, can be easily extended to deal with dependencies.
This was done by modifying deadlines Di in a consistent
manner so that a run-time algorithm, such as EDF, could be
used without violating the dependencies. Also, [23] propose
a similar approach by modifying the timing parameters
of the tasks. However, this parameter modification is not
only for the deadline Di of the tasks, but also include
modification of the task start time si. However, both works
consider task parameters as already defined, which is not
the case in our problem. Moreover, they are only concerned
with uniprocessor platforms.

Also in [8], the authors present a method to calculate indi-
vidual deadlines of HSDF actors. The method is based on an
integer linear programming (ILP) optimization problem that
finds the amount of slack for each actor that makes it able to
extend its execution without violating the HSDF throughput
and timing constraints. However, their proposed method is
restricted to strongly connected HSDF graphs and the actor’s
offsets are calculated based on the static-order schedule of
the application. In contrast, our proposed algorithm is neither
restricted to strongly connected graphs nor does the offset
calculation require static-order scheduling.

In [15], the authors propose a temporal analysis for
dataflow application modeled as cyclic HSDF graphs under
a non-starvation-free scheduler i.e. static-priority preemptive
scheduler (SPP). To apply the analysis they extract timing
properties like jitter (difference between best-case and worst-
case offsets), periods, and execution times, but not deadlines,
since SPP schedulers depend on periods not deadlines. The
calculated jitter is based on the interference from the set of
high-priority tasks with the task being analyzed running on
the same platform. This means that the timing parameters

Figure 1: HSDF graph after adding source s and sink t.

calculated are dependent on the set of applications running
on the platform. Contrarily, our approach is independent of
the scheduler being used and other applications running on
the same platform, since our proposed algorithm transforms
the HSDF actors into a set of independent tasks that enables
any bin-packing heuristic to be applied for mapping them on
the platform.

III. BACKGROUND / PRELIMINARIES

In this section, we present background material that is
essential for understanding the computational model, the
system model and the proposed algorithm.

A. Homogeneous SDF (HSDF)

A synchronous dataflow application graph is a data-
driven network of actors (nodes), where the same behavior
repeats in each actor every time it is fired. An actor fires
(executes) once all its input ports have the required tokens
(data) for consumption. Therefore, the firing pattern of an
actor depends on the arrival pattern of its input tokens.
If the arrival pattern of the input tokens is periodic the
firing pattern of the actor is also periodic, if it is sporadic
the actor firing pattern is sporadic, and so on. Each actor
has production and consumption rates associated with its
ports that determine the number of input and output tokens
produced and consumed in the firing process.

Homogeneous Synchronous Dataflow (HSDF) [2] is a
special case of synchronous dataflow graphs in which all
production and consumption rates associated with actor ports
are equal to one. Therefore, when each actor is fired once,
the distribution of tokens on all channels return to their initial
state. This is referred to as a complete cycle or a graph
iteration. Figure 1 shows an example of an HSDF graph.

Any HSDF application can be formally represented by a
Directed Cyclic Graph (DCG) G = 〈V,E, d〉, where V is the
set of nodes, E the edges connecting them and d the set of
delays (initial tokens) on the edges of the graph. Each node
in this graph is an actor and each edge is a communication
channel. An HSDF application has a throughput requirement
and a single or multiple latency constraints that must be
satisfied for the correct execution of the application. The
throughput requirement ζi is a performance measure that
determines the minimum output data rate of the application
(iterations per time unit). In contrast, the latency constraints

Dxy are defined as actor-to-actor deadlines (maximum tim-
ing constraints) between firings of any two actors vx and vy
in the same iteration that have a single or multiple route(s)
between them, referred to as a time-constrained path P .
Fundamentally, the Dxy is required to be greater than or
equal to the sum of execution times Ci of all actors on the
time-constrained path for the application to be schedulable.
Formally, a time-constrained path P is defined as follows:

P = {〈vx, . . . , vy〉 : v ⊆ V } (1)

where, its latency constraint

Dxy ≥
y∑

i=x,
∀vi∈P

Ci (2)

If P is cyclic, it terminates in the last node before reach-
ing an already visited node. For example, in Figure 1
(a0, b0, c0, d0) is not cyclic, because it starts at actor a0
and ends at actor d0, while (b0, b1, b2) is cyclic because
it terminates at actor b2 before repeating itself again. Each
time-constrained path P has a latency constraint Dxy , where
x and y represent the indices of the start and end actors,
respectively. For example, assume that the application in
Figure 1 has two latency constraints Da0d0 and Da1d0 . All
time-constrained paths must start with either actors a0 or a1
and end up with actor d0, any other combinations are regular
paths and are not further considered in this paper.

Note that this work considers HSDF graphs with periodic
sources. Also, we consider initial tokens d on back edges
only. Other dataflow graphs, e.g. SDF [2] and CSDF [24] are
examples of more expressive models that can be converted to
an equivalent HSDF graph by using a conversion algorithm,
such as the one presented in [25]. This also enables these
models to be used with our approach.

