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Abstract—Mixed-criticality multicore system design must often
guarantee both safety and high performance. Memory band-
width regulation among different cores can be a useful tool
for guaranteeing safety, as it mitigates the interference when
accessing main memory. The use of mode changes and system
models like Vestal’s can help provide both safety, for critical
functions, and scheduling performance, by efficiently utilising the
platform. This work therefore combines per-core memory access
regulation with the well-established Vestal model and improves
on the state-of-the-art in two respects: 1) We allow the memory
access budgets of the cores to be dynamically adjusted, when the
system undergoes a mode change, reflecting the different needs
in each mode, for better schedulability. 2) We devise memory-
regulation-aware and stall-aware schedulability analysis for such
systems, based on AMC-max. By comparison, the state-of-the-
art offered no option of dynamic adjustment of core budgets,
and only offered regulation-aware schedulability analysis based
on AMC-rtb, which is inherently more pessimistic. Finally, 3)
we consider different task assignment and bandwidth allocation
heuristics, to assess the improvement from the dynamic memory
budgets and new analysis. Our results show improvements in
schedulability ratio of up to 9.1% over the state-of-the-art.
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I. INTRODUCTION

In mixed criticality systems (MCSs), functions of different

criticality use the same hardware resources (e.g., cores, in-

terconnects and memories). Since unpredictable interference

from lower-criticality can be disastrous, this is traditionally

avoided through rigid performance isolation [1], which can be

inefficient in utilising the platform. In response, new schedul-

ing theory, such as Vestal’s model [2] and its variants, tries

to enable better performance guarantees without compromis-

ing safety. However, in multicores, resource sharing between

cores, if unaccounted for, can cause unpredicable timing

behavior [3]. With respect to main memory, different cores

contending for the memory can cause stalling of execution on

the core. Such stalling must often be kept low and must be

upper-bounded, on grounds of safety and certifiability.

Memory contention can be mitigated by using regulation,

which is the approach of the Single-Core Equivalence (SCE)

framework [4]. Each core gets a periodically-replenished mem-

ory access budget. If a core attempts to issue more memory

accesses than its budget, it gets temporarily stalled, until

the next replenishment. This allows the worst-case memory

stall per task to be upper-bounded and incorporated into the

schedulability test. Yao et al. [5] did this for single-criticality

systems. Recently [6], we incorporated their contributions to

the schedulability theory of mixed-criticality systems conform-

ing to the most established variant [7] of Vestal’s model. This

model views the system operation as different modes (ordered

lowest to highest). The set of tasks present in each mode is

a subset of those present in the next-lowest mode. Different

worst-case task execution times (WCETs) are assumed for the

same task in each mode it is a part of, with corresponding

degrees of confidence. This allows less rigorous (less costly)

WCET estimation for lower-criticality tasks and higher utili-

sation, without compromising safety.

Compared to [6], this work brings three new contributions.

First, it permits the cores’ memory access budgets to be

dynamically adjusted at mode change, matching their different

requirements in each mode, for better schedulability. Secondly,

the memory-regulation-aware schedulability test devised as

part of this work is based on AMC-max [8], a more exact

but more complex test, compared to AMC-rtb used in [6].

Finally, experiments with synthetic tasks and different task

assignment and memory budget allocation heuristics, explore

the improvement from the two first contributions.

II. RELATED WORK

The most established variant [7] of Vestal’s model assumes

that each task has a (design) criticality level and a set of

WCETs – one for every criticality level not exceeding its own

and non-decreasing with respect to the latter. For this model,

Baruah et al. [8] devised Adaptive Mixed Criticality (AMC)

scheduling and the notion of run-time system criticality level,

set to the lowest criticality at startup. If a task exceeds its

WCET for the system’s current criticality level, the system

stops all tasks with criticality equal to that level and increments

its criticality level. Schedulability testing relies on fixed-

priority worst-case response time (WCRT) analysis, using the

appropriate task WCETs. Two tests are presented in [8]: AMC-

rtb and the tighter, but more complex, AMC-max. Fleming and

Burns [9] extended AMC to an arbitrary number of criticality

levels and showed that AMC-rtb approximates AMC-max

fairly well. AMC-IA [10] slightly outperforms AMC-max.

