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In mixed-criticality systems, tasks of different criticality share system resources, mainly to reduce cost. Cost is

further reduced by using adaptive mode-based scheduling arrangements, such as Vestal’s model, to improve

resource efficiency, while guaranteeing schedulability of critical functionality. To simplify safety certification,

servers are often used to provide temporal isolation between tasks. In its simplest form, a server is a periodically

recurring time window, in which some tasks are scheduled. A server’s computational requirements may

greatly vary in different modes, although state-of-the-art techniques and schedulability tests do not allow

different budgets to be used by a server in different modes. This results in a single conservative execution

budget for all modes, increasing system cost.

The goal of this paper is to reduce the cost of mixed-criticality systems through three main contributions:

(i) a scheduling arrangement for uniprocessor systems employing fixed-priority scheduling within periodic

servers, whose budgets are dynamically adjusted at run-time in the event of a mode change, (ii) a new

schedulability analysis for such systems, and (iii) heuristic algorithms for assigning budgets to servers in

different modes and ordering the execution of the servers. Experiments with synthetic task sets demonstrate

considerable improvements (up to 52.8%) in scheduling success ratio when using dynamic server budgets vs.

static “one-size-fits-all-modes" budgets.
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1 INTRODUCTION
Mixed-criticality systems are an important class of real-time embedded systems. Their defining

characteristic is that computing tasks of different criticalities execute on the same hardware and

share system resources, typically to reduce system costs. A task’s criticality is a measure of the

severity of the consequences of a task failing, which in the context of real-time scheduling means

missing its deadline. The higher the criticality is, the more conservative, and costlier, in terms of

effort, time and money, the approach employed to upper-bound that task’s worst-case execution

time (WCET).

Crucially for the certifiability of a mixed-criticality system, sufficient isolation must exist by

design between the timing behavior of different applications. Namely, the timing behavior of one

application must not possibly compromise the timeliness of a different one, especially if the former

has low criticality and the latter has high criticality [31]. If tasks of different criticalities share the

same resources, even on a uniprocessor platform, which is the focus of this work, they must all be

engineered to the same strict standard of safety as the highest-criticality task among them [31].

This is evidently resource-inefficient and such over-engineering can have severe real-world costs.

Most mixed-criticality systems are embedded, in domains like automotive, aerospace and avionics,

where end-product profit margins are often thin and/or engineering constraints on size, weight

and power (SWaP) can be tight.

Fortunately, the relevant guidelines (e.g., [1] [2] for the avionics domain), do not insist on

zero interference among mixed-criticality applications, but instead expect any intra-application

interference to be carefully accounted for and adequately mitigated. Two scheduling arrangements

that can be useful to a designer faced with the above considerations, and trying to achieve both

safety and efficiency, are servers and adaptive mode-based scheduling.

Servers provide scheduling isolation via time partitioning. In the simplest arrangement, a server

is a periodically repeating fixed-length contiguous time window on a given core. Only the tasks

assigned to the particular server are allowed to use the core within the confines of that time window,

scheduled under, e.g., fixed priorities or EDF. Conversely, tasks cannot execute at all outside the

confines of their respective server’s time window. This arrangement provides a predictable supply

of processing time to the set of tasks served and also ensures that they cannot interfere with other

applications (tasks served by other servers).

Meanwhile, mode-based scheduling [5] based on Vestal’s model [35] can more efficiently use the

available processing capacity. This model, popular in academia, is already seeing industrial adoption

for safety-critical systems, such as avionics engine control [26]. Under this model, rather than using

extremely pessimistic worst-case execution time estimates for both low- and high-criticality tasks

that interact, less pessimistic estimates are used, by default – probably, but not provably safe. In

the statistically unlikely case of a task exceeding its assumed WCET, a carefully managed mode
change is triggered. Less critical (and/or less important [11]) tasks, as specified at design time, are

dispensed with. The remaining tasks must then be provably schedulable, assuming more pessimistic

WCET estimates. In the general case, there can be many such mode changes. A mode switch is

not a failure – it constitutes system behavior explicitly accounted for at design time (including the

set of tasks to drop, and the implications of doing so). This adaptive approach improves resource

efficiency without compromising safety.

