
An analytical model for a memory controller

offering hard-real-time guarantees

Benny Åkesson

Department of Information Technology
Lund University

Advisor:
Lambert Spaanenburg (Lund University)

Kees Goossens (Philips Research)

May 31, 2005

Printed in Sweden
E-huset, Lund, 2005

Abstract

In this thesis we present an analytical memory controller model for
embedded systems that bridges the gap between current static and
dynamic solutions. The model delivers hard real-time net bandwidth
guarantees and provides better flexibility than existing static memory
controllers. A fixed back-end schedule, similar to that of a static mem-
ory controller design, defines how memory is accessed, and is used to do
a gross to net bandwidth translation. The net bandwidth in the sched-
ule is allocated to the requestors as credits by an allocation scheme
offering hard real-time guarantees on net bandwidth. Access to the
memory is provided by a dynamic front-end scheduler that increases
the flexibility of the design yet provides a theoretical worst-case latency
bound. The front-end scheduler is pluggable so that algorithms with
different trade-offs in fairness, jitter bounds and buffering can be used.
An example system is analytically verified and successfully simulated.
The system runs with a maximum load of 89.3% of the peak memory
bandwidth when optimized for maximum throughput. When optimiz-
ing for latency a theoretical worst-case latency bound of 550 ns for low
latency requestors is provided.

i

ii

Table of Contents

1 Problem statement 1

1.1 Communication requirements 1

1.2 State of the art . 3

1.3 Our contribution . 4

2 Memories and controllers 5

2.1 Background . 5

2.2 System model . 6

2.3 Modern memory layout 10

2.4 Memory efficiency . 13

2.5 Memory controllers . 18

2.6 Memory mapping . 19

2.7 Proposed solution . 21

3 Back-end schedule 23

3.1 Basic groups . 23

3.2 Scheduling refreshes . 26

3.3 Determining the read/write mix 27

3.4 Calculating efficiency . 29

4 Bandwidth allocation 33

4.1 Allocation scheme . 33

4.2 Service periods . 34

4.3 Allocation function . 36

4.4 Requestor constraints . 39

iii

4.5 Analysis of worst-case latency 41
4.6 Computing a scheduling solution 45

5 Dynamic front-end scheduler 47

5.1 Properties and terminology 47
5.2 Sliding QoS-aware FCFS scheduling 51

6 Experiments 57

6.1 Simulation setup . 57
6.2 Example application . 58
6.3 Scheduling solutions . 59
6.4 Allocation results . 61
6.5 Bandwidth results . 63
6.6 Latency results . 65
6.7 A latency-optimized system 69

7 Conclusions and future work 71

References 73

List of symbols 77

iv

Chapter 1

Problem statement

This chapter introduces a problem present in the memory service of
contemporary embedded systems. Section 1.1 describes the problem of
satisfying the diverse communication requirements of memory clients.
In Section 1.2 we present how two different directions of current mem-
ory controllers fail to address the problem, before we present our con-
tribution in Section 1.3.

1.1 Communication requirements

Embedded systems of today can have a large number of memory clients,
hereafter referred to as requestors, with diverse, and possibly conflict-
ing, requirements. Some of them can have real-time requirements while
others do not. In this section we identify and characterize different
kinds of traffic and discuss requirements with respect to three axes:
bandwidth, latency and jitter. For a more comprehensive overview one
is referred to [1, 7, 23].

Non real-time traffic, such as memory requests from a cache miss by
a CPU or a DSP, is irregular since it is bursty in nature and can occur
at virtually any time. The processor is stalled while waiting for the
cache line to be returned from the memory and thus the lowest possible
latency is required to prevent wasting processing power. This kind of
traffic requires good average throughput and a low average latency but
cares little about the worst-case as long as it occurs infrequently.

There are two types of real-time applications: soft and hard. In
a soft real-time application, data still has some value if delivered too

1

2 Problem statement

late whereas it becomes worthless in a hard real-time application. It
follows that the soft real-time guarantees occasionally can be violated
and hence can be statistical in nature. Embedded systems are more
concerned with hard real-time, or absolute, guarantees as they are more
application specific and need to be tailored to always meet their spec-
ification [7].

Consider a set-top box doing audio/video decoding. The requests
and responses have predictable sizes and repeat periodically. This type
of traffic requires a guaranteed minimum bandwidth. Low latency is
good in this kind of system but it is more important that the latency is
constant. Variations in latency, commonly referred to as jitter, cause
problems since buffers are required in the receiver to prevent underflows
causing stuttering playback. For this reason this kind of system requires
low bounded jitter.

Embedded systems are often used to monitor and control poten-
tially critical systems. Consider a control system in a nuclear power
plant. Sensor input has to be delivered to the regulator before it is too
late in order to prevent a potentially hazardous situation. This traffic
requires guaranteed minimum bandwidth, low worst-case latency but
is jitter tolerant as long as deadlines are never missed.

The CPU, set-top box and control system described above show the
span of requirements. Good memory solutions can be designed for any
of these systems. Difficulties arise in complex contemporary systems
were all traffic types are present simultaneously. Such a system requires
a flexible memory solution to address the diversity.

Bandwidth comes in two different flavors, gross and net, which
further complicates the requirements. Gross bandwidth is a peak, or
maximum theoretical, bandwidth measure that does not take memory
efficiency into account. A gross bandwidth guarantee translates into
guaranteeing the requestors a number of memory clock cycles, which is
what most memory controllers do. Net bandwidth, on the other hand,
is what the applications request in their specifications and corresponds
to the useful bytes of data transferred per second. The translation from
gross to net bandwidth is determined by the memory efficiency, which
depends on the offered traffic. Unknown traffic may cause low memory
efficiency resulting in wasted bandwidth. The difficulty in providing
a net bandwidth guarantee is that details of how the traffic accesses

Problem statement 3

memory has to be well-known.

1.2 State of the art

There are two different types memory controller designs, static and
dynamic. These types of controllers have very different properties, as
we show next.

1.2.1 Static memory controllers

A static memory controller [18, 20] follows a hard-wired schedule to
allocate memory bandwidth to requestors. The major benefit of static
memory controllers is predictability; they offer guaranteed minimal
bandwidth, maximal latency and bounds on jitter. Static memory
controllers do not scale very well since the schedule has to be recom-
puted if more requestors are added to the system. The difficulties of
calculating a schedule grows with an increasing number of requestors
and may not be possible to do in run-time. A static memory controller
is suitable in a system with predictable requestors but can not provide
low latency to intermittent requestors. Due to the lacking flexibility
a dynamic work-load is not handled well and results in low memory
efficiency. It is well-known how the schedule accesses memory since it
is pre-calculated. This makes it possible for static memory controllers
to offer net bandwidth guarantees.

1.2.2 Dynamic memory controllers

Dynamic memory controllers [8, 9, 12, 14, 21] make scheduling decisions
at run-time and adapt their behavior to the nature of the traffic. This
makes them very flexible and allows them to achieve low average latency
and high average throughput, even with a dynamic work-load.

The offered requests are buffered and one or more levels of arbi-
tration decide which one to serve. The arbitration can be simple with
static priorities or involve complex credit-based schemes with multi-
ple traffic classes. While these arbiters can be made memory efficient,
this comes at a price, as complex arbiters are required, which are slow,

4 Problem statement

require large chip area, and are difficult to predict. The lacking pre-
dictability of dynamic memory controllers makes it very difficult to
offer hard real-time guarantees and calculate useful worst-case latency
bounds. Dynamic memory controllers are often general purpose and do
not make assumptions about how memory is accessed by its requestors.
As a result, these controllers do not offer guarantees on net bandwidth.
A way to derive such a guarantee is to perform extensive simulations
in an attempt to cover the worst-case traffic, and then over-allocate
resources to get a safety margin. This method is time-consuming, may
result in low memory efficiency, and the resulting guarantees are sta-
tistical and not absolute.

1.3 Our contribution

The diverse communication requirements call for a flexible memory
solution. It must provide hard real-time guarantees on net bandwidth,
worst-case latency and jitter bounds while still providing good average
performance. Current solutions do not simultaneously offer dynamic
flexibility and hard real-time guarantees on net bandwidth, worst-case
latency and jitter.

In this thesis we present a memory controller for embedded systems
that bridges the gap between current static and dynamic solutions.
Bandwidth is translated from gross to net on the bottom-level by fix-
ing the sequence of commands sent to the memory. The net bandwidth
is allocated to the requestors such that hard net bandwidth guarantees
are provided. A top-level scheduler distributes the net bandwidth dy-
namically in run-time to increase flexibility.

Chapter 2

Memories and controllers

This chapter provides information on memories and memory controllers
to introduce the necessary terminology. Section 2.1 presents a brief
overview of memories before we introduce our system model in Sec-
tion 2.2. We describe the multi-bank layout of modern DRAMs in
Section 2.3 and proceed to discuss memory efficiency in Section 2.4. A
general memory controller architecture is described in Section 2.5 after
which we present a brief outline of the proposed solution in Section 2.7.

2.1 Background

Random access memory, RAM, is a fundamental component in com-
puter systems and has been for the past decades. It is used as inter-
mediate storage for the processing units in the system, such as proces-
sors. There are several types of RAM targeting different requirements
on bandwidth, power consumption, and manufacturing cost. There are
two common types of RAMs: SRAM and DRAM. Static RAM, SRAM,
was introduced in 1970 and offers high bandwidth and low access time.
SRAM is often used for caches in the higher levels of the memory hi-
erarchy to boost performance. The drawback of SRAM is cost since
six transistors are needed for every bit in the memory array. The
dynamic RAM, DRAM, was patented by Dennard in 1968. DRAM is
considerably cheaper than SRAM, as it needs only one transistor and a
capacitor per bit, but has a lower speed. The capacitor is charged with
a high or low voltage to indicate a one or zero respectively. The term
dynamic stems from that the capacitor is leaking current and needs to

5

6 Memories and controllers

be refreshed several hundred times per second. DRAM is used as main
memory in most modern systems.

In the past ten years, there has been a number of improvements
of the DRAM design. A clock signal has been added to the previ-
ously asynchronous DRAM interface to reduce synchronization over-
head with the memory controller during burst transfers. This kind of
memory is called synchronous DRAM, or SDRAM for short. In 2001
a new generation of SDRAM was introduced featuring significantly
higher bandwidth. These memories transfer data on both the rising
and the falling edge of the clock effectively doubling the bandwidth,
hence the name double-data rate (DDR) SDRAM. The second gener-
ation of these DDR memories, called DDR2, is very similar in design
but scales to higher clock frequencies and peak bandwidth.

2.2 System model

The system considered throughout this thesis consists of one or more
requestors. The requestors are connected to the memory sub-system
through an interconnect, such as direct wires, a bus or a network-on-
chip. This is illustrated in Figure 2.1.

Requestor

Requestor

Requestor

Interconnect
Memory

sub−system

Figure 2.1: Three requestors are connected to the memory sub-system
through an interconnect.

The memory sub-system consists of the memory controller and the
memory, as shown in Figure 2.2. We use a channel buffer model to
abstract the memory controller design from a particular interconnect.

Memories and controllers 7

Every requestor in the channel buffer model is associated with a request
and a response buffer in the memory controller. These buffers provide
a clock domain crossing so that the memory controller may operate at
a different frequency than the interconnect.

M
e
m
o
r
y

Arbitration,
memory mapping

and
command
generation

Response buffers

Request buffers

Memory controller

Figure 2.2: Every requestor is mapped to a request and a response buffer in
the memory controller.

A requestor communicates with the memory sub-system through a
connection. A connection is a bi-directional stream with request and
response channels that connect a requestor to the corresponding buffers
in the memory controller. The traffic characteristics and the desired
priority level of a requestor are specified in use-case specifications. The
admission controller of the memory controller accepts the service con-
tract of a requestor provided that there are enough resources available
to honor it. It then guarantees that the requirements are fulfilled as
long as the requestor behaves according to the specification. We now
formally define requestors and their associated properties.

Definition 2.2.1. A direction, d, is defined to belong to the set D =
{read,write}.

Definition 2.2.2. A requestor, r, is defined as a unit communicating
with the memory controller through a connection and is formally ex-

8 Memories and controllers

pressed as a five-tuple (d(r), w(r), σ(r), tmax(r), c(r)). A requestor
has a direction, d(r) ∈ D, determining if it is reading or writing. Ev-
ery requestor is represented by a minimum requested data bandwidth,
w(r), a maximum request size in bytes, σ(r), and a maximum latency,
tmax(r). A requestor is associated with a priority level, c(r), from a
totally ordered set of priority levels. All requestors belong to the set of
requestors, R.

The requestor is allowed to read or write, but not both. Separating
reads and writes is required for us in order to provide bandwidth guar-
antees. We elaborate further on this decision in Chapter 4. Requestors
communicate with the memory by sending requests. A request is sent
on the request channel and is stored in the designated request buffer
until it is serviced by the memory controller. In case of a read request
the response data is stored in the response buffer until it is returned
on the response channel.

The request buffer contains fields for command (read or write re-
quest), memory address, length of the request and, in case of a write
command, write data. Requests in the request buffer are served in a
first-come-first-served (FCFS) order by the memory controller, which
thus provides sequential consistency within every connection, assuming
that this is supported by the interconnect. No synchronization or de-
pendency tracking is provided between different connections and must
be supplied elsewhere.

Lin et al. presents a similar architecture in [12] but allows many
requestors to aggregate their requests on a single connection. A benefit
of this approach is that requestors that share a connection are assured
that consistency between their requests is maintained. This, however,
makes it impossible to offer net bandwidth guarantees to the requestors
on a per-connection basis with reasonable traffic constraints and has
thus not been considered further here.

With the architecture of the channel buffer model in mind it is
possible to make a useful definition of latency. The total latency of a
request in the memory sub-system is the sum of four components:

• Request queue latency

• Memory controller latency

Memories and controllers 9

• Memory latency

• Response queue latency

The request queue latency is the time from the arrival of the first
word of a request in the request queue until it is dequeued by the
memory controller. The memory controller latency is the time from
the first word of the request has been dequeued until the corresponding
read or write command has been posted on the command bus. The
memory latency depends on the direction of a request and the state of
the memory and is divided into read latency and write latency. Write
latency is the time from the write command is issued until the first
word is stored in the row buffer. It is specified in [11] to be at least
CL − 1 cycles, where CL is the CAS (column access strobe) latency.
The read latency is the time from the read command is issued until the
first word is returned on the data path. The read latency is at least
CL cycles. The response queue latency is the time from when the first
word arrives in the response queue until it is dequeued.