Many works exist on mitigating interference on shared

resources and integrating its effects to the schedulability anal-

ysis [4], [5], [11]–[16]. Yao et al. [5] offer stall-aware WCRT



analysis for a platform where all cores undergo memory

regulation. However, that work was criticality-agnostic or

assumed (as in [16]) critical and non-critical tasks do not

use the same core. In comparison, in [6], we ported the

regulation scheme from [5] to Vestal’s model, which allows

both critical and non-critical tasks on the same core, for

efficiency, without compromising the schedulability of the

critical tasks and system safety. The present work further

(i) integrates the regulation-awareness to a more accurate,

but more computationally intensive, schedulability test (AMC-

max) and (ii) generalises the model by allowing the cores’

memory access budgets to be dynamically adjusted at mode

change, according to their different needs in each mode.

This dynamic reallocation of resources at mode change, is

something we also explored with cache resources in [17].

III. SYSTEM MODEL

Platform and memory regulation: We assume a platform

with m identical cores that access the main memory via a

single shared memory controller. A core can have multiple

outstanding memory requests. Most of our assumptions are

inspired by the SCE framework [4] – specifically Yao et al. [5].

The combined policy of both the memory controller and its

interconnect is round-robin [5], [18]. The last-level cache is

either private or partitioned to each core. As in [5], we assume

each memory access takes a constant time of L. Memory

accesses are regulated by software (e.g., [18]) or hardware.

Each core i is assigned a pair of memory access budgets

(QL
i , QH

i ), one budget for each mode of operation. These are

the maximum number of memory accesses allowed in each

regulation period of length P . The relation between QL
i and

QH
i is arbitrary, i.e., either QL

i ≤ QH
i or QL

i > QH
i . This

budget pair (QL
i , QH

i ) is set at design time for each core i and

budgets may differ across cores. Any core exceeding its access

budget, in L-mode or H-mode, is stalled until the start of the

next regulation period. The regulation periods are synchronised

on all cores. The sum of the cores’ memory budgets does

not exceed the available memory bandwidth in the L-mode

(
∑

i

QL
i

P
≤ 1) and the H-mode (

∑

i

QH
i

P
≤ 1). As in [5], CPU

computation and memory accesses do not overlap in time.

Task model: We assume a set τ = {τ1, τ2, · · · , τn} of n
independent mixed-criticality sporadic tasks. Each task has a

relative deadline Di, a minimum inter-arrival time Ti. and

a criticality level κi. The tasks are partitioned to the cores

offline; migrations are disallowed. Tasks on each core are

premptively scheduled with fixed priorities. We consider the

same Vestal mixed-criticality model as Baruah and Burns [8],

which views the system operation as different modes, whereby

only tasks of certain criticality or higher execute. For each

task, different WCET estimates are assumed with different

confidence in their safety. For simplicity, we assume only

two modes of operation (L-mode and H-mode). The L-mode

WCET estimate (L-WCET) of a task τi is denoted as CL
i and

its safe, but pessimistic, H-mode WCET estimate (H-WCET)

is denoted as CH
i ≥ CL

i . The values are computed in isolation

on a core assuming no interference from other cores on the

shared memory controller and its interconnect. The WCET

estimates (both CL
i and CH

i ) can be further subdivided into

two parts: (a) CPU computation and (b) memory access time.

Hence, CL
i = C

e|L
i + C

m|L
i and CH

i = C
e|H
i + C

m|H
i .