Servers and Vestal’s mode-based model can be combined. In this work, we consider a time-

partitioned system, with multiple servers that share the same period. To each server, one or more

mixed-criticality applications are assigned, in turn consisting of multiple tasks. Every server is

scheduled using fixed-priority scheduling, known as Adaptive Mixed Criticality, or AMC [6], in the

context of Vestal’s model. The use of Vestal’s model can reduce the processing budget requirements
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for the different servers (compared to a naïve approach that would always assume pessimistic

WCETs for all tasks) and the use of servers can provide timing isolation between applications

assigned to different servers. However, it can still be inefficient if the same execution time budgets

are used for the servers in all modes, because a given server can have very different processing
needs in different modes. This realisation motivates the present work, which considers a server-

and AMC-based scheduling arrangement whereby the server budgets are dynamically adjusted, at

mode change, for greater resource efficiency, at no detriment to the predictability of the system

or to safety. Such an arrangement requires new analysis, because even if the original analysis for

AMC can be applied to periodic server-based scheduling with minor changes
1
, this is no longer the

case when the server budgets change in response to a mode change. This is a short-coming of the

state-of-the-art. By proposing varying server budgets and analysis for this arrangement, our work

hence promotes greater resource efficiency and cost savings.

Our main contributions are the following:

(1) First, we formulate a new schedulability analysis for uniprocessor systems using periodic

servers with an AMC scheduling policy and whose execution time budgets are dynamically

adjusted in response to a mode change. Periodic servers are a standard scheduling arrange-

ment; what is novel is the combined use of AMC scheduling and server budget adjustment at

mode change.

(2) Secondly, we discuss the complex interdependencies between the parameters of different

servers and propose heuristics for the ordering of servers in the schedule and the assignment

of server budgets in the different modes, for good schedulability performance.

(3) Thirdly, we explore via experiments with synthetic task sets, the schedulability performance

of dynamic server budgets under different server orderings and budget assignment heuristics,

compared to the baseline of static-budget servers. The results strongly validate our approach,

with up to 52.8% higher scheduling success ratios.

2 RELATEDWORK
Several existing works try to combine an adaptive mixed-criticality task scheduling model with

servers. We note the works by Ren et al. [30], Hu et al. [19, 20], Gu et al. [15, 16], Lipari and

Buttazzo [27], Awan et al. [3], Evripidou and Burns [14] and Missimer et al. [28]. Most of these

approaches try to provide scheduling guarantees to high-criticality tasks with minimal impact

on the quality-of-service for low-criticality tasks, e.g., by postponing mode changes or via slack

reclamation. Fei et al. [17] and Papadopoulos et al. [29] adjust server budgets recurrently, based

on a predictor of future execution times or automatic control theory, respectively. Unlike most of

the above works that use separate servers for tasks of different criticalities, one of the approaches

in [3] allows servers to serve mixed-criticality task sets. However, the server budgets are static in

all modes. Meanwhile, recent studies [13, 18, 21, 24] also explore implementation-level aspects of

mixed-criticality scheduling approaches (including hierarchical ones) and how to combine adaptive

mixed-criticality scheduling with predictable hardware.

This work advances the state-of-the by proposing a design arrangement with periodic servers

with fully adjustable server budgets at mode change, and schedulability analysis that accounts

for that. A uniprocessor platform is targeted. Each server serves tasks of mixed criticalities using

fixed priorities (AMC). At mode change, the low-criticality tasks are still discarded and the server

budgets are adjusted (some upwards, others downwards) to account for the different processing

needs in the new mode. This improves the efficiency in the use of processing capacity, allowing

more demanding task sets to be schedulable, without using a faster processor.

1
Namely, a “fake" interfering task modelling the periodic unavailability of the server.
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Fig. 1. At mode change, the L-tasks are dropped and the remaining H-tasks must be schedulable as long
as they execute for up to their CH

i (incl. any jobs thereof caught up in the mode change). However, server
budgets are only adjusted from XL

q to XH
q at the start of the next timeslot.