B. Classical real-time model

This work considers extracting the timing parameters of
real-time applications modelled as HSDF graphs, which
implies changing its execution behaviour from being data-
driven to being time-triggered. This means that actors are
activated at their release time parameter si eliminating jitter
effect in their execution. Formally, we consider a system
Ψ = 〈Π, A〉 based on a homogeneous symmetrical multi-
core platform, represented by the set Π = {π1, π2, . . . , πn},
where n is the number of cores. The platform runs a set of m
periodic applications A = {A1, A2, . . . , Am}. In this model,
we assume that all the applications A have periodic input
sources. Therefore, each actor vj in any application Ai can
be considered a periodic task. All actors can be scheduled
on Π using traditional real-time schedulers.

A periodic task τi ∈ V is represented by the 4-tuple
τi = (si, Ci, Ti, Di), where si is a fixed offset that specifies
the start instant of an actor, Ci is the worst-case execution
time, Ti is the relative period and Di is the relative deadline

of the task. The absolute deadline Di of task τi is defined as
Di = si+Di. The utilization of task τi is denoted by Ui and
is defined as Ui = Ci/Ti, where Ui ∈ (0, 1]. Additionally,
the density of task τi is denoted by ρi and is defined as
ρi = Ci/Di, where ρi ∈ (0, 1]. All tasks are modelled as
arbitrary-deadline tasks. Other more recent task models, i.e.
graph-based models [26], may also be suitable for modelling
HSDF graphs, but this will be subject to future research.

C. Deadline assignment strategies

The problem of assigning individual deadlines to depen-
dent tasks of a pipeline application Ap, represented by the
graph Gp = 〈Vp, Ep〉, distributed on multiple processors
using its end-to-end deadline has been addressed in previous
research [18], [20], [21]. The pipeline application consists
of a set of tasks (actors) Vp that execute in sequence. The
application has a latency constraint Dxy that represents the
end-to-end deadline of Ap, where vx and vy is the start
and end task of Ap, respectively. Therefore, the pipeline
application graph Gp contains a single time-constrained path
P with a latency constraint Dxy . In this paper, we support
two well-known deadline assignment methods for pipelines
that will be used by our proposed algorithm. These methods
are:

1) The NORM method [20], [21]: is an assignment
strategy to divide the end-to-end deadline Dxy of a pipeline
proportionally to the computation time of its tasks. There-
fore, the individual deadline of a task in a pipeline Di is
computed as follows:

Di =
Ci∑

∀vj∈P Cj
·Dxy (3)

From Equation (3), the NORM method assigns individual
deadlines Di to tasks with the same end-to-end deadline
Dxy , such that all tasks have equal densities ρi.

ρi =
Ci
Di

=

∑
∀vj∈P Cj

Dxy
(4)

2) The PURE method [20], [21]: a different deadline
assignment strategy based on the distribution of the laxity ε
equally among all tasks of the pipeline, such that each task
have slack δ. The laxity ε on the time-constrained path P
is defined as follows:

ε = Dxy −
∑
∀vj∈P

Cj (5)

Then, the slack δ of the tasks is equal to:

δ =
ε

|Vp|
(6)

where |Vp| is the number of tasks in the pipeline. Therefore,
the individual deadline of a task in a pipeline Di is computed
as follows:

Di = Ci + δ (7)

Therefore,

Di = Ci +
Dxy −

∑
∀vj∈P Cj

|Vp|
(8)

From Equation (7), the PURE method assigns individual
deadlines Di, such that tasks have relative densities ρi. This
means, a task with high Ci have high ρi relative to a task
with small Ci.

ρi =
Ci
Di

=
Ci

Ci + δ
(9)

IV. TIMING PARAMETERS EXTRACTION ALGORITHM

The algorithm presented in this section is intended for
extracting the timing parameters (si, Ci, Ti, Di) of HSDF
applications with periodic sources. The algorithm, presented
in Section IV-C, is divided into two phases. The first phase,
finds all time-constrained paths in the graph, while second
phase extracts the timing parameters of individual actors.
However, before going into details, we introduce a key
concept that our algorithm is based on called path sensitivity
(Section IV-A). Then, we introduce two techniques for de-
riving latency constraints (Section IV-B) for cyclic paths and
an end-to-end latency constraint in case it is unspecified for
an application. These techniques ensure that the throughput
requirement ζi is satisfied after conversion to the unified
model.

A. Path sensitivity

In this section, we define a key concept in our algorithm
called path sensitivity, that enables supporting general HSDF
graphs. Dealing with actors in general graphs implies that an
actor can be present on multiple time-constrained paths of
the graph. The path sensitivity parameter helps in addressing
this problem by determining the order in which to consider
the time-constrained paths when extracting the timing pa-
rameters.