The system boots in L-mode with each core initialised with

its QL
i memory budget. However, in case of overrun of either

its C
e|L
i or its C

m|L
i by any task τi, all L-tasks are stopped

and the system switches to H-mode, where only the H-tasks

execute. If the mode switch occurs in the rth regulation period

at time instant s, resetting the cores’ memory budgets to

their QH
i value is delayed till the start of the subsequent

(r + 1)th regulation period, denoted as time s′≥s. Hence,

H-jobs executing in the rth regulation period after the mode

switch instant s on any core i, execute with a memory budget

of QL
i till the budget-switch instant s′ (i.e., the start of the

(r+ 1)th regulation period). H-WCETs need not be specified

for the L-tasks. The system is schedulable if no deadline is

missed in L-mode and no H-task deadline is missed in H-mode

(including H-tasks caught in the mode switch). This must be

verifiable offline, via schedulability tests that use the respective

WCET estimates and memory budgets for each mode.

We also denote by hpL(i) and hpH(i) the sets of L- and H-

tasks, respectively, with priority higher than task τi. Moreover,

hp(i) = hpL(i)∪ hpH(i). Tasks in hpL(i) can execute in L-

mode only, whereas tasks in hpH(i) may execute in both L-

and H-mode. The response time of a task in L-mode and H-

mode is denoted as RL
i and RH

i , respectively, and it includes

the stall time due to the contention and the memory regulation.

IV. STALL ANALYSIS

In L-mode, Yao’s stall analysis [5] applies directly. A

memory access can stall its core either (i) because of regulation

(i.e., if the core’s memory budget is exhausted), hence called a

regulation stall, or (ii) because of concurrent memory accesses

by other cores (a contention stall). Yao et al. bound the total

stall of a task τi (omitting the core and task indexes for clarity)

as follows: Let b = Q
P

(the core’s bandwidth) and r = Cm

C

(the task’s stall ratio). If b ≤ 1
m

, then

stall =

{
Cm

Q
(P -Q)+(m-1)Q if Cm%Q=0

⌈
Cm

Q

⌉

(P -Q)+(m-1)(Cm%Q) otherwise
(1)

If b> 1
m

and r=Cm

C
< 1−b

(m−1)b , then

stall = (P −Q) + (m− 1) ·Q (2)

If b > 1
m

and r = Cm

C
≥ 1−b

(m−1)b , then

stall =

{

(1 +K1)(P −Q) + r1 if C ≤ (1 +K1)Q(

1 + C
Q

)

(P −Q) + r2 otherwise
(3)

where, K1 =

⌊
Ce

Q−RBS

⌋

, RBS =
P −Q

m− 1

r1 = min{P −Q, (m− 1)(Cm −K1 ·RBS)}

r2 = min{P −Q, (m− 1)(C%Q)}



All 3 cases consider an initial regulation stall of (P − Q),

occuring in the worst case if a task is scheduled to run, but

the core’s budget is already exhausted. Since we are in the L-

mode, Q = QL. The above equations from [5] assume that a

single task is running on the core, so it is never preeempted: at

any time, it is either executing, accessing memory or stalled.

In Section V, we state how this is relaxed, with a composite

task modelling multiple tasks; additional intuition in [19].

We now analyse the stall incurred by an H-task upon a mode

switch, assuming that no other tasks are running on the same

core. The stall expression developed will be used for response

time analysis, as in [5]. Like Yao et al., we use L, the memory

access latency, as the unit of time for all times, including P
and Q. Therefore, we may refer to memory access time, Cm,

as the “number of memory accesses”.

Let s be the mode switch instant. To simplify the mathe-

matical expressions, s is measured relative to the beginning of

the first regulation period after the release of the H-task under

analysis, i.e. after the initial regulation stall, rather than relative

to the task release, as done in [8]. Our goal is to upper bound

the total stall, independently of the value of s. Our approach is

to upper bound the stall in each of the following two phases:

1) before the mode switch, i.e. before s, and 2) after the mode

switch, i.e. after s, for all possible values of s.

Let Stallℓ and Stallh be the stall in each of these phases,

ignoring the initial regulation stall, which is added later. We

independently bound the values of the stall in each of these

phases, i.e. we compute ub(Stallℓ) and ub(Stallh), where

ub(X) denotes an upper-bound of parameter X . To compute

these bounds, we use single-criticality stall analysis by Yao et

al. [5] with the appropriate parameter values. For conciseness,

in this section and the next, we refer it as Yao’s analysis.