Our approach considers the use of the Simulated Annealing metaheuristic [25] for assigning

dynamic execution budgets to the servers. Simulated Annealing has already been used before

for the problem of execution budget assignment both inside and outside the mixed-criticality

context. Tamas and Pop [34] considered a problem of mapping mixed-criticality applications on a

heterogeneous multicore platform. Applications are only allowed to run in separate partitions to

achieve sufficient temporal and spatial isolation. Unlike our work, where a single kind of server is

used for mixed-criticality workloads, in [34], non-preemptive static-cyclic scheduling is used to

schedule critical applications while preemptive fixed-priority scheduling is used for non-critical

applications. Given the task-to-core mapping and size of major frame, the devised simulated

annealing meta-heuristic computes the time-slices for each partition on each core.

Beckert and Ernst [8] considered a similar server arrangement as the one assumed in this paper. It

consists of a repeating TDMA schedule for fixed execution budget and fixed execution offset servers,

all sharing the same period, as commonly done in ARINC653-compliant systems [2], and using

fixed-priority scheduling. Our approach differs in that we use the Vestal task-model, and server

budgets and offsets are adjusted after a mode change. On the other hand, Beckert and Ernst [8]

incorporate scheduler and interrupt overheads into the schedulability analysis and consider them

during the optimisation. This can also be integrated to our work analogously to Sousa et al. [32] and

Souto et al. [33]. In more recent work of Beckert and Ernst [9], a different scheduling arrangement

with sporadic servers is considered, for improved response time, which also supports background

execution for tasks whose budgets are depleted.

3 TASK MODEL AND SYSTEMMODEL
3.1 Task model
This paper assumes the established adaptive variant of Vestal’s mixed-criticality model, with

execution time monitoring and mode changes [6]. We assume a set τ
def

= {τ1, . . . , τn} of n mixed-

criticality sporadic tasks. Each task has a minimum interarrival time Ti , a constrained relative

deadline Di≤Ti and a criticality level κi . In the general case, these tasks may be grouped together

into disjoint applications, possibly consisting of tasks of different criticalities.

At run-time, the system operation is based on different modes wherein only tasks of a given

criticality or higher execute. For each task, different execution time estimates are assumed with

corresponding confidence in their safety. For simplicity, in this paper, we consider only two criticality

levels, high (H) and low (L), hence two modes of operation (L-mode and H-mode). The H-mode

worst-case execution time estimate (H-WCET) of a task τi is denoted by CH
i and it is demonstrably

unexceedable, but typically very pessimistic. The L-mode worst-case execution time estimate

(L-WCET) is denoted as CL
i ≤ CH

i . The system boots in L-mode, wherein all tasks execute and
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all their deadlines must be met. If any task attempts to execute for more than its execution time

estimate for that mode, a mode change is triggered, whereupon all low-criticality tasks (L-tasks) are

dispensed with. In H-mode, only the H-tasks execute and the deadlines of all jobs by H-tasks must

be met, including any jobs released before the mode change.

In this work, we consider scheduling based on fixed priorities. This implies that each task has

a unique static priority assigned to it, which is the basis of scheduling decisions. Fixed-priority

scheduling, in the context of the above mixed-criticality model is known as AMC. However, in our

work, we assume that tasks are partitioned to servers that use AMC as their internal scheduling

policy. We next introduce the server model that we assume.

3.2 Server-based system model
Consider a uniprocessor platform and a set of periodic servers {P̃q}, q = 1, 2, . . . ,Q assigned to it.

All servers share the same period S (also called the “timeslot length") and they execute one after

the other, in a form of cyclic executive with a periodicity of S . The order in which the servers

execute is fixed and specified at design time. Each server P̃q is assigned a mixed-criticality set of

tasks τ [P̃q]⊆τ , which are scheduled within the server according to their fixed priorities.

Each server P̃q has a fixed time budget X L
q in the L-mode and a fixed time budget XH

q for the

H-mode, and corresponding fixed starting offsets, OL
q ≤ S and OH

q ≤ S . Additionally,
∑Q
q=1X

L
q ≤ S

and

∑Q
q=1X

H
q ≤ S , i.e., in each mode, the servers are sized such that they fit into the timeslot S .

When the system is in L-mode, all servers execute with their X L
q budgets and all tasks present in

the L-mode must provably meet their deadlines under those budgets, as long as no job executes for

more than itsCL
i . However, if such an execution overrun occurs, a transition to H-mode is triggered.