The request and response queue latencies are depending on the
arrival and departure processes of the interconnect making them in-
appropriate metrics for the channel buffer model. The same goes for
the memory controller latency, which depends on the implementation
of the memory controller model and the memory latency that depends
on the timings of the particular memory device. For this reason we
choose to use another latency metric, service latency, defined in Defi-
nition 2.2.3. Service latency is measured from the moment a request is
at the head of the request queue until the last word has left the queue.
The service latency reflects how the memory controller schedules the
memory but is independent of the interconnect and the timings of a
particular memory device.

Definition 2.2.3. The worst-case latency of a request of a requestor,
tlat(r), refers to the service latency. Service latency is measured from
the moment a request is in the head of the request queue until the last
word has left the queue. It follows that the latency requirements of a
system is satisfied if tlat(r) ≤ tmax(r);∀r ∈ R.

10 Memories and controllers

2.3 Modern memory layout

Modern DRAMs have a three dimensional layout, the three dimensions
being banks, rows and columns. A bank is similar to a matrix in
the sense that it stores a number of word sized elements in rows and
columns. The described memory layout is depicted in Figure 2.3.

On a DRAM access, the address is decoded into bank, row and
column addresses. A bank has two states, idle and active. A simplified
DDR state diagram is shown in Figure 2.4. The bank is activated from
the idle state by an activate command that loads the requested row
onto the sense amplifiers, also known as the row buffer. Every bank
has a row buffer, which is used to store the most recently activated
row. Once the bank has been activated, column accesses such as read
and write commands can be issued to the columns in the row buffer.
A precharge command is issued to return the bank to the idle state.
This stores the row in the buffer back into the memory array. A row is
also referred to as a page that can be opened or closed depending on
whether it is present in the row buffer or not. A memory access to a
closed page is referred to as a page fault and results in lost cycles as
the current page is closed and the requested one is opened.

bank 1 bank 2 bank 3

row
buffers

row 0
row 1
row 2
row 3
row ...

bank 0

Figure 2.3: Layout of a multi-bank memory architecture.

Read /
writeACTIVEIDLE

Activate

Precharge

Figure 2.4: Simplified DDR state diagram per bank.

Reads and writes are done in bursts of 4 or 8 words. An open page

Memories and controllers 11

is divided into uniquely addressable boundary segments of the burst
size that is programmed in the memory on initialization. This limits
the set of possible start addresses for a burst and has consequences for
efficiency, as we show later. Many systems experience spatial locality
in memory accesses meaning that subsequent memory accesses often
target memory addresses in close proximity of each other. It is therefore
common for several read and write commands to target an already
activated row since a typical row size on a DDR2 memory device is 1
KB.

In order not to loose data as a result of the previously described
leakage, all the rows in the DRAM have to be refreshed regularly. This
is done by issuing a refresh command. The average time between re-
fresh commands varies between different memory generations but are
the same for all DDR2 devices. The refresh command needs more
time on larger devices causing them to spend more time refreshing
than smaller ones, although the refresh time per bit gets lower. Before
the refresh command is issued all banks have to be precharged. The
SDRAM commands discussed are summarized in Table 2.1.

SDRAM command Description

No operation (NOP) Ignores all inputs.

Activate (ACT) Activate a row in a particular bank

Read (RD) Initiate a read burst to an active row

Write (WR) Initiate a write burst to an active row

Precharge (PRE) Close an active row in a particular bank

Refresh (REF) Start a refresh operation

Table 2.1: Some SDRAM commands.

There is a major benefit with a multi-bank architecture since com-
mands to different banks can be pipelined. While data is being trans-
ferred to or from a bank, the other banks can be precharged and ac-
tivated with another row for a later request. This is a process called
bank preparation that can save a lot of time and sometimes completely
hides the precharge and activate delays.

To put the number of banks, rows and columns into perspective
we take a brief look into the DDR2 reference specification [11] and see

12 Memories and controllers

what a 256 Mb1 (32Mx8) DDR2-400 SDRAM device looks like. It has
a total number of 4 banks with 8192 rows each and 1024 columns per
row. This means that 2 bits in the physical address are required for the
bank number, 13 for the row number and 10 for the columns. The page
size is 1 KB. These devices have a word width of 8 bits but several of
them are usually combined to create memories with larger word width.
How the chips are combined on a memory module is referred to as the
memory configuration. For instance, when four of these devices are put
in parallel the memory module has a capacity of 256Mb · 4 = 128MB
and a word width of 32 bits. This particular memory configuration,
which is the one used throughout this thesis, runs at a clock frequency
of 200 MHz, which results in a peak bandwidth of 200 · 2 · 32/8 = 1600
MB/s.

A command is always issued during one clock cycle but the mem-
ories have very tight timing constraints defining the required delay
between successive commands. This delay depends on the particular
combination of commands. They are found in the specification but we
summarize the most important ones in Table 2.2. Throughout this the-
sis timings with subscripts in capital letters refer to timings from the
DDR2 SDRAM Specification [11]. All equations refer to timing values
in clock cycles unless otherwise is explicitly noted.

Parameter Min. time Min. time Description
[ns] [cycles]

tCK 5 1 Clock cycle time

tRAS 45 9 Activate to precharge delay

tRC 60 12 Activate to activate delay (same bank)

tRCD 15 3 Activate to read or delay

tRFC 75 15 Refresh to activate delay

tRP 15 3 Precharge to activate delay

tRRD 7.5 2 Activate to activate delay (diff. banks)

tREFI 7800 1560 Average refresh to refresh delay

CL 15 3 CAS (column-access-strobe) latency

tWTR 10 2 Write-to-read turn-around time

tWR 15 3 Write recovery time

Table 2.2: Some timing parameters for a DDR2-400 256 Mb device

1Bit is abbreviated as b and byte as B.

Memories and controllers 13

We conclude this section by making a formal definition of a memory
in Definition 2.3.1

Definition 2.3.1. A memory, M , is defined as a nine-tuple (tREFI(M),
tRFC(M), tCK(M), tWTR(M), CL(M), tp all(M), sburst(M), sword(M),
nbanks(M)) where tpall(M) is the worst-case time needed to precharge
all banks, sburst(M) the burst size programmed in the memory, sword(M)
the word width (the width of the data path) and nbanks(M) the number
of banks. The other timing parameters are explained in Table 2.2 and
specified in [11].

2.4 Memory efficiency

Embedded systems of today have high requirements when it comes to
memory efficiency. This is natural since inefficient memory use means
that faster or wider memories have to be used and these are more
expensive and consume more power. In this section we briefly cover
memory efficiency, a more complete overview is found in [22]. We start
with a definition of memory efficiency.

Definition 2.4.1. Memory efficiency, e(M), is defined as the fraction
between the amount of clock cycles when data is transferred, S′(M),
and the total number of clock cycles, S(M).

e(M) =
S′(M)

S(M)
; S′(M) ≤ S(M)

There are a lot of factors causing data not to be transferred during
every cycle. We refer to these as sources of inefficiency. We now look
into the most important ones and discuss their impact:

• Refresh efficiency

• Data efficiency

• Bank conflict efficiency

• Read/write efficiency

• Command conflict efficiency

14 Memories and controllers

2.4.1 Refresh efficiency

As mentioned in Section 2.3 the memory needs to be refreshed regularly.
The time needed for refreshing depends on the state of the memory
since all the banks have to be precharged before the refresh command
is issued. The specification states that this has to be done on average
once every tREFI , which is 7.8 µs for all DDR2 devices. The average
refresh interval allows the refresh command to be postponed but not
left out. Refresh can be postponed up to a maximum of 9 · tREFI

when eight successive refresh commands must be issued. Postponing
refresh commands is useful when scheduling DRAM commands and
helps amortizing the cost of precharging all banks.

Refresh efficiency is relatively easy to quantify since the average re-
fresh interval, clock cycle time, refresh time and worst-case time needed
to precharge all banks are derived from the specification of the memory
device. Furthermore the refresh efficiency is traffic independent.

The refresh efficiency, erefresh(M, n), of a memory device is calcu-
lated as shown in Equation (2.1), where n is the number of consecutive
refresh commands. The worst-case time needed to precharge all banks,
tp all(M), on DDR2-400 is ten cycles. This happens in the event that
a bank is activated a cycle before the decision to refresh was taken.

erefresh(M, n) = 1−
1

tREFI(M) · n
· (tRFC(M) · n + tp all(M));n ∈ [1..8]

(2.1)
For the DDR2-400 described above the effect of refresh efficiency

is almost negligible, around 98.4% for a single refresh command and
increases as more commands are issued consecutively. The refresh effi-
ciency becomes more significant with larger and faster devices. There
is, however, not much to do to reduce the impact of refreshes except
trying to schedule them when the memory is idle.

2.4.2 Data efficiency

As explained in Section 2.3, the bursts can not start on an arbitrary
word since memory is divided into segments of the programmed burst
size. This introduces a problem with data alignment. Consider a re-
quest for eight words. If those eight words do not start at the boundary

Memories and controllers 15

of an eight word segment, two eight word bursts are needed to read or
write the data: one for each segment that the data occupies. This is
shown in Figure 2.5.

useful
word word

wasted

Figure 2.5: Half of the data is wasted in these two bursts due to poor data
alignment.

The efficiency loss grows with smaller requests and bigger burst
sizes. This problem is usually not solved by memory controllers since
the minimum burst size is inherent to the memory device and the data
alignment is a software issue.

2.4.3 Bank conflict efficiency

When a burst targets a column that is not in an open page, the bank
has to be precharged and activated to open the requested page. As
shown in Table 2.2 there is a minimum delay between consecutive ac-
tivate commands to a bank resulting in a potentially severe penalty if
consecutive read or write commands try to access different pages in the
same bank. The impact of this is dependent on the traffic, timings of
the target memory and of the memory mapping used.

This problem can be solved by reordering bursts or requests. Intel-
ligent general-purpose memory controllers are fitted with a look-ahead
or reorder buffer providing information about bursts that will be ser-
viced in the near future. By looking in the buffer, the controller can
detect and possibly prevent bank conflicts through reordering of re-
quests [2, 9, 12, 17, 21] or within requests [10]. This mechanism works
well enough to totally hide the extra latency introduced, provided that
there are bursts to different banks in the buffer. This solution is very
effective but increases latency for the requests. Reordering is not with-
out difficulties. If the bursts within a request are reordered they must
be reassembled, which requires extra buffering. If reordering is done be-
tween requests then read-after-write, write-after-read and write-after-

16 Memories and controllers

read hazards can occur unless dependencies are closely monitored. This
requires additional logic.

2.4.4 Read/write efficiency

SDRAM suffers from costs when switching directions, i.e going from
write to read or read to write. When the bi-directional data bus is being
reversed, NOP commands have to be issued resulting in lost cycles. The
number of lost cycles depends on the read and write latencies of the
target memory, which are specified [11] in terms of the CAS latency, CL
of the target memory. The read latency, expressed in Equation (2.2),
is the number of cycles from a read command is issued until the first
word is returned on the data bus. Write latency, Equation (2.3), is the
delay between issuing a write command and putting the first word on
the data bus.

tRL(M) = CL(M) (2.2)

tWL(M) = CL(M) − 1 (2.3)

We define the switching costs using the terminology and equations
from [22].

Definition 2.4.2. trtw is the number of lost cycles when switching
directions from read to write.

trtw(M) = 2 + tWL(M) − tRL(M) = 2 + (tRL(M) − 1) − tRL(M) = 1

Definition 2.4.2 states that one clock cycle is lost when switching
from read to write. This is independent of which DDR2 memory that
is used since the expression reduces algebraically to a constant value.
The write to read time, twtr is defined in Definition 2.4.3 where tWTR

is the write-to-read turn-around-time.

Definition 2.4.3. twtr is the number of lost cycles when switching
directions from write to read.

twtr(M) = CL + tWTR

Memories and controllers 17

As shown in Definition 2.4.3 the number of cycles lost when switch-
ing from write to read depends on the memory used. For convenience
we define the switching cost of a memory in Definition 2.4.4.

Definition 2.4.4. tswitch(M) is the number of cycles needed to switch
from read to write and back again.

tswitch(M) = trtw(M) + twtr(M)

The read/write efficiency is dependent on the switching frequency,
and thus, on traffic. This makes it difficult to estimate the impact
on a running application without simulation or measurements during
execution. Woltjer [22] states that the theoretical read/write efficiency
of a CPU with 70% probability of reads and 30% probability of writes
and a request size of 32 words is 93.8%. The worst-case with alternating
reads and writes and a request size of four words results in a read/write
efficiency of 40%. A solution to this problem is to amortize the cost by
preferring reads after reads and writes after writes [2, 9], which again
results in higher latency.

2.4.5 Command conflict efficiency

Even though a DDR device transfers data on both the rising and the
falling edge of the clock, commands can only be issued once every clock
cycle. As a result, there may not be enough room on the command bus
to issue the activate and precharge commands needed when consecutive
read or write bursts are transferred. This results in lost cycles when
a read or write burst has to be postponed due to a page fault. With
a burst size of eight words, a new read or write command has to be
issued every fourth clock cycle leaving the command bus free for other
commands 75% of the time. With a burst size of four words read and
write commands are issued every second cycle. First generation DDR
modules supported a burst size of two. As no other commands can be
issued with this burst size, it is impossible to sustain consecutive bursts
for a longer period of time.

Read and write commands can be issued with an auto-precharge flag
resulting in that the bank is precharged at the earliest possible moment
after the transfer is completed. This saves space on the command bus

18 Memories and controllers

and is useful when the next burst targets a closed page. Woltjer [22]
estimates the command conflict efficiency to 95 - 100%.

2.5 Memory controllers

The memory controller is the interface between the system and the
memory. A general memory controller consists of four functional blocks:

• Memory mapping

• Arbiter

• Command generator

• Data path

Figure 2.6 shows the structure of a memory controller conforming
to the channel buffer model.

Memory
mapping

Arbitration
Command
generation

M
e
m
o
r
y

Response buffers

Request buffers

Memory controller

Data path

Back−endFront−end

Figure 2.6: Layout of memory controller conforming to the channel buffer
model.