In this section, we assume that s occurs at a regulation

period boundary. Therefore, s is a multiple of P . In Subsec-

tion V-C, we drop this assumption.

Let Cm|ℓ (resp. Cm|h) be the memory access time in L-

mode (resp. H-mode), i.e. before (resp. after) mode switch and

Ce|ℓ (resp. Ce|h) be the computation time in L-mode (resp.

H-mode), i.e. before (resp. after) mode switch. Then:

Cm|H = Cm|ℓ + Cm|h (4)

Ce|H = Ce|ℓ + Ce|h (5)

To upper bound the stall after the mode switch, we use:

ub(Stallh) = single(Cm = ub(Cm|h), (6)

Ce = ub(Ce|h), Q = QH)

where single() is the worst-case stall according to [5], ignor-

ing the initial regulation stall and

ub(Cm|h) = Cm|H − lb(Cm|ℓ), ub(Ce|h) = Ce|H − lb(Ce|ℓ)

where lb(X) denotes a lower-bound for parameter X . I.e., in

(6) we use upper-bounds for Cm|h and Ce|h estimated using

lower bounds for Cm|ℓ and Ce|ℓ, respectively. This is because

of (4) and (5), and Yao’s analysis shows that the stall is non-

decreasing with both Cm and Ce.

So, the challenge is to compute expressions for the lower

bounds. Since a non-stalled task must be either computing or

accessing memory, we use the following lower bounds:

lb(Ce|ℓ) = max(0, s− ub(Cm|ℓ)− ub(Stallℓ)) (7)

lb(Cm|ℓ) = max(0, s− ub(Ce|ℓ)− ub(Stallℓ)) (8)

These are safe but pessimistic, especially lb(Cm|ℓ), since it is

unlikely that Stallℓ be maximum when Ce|ℓ is also maximum.

Tight independent upper bounds for Ce|ℓ and Cm|ℓ are:

ub(Ce|ℓ) = min(s, Ce|L) (9)

ub(Cm|ℓ) = min
( s

P
·QL, Cm|L

)

(10)

Note that s
P
·QL is the value imposed by memory regulation:

in L-mode the memory budget is QL. Although taken inde-

pendently these bounds are tight, it may be the case that they

cannot both occur simultaneously.

These upper bounds can be used as Ce and Cm, respec-

tively, in Yao’s stall analysis to upper bound Stallℓ. Moreover,

the maximum stall in each regulation period is P−Q, hence:

ub(Stallℓ) = min
( s

P
· (P −QL), (11)

single(Ce = ub(Ce|ℓ), Cm = ub(Cm|ℓ), Q = QL)
)

where ub(Ce|ℓ) and ub(Cm|ℓ) are given by (9) and (10).

Thus, an upper bound of the stall of a non-preemptable H-

task upon mode switch is given by:

(P −Q) + ub(Stallℓ) + ub(Stallh)

where ub(Stallell) and ub(Stallh) are given by (11) and (6).

V. SCHEDULABILITY ANALYSIS

We integrate the memory regulation related stalls in the

AMC-max scheme by considering 3 cases: L-mode steady op-

eration, H-mode steady operation and mode-switch operation.

Schedulability in L-mode is tested using Yao’s analysis [5],

i.e., standard WCRT analysis with an added stall term, com-

puted for a synthetic/composite task comprising all jobs run-

ning in the response time window of task τi under analysis:

R
L(k+1)
i = CL

i +
∑

j∈hp(i)

⌈

R
L(k)
i

Tj

⌉

CL
j + Stall(R

L(k)
i ) (12)

Cm|L
comp = C

m|L
i +

∑

j∈hp(i)

⌈

R
L(k)
i

Tj

⌉

C
m|L
j (13)

Ce|L
comp = C

e|L
i +

∑

j∈hp(i)

⌈

R
L(k)
i

Tj

⌉

C
e|L
j (14)

where R
L(k)
i denotes the response time value after k iterations,

and Stall(R
L(k)
i ) is the memory stall, computed using Yao’s



analysis [5], with Q = QL (omitting core index) and a

composite task in L-mode with parameters Cm = C
m|L
comp and

Ce = C
e|L
comp. In the first iteration (k = 0), R

L(k)
i is initialised

with the solution of Recurrence (12) without the stall term.