Path sensitivity γ: is a measure of the criticality of a
time-constrained path with respect to a certain parameter,
e.g. utilization or density. In our case, the path sensitivity γ
represents the time-constrained path density. The density is
the measure of how tight the latency constraint Dxy is for
a time-constrained path P compared to its execution time.
γ is in the range (0, 1] (because of the relation in Equa-
tion (2)), where higher values indicate higher sensitivity. It
is calculated as follows:

γ =
∑
∀vj∈P

Cj
Dxy

(10)

In case of NORM, substituting Equation (10) in Equation (3)
gives:

Di =
Ci
γ

(11)

by solving for γ and substituting Equation (4) in Equa-
tion (11)

ρi = γ (12)

This means that all tasks τi on the same time-constrained
path P have densities ρi equal to the path sensitivity γ.

In case of PURE, substituting Equation (10) in Equa-
tion (8) gives:

Di = Ci + δ = Ci +
(1− γ) ·Dxy

|P |
(13)

by dividing Equation (13) by Di, then substitute by Equa-
tion (4) and solving for ρi

ρi = 1− δ

Di
= 1− (1− γ) ·Dxy

|P | ·Di
(14)

From Equations (11), (12), (13) and (14), we can draw
two conclusions. First, there is an inverse relation between
the path sensitivity γ and the task relative deadline Di for
both NORM and PURE. This conclusion is obvious from
Equation (11). In case of Equation (13), since 0 < γ ≤ 1,
an increase in the value of γ decreases the value of Di and
vice versa, confirming the inverse relation. Second, when the
sensitivity γ of a time-constrained path increases, the value
of its task densities ρi increases too. This is confirmed from
Equations (12) and (14) and the first conclusion.

B. Deriving latency constraints

In this section, we present two techniques for deriving
latency constraints for HSDF graphs. First, we derive latency
constraints for cyclic paths. We then derive end-to-end
latency constraints in case it is not specified in by the
application.

1) Deriving cycle latency constraints: HSDF applications
can have several cycles in its graph. Each cycle requires a
latency constraint that satisfies the throughput requirement
ζi of the application. A quick choice for a cycle latency
constraint Dcycle

xy value is the period of the application Ai.
However, such a choice of latency constraint ignores the
number of tokens d involved in the cycle and limits possible
pipeline parallelism in the application. Therefore, the latency
constraint of a cyclic time-constrained path Dcycle

xy must take
into account the number of tokens involved in this cycle
dcycle such that the application throughput ζi is not violated.
The latency constraint for a cyclic time-constrained path is
defined as follows [8]:

Dcycle
xy = Ccycle + (

1

ζi
− Ccycle
dcycle

) · dcycle =
dcycle
ζi

(15)

where Ccycle is the summation of execution times of the
actors involved in the cycle. The latency constraint of a cycle
tells us how much the execution of the actors on the cycle as
a whole can be extended while still guaranteeing the desired
application throughput ζi.

2) Deriving end-to-end latency constraint: Our proposed
algorithm requires an end-to-end latency constraint for each
HSDF application to satisfy the precedence constraints and
the throughput requirement. In case of an HSDF application

without a specified end-to-end latency constraint Dxy , we
derive it as follows:

Dxy = max {Ti, β ·
∑
∀vi∈CP

Ci} (16)

As we can notice Dxy is set to the maximum of two
values. The first, the application period Ti (extracted from
the inverse of its throughput requirement 1/ζi) which is
used in case of low-throughput applications where Ti ≥
β ·

∑
∀v∈CP Ci. The second, is the sum of the Ci of actors

in the critical path (CP) of the application multiplied by a
constant β, where the critical path (CP) of an application is
defined as its longest execution path from input to output. In
contrast, the second value is used in case of high-throughput
applications, where Ti < β ·

∑
∀v∈CP Ci. The β constant

has a value that ranges [1,∞). Selecting β = 1 results in
unnecessarily tight actor deadline values and increases the
total density of the application that makes it more critical and
hard to schedule with other applications, since the actors in
the application CP have ρi = 1. On the other hand, selecting
higher values of β relaxes the criticality of the application
and eases its schedulability with other applications. A good
value for β that we use in this paper is when the sensitivity
of the CP of the application γCP is equal to the maximum
sensitivity of all the cycles γcycle in the application,

max
∀cycle∈G

{γcycle} = γCP =
∑
∀vj∈CP

Cj
Dxy

=

∑
∀vj∈CP Cj

β ·
∑
∀vj∈CP Cj

(17)

At this value of β, the execution time of all cycles in
the application graph can be extended to the maximum
possible limit (latency constraint computed in Equation (15))
while still satisfying its throughput requirement ζ. Therefore,
solving for β in Equation (17) defines it as:

β =
1

max∀cycle∈G{γcycle}
(18)

C. Proposed algorithm

In this section, we present our proposed algorithm for
extracting timing parameters of HSDF applications with
periodic sources. The algorithm consists of two phases: 1)
finding all time-constrained paths and 2) extracting timing
parameters. The following sections explain these two phases
in detail.

1) First phase: Finding all time-constrained paths: In
this phase, we calculate all time-constrained paths for a
given HSDF in non-increasing order of sensitivities. A time-
constrained path in an HSDF can be between any two actors
that have a latency constraint.