Memories and controllers 19

The memory mapping does the translation from the logical address
space used by the requestors to the physical address space (bank, row,
column) used by the memory. We address this topic in detail in Sec-
tion 2.6. The arbiter, or scheduler, decides what request (or burst,
depending on the level of granularity) that will next access the mem-
ory. This choice can depend on the age of the requests, the amount of
traffic that has already been served for that requestor and many other
things. Arbitration is more thoroughly covered in Chapter 5. After the
arbiter has chosen the request to serve, the actual memory commands
need to be generated. The command generator is designed to target a
particular memory architecture, such as SDRAM, and is programmed
with the timings for a particular memory device, such as DDR2-400.
This modularity helps adapting the memory controller for other mem-
ories. The command generator needs to keep track of the state of the
memory to ensure that no timings are violated. The bi-directional data
path is where the actual data is transferred to and from the memory.
Our interest is limited to the fact that reversing the direction of this
data path, i.e. switching from reads to writes, results in lost cycles.
The memory controller is divided into two logical blocks called front-
end and back-end. The memory mapping and arbiter is considered a
part of the front-end while the command generator is a part of the
back-end.

2.6 Memory mapping

On a memory access, the logical address, used by the requestor, is
decoded into a physical address (bank, row, column) in the memory.
This is done by consulting a memory map, which is a function that
maps logical to physical addresses. The bank, row and column numbers
are determined by closer examining the bits in the address.

It is useful to gain a perspective on what the memory map does
by observing what happens for a number of sequential addresses. A
brief example follows that uses five bit addresses. The first memory
map, observed in Figure 2.7, brings sequential addresses to the same
bank. By decoding the two most significant bits into the bank number
ensures that iteration is done over columns and rows before switching

20 Memories and controllers

bank. A sequential memory map is useful when mapping requestors
to particular banks since all traffic in predefined address intervals are
guaranteed to hit the same bank. The downside of this mapping is that
a large request may hit the end of the page resulting in a page fault.

0 0 0 0 0

Row ColBank

7654

3210

15141312

111098 16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

00 01 10 11
0
1

Bank 0

00 01 10 11
0
1

Bank 1

00 01 10 11
0
1

Bank 2

00 01 10 11
0
1

Bank 3

Row

Col

Figure 2.7: Sequential memory map.

The memory map in Figure 2.8 interleaves sequential addresses in
pairs of two over all four banks. The interleaving memory map has
benefits since a large request interleaves over all banks eliminating the
risk of page faults all together. The downside of this map is that a
minimum burst length is required to hide the latencies of activation
and precharging. This particular map is useful when interleaving over
banks under the assumption that a burst size of two is enough for a
bank to precharge and activate if needed between consecutive accesses.

0 0 0 0 0

ColBankRow

0 1 2 3 4 5 6 78 9 10 11 12 13 14 15

16 17 18 19 20 21 22 2324 25 26 27 28 29 30 31

00 01 10 11
0
1

Bank 0

00 01 10 11
0
1

Bank 1

00 01 10 11
0
1

Bank 2

00 01 10 11
0
1

Bank 3

Row

Col

Figure 2.8: Interleaved memory map.

In conclusion the memory map is a powerful tool that determines
how the requestors access the banks, rows and columns of the memory
device. We show in Section 4.4 how this tool is used to provide a hard
real-time guarantee on net bandwidth.

Memories and controllers 21

2.7 Proposed solution

In this section, we present a brief outline of the proposed solution
to the problems described in Chapter 1. The proposed model can be
viewed as a hybrid combining properties of static and dynamic memory
controllers. It is presented as a three-step solution:

• Statically computing an efficient fixed back-end schedule

• Statically computing bandwidth allocation

• Dynamically schedule requestors in run-time

A fixed back-end schedule is computed that makes memory access
predictable and provides an efficient gross to net bandwidth translation.
The schedule is composed from read, write and refresh groups as shown
in Figure 2.9. A read and a write group contains a memory access of
maximum burst size for every bank in the memory. These accesses
are interleaved over the banks in order to achieve efficient pipelining
and thus high memory efficiency. The memory needs to be refreshed
at times and thus a refresh group is scheduled after a number of basic
groups.

group
Refresh

RefReadReadWrite ReadReadWrite

group
Write Read

group

Read
Bank 0

Read
Bank 1

Read
Bank 2

Read
Bank 3

Basic group

Burst

Figure 2.9: A back-end schedule composed of read, write and refresh groups.

The back-end schedule yields a good memory efficiency, since some
of the sources of inefficiency described in Section 2.4 have been elimi-
nated or bounded. For instance, bank conflicts can not occur by con-
struction since the read and write groups interleave over the banks

22 Memories and controllers

providing enough time for bank preparation. Read/write efficiency is
addressed by grouping read and write bursts together in the back-end
schedule. This puts a bound on the number of switches.

The appropriate back-end schedule has to be computed for a given
specification of traffic consisting of minimal net bandwidth require-
ments and a maximum latency. This requires determining the number
and layout of read, write and refresh groups in the back-end schedule.
The generated ordering of the groups must offer enough net bandwidth
in the read and write directions and for the banks specified by the re-
questors. The computation of the back-end schedule is explained in
Chapter 3.

Step two, allocating bandwidth to requestors is discussed in Chap-
ter 4. This is done in such a way that hard real-time guarantees on net
bandwidth and worst-case latency is provided.

Finally, the bursts in the back-end schedule are scheduled to the dif-
ferent requestors in the system taking their bandwidth allocation and
quality-of-service requirements into account. This is done dynamically
to increase flexibility. The dynamic front-end scheduler can be imple-
mented in several ways to optimize for low worst-case or average la-
tency, high level of fairness or good jitter bounds. It must, however, be
sophisticated enough to deliver the guarantees while still being simple
enough to be analyzed analytically. This topic is covered in Chapter 5.

Chapter 3

Back-end schedule

The back-end schedule is the generated sequence of commands sent
from the back-end of the memory controller to the memory. Fixing the
back-end schedule makes memory access predictable allowing for a de-
terministic gross to net bandwidth translation. Our back-end schedule
is a generalized version of the schedule used in [18, 20], already intro-
duced in Section 2.7. In this chapter we work out a back-end schedule,
suitable for a specified set of requestors, composed by a sequence of
basic groups, as shown in Figure 2.9. A back-end schedule is formally
defined in Definition 3.0.1.

Definition 3.0.1. A back-end schedule, θ, is defined by a three-tuple
(n(θ), cread(θ), cwrite(θ)) where n(θ) is the number of consecutive re-
fresh commands in the refresh group and cread(θ) and cwrite(θ) the num-
ber of consecutive read and write groups respectively in the basic group.

In Section 3.1 we show how to construct the basic building blocks,
the read, write and refresh groups. We learn about the flexibility in-
volved when scheduling refreshes in Section 3.2 before discussing sched-
ule layout and the difficulties involved in determining the number of
read and write groups in Section 3.3. The efficiency of a back-end
schedule is finally defined in Section 3.4.

3.1 Basic groups

In order to compose the back-end schedule we must create the low-level
building blocks. There are three different kinds of groups: the read

23

24 Back-end schedule

group, the write group and the refresh group. The groups consist of
a number of memory commands and looks slightly different depending
on the targeted memory generation.

We have chosen to focus our efforts on DDR2 SDRAM [11] to pro-
vide high bandwidth. The basic principle applies to previous SDRAM
generations, such as SDR SDRAM and DDR SDRAM, although differ-
ences in timing requires some design decisions to be re-evaluated. Read
and write groups have been manually created for DDR2-400 SDRAM
and differs somewhat even for other memories of the same generation
due to differences in timing. The groups, illustrated in Figures 3.1,
3.2 and 3.3, consist of a number of consecutive SDRAM-commands
familiar from Table 2.1. The only way to make them 100% efficient
with consecutive reads and writes potentially targeting different pages
is to interleave memory access sequentially over all four banks and use
a burst size of eight elements. The larger burst size provides enough
time between successive accesses to the same bank to precharge and ac-
tivate another row. The drawbacks are related to data efficiency. Data
that is not aligned on a boundary of eight and requests smaller than
the selected burst size results in significant waste. All read and write
commands are issued with auto-precharge to make sure that the banks
are precharged at the earliest possible moment. This avoids contention
on the command bus and makes the groups easier to schedule.

R
D

0

A
C
T

1

R
D

1

A
C
T

2

N
O
P

R
D

2

A
C
T

3

N
O
P

R
D

3

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

A
C

0

T

Figure 3.1: Basic read group

The basic read group is shown in Figure 3.1. We show four pipelined
executions to illustrate what a schedule of consecutive reads looks like
once the initial start-up has been done. The read group consists of
16 cycles and data is transferred during all of them making the group
100% efficient.

Figure 3.2 shows the basic write group. The group spans 16 cycles
and transfers data during all of them, just like the basic read group,
and are thus also 100% efficient.

Back-end schedule 25

A
C

0

T

N
O
P

W
R
I

0

A
C
T

1

N
O
P

W
R
I

1

A
C
T

2

N
O
P

W
R
I

2

A
C
T

3

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

W
R

3

I

Figure 3.2: Basic write group

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

R
E
F

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

Figure 3.3: Basic refresh group

All of the banks must be precharged before a refresh command is
issued. The refresh group shown in Figure 3.3 is assumed to follow a
read group to more efficiently pipeline the precharging of the banks.
Once the refresh command has been issued there is a number of NOP
commands during what is called a refresh-to-activate delay (tRFC),
which have to pass before a new basic group is issued. This particular
refresh group is one of several possibilities for a 256 Mb DDR2-400
device, a larger and faster device needs more cycles for refresh.

The back-end schedule is composed by putting these blocks in se-
quence. As explained in Section 2.4.4, there is a cost associated with
switching directions from read to write and vice versa. This has the
implication that we have to add two NOP instructions between a read
and a write group and four NOP instructions between a write and a
read group. This is shown in Figure 3.4.

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

Write/Read
cost

Read/Write
cost

A
C

0

T

N
O
P

R
D

0

A
C
T

1

N
O
P

R
D

1

A
C
T

2

N
O
P

R
D

2

A
C
T

3

N
O
P

R
D

3

A
C

0

T

N
O
P

W
R
I

0

A
C
T

1

N
O
P

W
R
I

1

A
C
T

2

W
R
I

2

A
C
T

3

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

N
O
P

Read group Write group

W
R
I

3

Figure 3.4: A read/write switch with extra NOP instructions.

The formal model requires expressions of the group lengths, which

26 Back-end schedule

are memory dependent. The read and write groups both require 16
cycles, which corresponds to one burst for every bank in the memory
as shown in Equation 3.2.

tburst(M) = sburst(M)/2 (3.1)

tgroup(M) = tburst(M) · nbanks(M) (3.2)

The length of the refresh group is discussed in Section 3.2.

3.2 Scheduling refreshes

Every row in a DRAM needs to be regularly refreshed in order not to
loose data. This has to be taken into account to make the memory
accesses predictable, and for this reason a refresh group is created at
the end of the schedule.

The refresh group has to start by precharging all banks and then
issue between one to eight consecutive refresh commands. If the refresh
group succeeds a predefined read or write group the precharging com-
mands of that group can be used to make the refresh group shorter. We
have chosen to assume that the refresh group succeeds a read group.
This assumption shaves two clock cycles off the refresh group.

Assumption 3.2.1. A refresh group always succeeds a read group.

The benefits of postponing refresh is that the overhead involved in
precharging all banks is amortized over a large group, as concluded in
Section 2.4.1. Postponing refresh is not without disadvantages though,
since this makes the refresh group longer. This affects the worst-case
latency as a refresh group is always included in the worst-case latency of
a request. The number of cycles needed for the refresh group, tref (M),
depending on the number of consecutive refreshes, n(θ), and timings
of the target memory is calculated in Equation (3.3). It considers the
time required to precharge all banks, pipelined from a previous read
group (8 cycles on DDR2-400), and the time required for the refresh
commands as defined in the specification.

tref (M, θ) = 8 + tRFC(M) · n(θ); n(θ) ∈ [1..8] (3.3)

Back-end schedule 27

Knowing the refresh group length and the average refresh interval
the maximum available number of cycles for read and write groups
between two refreshes, tavail(M, θ) is determined, as shown in Equa-
tion (3.4). This effectively determines the length of the back-end sched-
ule.

tavail(M, θ) = n(θ) · tREFI(M) − tref (M, θ); n(θ) ∈ [1..8] (3.4)

3.3 Determining the read/write mix

The back-end schedule is composed of read, write and refresh groups.
In this section we focus on determining how many read and write groups
there must be and how these should be placed in the schedule. This is
a generalization of what is found in [9] where only the equivalent of a
single group is allowed before switching direction. This approach works
well for older memories but the increasing cost of switching direction
has made this generalization necessary.

The number of read and write groups is clearly related to the read
and write requirements of the requestors in the system. We have chosen
to sum the total bandwidth requested for reads and for writes and
let the requested proportions between read and write groups in the
schedule be determined by the fraction, α(R), determined by these
numbers. This fraction is calculated in Equation (3.5) where w(r, d) is
a request function returning the bandwidth requested by requestor r in
direction d. The special case

∑

∀r∈R w(r, write) = 0 is not considered
as a read-only SDRAM is useless.

α(R) =

∑

∀r∈R w(r, read)
∑

∀r∈R w(r, write)
(3.5)

We are looking for the number of consecutive read and write groups,
cread(θ) and cwrite(θ) ∈ N to approximate this ratio and to constitute
the basic group. The chosen values of cread(θ) and cwrite(θ) defines the
provided read/write ratio, β(θ).

β(θ) =
cread(θ)

cwrite(θ)
(3.6)

28 Back-end schedule

The basic group is defined by the write groups followed by the
read groups and padded with the extra NOP instructions needed for
switching. The basic group is repeated, k(M, θ) times, until no more
can be fitted before refresh. The number of repeated basic groups is
calculated in Equation (3.7).

k(M, θ) =

⌊

tavail(M, n(θ))

(cread(θ) + cwrite(θ)) · tgroup(M) + tswitch(M)

⌋

(3.7)

We generally want to place groups going in the same direction in
sequence for efficiency reasons. This saves us from issuing the extra
NOP instructions needed to make the groups fit together. In the back-
end schedule this heuristic is, however, only valid to a certain extent
since large basic groups may not repeat well with respect to refresh due
to the non-linearity of Equation (3.7). This means that a large group
may be put in sequence a number of times, but leaves a large number
of cycles before the end of the average refresh interval unused because
it does not fit an additional time. This causes the refresh group to
be scheduled prematurely yielding an inefficient schedule although the
basic group, as such, is very efficient. This is seen in Equation (3.7) as
the value being just slightly smaller than the closest integer value before
being floored and the impact of this becomes larger as do cread(θ) and
cwrite(θ).

A problem with putting all groups in the same direction in sequence
is that the worst-case latency for a request increases significantly since
there may be a large amount of bursts scheduled in the opposite direc-
tion before scheduling of a particular request can be considered. The
maximum latency of the requestors constrains the number of read and
write groups that can be put in sequence without violating the guaran-
tees. The worst-case latency for a request depends, as we will show in
Section 4.5, on both the number of consecutive read and write groups.
It is, for this reason, not possible to solve for a single upper bound on
the possible number of groups in a particular direction.