The worst-case response time in steady H-mode is computed

similarly. The differences being that the composite task models

the interference of only H-tasks whose priority at least that of

τi, and the stall term is computed using QH rather than QL.

To upper-bound the response time of an H-task τi when a

mode switch occurs s time units after its release, we extend

standard AMC-max from [8] by adding a stall term:

R
s(k+1)
i = CH

i +
∑

j∈hpL(i)

(⌊
s

Tj

⌋

+ 1

)

CL
j (15)

+
∑

j∈hpH(i)

{

M(j, s, R
s(k)
i )CH

j

+

(⌈

R
s(k)
i

Tj

⌉

−M(j, s, R
s(k)
i )

)

CL
j

}

+ Stall(s,R
s(k)
i )

RH
i = max(Rs

i ), ∀s ∈ {0, 1, . . . , RL
i } (16)

where M(j, s, t) = min
{⌈

t−s−(Tk−Dk)
Tk

⌉

+ 1,
⌈

t
Tk

⌉}

upper-

bounds the number of jobs of τj in the interval(s, t).

As in [8], (15) considers the interference of higher-priority

L-jobs before the mode switch and the interference of higher

priority H-jobs throughout τi’s response time window. As in

[8], we take the maximum of the response times for all values

of s. The additional stall term Stall(s,R
s(k)
i ) considers the

effect of the memory regulation mechanism in the WCRT of

a H-task τi and may differ for fixed (QL = QH ) and dynamic

(QL 6= QH ) memory bandwidth allocation policies.

We next derive the stall term using the concept of equivalent

composite/synthetic task both for static, i.e., unmodified upon

mode switch, and for dynamic memory bandwidth policies.

A. Stall(s,Rs
i ) with static memory bandwidth allocation

In this case, the mode switch affects only the tasks that can

execute, not the core’s memory bandwidth, i.e. QL = QH .

Therefore, we can use AMC-max analysis to derive the Cm =

C
m|H
comp, Ce = C

e|H
comp parameters of the composite task as:

Cm|H
comp = C

m|H
i +

∑

j∈hpL(i)

(⌊
s

Tj

⌋

+ 1

)

C
m|L
j

+
∑

k∈hpH(i)

{

M(k, s, Rs
i )C

m|H
k +

(⌈
Rs

i

Tk

⌉

−M(k, s, Rs
i )
)

C
m|L
k

}

Ce|H
comp = C

e|H
i +

∑

j∈hpL(i)

(⌊
s

Tj

⌋

+ 1

)

C
e|L
j

+
∑

k∈hpH(i)

{

M(k, s, Rs
i )C

e|H
k +

(⌈
Rs

i

Tk

⌉

−M(k, s, Rs
i )
)

C
e|L
k

}

Because Q = QL = QH , Yao’s single-criticality stall expres-

sion [5] is applicable and therefore we use:

(P −Q) + single(Ce = C
e|H
Comp, C

m = C
m|H
Comp, Q = QL)

to compute the stall, which is then used in Recurrence (15).

B. Stall(s,Rs
i ) with dynamic memory bandwidth allocation

In this case, we use the stall analysis for mode switch

presented in Section IV. However, that analysis can be applied

directly only to a task that does not suffer interference from

other tasks, i.e. only to the highest priority H-task, if its priority

is also higher than that of all the L-tasks. Otherwise we need

to use the concept of composite task.