The first phase of the algorithm is divided into two
stages: 1) Creation of source and sink actors: First, we
search the graph G to find all input (output) actors. Actors
associated with the input (output) data stream are specified
as the starting-actors (ending-actors), respectively. A dummy
source s (sink t) actor that has a zero execution time is

Figure 2: Enumeration of time-constrained paths.

inserted at the beginning (end) of the graph G, as shown
in Figure 1. These two actors (s, t) are connected with
dummy links to starting and ending actors, respectively.
Adding these dummy actors with their edges converts the
graph into a canonical form, since all the paths that traverse
the graph from the input to the output of the graph have
a uniform form that starts with s and ends with t. This is
helpful when traversing multi-input/multi-output graphs, as
shown in Figure 1.
2) Path enumeration: This is an iterative process where all

time-constrained paths between source s and sink t actors
in the HSDF are generated. In case of having latency con-
straints between two specific actors, the path enumeration
phase generates all time-constrained paths between these two
actors in addition to the ones generated from s to t. The set
of all time-constrained paths between actors with latency
constraints is called P , which is arranged in non-increasing
order of path sensitivities γ. It is defined as follows:

P = {〈Pi, γi〉 : V, γi−1 ≥ γi, γ ∈ (0, 1]} (19)

The process starts by initializing P with a few partial paths.
In this case, these initial partial paths are all single hop paths
generated by combining the start actors with the elements in
their list of successor actors. The list of successor actors is a
set of child actors that are one hop away from their parent.
For example, in Figure 1, the list of successor actors for
source actor s is Succ(vs) = (a0, a1). The starting actors
can be the source actor s or any actor that starts a set of
time-constrained paths vx with a specific latency constraint
Dxy . The list of successor actors Succ(vx) is defined as
follows:

Succ(vx) = (vx1 , vx2 , vx3 , . . . , vxl
) (20)

where l is the number of actors in Succ(vx). Then, the
process picks up a partial path Pi = 〈vx, . . . , vj〉 from P ,
where vj is not equal to the end actor vy , and extends
it to a full path (Equation (1)) as shown in Figure 2.
The extension process starts by getting the Succ(vj) =
(vj1 , vj2 , vj3 , . . . , vjl). Then, it extends the partial path Pi to
its l possible extended paths, Pi1 = 〈vx, . . . , vj , vj1〉, Pi2 =
〈vx, . . . , vj , vj2〉, . . . , Pil = 〈vx, . . . , vj , vjl〉. It then re-
moves Pi and inserts its l possible continuations in the P set
in non-increasing order of sensitivity. The path enumeration

Algorithm 1: Extracting timing parameters of HSDF
Pi: A full time-constrained path in P set.
Di

xy : deadline constraint between actor vx and actor vy on a full
time-constrained path Pi.

P : totally ordered set of all time-constrained paths of an application ordered
according to γ, P = {Pi : γi−1 ≥ γi}.

P̂ : totally ordered set of time-constrained paths from s to t of an application
ordered according to Dxy , P̂ ⊆ P , P̂ = {Pi : vx = s, vy =
t, [Di−1

xy > Di
xy or {D

i−1
xy = Di

xy, γi−1 ≥ γi}]}.
PH

i : set of higher sensitivity time-constrained paths than Pi,
PH

i = {〈P1, . . . , Pi−1〉 : γi−1 ≥ γi}
Xi: set of shared actors between Pi with higher sensitivity time-constrained

paths set PH
i , Xi = {vk : vk ∈ Pi, vk ∈ Pj ∈ PH

i }
pi: partial path in time-constrained path Pi.

begin
// Actor deadline assignment
foreach Pi in P do

if (∀vj ∈ Pi, Dj = ∅) then
foreach vj in Pi do

Dj = dead assign(Di
xy); // NORM/PURE

else // Xi ⊆ Pi

foreach vj in Pi −Xi do
Dj = dead assign(Di

xy −
∑

∀vk∈Xi

Dk);

// NORM/PURE

// Actor offset assignment
foreach Pi in P̂ do

if (∀vj ∈ Pi, sj = ∅) then
s0 = 0;
foreach vj in Pi, j = 1..sizeof(Pi) do

sj = sj−1 +Dj−1;
Tj = 1/ζAi

else
Determine all pi ∈ Pi with sj = ∅.
Determine reference actor vr .
foreach pi in Pi do

if (pi is Head or Middle) then
foreach vj in pi do

vr = vj+1;
sj = sr −Dj ;
Tj = 1/ζA;

else
foreach vj in pi do

vr = vj−1;
sj = sr +Dr;
Tj = 1/ζA;

// Validation check
foreach Pi in P do

if ((
∑
∀vj∈Pi

Dj ≤ Di
xy) & (sy +Dy − sx ≤ Di

xy)) then

Algorithm Succeeds;
else

Algorithm Fails;

process continues until all partial paths in P are extended
to full time-constrained paths.