Yet another difficulty arises since many fractions cannot be accu-
rately represented without a very large numerator or denominator. As
the latency constrains the number of consecutive groups in a particular
direction it is apparent that memory efficiency will, for some read/write

Back-end schedule 29

ratios, have to be traded for a lower latency. We look further into this
in Section 3.4.

With these difficulties in mind we have decided to use an exhaustive
search to find the most efficient solution. This algorithm is the topic
of Section 4.6.

3.4 Calculating efficiency

The total efficiency of a schedule depends on two components. The
first component, schedule efficiency, is due to the regular sources of
inefficiency, discussed in Section 2.4, such as read/write switches and
refresh resulting in lost cycles. The second component relates to how
well the provided read/write mix, β(θ), corresponds to the requested,
α(R), introduced in Section 3.3. The first component is, in some regard,
significant in all memory controlling schemes but the second one is
inherent to this approach. We next look into these one at a time.

First we look into the schedule efficiency. Data is transferred in
all the cycles of the read and write groups. The only time when data
cannot be transferred is during the refresh cycle and when switching
directions. The efficiency of a back-end schedule targeting a specific
memory is defined in Definition 3.4.1.

Definition 3.4.1. The schedule efficiency, eθ(M, θ), of a back-end
schedule θ is the fraction between the number of cycles in the back-end
schedule with data transfer, t′θ(M, θ), and the total number of cycles
needed to revolve the back-end schedule, tθ(M, θ). This is equal to the
fraction between the amount of net bandwidth provided by the schedule,
S′(M, θ), and the peak bandwidth of the memory, S(M).

eθ(M, θ) =
S′(M, θ)

S(M)
=

t′θ(M, θ)

tθ(M, θ)

t′θ(M, θ) = (cread(θ) + cwrite(θ)) · k(M, θ) · tgroup(M)

tθ(M, θ) = ((cread(θ) + cwrite(θ)) · tgroup(M) + tswitch(M)) · k(M, θ)+

tref (M, n(θ))

30 Back-end schedule

Schedule efficiency is a metric of how well gross bandwidth is trans-
lated into net bandwidth. Although this is a relevant number, the total
efficiency needs to take into account that the groups in the schedule
may not correspond completely to what was requested.

The condition α(R) 6= β(θ) results in an over-allocation for either
reads or writes. This is expressed in Definition 3.4.2.

Definition 3.4.2. Mix efficiency, emix(R, θ), expresses how well the
provided read/write mix correspond to the requested.

emix(R, θ) = 1 − |α(R) − β(θ)|

Another, perhaps more useful expression of mix efficiency, is shown
in Equation (3.8). This relates the average requested read and write
groups in a basic group, ω(r, d), to the provided amount determined by
cread(θ) and cwrite(θ). Both expressions are valid metrics to determine
how the provided number of groups fit with the requested, but Equa-
tion (3.8) causes the mix efficiency to reflect the fraction of the basic
group that is useful to the requestors. The provided groups must be
larger than the requested for bandwidth allocation to be successful.

e′mix(R, θ) =

∑

∀rinR ω(r, read) + ω(r, write)

cread(θ) + cwrite(θ)
(3.8)

cread(θ) ≥ ω(r, read)

cwrite(θ) ≥ ω(r, write)

We have decided to use total efficiency, etotal(M, θ, R) as defined in
Definition 3.4.3, as our metric of efficiency. The mix efficiency corre-
sponds to Definition 3.4.2 since Equation (3.8) was defined too late to
be incorporated in this thesis.

Definition 3.4.3. The total efficiency, etotal(M, θ, R), of a back-end
schedule, θ for a particular memory, M , and a set of requestors, R,
is defined as the product between the schedule efficiency and the mix
efficiency.

Back-end schedule 31

etotal(M, θ, R) = eθ(M, θ) · emix(R, θ)

Figure 3.5 shows the solution space for an example system. The
requested read/write ratio is close to 1 and total efficiency grows as
the read and write groups are equally increasing until failed latency
requirements causes a cut-off. Deviations from the equal number of
read and write groups causes efficiency to drop since the read/write
mix no longer corresponds to the requested. Bandwidth allocation fails
when the deviation from the requested mix becomes too large since the
schedule no longer has enough bursts in the right direction to satisfy
the bandwidth requirements.

Total efficiency

Write groups

Read groups

’Solutions.dat’

Solution space for back-end schedule

Total efficiency

0
0.2
0.4
0.6
0.8

14
12

10
8

6
4

2
0121086420

0
0.2
0.4
0.6
0.8

Figure 3.5: Solution space for an example system with n(θ) = 1.

32 Back-end schedule

Chapter 4

Bandwidth allocation

In Chapter 3 we calculated a fixed back-end schedule that fits with the
specification of the requestors in the system and provides an efficient
gross to net bandwidth translation. In this chapter we discuss how to
allocate this bandwidth to provide hard real-time guarantees to individ-
ual requestors. We begin in Section 4.1 by discussing related work and
introducing our bandwidth allocation scheme. Bandwidth is allocated
to requestors in service periods, which are the topic of Section 4.2. In
Section 4.3 we show how to compute the number of bursts to allocate
to the requestors using an allocation function. Section 4.4 discusses
how to constrain requestors in order to provide a hard real-time guar-
antee on net bandwidth. We derive worst-case latency bounds for a
request in Section 4.5 before concluding in Section 4.6 by showing how
to calculate a scheduling solution.

4.1 Allocation scheme

The allocation scheme determines how to distribute the bursts in the
back-end schedule to guarantee the bandwidth requirements of the re-
questors in the system. This is done in such a way that it does not
put unnecessary constraints on the dynamic front-end scheduling algo-
rithm. This makes the design modular and provides a separation of
concerns.

In order to provide a guaranteed service isolation must be provided
for a requestor, so that it is protected from the behavior of others.
This property, known as requestor protection, is important in real-time

33

34 Bandwidth allocation

systems to prevent a client from over-asking and use resources needed
by another. Protection is often accomplished by using a currency, cred-
its, representing how many cycles, bursts or requests that is maximally
served before access is granted to another requestor.

Before we explain our choices we look briefly at allocation in related
work. Lin et al. [12] allocate a programmable number of service cycles
in a service period. This means allocating gross bandwidth but they do
not disclose enough information to determine whether the bandwidth
is guaranteed or not. In [21] a number of requests are allocated in a
service period, which translates into a gross bandwidth guarantee as
long as the size of the requests is fixed.

We have chosen to allocate a fixed number of bursts in the back-end
schedule to every requestor in a service period. This is similar to [21]
but with two important differences. Firstly, bursts in the back-end
schedule correspond to net bandwidth and secondly the finer level of
granularity enables a wider range of dynamic scheduling algorithms.
We examine this closer in Chapter 5.

4.2 Service periods

As mentioned in Section 4.1, allocation is done on the basis of service
periods. We define and discuss service periods in this section.

Definition 4.2.1. A service period, p, has a length of |p| bursts in the
back-end schedule. A service period can be shorter than the back-end
schedule, and consist of a number of basic groups, or span multiple
revolutions of the schedule. All requestors in R have service periods of
equal length.

Definition 4.2.1 constrains how the length of the service period is
picked. The back-end schedule is constructed to provide a read/write
mix that fits with the requestors in R. It is imperative, since a fixed
number of bursts are allocated to a requestor in a service period, that
every service period maintains the same mix. If the read/write mix
changes between service periods, as shown in Figure 4.1, it may not be
possible to provide all of the allocated bursts to the requestors causing
their bandwidth requirements to fail.

Bandwidth allocation 35

ReadReadWriteWrite ReadReadWriteWrite RefReadReadWriteWrite

p0 p1 p2 p3

Figure 4.1: Four service periods with different read/write mixes.

Defining the service period to span a number of basic groups, as
shown in Figure 4.2, prevents the offered read/write mix from changing
between service periods. This can also be accomplished by defining
the service period to be longer than the back-end schedule and span
multiple revolutions. This situation is shown in Figure 4.3.

ReadReadWrite ReadReadWrite ReadReadWrite ReadReadWrite Ref

x = 4

x = 2

x = 1

Figure 4.2: Possible service periods, shorter than the back-end schedule, that
maintains the read/write mix.

RefReadReadWrite ReadReadWrite RefReadReadWrite ReadReadWrite

x = 1/1

x = 1/2

Figure 4.3: Possible service periods, longer than the back-end schedule, that
maintains the read/write mix.

The formal model requires a relation between the length of the
service period and the back-end schedule. Equation (4.1) expresses this
relation where x is a function returning the number of times p repeats
in one revolution of the back-end schedule. It follows by Definition 4.2.1
that x(M, θ, p) is a factor of k(M, θ) if the service period is shorter than
the back-end schedule. If the service period spans multiple revolutions
of the back-end schedule x(M, θ, p) = 1/i; i ∈ N where i equals the
number of revolutions.

36 Bandwidth allocation

x(M, θ, p) =
k(M, θ) · (cread(θ) + cwrite(θ))

|p|
; k(M, θ), |p| ∈ N (4.1)

The length of the service periods is defined to be equal for all re-
questors. Varying service period lengths constrains the dynamic front-
end scheduler to be schedule-based [23] and schedule memory access
on basis of earliest-deadline-first. Greater flexibility is achieved if the
scheduling algorithm is free to schedule any requestor whose request fits
with the bank and direction of the current burst in the back-end sched-
ule. This decision allows a wider range of scheduling algorithms to be
defined, scheduling requestors to achieve anything from high through-
put to low average latency or a high level of fairness. Properties of
scheduling algorithms are further discussed in Section 5.1.

4.3 Allocation function

In [12, 21] the number of cycles and requests per service period is
manually determined and programmed at device setup. We have chosen
to automate this step by having an allocation function, a(r, M, θ, p),
compute the allocation for the requestors.

Definition 4.3.1. A requestor, r, is allocated at least a(r, M, θ, p)
bursts out of every |p| bursts. This corresponds to allocating an amount
of net bandwidth, A(r, M, θ, p), that is a fraction of the available net
bandwidth S′(M, θ). The bandwidth requirement of r is satisfied if
A(r, M, θ, p) ≥ w(r).

A(r, M, θ, p) =
a(r, M, θ, p)

|p|
· S′(M, θ)

For the allocated rates to make any sense we cannot allocate more
bandwidth to the set of requestors than available, meaning that Equa-
tion (4.2) must hold.

∑

∀r∈R

a(r, M, θ, p)

|p|
≤ 1 (4.2)

Bandwidth allocation 37

The allocation function is simple and calculates the number of
bursts required per service period. This is based on the average band-
width requirement in the specification. The number of requested bursts
in a service period needs to be calculated. To do this we need to deter-
mine the number of revolutions of the back-end schedule per second.
This is done as shown in Equation (4.3), by calculating the number of
available clock cycles in a second and dividing it by the number of cy-
cles, tθ(M, θ), needed to revolve the back-end schedule once. The clock
cycle time, tCLK(M), must be specified in seconds for Equation (4.3)
to be accurate.

nθ(M, θ) =

1
tCLK(M)

tθ(M, θ)
(4.3)

We now translate the bandwidth requirement per second into a
requirement per service period. Equation (4.4) shows how to calculate
this burst requirement. We refer to this as the real requirement.

wreal(r, M, θ, p) =

w(r)
sburst(M)·sword(M)

nθ(M, θ) · x(M, θ, p)
; wreal(r, M) ∈ R

+ (4.4)

The number of bursts allocated to the requestor, the actual require-
ment, must be a multiple of the request size of the requestor. This
results in that a requestor is always capable of finishing the service of a
request in one service period, which is good for the worst-case latency
bound. This also increases the effect of discretization errors during al-
location thus reducing memory efficiency. The actual requirement for
a requestor is computed in Equation (4.6) where σburst(r, M) is the re-
quest size in memory bursts. Note that a(r, M, θ, p) ≥ wreal(r, M, θ, p) ⇔
A(r, M, θ, p) ≥ w(r), which is required to satisfy the bandwidth require-
ment.

σburst(r, M) =

⌈

σ(r)

sburst(M) · sword(M)

⌉

(4.5)

a(r, M, θ, p) =

⌈

wreal(r, M, θ, p)

σburst(r)

⌉

· σburst(r) (4.6)

38 Bandwidth allocation

The over-allocation, o(R, r, M, θ, p), introduced by the discretiza-
tion errors in Equation (4.6) is quantified in Equation (4.7).

o(R, r, M, θ, p) =

∑

∀r∈R a(r, M, θ, p) − wreal(r, M, θ, p)
∑

∀r∈R a(r, M, θ, p)
(4.7)

The worst-case over-allocation, presented in Equation (4.8), occurs
when a(r, M, θ, p) − wreal(r, M, θ, p) = σburst(r) − ǫ for all requestors
where ǫ is an infinitesimal number. In this case every requestor is over-
allocated one request per service period. The worst-case over-allocation
grows with an increasing number of requestor, larger request size and
shorter service periods. This is further examined in Section 6.4

owc(R, r, M, θ, p) =

∑

∀r∈R σburst(r)
∑

∀r∈R wreal(r, M, θ, p)
(4.8)

We define allocation efficiency, ealloc(r, M, θ, p), in Definition 4.3.2
as a metric of the efficiency of an allocation.

Definition 4.3.2. Allocation efficiency, ealloc(r, M, θ, p), is a measure
of how well a particular allocation fits with the requested number of
bursts. Allocation efficiency is defined as the ratio between the actual
and the real number of requested bursts.

ealloc(r, M, θ, p) =

∑

∀r∈R wreal(r, M, θ, p)
∑

∀r∈R wreal(r, M, θ, p)

Total efficiency (Definition 3.4.3) is a metric of how much net band-
width a schedule provides and how well it fits with the directions of the
requestors. By including the allocation efficiency in this metric we state
that we also want the requested bandwidth to fit as close as possible
with the allocated bandwidth. This means that an efficient solution
has more slack bandwidth available in a service period than it other-
wise would, as shown in Figure 4.4. The slack bandwidth is not useful
when adding more requestors since both the back-end schedule and the
allocation must be recomputed. The allocation efficiency will also, if
aggregated into the total efficiency metric, interact with the schedule
and mix efficiency and promote solutions with less net bandwidth and
slack bandwidth in non useful direction. We have thus decided not to
include allocation efficiency in our total efficiency metric.