The stall analysis of Section IV essentially upper bounds

the stalls before and after the budget change of a single non-

preemptive H-task, by upper bounding the CPU execution and

the memory access times in both phases, i.e. before and after

the mode switch. The use of a synthetic task composed of

task τi and all the tasks with priority higher than τi ensures

that the synthetic task is non-preemptive. To upper bound the

CPU execution and the memory accesses in each phase of the

composite task we rely on AMC-max [8].

However, we cannot use that analysis directly, as it does

not compute the number of interfering H-jobs in L-mode

independently of the number of interfering H-jobs in H-

mode. Instead, it upper-bounds as M(k, s, Rs
i ) the number

of interfering H-jobs in H-mode, and then subtracts it from

the upper bound of the number of interfering H-jobs in the

response time window. The number of interfering H-jobs in

L-mode may hence be underestimated, thereby leading to an

unsafe estimate of the stall term in (15). For example:

Example: Assume that QH < QL and that QL/P <
1/m. This means that both in L-mode and in H-mode, Case 1

of Yao’s stall analysis applies. I.e., that in both modes the

worst-case stall occurs when the number of regulation stalls is

maximum. Consider moving a job, with Cm memory accesses,

from H-mode to L-mode, thus increasing the number of

memory accesses in L-mode and decreasing the number of

memory accesses in H-mode by the same amount. Assume

that these Cm memory accesses suffered a contention stall

in H-mode, but they lead to one additional regulation stall in

L-mode. Thus the reduction in stall in H-mode is, according

to Yao’s stall analysis, Cm · (m − 1), because the maximum

contention stall is m−1 (L time units). On the other hand the

increase in stall in L-mode is (P−QL)−(QL−Cm)·(m−1),
i.e. there is an additional regulation stall but some of the

memory accesses that before the move suffered maximum

contention stall, now occur in a period with a regulation stall.

Therefore, there will be a reduction of Q − Cm contention

stalls in L-mode. Thus the move of one job from one mode

to another will lead to higher contention if:

Cm(m− 1) < (P −QL)− (QL − Cm)(m− 1)
QL

P
<

1

m



which holds by assumption. Thus, it is possible that moving

some job from one mode to another, even with a larger

memory budget, will lead to a larger total stall.

Because of this, to ensure safety, we compute the bound

of interfering H-jobs in L-mode independently of bound of

interfering H-jobs in H-mode, and therefore use the same

expression to compute the number of interfering jobs in L-

mode, independently of their criticality:

ub(Cm|ℓ) = C
m|L
i +

∑

j∈hp(i)

(⌊
s

Tj

⌋

+ 1

)

C
m|L
j (17)

ub(Ce|ℓ) = C
e|L
i +

∑

j∈hp(i)

(⌊
s

Tj

⌋

+ 1

)

C
e|L
j (18)

Applying single criticality stall analysis [5] to a composite task

with these parameters and Q = QL, yields an upper-bound of

the stall in L-mode of task τi, ignoring initial regulation stall.

To upper-bound the stall in H-mode, we use M(k, s, Rs
i ) as

upper bound for the number of interfering H-jobs in H-mode.

Therefore, the parameters of the equivalent synthetic task are:

ub(Cm|h)=C
m|H
i −lb(C

m|ℓ
i ) +

∑

j∈hpH(i)

M(k, s, Rs

i )C
m|H
j (19)

ub(Ce|h)=C
e|H
i −lb(C

e|ℓ
i ) +

∑

j∈hpH(i)

M(k, s, Rs

i )C
e|H
j (20)

Applying single-criticality stall analysis [5] to a composite

task with the parameters given by (19) and (20) and Q = QH ,

yields an upper-bound of the stall in H-mode of task τi.

C. Dropping the s = s′ assumption

So far, we assumed that the mode switch instant s occurs at

regulation period boundaries, i.e. that it coincides with budget

change instant s′, therefore the stall analysis assumes that,

upon mode switch, all H-jobs execute with QH in H-mode.