2) Second phase: Extracting timing parameters: The
second phase, shown in Algorithm 1, repeats for each appli-
cation in the application set A. It picks a time-constrained
path Pi in order of sensitivity from P . The selected path
Pi is checked whether or not it has actors vj with assigned
deadlines Dj . If Pi has no actors with assigned deadlines
(∀vj ∈ Pi), the algorithm assigns individual deadlines
Dj for the actors vj using dead assign() function that

(a) Class Head partial path

(b) Class Tail partial path

(c) Class Middle partial path

Figure 3: Partial path classes for offsets setting

implements either NORM or PURE (Equations (3) or (8),
respectively), using the corresponding latency constraint
Di
xy .
On the other hand, if Pi has a set of actors with as-

signed deadlines Xi (shared actors vk with any previously
processed time-constrained paths), the algorithm assigns
individual deadlines Dj to the unassigned actors vj using
either NORM or PURE based on the corresponding latency
constraint, which is the difference between Di

xy and the
sum of individual deadlines Dk already assigned to actors,
(Di

xy −
∑
∀vk∈Xi

Dk). In all cases, the period of the actor
Tj is derived from the throughput constraint ζA of the
application. It is defined as follows:

Tj = 1/ζA (21)

This follows naturally for an HSDF graph, since each actor
executes only once per iteration by definition.

Once the application Ai actors relative deadline are
determined, the offset of the actors sj are calculated in a
similar fashion. Algorithm 1 generates a new set P̂ ⊆ P
containing time-constrained paths that include s and t actors
only. P̂ is arranged in a non-increasing order of Dxy .
If two paths have the same Dxy , they are ordered in a
non-increasing order of γ. The algorithm picks a time-
constrained path Pi from P̂ . If the path has no actors with
assigned offsets, it assigns offsets sj for the actors vj on the
path in the direction from s to t as follows:

sj = sj−1 +Dj−1 (22)

If time-constrained path Pi has a set of actors with assigned
offsets (actors assigned in previously processed paths), the
algorithm traverses Pi in a search for partial path segments
pi of actors with unassigned offsets. Once they are listed,
the algorithm determines the reference actors vr and classify
them into one of three types: Head, Middle or Tail, as shown
in Figure 3. This information is used to calculate the offsets
sj , as shown in Algorithm 1. If the partial path pi is of
type Head or Middle, the reference actor vr is always on
the right hand side of pi, as shown in Figures 3a and 3c,
and the offsets of pi actors are assigned using the following

(a) HSDF application.

a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 10

(b) HSDF timing diagram.

Figure 4: HSDF example.

equation:
sj = sr −Dj (23)

Offset assignment of Head and Middle in this way instead
of traversing the path from s to t assigning offsets using
Equation (22), enables larger offset values to be assigned to
actors delaying their execution allow satisfying wider range
of latency constraints, as we show in Section IV-D.

If the partial path pi is type Tail, the reference actor vr is
always on the left hand side of pi, as shown in Figure 3b,
and the offsets of pi actors are assigned using the following
equation:

sj = sr +Dr (24)

After assigning deadline and offsets for the application
actors, the algorithm checks the application for the validity
of the assigned values and that they do not violate the latency
constraints specified.

Finally, we can conclude that Algorithm 1 preserves
relative deadline values Dj computed from high-sensitivity
time-constrained paths. This is clear from determining the
actors with unassigned deadlines in Pi, and their correspond-
ing latency constraint (Di

xy −
∑
∀vk∈Xi

Dk), leaving the
preassigned set of actors Xi untouched. In case of using
deadline-based schedulers, this property makes actors in
high-sensitivity time-constrained paths have a higher prior-
ity compared to actors in low-sensitivity time-constrained
paths, since they have tighter deadlines (as concluded from
Equations (11) and (13)).

D. Example

In this section, we present an example, illustrated in
Figure 4, to show how to apply our proposed algorithm
step-by-step. The following paragraphs explains this in
detail.

Figure 4a shows an HSDF graph application comprising
six actors (a, b, c, d, e, f) with execution times of all actors
equal to 1, throughput requirement ζ = 0.5, and two
end-to-end latency constraints, one is specified Ded = 3,
while the other Dad is not. The example HSDF graph is
not trivial, as it features multiple input actors a and e, a
cycle, and multiple initial tokens. Applying the first phase
of our proposed algorithm results in three time-constrained
paths. The first time-constrained path is P1 = 〈e, f, d〉

with an end-to-end latency constraint D1
ed = 3 and

sensitivity γ1 = 1. The second time-constrained path is
P2 = 〈b, c〉 which represents a cycle in the graph with
a latency constraint D2

bc = 4 calculated by substituting
with Ccycle = Cb + Cc = 2, ζ = 0.5 and number of
tokens in the cycle d = 2 in Equation (15). The sensitivity
of P2 is hence γ2 = 0.5 (Equation (10)). The third
time-constrained path is P3 = 〈a, b, c, d〉 with a latency
constraint D3

ad equal to the second end-to-end deadline,
which is not specified by the application. Therefore,
we calculate D3

ad using Equation (16) (β = 1/γ2 = 2,
Equation (18)) that results in D3

ad = 8 and its sensitivity
is γ3 = 0.5. Therefore, the set of all possible time-
constrained paths is P = {〈P1, γ1〉, 〈P2, γ2〉 〈P3, γ3〉} =
{〈(e, f, d), 1〉, 〈(b, c), 0.5〉, 〈(a, b, c, d), 0.5〉}.