Bandwidth allocation 39

Slack
bandwidth

Mix
waste

Gross
to

net
waste

Real requirement

Actual requirement

Without
allocation
efficiency

With
allocation
efficiency

Figure 4.4: Preferred solutions with and without allocation efficiency in total
efficiency metric. Blocks shown as fractions of peak bandwidth.

4.4 Requestor constraints

To provide a hard real-time net bandwidth guarantee, every requestor
must be able to use its entire allocation every scheduling period. In
this section we introduce constraints on the requestors to ensure that
allocated bandwidth is not wasted.

Definition 4.4.1. A requestor, r inR, is backlogged if the request queue
for r is not empty. The requestors in R must be backlogged all the time
for their bandwidth guarantee to be valid.

Definition 4.4.1 is intuitive since bandwidth can not be delivered
unless it is requested. Backlogging is required by most scheduling al-
gorithms for their properties to be valid.

Transaction boundaries are another source of wasted allocated band-
width. They can result in waste if a requestor changes directions, as
shown in Figure 4.5.

A single requestor is allocated all of the bursts. A read request,
interleaved over the banks by the memory map, is present in the request
buffer, followed by a write request. The figure shows that once the read
burst is finished a number of bursts cannot be used since they are in the
wrong direction. The waste is less noticeable in systems with multiple
requestors since one requestor can cover for the transaction boundaries
of another by making use of the intermediate bursts. This potential
waste of bandwidth is, however, not acceptable in a system that delivers

40 Bandwidth allocation

Read
Bank 1

Read
Bank 0

Read
Bank 2

Write
Bank 2

Write
Bank 3

Write
request

Read
request

Read
Bank 0

Read
Bank 1

Read
Bank 2

Read
Bank 3

Write
Bank 0

Write
Bank 1

Write
Bank 2

Write
Bank 3

Back−end scheduleRequest buffer

r0

Figure 4.5: Bursts wasted when changing directions.

hard real-time guarantees, which is why Definition 2.2.2 states that a
requestor is either reading or writing, but not both. Consider further
the situation with an interleaved memory map depicted in Figure 4.6.

Read
Bank 0

Read
Bank 1

Read
Bank 2

Read
Bank 1

Read
Bank 2

Read
Bank 3

Read
Bank 2

Read
Bank 3

Read
Bank 0

Read
Bank 0

Read
Bank 1

Read
Bank 2

Read
Bank 0

Read
Bank 1

Read
Bank 2

Read
Bank 3

Read
Bank 0

Read
Bank 1

Read
Bank 2

Read
Bank 3

Read
Bank 0

Read
Bank 1

Read
Bank 2

Read
Bank 3

Back−end schedule

Request buffer

r0

r1

r2

r3

Figure 4.6: Arbitrary request patterns may result in wasted bursts.

The requestors do not have more bursts going in any direction than
what is available, but still an arbitrary scheduling order may result in
waste. If r0 gets the first three bursts, then no one can make use of the
fourth burst, which is wasted even though no requestor misbehaved.
This may result in some requestor failing to meet its guarantees. It is
very difficult to solve this problem through scheduling and this would
seriously constrain the scheduler and hurt the flexibility of the model.
The problem is relieved by making sure that it is known beforehand
what bank that will be requested by the requestors. That can be done
using one of two bank access patterns: partitioning and memory-aware
IP design. Both approaches can be used to create a hard real-time
guarantee on net bandwidth.

The memory map of a partitioned system maps the address space
of a requestor to a single bank. All requests from a requestor will thus
always target the same bank. A partitioned system guarantees that

Bandwidth allocation 41

a request can be scheduled and that a slot is only wasted if Defini-
tion 4.4.1 is violated. Partitioning requestors to particular memory
banks is, however, a challenging problem. First of all nothing guaran-
tees that a partitioning can be made that is balanced on both band-
width and directions. Any unbalance in the partitioning results in
wasted bandwidth and may cause allocation to fail. Secondly parti-
tioning complicates reconfiguration. The partitioning has to be redone
if requestors are added or if their requirements are modified and it may
no longer be possible to find acceptable solutions. If a new solution
can be found, some requestors may have been mapped to other banks
and have to move their data before new memory accesses are allowed.

With memory-aware IP design we mean a system that is designed
with the multi-bank architecture of the target memory in mind. This
may involve making every memory access request all banks in sequence
and thus have a system that is perfectly balanced over the banks by
construction. This pattern avoids the balancing problem, but con-
strains the size of the requests to be a multiple of sburst(M) · sword(M)
B.

4.5 Analysis of worst-case latency

In a hard real-time system the worst-case performance is of utmost
importance and must be well-known if guarantees are to be provided.
In this section we discuss how to compute the worst-case latency for a
request.

We use a modular approach and calculate the worst-case latency as
the sum of a number of components. We briefly list the components of
the worst-case service latency and then discuss them in greater detail.

• Bursts needed in the direction of the request before it is finished

• Read/write switches and bursts going in the interfering direction.

• Interfering refresh groups

• Arrival/arbitration mismatch

We choose to keep the analysis general so that it is valid for all
scheduling algorithms implementing the allocation scheme. A tighter

42 Bandwidth allocation

bound can be derived by examining a particular scheduling algorithm.
We do not tailor the analysis to a particular quality-of-service scheme
but require the existence of a total ordering between the priority levels
used.

We assume that a request arrives at such a time that the inter-
ference from the other groups is maximized. The worst-case arrival
for a request is to end up just in front of the last sequence of bursts
going in the interfering direction. This does not only make sure that
the maximum number of unusable bursts is up for scheduling, but also
that every request has at least one refresh included in the worst-case
latency. The worst-case positions in the back-end schedule for reads
and writes are illustrated in Figure 4.7.

RefRead ReadWriteRead ReadWrite

Worst
case
write

Worst
case
read

Figure 4.7: Initial position in schedule for worst-case read and worst-case
write.

4.5.1 Remaining bursts

We need to calculate how many bursts in the direction of the requestor
that are needed to guarantee that the request finishes. The request
needs σburst(r, M) bursts in the proper direction to finish. Since we do
not make any assumptions about the scheduling order of the front-end
scheduler these are assumed to be as late as possible. At this stage
priorities come into play. A requestor can be forced to wait for all
other requestors of equal or higher priority in the same direction. We
do thus define the set R′(R, r) to contain all such requestors.

Definition 4.5.1. The set R′(R, r) is defined to contain all requestors
with the same direction as r and with equal or higher priority.

The request is thus finished after the number of bursts in the right
direction computed by Equations (4.10) and (4.9). The equations cal-
culates the combined allocation of all requestors in R′(R, r) except for

Bandwidth allocation 43

a(r, M, θ, p) since only σburst(r, M) ≤ a(r, M, θ, p) bursts are required
by r for the request to be finished. Equation (4.9) applies to systems
using the memory-aware bank access pattern. Note that the computed
value must be multiplied by the number of banks if the requestors are
partitioned to specific banks, as shown in Equation (4.10), since only
one out of nbanks(M) bursts are useful to serve the request.

naware
left (R, r, M, θ, p) =

∑

∀ρ∈R′(R,r)

a(ρ, M, θ, p)−a(r, M, θ, p)+σburst(r, M)

(4.9)

npartitioned
left (R, r, M, θ, p) = naware

left (R, r, M, θ, p) · nbanks(M) (4.10)

4.5.2 Interfering bursts

The total number of bursts to wait for in order to get nleft(R, r, M, θ, p)
bursts in the right direction may vary for reads and writes since the
number of consecutive bursts, cread(θ) and cwrite(θ), can be different.
Equations (4.11) and (4.12) calculates the time lost to bursts in the
interfering direction for a read request, including the actual switches.
Equations (4.13) and (4.14) applies to write requests.

nread
switches(R, r, M, θ, p) =

⌈

nleft(R, r, M, θ, p)

cread(θ)

⌉

(4.11)

tread
direction(R, r, M, θ, p) = nswitches(R, r, M, θ, p)·

(tswitch(M) + cwrite(θ) · tgroup(M)) (4.12)

nwrite
switches(R, r, M, θ, p) =

⌈

nleft(R, r, M, θ, p)

cwrite(θ)

⌉

(4.13)

twrite
direction(R, r, M, θ, p) = nswitches(R, r, M, θ, p)·

(tswitch(M) + cread(θ) · tgroup(M)) (4.14)

44 Bandwidth allocation

4.5.3 Refresh interference

As previously stated the worst-case latency always contains at least one
refresh group. For every revolution of the back-end schedule there is
an additional refresh group. The number of interfering refresh groups
are conveniently expressed in terms of the relation between the back-
end schedule and the service period, provided by the function x, due
to the constraints put on the service period in Definition 4.2.1. The
total number of refreshes interfering with the transaction is calculated
in Equation (4.15).

nref (M, θ, p) =

⌈

1

x(M, θ, p)

⌉

(4.15)

4.5.4 Arrival/arbitration mismatch

The cycles until re-arbitration are lost if a request becomes eligible just
after an arbitration decision is made. The number of cycles lost is one
cycle less than the arbitration period. Re-arbitration occurs after every
burst in the partitioned system but only after one burst is scheduled for
every bank in the memory-aware system. This means that more cycles
are lost in systems with the memory-aware bank access pattern, shown
in Equation (4.16), than in partitioned systems (Equation (4.17)).

taware
mismatch(r, M) =

sburst(r, M)

2
· nbanks(M) − 1 (4.16)

tpartitioned
mismatch (r, M) =

sburst(r, M)

2
− 1 (4.17)

4.5.5 Putting it together

We calculate the worst-case latency by combining the equations in this
section. This is shown in Equation (4.18).

tlat(R, r, M, θ, p) = nleft(R, r, M, θ, p) · tburst(M)+

tdirection(R, r, M, θ, p) + nref (M, θ, p) · tref (M)+

tmismatch(r, M) (4.18)

Bandwidth allocation 45

This section shows that there are many factors affecting the worst-
case latency for a request from a particular requestor. It depends on the
requestor itself and all other requestors in the system. It also depends
on the target memory, the back-end schedule and the scheduling period
that is used.

Equation (4.18) reveals a number of ways to reduce the worst-case
latency. We can reduce nleft(R, r, M, θ, p) by granting a latency sensi-
tive requestor higher priority. This reduces the set R′(R, r) and thus
the impact of other requestors in the system. This has a significant im-
pact, especially in partitioned systems with multiple requestors mapped
to the same bank. The remaining number of bursts also shrinks with
the request size since fewer bursts needed to transfer smaller requests.
Groups in the interfering direction hurts worst-case latency. The im-
pact is reduced by constraining the number of groups in that direction,
which trades latency for memory efficiency and may cause allocation
to fail for high loads. Refresh interference is not a major component in
the worst-case latency but is minimized by keeping the service period
shorter than the back-end schedule.

4.6 Computing a scheduling solution

In this section we show how to compute a scheduling solution, which
consists of a back-end schedule and its relation to the service period.
Scheduling solutions are defined in Definition 4.6.1.

Definition 4.6.1. For a target memory a scheduling solution, γ, is
defined by a tuple (θ, x(M, θ, p)), where θ is a back-end schedule and
x(M, θ, p) the relation to the service period.

As stated in Section 3.3 the nonlinear properties of the back-end
schedule makes it difficult to directly compute an optimal solution.
We have chosen to use an exhaustive search within a reduced search
space to find the schedule. Since the algorithm computes the schedules
for the different use-cases off-line, it has no real-time demands making
an exhaustive search a feasible option. The search space is, however,
bounded to make the run-time of the algorithm faster.

The algorithm consists of four nested loops iterating over the num-
ber of consecutive refreshes, read groups, write groups and the possible

46 Bandwidth allocation

service periods (n(θ), cread(θ), cwrite(θ) and x(M, θ, p) respectively).
The refresh loop is bounded by the number of refresh commands in the
refresh group, maximum eight for all DDR memories. The number of
read and write groups are bounded by the total number of groups that
fit before refresh. The number of groups that fit before refresh depends
on the number of switches but corresponds roughly to 100 groups per
refresh command in the refresh group. The possible service periods are
bounded by the number of unique factors in k(M, θ) for every solu-
tion. The search space is limited by not adding further groups in one
direction if there is a latency violation in the other unless more groups
are added in that direction as well. If both read and write latencies
are violated by a solution, then no better valid solution can be found
with the present refresh settings. This means that the algorithm uses
the latency calculations to limit the search space, compensating for
the rather loose bounds on the number of read and write groups. The
algorithm picks the optimal solution from the set of valid solutions.
The optimization criterion can vary from memory efficiency, or lowest
average latency to most efficient allocation.

Algorithm 4.1 Algorithm for computing a scheduling solution.
for possible refresh intervals (1 to 8 consecutive refreshes)

for 1 to READ_MAX read groups

for 1 to WRITE_MAX write groups

for possible service periods (unique factors in k)

if allocation successful and

latency constraints satisfied

store solution

else if read latency violation

break write loop

else if read and write latency violation

break read loop

pick optimal solution

Chapter 5

Dynamic front-end scheduler

The allocation scheme guarantees that a number of bursts, determined
by an allocation function, is serviced to the requestors every service
period. A dynamic front-end scheduler is introduced that bridges be-
tween the fixed back-end schedule and the allocation scheme by map-
ping bursts to requestors. Flexibility is increased by distributing the
allocated bursts dynamically according to the quality-of-service levels
of the requestors. We start by looking into some important properties
of scheduling algorithms in Section 5.1 before introducing our schedul-
ing algorithm, sliding QoS-aware FCFS scheduling, in Section 5.2.

5.1 Properties and terminology

The original work on real-time scheduling concerns job scheduling on
a single processor but have been further developed in the context of
packet-switched networks in the 90’s. A large number of algorithms
with different properties has been proposed over the years and in this
section we learn about these properties and familiarize ourselves with
the terminology of scheduling algorithms. We look into five general
properties of scheduling algorithms: work conservation, fairness, pro-
tection, flexibility and simplicity.

5.1.1 Work-conservation

A scheduling algorithm can be classified as work-conserving or non-
work-conserving. A work-conserving algorithm is never idle when there

47

48 Dynamic front-end scheduler

is something to schedule. In a non-work-conserving environment re-
quests get associated with an eligibility time and are not scheduled
until this time, even though the memory may be idle. It is easy to
realize that a work-conserving algorithm can yield a lower average la-
tency than a non-work-conserving since it can achieve higher average
throughput. The advantage of non-work-conserving scheduling algo-
rithms is that they can reduce buffering by providing data just-in-time
and put bounds on jitter. A number of work-conserving and non-work-
conserving scheduling algorithms are overviewed in [23, 24]

5.1.2 Fairness

A fair scheduling algorithm is expected to serve the requestors in a
balanced fashion according to their allocation. Perfect fairness is for-
mally expressed in Equation 5.1 with sr(t0, t1) denoting the amount of
service given to requestor r in the half-open time interval [t0, t1).