If this is not the case, then some H-jobs may execute with

QL during the (s, s′) interval, despite already being in H-

mode. However, Stallℓ includes only the stall generated by

H-jobs that are released up to s, whereas Stallh includes the

stall of H-jobs that are released after s, but assuming that

the memory bandwidth allocated is QH . As a result, the total

stall computed may be lower than the actual stall. Thus, to

ensure that our analysis is safe, we assume that upon mode

switch there is a regulation stall of s′−s, similar to the initial

regulation stall upon job release in Yao’s analysis. Clearly this

is safe: the stall in that interval cannot be larger.

VI. BANDWIDTH ALLOCATION AND TASK ASSIGNMENT

We devised the following task-to-core assignment and mem-

ory bandwidth allocation heuristics to explore the benefit of

our analysis and the use dynamic memory budgets. We used

Audsley’s task priority assignment algorithm [20], even if it

is no longer necessarily optimal with an additional stall.

A. AMC-max Dominant

We call this heuristic “Dominant” because it initially at-

tempts to assign tasks using static memory budgets across

the mode switch and only attempts dynamic budgets if the

previous strategy does not succeed. This heuristic has 3 stages:

Stage 1: This stage considers static memory budgets across

the mode switch and uses stall-aware AMC-max analysis

(from Section V) for feasibility testing. The task-to-core

assignment is performed via Memory-Fit [17]. That is, the

core i that needs the least increase in its Qi to accommodate

a task, is chosen for its assignment. The memory bandwidth

requirement of a core is determined using binary search over

the available memory bandwidth range. This heuristic allows

for uneven memory bandwidth assignment across cores. If a

task cannot be assigned on any core, it is set aside for later

stages and the next task is considered for allocation. Once no

more tasks can be assigned, we enter a second stage:

Stage 2: Using sensitivity analysis, we “trim off” from each

core, any memory bandwidth that was over-committed, in one

of the modes, due to the static memory bandwidth allocation

across the mode switch. This binary-search-based sensitivity

analysis, mimimises the memory bandwidth in each mode

of operation using the stall-aware AMC-max schedulability

analysis, with QL
i and QH

i not necessarily equal. Let Qstage−1
i

be the static budget (i.e., same for both modes) for core i
after Stage 1. The objective of this trimming stage is to pick

a pair of budgets (QL
i , QH

i ) for that core, such that it remains

schedulable and Expression (21) is maximised:

(Qstage−1
i −QL

i )
︸ ︷︷ ︸

L−budget trimming

+ (Qstage−1
i −QH

i )
︸ ︷︷ ︸

H−budget trimming

(21)

Since Qstage−1
i is the minimum static budget for which core

i is schedulable, there can exist no feasible pair (QL
i , QH

i )

such that (QL
i < Qstage−1

i )∧ (QH
i < Qstage−1

i ). To maintain

schedulability, we can either (i) decrease at most of one of the

two budgets in the initial pair (Qstage−1
i , Qstage−1

i ), while the

other one stays fixed, or (ii) even increase one of them, if that

allows decreasing the other budget by more than the same

amount, given the interdependence of L-mode and H-mode

memory budgets (Pareto principle). In any case, we have to

consider multiple pairs and pick the one that minimises (21).

Stage 3: We now try to assign any remaining tasks using

Memory-Fit. In attempted assigments, the target core’s QL
i

and QH
i are provisionally increased by the overall amounts

reclaimed, for each mode respectively, from the preceding

trimming. After every successful assignment, the additional

memory is trimmed off again similarly, for reuse.

B. Single-Step

This heuristic is similar to the third stage of the previous

heuristic. It assigns tasks to cores using Memory-Fit and the

new stall-aware AMC-max analysis. After each assignment,

the memory bandwidth is trimmed off from each mode of
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operation to be used by the next task. In the trimming

process, there may be multiple feasible budgets pairs but pair

minimising (21) is chosen. More details on trimming in [19].