The second phase of the proposed algorithm picks up P1

and assigns individual deadlines to actors (e, f, d) equal to
(De = 1, Df = 1, Dd = 1,), respectively, for both NORM
and PURE. Picking up the next time-constrained path P2

for deadline assignment results in (Db = 2, Dc = 2).
Finally, picking up the last time-constrained path P3 for
deadline assignment results in (Da = 3).

For offset assignment, the algorithm creates the
set of time-constrained paths that goes from source
s to sink t, ordered according to the constraint
[Di−1

xy > Di
xy or {Di−1

xy = Di
xy, γi−1 ≥ γi}],

P̂ = {〈P3, D
3
ad〉, 〈P1, D

1
ed〉}. First, it picks the time-

constrained path with the longest delay P3 for offset
assignment. Since none of its actors have assigned offsets,
the actor offsets are (sa = 0, sb = 3, sc = 5, sd = 7). Then,
it picks P1 where one of its actors d has already assigned
offset sd equal to 7. It discovers a single partial path of
type Head in P1 which is p1 = (e, f). The reference actor
for p1 is actor d. Therefore, the offsets of actors e and
f are (se = 5, sf = 6), respectively. As noted, actor e
is triggered at time (se = 5) even though its input data
is available from time instance zero to satisfy the latency
constraint (Ded = 3) of the application. For the periods,
(Ta = Tb = Tc = Td = Te = Tf = 1/ζ = 2).
Therefore, the extracted timing parameters
(si, Ci, Ti, Di) for the graph actors {a, b, c, d, e, f} are
{(0, 1, 2, 3), (3, 1, 2, 2), (5, 1, 2, 2), (7, 1, 2, 1), (5, 1, 2, 1),
(6, 1, 2, 1)}, respectively. These extracted parameters
preserve the precedence, throughput and latency constraints
of the HSDF application, indicated in the timing diagram
in Figure 4b. The timing diagram also shows that multiple
iterations of the graph execute in parallel assuming at least
three processors are available.

V. VALIDATION OF THE PROPOSED APPROACH

This section validates the proposed algorithm by proving
that it assigns individual deadlines for actors of any appli-
cation graph such that it respects all its latency constraints.
First, we start by the following property driven from the

inverse relationship between γ and Dv (concluded from
Equations (11) and (13)):

Property 1. If there are two time-constrained paths Pi and
Pj , where γi > γj and there is a shared actor v between
them. The deadline value Di

v computed for actor v on Pi is
less than the value Dj

v computed for the same actor on Pj ,
Di
v < Dj

v .

Another important property of the deadline assignment
strategies NORM and PURE, derived from Equations (3)
and (8) is:

Property 2. A time-constrained path P with a latency
constraint Dxy , whose actors vj are assigned individual
deadlines Dj , using NORM or PURE, has the following
property:

Dxy =
∑
∀vj∈P

Dj (25)

From Property 2, it follows that applying Algorithm 1 on
any time-constrained path P , whose actors has no assigned
deadlines, results in a time-constrained path that satisfies its
latency constraints. This is for the simple case where the
actors in P has no assigned deadlines. However, when P
shares some actors with higher sensitivity time-constrained
paths the situation gets more complex. Lemma 1 proves the
correctness of this case.

Lemma 1. If a time-constrained path Pi with a latency
constraint Di

xy , has a set of actors Xi shared with higher
sensitivity time-constrained paths PHi = 〈P1, . . . , Pi−1〉 in
an application graph G, Algorithm 1 assures that the sum of
individual deadlines Dj of actors in Pi is equal to Di

xy =∑
∀vj∈Pi

Dj .

Proof: Let us assume a time-constrained path P ′i = Pi,
except that all its actors v′j have D′j = ∅ (empty element).
Assigning individual deadlines D′j to the actors of time-
constrained path P ′i using either NORM or PURE (Equa-
tions (3) and (8)) and its latency constraint Di

xy under the
system model constraint specified in Equation (2) then

∀v′j ∈ P ′i , D′j ≥ Cj , Di
xy =

∑
∀v′j∈P ′i

D′j (26)

The set of shared actors Xi in Pi has a sum of individual
deadlines equal to d.

d =
∑
∀vj∈Xi

Dj , ∀vj ∈ Xi, Dj ≥ Cj (27)

Here, d represents the value calculated from the higher
sensitivity time-constrained paths PHi . Let us assume d′

represents the value calculated for the same set of actors
Xi on time-constrained path P ′i . Then, from Property 1:

d < d′ (28)