∣

∣

∣

∣

sk(t0, t1)

ak
−

sj(t0, t1)

aj

∣

∣

∣

∣

= 0;∀t0, t1,∀k, j ∈ R (5.1)

It follows from Equation 5.1 that a perfectly fair system can only be
achieved in a system where work is infinitely divisible, a fluid system.
A scheduling algorithm for this kind of system is proposed in [15]. The
more general expression in Equation 5.2 is used if the system in question
is not a fluid system. Several scheduling algorithms [3, 4, 15, 19] have
been proposed that work with this kind of fairness bounds.

∣

∣

∣

∣

sk(t0, t1)

a(k, M, θ, p)
−

sj(t0, t1)

a(j, M, θ, p)

∣

∣

∣

∣

< κ;∀t0, t1,∀k, j ∈ R (5.2)

It should be clear from Equation 5.2 that the bound on fairness,
κ, grows with the level of granularity in the system. It is thus possi-
ble to create an algorithm with higher degree of fairness in a system
scheduling SDRAM bursts rather than requests since this is a closer
approximation of a fluid system, which is why we chose to work on a
finer level of granularity in Section 4.1.

Fairness impacts buffering. The channel buffers bridge between the
arrival and the consumption processes. The consumption process is de-
termined by the memory controller but the arrival process is assumed,

Dynamic front-end scheduler 49

from Section 2.2, to be unknown. For this reason these processes must
be assumed to have a maximum phase mismatch. A high level of fair-
ness makes the consumption process less bursty, causing the buffers to
drain more evenly. This brings the worst-case and average-case buffer-
ing closer together.

Fairness has a dualistic impact on latency. When interleaving re-
quests of the same size, the worst-case latency remains the same but
the average latency increases since the requests finishes later. The im-
pact of this grows with finer granularity. If requests have different sizes,
fairness prevents a small request from being blocked by a large one and
receive high latency and an unreasonable wait/service ratio.

Our design has a two level fairness scheme. The allocation scheme
provides fairness in the sense that the requestors get their allocated
number of bursts in a service period. The smaller the period the larger
the level of fairness. The second level of fairness is optionally provided
by the scheduling algorithm.

5.1.3 Protection

It has been observed in packet-switched networks employing a FCFS
algorithm that a host can claim an arbitrary percentage of the band-
width by increasing its transmission rate. This enables malfunctioning
or malicious hosts to affect the service given to well-behaving hosts.
Nagle [13] addresses this problem by using multiple output queues and
servicing them in a Round-Robin fashion. This provides isolation and
protects a host from the behavior of others.

Protection is fundamental in a system providing guaranteed services
and for that reason this property is built into the allocation scheme, as
discussed in Section 4.1, and is provided regardless of the scheduling
algorithm in use. Over-asking results in buffers filling up, which can
cause data loss in a lossy system or flow control to halt the producer
in a lossless one. Either way the service of the other requestors is not
disrupted.

5.1.4 Flexibility

A scheduling algorithm must be flexible and cater to diverse traffic char-
acteristics and performance requirements, as discussed in section 1.1.

50 Dynamic front-end scheduler

These kinds of traffic and their requirements are well recognized. Many
memory controllers deal with these differing demands by introducing
traffic classes. Although the memory controllers are quite different the
chosen traffic classes are very similar since they correspond to well-
known traffic types. Three common traffic classes are identified:

• Low latency

• High bandwidth

• Best effort

The low latency traffic class targets requestors that are very la-
tency sensitive. In most memory controllers the requestors in this class
have the highest priority, at least as long as they stay within their al-
location [12, 14, 19, 21]. In their attempts to minimize latency Lin et
al. [12] enables requests within this traffic class to pre-empt other re-
quests of lower priority. This reduces latency at the expense of memory
efficiency and predictability.

The high bandwidth class is used for streaming requestors. In some
systems these have loose bounds on latency allowing the requests in
this traffic class to be reordered and thus sacrifice latency in favor of
memory efficiency.

The best effort traffic class is found in [12, 19, 21] and these requests
have the lowest priority in the system. They have no guaranteed band-
width nor bounds on latency but are served whenever there is band-
width left over from the higher priority requestors. It is important to
keep in mind that if the left over bandwidth is lower, on average, than
the requested rate from the requestors in this traffic class, requests
will have to be dropped to prevent overflowing the request buffer or
flow-control must be used to slow down the requestors.

5.1.5 Simplicity

There are limitations on the complexity of the scheduling. It must be
feasible to implement in hardware and run at high speeds. The time
available for arbitration depends on the size of the service unit used.
We have chosen to work with bursts in the back-end schedule, which are

Dynamic front-end scheduler 51

DDR bursts of eight words. This means that re-arbitration is needed
every four clock cycles, corresponding to 20 ns for DDR2-400 and 12
ns for DDR2-667. This provides a lower bound on the speed of the
arbiter.

5.2 Sliding QoS-aware FCFS scheduling

An objective of the bandwidth allocation scheme presented in Chap-
ter 4 is to place as few constraints as possible on the scheduling al-
gorithm. The allocation scheme states that the algorithm used must
provide an allocated number of bursts to every requestor in a service
period. No assumptions are made regarding the order in which the
requestors get their allocated number of bursts. This provides great
flexibility since the scheduling algorithm is free to pick any requestor
whose bank and direction matches the current burst in the back-end
schedule.

In this section we present our scheduling algorithm, called sliding
QoS-aware FCFS scheduling. The term sliding stems from that the
service periods may be unaligned and that a new period does not start
unless there is a request available in the request buffer of the requestor.
Figure 5.1 shows a number of aligned consecutive service periods and
Figure 5.2 a situation with sliding service periods. A black slot indicates
that there are no requests in the request buffer causing the periods to
slide.

r2

r1

r0

p0 p1 p2 p3

Figure 5.1: The service periods are aligned.

The benefits of the sliding service periods is that a requestor that
has been idle benefits from bandwidth guarantees right away and does
not have to wait for the service period to restart, a delay that is po-

52 Dynamic front-end scheduler

r2

r1

r0

p0 p1 p2

Figure 5.2: The service periods are unaligned and sliding. Service periods
shown for r2.

tentially very long depending on the granularity of the scheduling and
the priority level of the requestor.

Sliding the service periods does not complicate the bandwidth guar-
antee. All requestors can still use their entire allocation regardless of
the behavior of others as stated in Theorem 5.2.1.

Theorem 5.2.1. A requestor, r, is guaranteed a(r, M, θ, p) bursts in a
sliding service period.

Proof. The proof is expressed in terms of delay. Consider the set of
requestors, R−(R, r), consisting of all requestors but one, r. When the
requestors are all backlogged and aligned like in Figure 5.3 the delay,
δ(R, r), imposed on r by R−(R, r) reaches its maximum value. This
is realized by considering what happens in terms of delay for r as the
windows start to slide. This is shown in Figure 5.4. The maximum
delay is bounded by the total allocation of the requestors in R−(R, r).
This is stated in Equation (5.3)

X

X

X

X

X

Xr2

r1

r0

δ(R, r2)

Figure 5.3: Worst-case for r2. Maximally delayed by r0 and r1.
a(r, M, θ, p) = 3; ∀r ∈ R and |p| = 3.

No matter in what direction or over what distance r0 or r1 slides,
δ(R, r2) decreases indicating that the case in Figure 5.3 was indeed the

Dynamic front-end scheduler 53

X

X

X

X

X

r2

r1

r0

Figure 5.4: As the windows slide r2 gets less delayed. In this figure
δ(R, r2) = 0.

worst-case.

δ(R, r) ≤
∑

∀ρ∈R−(R,r)

a(r, M, θ, p) (5.3)

For the bandwidth guarantee to hold we must show that there is
enough space in p for r to allocate a(r, M, θ, p) bursts even with the
maximum delay, hence Equation (5.4) must hold.

δ(R, r) ≤
∑

∀ρ∈R−(R,r)

a(ρ, M, θ, p) ≤ |p| − a(r, M, θ, p) (5.4)

Equation (5.4) is, according to Equation (4.2) together with Defi-
nition 4.2.1 guaranteed to hold since

∑

∀ρ∈R

a(ρ, M, θ, p) ≤ |p|

0 ≤ |p|−
∑

∀ρ∈R

a(r, M, θ, p) = |p|−

∑

∀ρ∈R−(R,r)

a(ρ, M, θ, p)

−a(r, M, θ, p)

∑

∀ρ∈R

a(ρ, M, θ, p) ≤ |p| − a(r, M, θ, p)

This shows that there are always enough bursts within p to schedule
a(r, M, θ, p) of them to r.

54 Dynamic front-end scheduler

Our front-end scheduler is similar to that of the Deficit Round-
Robin (DRR) scheduling algorithm. Two variations of this algorithm
are introduced in [19] and our implementation is inspired by one of
them, called DRR+. DRR+ is designed as a fast packet-switching al-
gorithm with a high level of fairness. It operates on the level of packets
with variable size, which is very similar to the requests considered in
our model, and can easily be modified to work with bursts. We primar-
ily employ two priority levels, low latency and high-bandwidth, from
the well-known classes described in Section 5.1. One way to improve
the average latency is to make the algorithm work-conserving and let
requestors who have run out of credits degrade to the best effort prior-
ity level and be served only if no other backlogged and eligible requestor
has remaining credits. We look into this option in Section 6.7.

Definition 5.2.2. The set of valid priority levels is defined as C =
{LL,HB,BE}.

Since the back-end schedule has decided on the bank and direc-
tion of a particular burst only requests going in that direction can be
considered and do thus constitute a subset of the requestors eligible
for scheduling. Lists, similar to the active-lists of DRR+, are main-
tained in FCFS order for every quality-of-service level. A previously
idle requestor is added to the corresponding list when a request arrives
at an empty request buffer. These lists are maintained in one of two
ways depending on which of two variations of the algorithm that is be-
ing used. The first variation does scheduling on the request level and
does not pick another request from the eligible subset until the entire
request is finished. The requestor is added to the bottom of the list
when a request is finished, provided that there are more requests in the
request queue. The second variation of the algorithm operates on the
burst level and moves the requestor to the bottom of the list for every
scheduled burst. Both variants allow only a single entry in the lists per
requestor.

The first variation reduces the amount of interleaving and provides
a lower average latency, although the worst-case latency remains the
same. The amount of buffering required is proportional to the bursti-
ness of the arrival and consumption processes and the worst-case la-
tency. The arrival process and worst-case latency is unchanged for the

Dynamic front-end scheduler 55

two variations but the first variation has more bursty consumption and
has thus a larger worst-case buffer requirement.

The lists are examined in a FCFS order and the first eligible re-
questor is scheduled. To give low latency requestors the quality-of-
service they require they are always served first. If there are no back-
logged low latency requestors, or if they have run out of allocation
credits, a high bandwidth requestor is picked. This situation is illus-
trated in Figure 5.5.

RefReadReadWrite ReadReadWrite

Read
Bank 0

Read
Bank 1

Read
Bank 2

Read
Bank 3

LLHB

r0

r5

r1 r8

Figure 5.5: The scheduler picks from a set of eligible low-latency and high-
bandwidth requestors.

The FCFS nature of the algorithms increases fairness beyond that of
the allocation scheme, which means that tighter latency bounds than
those of Section 4.5 can be derived. This analysis is, however, not
included in this thesis.

56 Dynamic front-end scheduler

Chapter 6

Experiments

We derived an analytical memory controller model in previous chap-
ters. In this chapter we simulate an example application and compare
analytical and simulated results. In Section 6.1 we present the sim-
ulation platform and the conditions of the simulation. The example
application used in our simulations is introduced in Section 6.2 before
scheduling solutions are computed for the partitioned and memory-
aware access patterns in Section 6.3. We discuss over-allocation and
the impact of request sizes in Section 6.4 as we present the allocation
results and then proceed by showing bandwidth and latency results in
Section 6.5 and Section 6.6 respectively. Finally, we optimize a system
for low latency in Section 6.7.

6.1 Simulation setup

The memory controller model is implemented in SystemC and is simu-
lated using the Æthereal network-on-chip simulator [5]. The requestors
are specified using a spreadsheet and are simulated with traffic gener-
ators. The traffic generator for a requestor, r, sends requests strictly
periodically with the period calculated in Equation (6.1). The min-
imum requested bandwidth, w(r), is converted into requests of the
specified size, σ(r). These requests are transmitted equidistantly over
time.

tgen(r) =
109 · σ(r)

w(r)
(6.1)

57

58 Experiments

A network fitting the specification is generated by an automated
tool flow [6]. All requests are transmitted across the network as guar-
anteed service traffic [16] ensuring ordered non-lossy delivery with time-
related performance guarantees. In order for the latency measurements
to be comparable to the results from the analytical model we enforce
that the service of a request does not stall while waiting for write data
to arrive. This is accomplished by making write requests eligible for
scheduling when all their data have arrived.

6.2 Example application

In Table 6.11 we present the example system that is used throughout
this chapter. The system has 11 requestors, r0..r10 ∈ R, and is based
on the specification of a Philips video processing platform with two
filters. We scaled the bandwidth requirements of the requestors to
achieve a more suitable load for a 32-bit DDR2-400 memory device
that has a peak bandwidth of 1600 MB/s. The specified net bandwidth
requirements correspond to approximately 70% of the peak bandwidth.
We also added a latency sensitive CPU with three requestors (r8, r9

and r10) to the system.

Requestor Direction Request Bandwidth Max lat. Traffic Partition
size [B] [MB/s] [ns] class

r0 write 128 144.0 6000 HB 0

r1 write 128 72.0 6000 HB 1

r2 read 128 144.0 6000 HB 0

r3 read 128 72.0 6000 HB 1

r4 write 128 144.0 6000 HB 2

r5 write 128 144.0 6000 HB 3

r6 read 128 144.0 6000 HB 2

r7 read 128 144.0 6000 HB 3

r8 read 128 50.0 1300 LL 1

r9 read 128 20.0 1300 LL 1

r10 write 128 50.0 1300 LL 1

Table 6.1: Specification of requestors for an example video processing sys-
tem.

1MB is defined as 106 bytes throughout the experiments.

Experiments 59

The load and service latency requirements are not aggressively spec-
ified since we want to find solutions using both the partitioned and the
memory-aware bank access patterns and compare the results. The
limits for bandwidth requirements are examined in Section 6.5 and for
latency in Section 6.6. The request size has been set to 128 B (4 bursts)
for all requestors to be compatible with the memory-aware access pat-
tern. This is not unreasonable for high bandwidth requestors commu-
nicating via shared memory or for cache misses in a level 2 cache. The
optimization criterion is to find the most efficient (Definition 3.4.3)
solution satisfying the latency constraints of the requestors.