VII. EVALUATION

We implemented the analysis and allocation heuristics in a

Java tool [21] and generated synthetic workloads as follows:

Task periods are log-uniform distributed in the 10−100 msec

range. We assume implicit deadlines (Di=Ti), even if our

analysis holds for constrained deadlines (Di ≤ Ti). Uunifast-

discard [22], [23] is used to generate the L-mode task utilisa-

tions (uL
i ) in an unbiased way. Then, the L-WCET of a task

(CL
i ) is equal to Ti · u

L
i . For each task, we randomly select

the cache stall ratio r =
Cm

i

Ci
from the SPEC2006 suite [5]. In

turn, C
m|L
i = r · CL

i and C
e|L
i = CL

i − C
m|L
i . The fraction

of H-tasks in the task set is user-defined. An H-task’s CH
i

is a linearly scaled up value of its L-WCET with a user-

defined factor k.For each H-task, C
e|H
i is uniformly distributed

over [C
e|L
i , k · C

e|L
i ] and, in turn, C

m|H
i = CH

i − C
e|H
i .

This reflects an assumption that most of the pessimism in

the H-WCET estimates typically comes from reasoning about

memory accesses, rather than computation.

We generate a task-set for a given target utilisation of

U = y × m : y ∈ (0, 1]. We used different random class

objects to generate random periods, utilisations and r. Each

random class object is seeded with different odd number and

reused in successive replications [24]. For each set of input

parameters, we generate 1000 random task-sets. The ordering

of the task set also has an impact on the schedulability ratio.

By default, tasks are indexed in descending order of UL
i . In

our experiments, this performs better than descending order of

(κi, Di), (κi, U
L
i ), Di or C

m|κi

i /Ti. Other default parameters

are: m = 4, k = 2, n = 16, 40% H-tasks, L = 0.04 µsec.

The compared heuristics are: (i) AMC-max-dynamic-

dominant: The first heuristic from Section VI. (ii) AMC-

max-static: This corresponds to the output of the first-stage

of AMC-max-dynamic-dominant. It benefits from the new

analysis, but not from the dynamic memory budgets across the

mode switch. (iii) Dynamic-single-step: The other heuristic in

Section VI. (iv) AMC-rtb-static: The state-of-the-art from [6],

for potentially uneven core budgets, but static across the mode

switch. It uses Memory-Fit and stall-aware AMC-rtb analysis.

For additional, worse-performing heuristics, see [19].

Due to space constraints, in each plot we vary a single

parameter; the rest are set to the defaults. We also condense

the results into plots of weighted schedulability [25], [26]

(Fig. 1-6). Surprisingly, AMC-rtb-static and AMC-max-static

perform quite well – a testament to their task-to-core allocation

heuristic (Memory-Fit). AMC-max-dynamic-dominant, which

uses Memory-Fit plus dynamic memory budgets dominates

AMC-max-static, which in turn outperforms AMC-rtb-static.

We observed an absolute difference of 9% in the pure schedu-

lability ratios of AMC-max-dynamic-dominant vs AMC-max-

static and 1.2% in weighted schedulability ratio. Similarly,

maximum achieved absolute difference in schedulability ratios

of AMC-max-dynamic-dominant and AMC-rtb is 9.1%, and

1.3% in terms of weighted schedulability. Dynamic-single-

step outperforms AMC-rtb-static and AMC-max-static in most

cases, but it loses out to AMC-max-dynamic-dominant, be-

cause of the inefficiency of the greedy budget trimming.

In Figure 6, values of 0 to 4 represent a sorting of the task

sets in descending order of (κi, Di), (κi, U
L
i ), (Di), (UL

i ) and

(
C

κi
i

Ti
), respectively. In our experiments, (UL

i ) performs best.

VIII. CONCLUSIONS

This work improved on the state-of-the-art for memory-

regulation-aware mixed-criticality multicore scheduling theory

by coming up with tighter AMC-max-based schedulability

analysis and the possibility of dynamic adjustment of core

memory budgets. Experiments with different heuristics using

synthetic task sets showed an improvement of up to 9.1%
in terms of pure scheduling ratio over state-of-the-art. We

consider this as one more step towards predictable mixed-

criticality systems with good scheduling performance.
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