And,
Di
xy − d > Di

xy − d′ (29)

Again, let us assume that the sum of computation time of
actors in Xi is c.

c =
∑
∀vj∈Xi

Cj (30)

Then, from Equation (27)

d ≥ c (31)

And, since the summation of individual deadlines of actors
in P ′i such that v′j ∈ P ′i −Xi is∑

v′j∈P ′i−Xi

D′j = Di
xy − d′ (32)

Therefore, from Equations (26) and (29)

Di
xy − d > Di

xy − d′ ≥
∑
∀vj

Cj − c (33)

Also, it can be written as

Di
xy −

∑
∀vj∈Xi

Dj > Di
xy −

∑
∀v′j∈Xi

D′j ≥
∑
∀vj

Cj − c (34)

According to Equations (31) and (33), Di
xy−d and d follows

the system model constraint specified in Equation (2). Then,
applying NORM or PURE (Equations (3) and (8)) using
the corresponding latency constraint Di

xy − d, the sum of
individual deadlines of all the actors in Pi is∑
∀vj∈Pi−Xi

Dj +
∑
∀vj∈Xi

Dj = Di
xy − d+ d = Di

xy (35)

Therefore, Algorithm 1 assures that Di
xy =

∑
∀vj∈Pi

Dj

even when actors are shared across time-constrained paths.

After proving that in case of a time-constrained path P
sharing some actors with higher sensitivity time-constrained
paths, the proposed algorithm assures that P satisfies its
latency constraints. Here comes the main proof through
Theorem 1 that states the validity of the proposed approach
and assures that any type of application graph (DAG or
DCG) satisfies its latency constraints.

Theorem 1. Consider an HSDF DCG G = 〈V,E, d〉
with multiple latency constraints Di

xy . Assuming that G
is represented by a set of all possible time-constrained
paths P ordered by non-increasing order of sensitivity γ,
Algorithm 1 assures that the actors of G are assigned
individual deadlines that makes any P ∈ P not exceed its
specified latency constraint.

Proof: For any time-constrained path Pi there are two
cases:
Case 1: Pi has no actors with assigned deadlines,

∀vj ∈ Pi, Dj = ∅ (36)

Therefore, Algorithm 1 applies either NORM or PURE
stated by Equations (11) or (13) under the system model
constraint Dxy ≥

∑
∀vj∈P Cj . Therefore, from Property 2:∑
∀vj∈Pi

Dj = Di
xy (37)

and, Pi does not exceed its specified latency constraint Di
xy .

Case 2: Pi has a set of shared actors Xi with a set of high-
sensitivity time-constrained paths PHi ,

∀vk ∈ Xi, Dk 6= ∅ (38)

Therefore, Algorithm 1 determines the set of unassigned
actors and their corresponding latency constraint (Di

xy −∑
∀vk∈Xi

Dvk). Since Pi has a set of shared actors Xi with a
set of high-sensitivity time-constrained paths PHi , Lemma 1
assures that the sum of individual deadlines Dj of actors in
Pi is equal to Di

xy =
∑
∀vj∈Pi

Dj .
Therefore, Algorithm 1 assures that the assigned deadlines

of all actors in G are such that all latency constraints are
satisfied.

Finally, we would like to show that in the special case of
pipeline application graphs, the proposed algorithm behaves
identically to [18], [20], [21] and gives the same results.
This is proved in Corollary 1.

Corollary 1. In case of pipeline application graph G =
〈V,E, d〉, where G is a multiple actor graph with each actor
has a single input/output connected in sequence, applying
the proposed algorithm will lead to exactly the same results
as previous deadline assignment work for pipelines.

Proof: Let us assume that we have a pipeline ap-
plication graph G = 〈V,E, d〉, where G is a multiple
actor graph, where each actor has a single input/output
connected in sequence. Applying the first phase of the
algorithm (finding all possible time-constrained paths) on
G results in a list P with a single time-constrained path
P = 〈s, v1, v2, . . . , vz, t〉, where z is number of actors in G.
Since it is a single time-constrained path graph and its actors
have no assigned deadlines, it will be covered by the first
case (1) in Theorem 1. Therefore, applying the proposed
algorithm will lead to exactly the same results as previ-
ous deadline assignment work for pipelines, Equations (3)
and (8) will be applied in this case.

Corollary 1 is an important finding, since it shows that our
proposed algorithm is more general and deals with any types
of application graphs without any particular drawbacks.

VI. EVALUATION AND RESULTS

The proposed algorithm does not need experiments to
prove its correctness since it is formally verified, as shown in
Section V. However, we evaluated the algorithm by testing
it on cyclic and acyclic real life streaming applications from
the SDF3 Benchmark [27]. The evaluation details are left out

due to space constraints, but they are available in the techni-
cal report [28]. In brief, the evaluations show that both of the
deadline assignment strategies (NORM/PURE) are applied
successfully on acyclic and cyclic graphs, which is a main
contribution of our approach. Also, both (NORM/PURE)
show almost similar success rates, but NORM shows slightly
better schedulability success rate over PURE at higher
workloads.