6.3 Scheduling solutions

In this section scheduling solutions are created and compared for two
systems implementing the example application. We discuss the gen-
erated solutions and calculate their total efficiency. The system pre-
sented in Section 6.3.1 uses the partitioned bank access pattern and
Section 6.3.2 shows a system with the memory-aware access pattern.

6.3.1 Partitioned system

The example system is partitioned as shown in Table 6.1. Each of the
two filters have four requestors for reading and writing luminance and
chrominance values. One read and one write requestor is partitioned
to every bank and the CPU is partitioned to the bank with the lowest
load. This assumes that the data required by the CPU is located in
that bank or that the CPU is independent of the filters. The computed
scheduling solution for the partitioned system is shown in Equation 6.2.

γpartitioned = ((1, 8, 6), 3) (6.2)

The efficiency of the calculated schedule is 95.8%, meaning that the
refresh group and read/write switches account for 4.2% of the available
bandwidth. This is an efficient gross to net bandwidth translation. The
basic group consists of eight read groups and six write groups. This is
not a very good match for the specified read/write ratio, and results
in a mix efficiency of 78.5%. Attempts for a closer approximation to

60 Experiments

the requested ratio has unwanted effects. The fact that allocation is
done in multiples of the request size may cause small changes in the
schedule to significantly increase the allocation of the requestors. This
causes latency requirements to fail if another write group is added.

The service period is determined to consist of two basic groups,
resulting in three service periods for every revolution of the back-end
schedule. Making the service period shorter than the schedule lowers
the worst-case latency bounds due to the increased fairness in the sys-
tem. It is no longer possible to maintain the shorter service period if a
read group is removed since this causes the factors in k(M, θ) to change.
This affects the set of service periods with maintained read/write mix
and, again, causes latency requirements to fail.

The total efficiency of this system is computed in Equation (6.3)
according to Definition 3.4.3.

etotal = eθ · emix = 0.752 = 75.2% (6.3)

6.3.2 Memory-aware system

The scheduling solution for the memory-aware system looks different
from that of the partitioned system, as shown in Equation 6.4.

γaware = ((2, 10, 10), 9) (6.4)

The basic group is longer in this schedule and consists of ten read
and ten write groups. This results in fewer read/write switches, which is
good for memory efficiency. The memory-aware schedule ends up being
slightly more effective, for this particular use-case, with a schedule
efficiency of 96.9%. The mix efficiency of this system is 96.5% since
equally many read and write groups comes fairly close to the requested
ratio. The request group contains two refresh commands making this
schedule approximately twice as long as for the partitioned system.

The total efficiency of this system is calculated in Equation (6.5).
The equation shows that the efficiency is significantly higher for the
memory-aware system, since latency and allocation constraints of the
partitioned system caused the mix efficiency to plunge.

etotal = eθ · emix = 0.935 = 93.5% (6.5)

Experiments 61

6.4 Allocation results

In this section we examine the allocation results of the two systems. We
compute the real and actual requirements and examine the resulting
over-allocation.

Both the partitioned and the memory-aware system employ service
periods shorter than the back-end schedule. The service period of the
partitioned system holds 112 bursts while the memory-aware system
has only 80 bursts. Short service periods are, as concluded in Sec-
tion 4.5, good for the worst-case latency, especially for high bandwidth
requestors, but may cause extensive over-allocation due to discretiza-
tion errors. Table 6.2 shows the allocation results for the partitioned
system. The table clearly shows that discretization errors causes mas-
sive over-allocation for requestors whose real requirement is small com-
pared to their request size. This is especially apparent for r9 with a real
requirement of 1.5 bursts that is being rounded to the nearest multiple
of the request size causing an over-allocation of 166.7%. A request from
r9, however, requires almost three service periods to finish without this
over-allocation, which results in an unacceptable worst-case latency in
the range of 4500 ns.

Requestor Real Allocated Over-
requirement bursts allocation

r0 10.5 12 14.3%

r1 5.3 8 50.9%

r2 10.5 12 14.3%

r3 5.3 8 50.9%

r4 10.5 12 14.3%

r5 10.5 12 14.3%

r6 10.5 12 14.3%

r7 10.5 12 14.3%

r8 3.7 4 8.1%

r9 1.5 4 166.7%

r10 3.7 4 8.1%

Table 6.2: Allocated bursts per service period for the partitioned system. A
service period contains 112 bursts.

62 Experiments

The allocation results in 711.6 MB/s being allocated to cover the
574.0 MB/s requested for reads. 656.9 MB/s is allocated for writes re-
quiring only 554.0 MB/s. This results in a total over-allocation due to
discretization of 21.3%. The worst-case over-allocation for this schedul-
ing solution and this set of requestors is, according to Equation (4.8)
53.4%.

The allocation in the memory-aware system is shown in Table 6.3.
The real requirement of the high bandwidth requestors comes quite
close to a multiple of the request size, causing a less severe over-
allocation for these requestors in this system. The real requirement
of the low latency requestors are still significantly smaller than the
request size resulting in significant over-allocation.

Requestor Real Allocated Over-
requirement bursts allocation

r0 7.4 8 8.1%

r1 3.7 4 8.1%

r2 7.4 8 8.1%

r3 3.7 4 8.1%

r4 7.4 8 8.1%

r5 7.4 8 8.1%

r6 7.4 8 8.1%

r7 7.4 8 8.1%

r8 2.6 4 53.8%

r9 1.0 4 300.0%

r10 2.6 4 53.8%

Table 6.3: Allocated bursts per service period for the memory-aware system.
A service period contains 80 bursts.

This system has 697.7 MB/s allocated for read requests and 620.2
MB/s for write requests. This corresponds to a total over-allocation of
16.8%. This indicates that the over-allocation for the memory-aware
system is smaller than for the partitioned system, even though the
service period of the memory-aware scheduling solution is smaller. This
is, however, only circumstantial as the worst-case over-allocation for
this solution is 75.6%, which is higher than the 53.4% of the partitioned

Experiments 63

system.
Table 6.4 examines how the total over-allocation is affected by the

request size for the scheduling solution used by the memory-aware sys-
tem. Over-allocation becomes a serious problem for this solution as
the request size grows and causes allocation to fail for the example
application for any request size over 128 B. The problem is solved by
Algorithm 4.6 by picking a solution with a longer service period, if the
latency requirements allows this.

Request size Over-allocation
[B]

32 10.0%

64 13.4%

128 16.8%

256 51.2%

512 202.4%

Table 6.4: The total over-allocation increases with the size of the requests.

6.5 Bandwidth results

We claim that the analytical model guarantee net bandwidth to the
requestors according to their specification. In this section we exam-
ine the net bandwidth provided to the requestors during simulation.
The simulated time is 106 ns, which corresponds to several thousand
revolutions of the back-end schedule. There are some initial delays
before requests arrive at the memory controller over the network, but
the simulated time is considerably more than needed for the results to
converge. Figure 6.1 shows the cumulative data passing the data path
on behalf of the requestors in the memory-aware system. Results are
not shown for the partitioned system since they are nearly identical,
as they should be, since the analytical guarantee is independent of the
access pattern. The results are a number of straight lines ending in the
targeted levels, as shown in Table 6.5. The delivered amount of data
corresponds nicely to the requested data, scaled to fit the simulation
time. The discrepancy from the specified bandwidth is small, maxi-
mum 0.22%, and is believed to be attributed to the initial delay. This

64 Experiments

means that net bandwidth is delivered to the requestors in real-time.

0 2 4 6 8 10

x 10
5

0

5

10

15
x 10

4 Delivered net bandwidth

Time [ns]

C
um

ul
at

iv
e

ne
t b

an
dw

id
th

 [B
]

Figure 6.1: Cumulative data during 106 ns of simulation.

Requestor Cumulative data Avg. net bandwidth Discrepancy
[B] [MB/s]

r0 143744 143.744 -0.18%
r1 71840 71.840 -0.22%
r2 143872 143.872 -0.09%
r3 71936 71.936 -0.09%
r4 143744 143.744 -0.18%
r5 143744 143.744 -0.18%
r6 143872 143.872 -0.09%
r7 143872 143.872 -0.09%
r8 50048 50.048 +0.10%
r9 20096 20.096 +0.05%
r10 49920 49.920 -0.16%

Table 6.5: Net bandwidth delivered to the requestors after 106 ns.

To test the scalability of the systems we increase the bandwidth re-
quirements of the high bandwidth requestors. A small increase causes
the partitioned system to fail allocation due to unbalance in the par-
titions. The memory-aware system scales further as we increase the

Experiments 65

load, although using different scheduling solutions. The system sim-
ulates properly with a gross load 89.3% using the solution shown in
Equation (6.6), while the latency constraints are kept the same. Fur-
ther increases of the load causes no valid solutions to be found for this
application. This shows that the model is capable of dealing with a
high load.

γbandwidth = ((1, 4, 4), 1) (6.6)

6.6 Latency results

In this section we focus on comparing the latency results from the
simulation of the two systems to the theoretical bounds computed by
the analytical model. We look at the measured minimum, mean and
maximum latencies when examining the latency of the simulation. The
minimum value is primarily determined by the burst size and the bank
access pattern. The maximum measured latency depends on the arrival
process of the interconnect, the allocation scheme and the scheduling
algorithm. It is interesting to compare this value to the worst-case
theoretical bound since this tells something about the frequency of the
worst-case. The mean latency should be kept low since it affects the
performance of the system. This value also depends on the arrival
process, allocation scheme and the scheduling algorithm.

A sliding QoS-aware FCFS request level scheduler is used in non-
work-conserving mode and does thus not distribute slack bandwidth.
We study the impact work-conservation Section 6.7.

6.6.1 Partitioned system latency results

Figure 6.2 shows the latency results for the partitioned system. As
shown in Table 6.6 many requestors hit the theoretical minimum bound
of 260 ns. The maximum measured values come close to their theo-
retical bounds since partitioning eliminates part of the competition in
arbitration, thus reducing the complexity of the worst case. The banks
in our particular system has only one reading and one writing requestor,
except for bank 1 that also houses the three low latency requestors of
the CPU. The figure clearly shows that the requestors partitioned to

66 Experiments

this bank (r1, r3, r8, r9, r10) have increased maximum measured la-
tency, as indicated by the theoretical bounds. This is reflected in the
increased mean latency. We also notice that the difference between the
mean and maximum value is slightly bigger for these requestors. This
reflects that it is not very common for the other requestors in the same
direction with equal or higher priority mapped to the same bank, to
have their requests available at the same time.

The average latency of the high bandwidth requestors is 699.9 ns
and 651.9 ns for the latency sensitive ones, which is not a remarkable
difference. The worst-case latency is, in fact, higher for the low la-
tency requestors than for some of the high bandwidth requestors. It is
apparent, as far as flexibility is concerned, that this system does not
offer low latency to latency sensitive requestors. There are two reasons
for this. Firstly, partitioning the requestors to different banks impacts
latency since only one out of nbanks(M) bursts is useful to a requestor,
regardless of priority level. Secondly, partitioning limits priorities to be
significant on a per-bank basis, which causes a high priority requestor
to come second to low priority requestors partitioned to different banks.
These are limitations inherent to this access pattern.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

Requestor

La
te

nc
y

[n
s]

Figure 6.2: Simulated minimum, mean and maximum latencies using parti-
tioning and request level scheduling

Experiments 67

Requestor Analytical Simulated Simulated Simulated Analytical
min [ns] min [ns] mean [ns] max [ns] max [ns]

r0 260.0 280.0 718.8 1105.0 1105.0

r1 260.0 260.0 1048.7 2095.0 2095.0

r2 260.0 260.0 537.8 945.0 945.0

r3 260.0 260.0 767.8 2095.0 2095.0

r4 260.0 260.0 721.2 1105.0 1105.0

r5 260.0 3050.0 724.9 1105.0 1105.0

r6 260.0 260.0 539.3 945.0 945.0

r7 260.0 260.0 541.0 945.0 945.0

r8 260.0 260.0 533.0 945.0 1265.0

r9 260.0 260.0 766.1 1265.0 1265.0

r10 260.0 260.0 656.5 1105.0 1105.0

Table 6.6: Minimum, mean and maximum latencies using partitioning and
request level scheduling.

Changing the scheduler to work on the burst level instead of the
request level trades average latency for fairness. The effects of this
trade are only visible in partition one, as that is the only partition
with multiple requestors with the same direction and hence the only
partition with requestors competing for a particular burst. The average
latency of r8 was increased by 12.4%, while it remained unchanged
for the other requestors. This indicates that there no overlap in the
presence of requests from the other requestors.

6.6.2 Memory-aware system results

Switching from partitioning to a memory-aware design changes the re-
sults considerably, as shown in Figure 6.3. A requestor is scheduled for
four consecutive bursts at a time, which turns the burst and request
level schedulers into the same algorithm for our particular request size.
Since a requestor ideally starts right away and is granted four consecu-
tive bursts it follows that the minimum measured latency is lower with
this access pattern than in the partitioned system. The maximum
measured latency is considerably lower than the theoretical bounds,
as shown in Table 6.7, since the analytical worst-case latency is inde-
pendent of the interconnect, whereas the measured worst-case is not.
Every requestor in the system can not have their requests available
at the same time on a shared interconnect and hence the worst-case

68 Experiments

situation never occurs. The average latency is lower for all requestors
compared with the partitioned system. The average latencies for low
latency and high bandwidth requestors are 350.2 ns and 490.8 ns re-
spectively showing that priority levels are useful to diversify the service
with this pattern.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

Requestor

La
te

nc
y

[n
s]

Figure 6.3: Simulated minimum, mean and maximum latencies using
memory-aware IP design.

Requestor Analytical Simulated Simulated Simulated Analytical
min [ns] min [ns] mean [ns] max [ns] max [ns]

r0 80.0 80.0 455.5 1160.0 1655.0

r1 80.0 80.0 445.3 1125.0 1735.0

r2 80.0 80.0 454.6 1270.0 1735.0

r3 80.0 80.0 520.3 1305.0 1815.0

r4 80.0 80.0 499.2 1205.0 1655.0

r5 80.0 80.0 429.8 1165.0 1655.0

r6 80.0 80.0 534.9 1345.0 1735.0

r7 80.0 80.0 586.7 1405.0 1735.0

r8 80.0 80.0 354.1 985.0 1255.0

r9 80.0 80.0 360.4 1065.0 1255.0

r10 80.0 80.0 336.0 1085.0 1175.0

Table 6.7: Minimum, mean and maximum latencies using memory-aware IP
design.

Experiments 69

6.7 A latency-optimized system

The memory-aware system is clearly capable of delivering lower latency
than the partitioned system. In fact, the partitioned system cannot
come up with a solution with lower latency than the one presented in
Section 6.3.1. The potential of the memory-aware system is shown if
we change the optimization criterion to find the solution with the low-
est average worst-case latency for low latency requestors satisfying the
bandwidth requirements. The computed scheduling solution is shown
in Equation 6.7.

γlatency = ((1, 2, 2), 3) (6.7)

This back-end schedule is shorter than the previous one since only
one refresh command is included in the refresh group. The basic group
is also shorter and consists of two read groups and two write groups,
which helps worst-case latency at the expense of the scheduling effi-
ciency dropping down to 90.0%. Since the number of read groups still
equals the number of write groups the mix efficiency remains at 96.5%.

The service period consist of three basic groups, or 112 bursts, and
results in an over-allocation of 14.0% (worst-case 50.1%). The latency
results of this solution are shown in Figure 6.4.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

Requestor

La
te

nc
y

[n
s]

Figure 6.4: Minimum, mean and maximum latencies using memory-aware IP
design in a latency-optimized system.

70 Experiments

The measured and theoretical worst-case latency for the low latency
requestors, r8, r9 and r10, are approximately cut in half, as shown in
Table 6.8, compared to the solution presented in Section 6.3.2. The
tighter bounds of the new solution also affects the average measured
latency of the requestors. The average latency for the low latency
requestors is 216.0 ns, which is a reduction of 38.3%. The high band-
width requestors are not considered by the new optimization criterion
and have their theoretical worst-case latency bounds increased. The
average latency for these requestors is 375.6 ns, which is an improve-
ment despite the increased theoretical bounds.

Requestor Analytical Simulated Simulated Simulated Analytical
min [ns] min [ns] mean [ns] max [ns] max [ns]

r0 80.0 80.0 385.4 835.0 1940.0

r1 80.0 105.0 299.5 780.0 2210.0

r2 80.0 80.0 439.3 1045.0 2210.0

r3 80.0 80.0 565.8 1125.0 2290.0

r4 80.0 80.0 340.2 865.0 1940.0

r5 80.0 80.0 277.0 785.0 1940.0

r6 80.0 80.0 358.5 1080.0 2210.0

r7 80.0 80.0 339.5 1235.0 2210.0

r8 80.0 80.0 195.3 445.0 540.0

r9 80.0 80.0 252.4 415.0 540.0

r10 80.0 80.0 200.3 425.0 460.0

Table 6.8: Minimum, mean and maximum latencies using memory-aware IP
design in a latency-optimized system.

The average-case is further improved by allowing requestors to de-
grade to best effort priority, as discussed in Section 5.2, and also dis-
tribute the slack bandwidth in the system. This improvement results
in an mean reduction of the average measured latency of 2.6%.

Chapter 7

Conclusions and future work

We present an analytical memory controller model for embedded sys-
tem that is a hybrid between contemporary static and dynamic solu-
tions. We show that it is possible to provide hard real-time guaran-
tees on net bandwidth and worst-case latency by fixing the back-end
schedule and guarantee an allocated number of memory bursts to every
requestor in a service period. An example application is analytically
verified and successfully simulated with a load of 89.3% of the peak
memory bandwidth. When optimizing for latency a theoretical worst-
case latency bound of 550 ns for low latency requestors is provided.

Future work involves further real-time analysis as the difference be-
tween the analytical and measured worst-case latency may be large
in systems with many competing memory requestors. The analyti-
cal bounds assumes that the interconnect can deliver requests for all
requestors simultaneously. This is the case for direct wires but not
in systems with shared communications resources, such as a bus or a
network-on-chip. To get tighter bounds for these systems the analysis
has to be extended to cover the properties of the interconnect. La-
tency bounds can also be tightened further by examining the fairness
properties of employed scheduling algorithm.

The requestors are assumed to conform to particular bank access
patterns. This is accomplished by partitioning the requestors to par-
ticular banks or making sure that a request always access all banks
in sequence. This constraint is, however, rather severe and it may
be very difficult to get the requestors of a system to conform to this
assumption. We show that the choice of bank access pattern has a
tremendous impact on latency. Further work is required in this area to

71

72 Conclusions and future work

ease application mapping.
The dynamic front-end scheduler is used to increase the flexibility

of the model. We show that although flexibility is increased, it is
limited by the bank access pattern and the fixed back-end schedule.
The results in lower flexibility than a completely dynamic controller
since every requestor, regardless of priority level, has bursts in the
interfering direction included in the average and worst-case latency.
This means that the model trades flexibility for the ability to offer
hard real-time net bandwidth guarantees. This can be improved by
making the gross to net bandwidth translation dynamic. It is possible
to generate part of the back-end schedule dynamically in run-time if
the number of switches is bounded. This increases flexibility at the
potential cost of memory efficiency.

Discretization errors cause over-allocation that increase with larger
request size, shorter service periods and the number of requestors. This
inhibits scaling of the model and should be examined further.

References

[1] Aras, C., Kurose, J., Reeves, D., and Schulzrinne, H.

Real-time communication in packet-switched networks. In Pro-
ceedings of the IEEE (January 1994), vol. 82, pp. 122–139.

[2] ARM. PrimeCell Dynamic Memory Controller (PL340), r0p0 ed.,
June 2004.

[3] Bensaou, B., Tsang, D. H. K., and Chan, K. T. Credit-based
fair queueing (CBFQ): a simple service-scheduling algorithm for
packet-switched networks. IEEE/ACM Trans. Netw. 9, 5 (2001),
591–604.

[4] Demers, A., Keshav, S., and Shenker, S. Analysis and simu-
lation of a fair queueing algorithm. In SIGCOMM ’89: Symposium
proceedings on Communications architectures & protocols (1989),
ACM Press, pp. 1–12.

[5] González Pestana, S., Rijpkema, E., Rădulescu, A.,

Goossens, K., and Gangwal, O. P. Cost-performance trade-
offs in networks on chip: A simulation-based approach. In DATE’
04: Proceedings of the conference on Design, Automation and Test
in Europe (Feb 2004), pp. 764–769.

[6] Goossens, K., Dielissen, J., Gangwal, O. P.,

González Pestana, S., Rădulescu, A., and Rijpkema,

E. A design flow for application-specific networks on chip with
guaranteed performance to accelerate SOC design and verifica-
tion. In DATE’ 05: Proceedings of the conference on Design,

73

74 References

Automation and Test in Europe (Washington, DC, USA, 2005),
IEEE Computer Society, pp. 1182–1187.

[7] Goossens, K., Gangwal, O. P., Röver, J., and Niran-

jan, A. P. Interconnect and memory organization in SOCs
for advanced set-top boxes and TV — Evolution, analysis, and
trends. In Interconnect-Centric Design for Advanced SoC and
NoC, J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, Eds.
Kluwer, 2004, ch. 15, pp. 399–423.

[8] Harmsze, F., Timmer, A., and van Meerbergen, J. Memory
arbitration and cache management in stream-based systems. In
DATE (2000), pp. 257–262.

[9] Heithecker, S., do Carmo Lucas, A., and Ernst, R. A
mixed QoS SDRAM controller for FPGA-based high-end image
processing. In IEEE Workshop on Signal Processing Systems (Aug
2003), IEEE, pp. 322–327.

[10] Jaspers, E. G. Interfacing DDR SDRAM for video commu-
nication. Technical Note NL-TN 2000/346, Philips Electronics,
September 2000.

[11] JEDEC Solid State Technology Association. DDR2
SDRAM Specification, jesd79-2a ed. JEDEC Solid State Tech-
nology Association 2004, 2500 Wilson Boulevard, Arlington, VA
22201-3834, Jan 2004.

[12] Lin, T.-C., Lee, K.-B., and Jen, C.-W. Quality-aware memory
controller for multimedia platform soc. In IEEE Workshop on
Signal Processing Systems, SIPS 2003 (August 2003), pp. 328 –
333.

[13] Nagle, J. B. On packet switches with infinite storage. IEEE
Transactions on Communications COM-35, 4 (April 1987), 435–
438.

[14] Otero Pérez, C., Rutten, M., van Eijndhoven, J., Stef-

fens, L., and Stravers, P. Resource reservations in shared-
memory multiprocessor SOCs. In Dynamic and Robust Stream-

References 75

ing In And Between Connected Consumer-Electronics Devices,
P. van der Stok, Ed. Kluwer, 2005.

[15] Parekh, A. K., and Gallager, R. G. A generalized processor
sharing approach to flow control in integrated services networks:
the single-node case. IEEE/ACM Trans. Netw. 1, 3 (1993), 344–
357.

[16] Rijpkema, E., Goossens, K., Rădulescu, A., Dielissen, J.,

van Meerbergen, J., Wielage, P., and Waterlander, E.

Trade offs in the design of a router with both guaranteed and best-
effort services for networks on chip. IEEE Proceedings: Computers
and Digital Technique 150, 5 (Sep 2003), 294–302.

[17] Rixner, S., Dally, W. J., Kapasi, U. J., Mattson, P., and

Owens, J. D. Memory access scheduling. In ISCA ’00: Pro-
ceedings of the 27th annual international symposium on Computer
architecture (2000), ACM Press, pp. 128–138.

[18] Roest, J. Spider project: Detailed design description of the DDR
SDRAM controller. Tech. Rep. 1.3, Philips Consumer Electronics,
Mar 2004. Philips confidential.

[19] Shreedhar, M., and Varghese, G. Efficient fair queueing
using deficit round robin. In SIGCOMM (1995), pp. 231–242.

[20] Steenhof, F. Columbus SDRAM interface. Tech. Rep. 0.8,
Philips Consumer Electronics, Nov 2002. Philips confidential.

[21] Weber, W.-D. Efficient Shared DRAM Subsystems for SOCs.
Sonics, Inc, 2001. White paper.

[22] Woltjer, L. Optimal DDR controller. Master’s thesis, University
of Twente, 2005. Philips Semiconductors Confidential.

[23] Zhang, H. Service disciplines for guaranteed performance service
in packet-switching networks. Proceedings of the IEEE 83, 10 (Oct.
1995), 1374–96.

[24] Zhang, H., and Keshav, S. Comparison of rate-based ser-
vice disciplines. In SIGCOMM ’91: Proceedings of the conference

76 References

on Communications architecture & protocols (1991), ACM Press,
pp. 113–121.

List of symbols

Bandwidth allocation

A(r, M, θ, p) net bandwidth allocated to a requestor 36
a(r, M, θ, p) bursts allocated to a requestor 36
ealloc(r, M, θ, p) allocation efficiency . 38
o(R, r, M, θ, p) over-allocation. 38
owc(R, r, M, θ, p) worst-case over-allocation 38
p service period . 34
|p| bursts in service period . 34
x(M, θ, p) service periods in back-end schedule 36

Back-end schedule

α(R) requested read/write ratio 27
β(θ) provided read/write ratio 27
cread(θ) consecutive read groups in basic group 23
cwrite(θ) consecutive write groups in basic group 23
emix(M, θ) mix efficiency. 30
e′mix(M, θ) alternate mix efficiency . 30
eθ(M, θ) back-end schedule efficiency. 29
etotal(M, θ, R) total efficiency . 30
k(M, θ) basic groups in schedule 28
n(θ) refresh commands in refresh group 23
nθ(M, θ) revolutions per second of schedule 37
S′(M, θ) net bandwidth provided by schedule 29
tavail(M, θ) maximum available cycles 27

77

78 List of symbols

tgroup(M) cycles in read and write groups 26
θ a back-end schedule . 23
t′θ(M, θ) cycles in schedule with data transfer 29
tref (M, θ) cycles in refresh group . 26
tθ(M, θ) total cycles in schedule . 29

Memory timings

CL(M) CAS latency . 13
tburst(M) cycles in memory burst . 26
tCK(M) clock cycle time . 13
tp all(M) worst-case time to precharge all banks 13
tREFI(M) average refresh interval . 13
tRFC(M) refresh to activate command delay 13
tRL(M) read latency . 16
trtw(M) read to write cost. 16
tswitch(M) switch cost . 17
tWL(M) write latency . 16
tWTR(M) write-to-read turn-around time 13
twtr(M) write to read cost. 16

Memory properties

e(M) memory efficiency . 13
erefresh(M, n) refresh efficiency . 14
M memory . 13
nbanks(M) number of banks. 13
sburst(M) burst size programmed in memory 13
S(M) peak bandwidth . 29
sword(M) word width . 13

Requestors

c(r) priority level of a requestor 7
d(r) the direction of a requestor 7
ω(r, d) bandwidth requested during a basic group . 30
R set of requestors . 7
r requestor . 7
R−(R, r) set of all requestors but r 52

List of symbols 79

R′(R, r) set of equal or higher priority requestors . . . 42
σburst(r, M) request size in words. 37
σ(r) maximum request size . 7
sr(t0, t1) service given to requestor in time interval . . 48
tmax(r) maximum latency requirement 7
w(r) bandwidth requirement (bytes) 7
wreal(r, M, θ, p) real burst requirement . 37

Worst-case latency

nleft(R, r, M, θ, p) remaining bursts . 43
nref (M, θ, p) interfering refresh groups 44
nswitches(R, r, M, θ, p) number of switches . 43
tdirection(R, r, M, θ, p) direction related latency 43
tlat(R, r, M, θ, p) worst-case latency of a request 44
tmismatch(r, M) Arrival/arbitration mismatch latency 44

Miscellaneous

D set of directions. 7
d direction. 7
δ(R, r) delay due to other requestors 52
γ scheduling solution . 45
κ fairness bound . 48
tgen(r) periodicity of traffic generator 57

	Problem statement
	Communication requirements
	State of the art
	Our contribution

	Memories and controllers
	Background
	System model
	Modern memory layout
	Memory efficiency
	Memory controllers
	Memory mapping
	Proposed solution

	Back-end schedule
	Basic groups
	Scheduling refreshes
	Determining the read/write mix
	Calculating efficiency

	Bandwidth allocation
	Allocation scheme
	Service periods
	Allocation function
	Requestor constraints
	Analysis of worst-case latency
	Computing a scheduling solution

	Dynamic front-end scheduler
	Properties and terminology
	Sliding QoS-aware FCFS scheduling

	Experiments
	Simulation setup
	Example application
	Scheduling solutions
	Allocation results
	Bandwidth results
	Latency results
	A latency-optimized system

	Conclusions and future work
	References
	List of symbols