VII. CONCLUSIONS

In this paper, we propose an algorithm for extracting
the real-time properties of dataflow applications with timing
constraints. The algorithm can be applied on dataflow ap-
plications modelled as HSDF graphs with periodic sources.
The main novelty is that the HSDF graphs can be cyclic
or acyclic and the graph actors are modelled as arbitrary-
deadline tasks. In addition, it enables applying traditional
real-time schedulers and analysis techniques on HSDF
dataflow graphs, a method to assign individual deadlines
for real-time dataflow actors and support for two deadline
assignment techniques (NORM/PURE) that are widely used
in the literature.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Orlando Moreira and
his students for their valuable comments and insights that
helped to improve this paper.

REFERENCES

[1] M. Kim et. al, “H.264 decoder on embedded dual core with
dynamically load-balanced functional paritioning,” in Proc.
ICIP, 2010.

[2] E. Lee and D. Messerschmitt, “Synchronous dataflow,” Pro-
ceedings of the IEEE, vol. 75, no. 9, 1987.

[3] V. Pankratius et. al, “Parallelizing bzip2: A case study in
multicore software engineering,” Software, IEEE, 2009.

[4] M. Damavandpeyma et. al, “Parametric throughput analysis
of scenario-aware dataflow graphs,” in Proc. ICCD, 2012.

[5] A. Ghamarian et. al, “Parametric throughput analysis of
synchronous data flow graphs,” in Proc. DATE, 2008.

[6] S. Stuijk, “Predictable mapping of streaming applications on
multiprocessors,” in Phd thesis, 2007.

[7] S. Stuijk et. al, “Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs,” in
Proc. DAC, 2007.

[8] O. Moreira et. al, “Scheduling multiple independent hard-
real-time jobs on a heterogeneous multiprocessor,” in Proc.
EMSOFT, 2007.

[9] H. I. Ali et. al, “Critical-path-first based allocation of real-
time streaming applications on 2d mesh-type multi-cores,” in
Proc. RTCSA, 2013.

[10] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling
of data-dependent tasks in embedded streaming applications,”
in Proc. EMSOFT, 2011.

[11] ——, “Managing latency in embedded streaming applications
under hard-real-time scheduling,” in Proc. CODES+ISSS,
2012.

[12] D. Liu et. al, “Resource optimization for csdf-modeled
streaming applications with latency constraints,” in Proc.
DATE, 2014.

[13] M. H. Wiggers et. al, “Monotonicity and run-time schedul-
ing,” in Proc. EMSOFT, 2009.

[14] ——, “Modelling run-time arbitration by latency-rate servers
in dataflow graphs,” in Proc. SCOPES. ACM, 2007.

[15] J. P. Hausmans et. al, “Dataflow analysis for multiproces-
sor systems with non-starvation-free schedulers,” in Proc.
SCOPES. ACM, 2013.

[16] G. Zhou and J. Wu, “Unmanned Aerial Vehicle (UAV) data
flow processing for natural disaster response,” ASPRS, 2006.

[17] A. Saifullah et. al, “Multi-core real-time scheduling for gen-
eralized parallel task models,” Real-Time Systems, 2013.

[18] G. Lipari and E. Bini, “On the problem of allocating multicore
resources to real-time task pipelines,” 2011.

[19] M. Qamhieh et. al, “Global EDF scheduling of directed
acyclic graphs on multiprocessor systems,” in Proc. RTNS,
2013.

[20] M. Di Natale and J. Stankovic, “Dynamic end-to-end guaran-
tees in distributed real time systems,” in Proc. RTSS, 1994.

[21] B. Kao and H. Garcia-Molina, “Deadline assignment in a
distributed soft real-time system,” IEEE TPDS, vol. 8, no. 12,
1997.

[22] M. Spuri and J. Stankovic, “How to integrate precedence
constraints and shared resources in real-time scheduling,”
IEEE TC, vol. 43, no. 12, 1994.

[23] H. Chetto et. al, “Dynamic scheduling of real-time tasks under
precedence constraints,” Real-Time Systems, vol. 2, 1990.

[24] G. Bilsen et. al, “Cyclo-static data flow,” in Proc. ICASSP,
1995.

[25] S. Sriram and S. S. Bhattacharyya, Embedded Multiproces-
sors: Scheduling and Synchronization. Marcel Dekker, Inc.,
2000.

[26] M. Stigge and W. Yi, “Combinatorial abstraction refinement
for feasibility analysis,” in Proc. RTSS, 2013.

[27] S. Stuijk et. al, “SDF3: SDF for free,” in Proc. ACSD, 2006.

[28] H. I. Ali et. al, “Generalized extraction of real-time pa-
rameters for homogeneous synchronous dataflow graphs,” in
Technical Report [CISTER-TR-141104], 2014.