Then, all L-tasks are immediately dispensed with. The remaining tasks (including any jobs thereof

released before the mode change) must meet their deadlines, assuming they can execute for up

to their CH
i estimates. Additionally, the server budgets and starting offsets are adjusted to their

respective XH
q and OH

q values at the start of the next timeslot. In other words, if a mode change

occurs s ′ time units (0 ≤ s ′ < S) after the last timeslot boundary, then for the next S − s ′ time units

the system is already in H-mode, but the servers’ budgets and offsets are not yet adjusted from the

values (X L
q and OL

q ) used in the L-mode. Figure 1 illustrates this.

4 SCHEDULABILITY ANALYSIS
4.1 Schedulability analysis of an individual server
In this section, we derive a sufficient schedulability test for a server conforming to the model

described in Section 3. Given as input the tasks assigned to a server P̃i , its period S and its execution

time budgets (X L
i and XH

i ) and starting offsets (OL
i and OH

i ) for the two modes, our analysis tests

whether the server is mixed-criticality-schedulable. The question of how these attributes (X L
i , X

H
i ,

OL
i and OH

i ) are determined for each server and how the derivations of these attributes of different

servers inter-depend is discussed later in Section 4.2, where the schedulability test for the entire

system is formulated. Our analysis builds on AMC-max [6] and tests the schedulability of a task

(i) in L-mode and (ii) in H-mode separately.

4.1.1 Steady L-mode analysis. In L-mode (i.e., prior to the occurence of a mode switch), tasks

behave as conventional Liu-and-Layland tasks with a WCET of CL
i . Therefore, as in AMC-max, to

test the schedulability of a task τi in L-mode, we use the standard worst-case response time (WCRT)

recurrence [23]. However, as in [32] and [3], we add a “fake" top-priority periodic interfering task

τf that equivalently models the fact that the tasks do not execute directly on the processor, but

within a periodic server:
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RLi = C
L
i +

∑
τj ∈hp(i)

⌈
RLi
Tj

⌉
CL
j +

⌈
RLi
S

⌉
(S − X L)︸           ︷︷           ︸

fake task

(1)

In (1), we omit the server index for clarity; hp(i) is the set of higher-priority tasks in the same server

as τi . The fake task’s WCET is (S −X L) (equal to the time interval between the ending of one server

instance and the start of the next instance of the same server); its interarrival time is S . A server P̃q
is schedulable in L-mode if all of its tasks are schedulable in that mode (i.e., if RLi ≤ Di ∀ i ∈ τ [P̃q]).

4.1.2 Schedulability testing in H-mode. To test for the schedulability of an H-task in the event of a

mode change, which may also entail a server budget change (not necessarily coincident), we must

consider four mutually exclusive and jointly exhaustive cases (elaborated below). The task must

meet its deadline in all those cases. The reason for considering four separate cases is this: If the

server budgets change after a mode change (not necessarily immediately), then the worst-case

scenario, maximising the response time of a job completing in the H-mode, does not necessarily

involve that job being released before the mode change, as under classic AMC.

Let t idlehp(i) denote the first instant after the mode change that the server is active and no task in

hp(i) is executing inside it. Note that t idlehp(i) might be located before the server budget change instant

b or after it, or may coincide with it. The four cases to consider are:

• Case 1: The H-task under consideration is released before or at the mode change instant s ,
but completes after s .

• Case 2: The H-task is released after s , but before t idlehp(i).

• Case 3: The H-task is released at or after t idlehp(i) and before the server budget change instant

b.
• Case 4: The H-task is released at or after t idlehp(i) and at or after the budget change instant b.

Figure 2 depicts the possible relative orderings between the mode change instant (s), the budget
change instant (b), the arrival time (ai ) of the H-task under analysis and t idlehp(i), for the four cases.

To analyse any of these cases, we need to upper-bound the amount of time that the server is

unavailable, during any time interval that starts at the mode change instant s , as a function of the

interval length ∆t . We call this the workload of the fake task in H-mode. Lemma 4.1 provides that.

Lemma 4.1. The workload of the fake task modelling the unavailability of a given server, in any
time interval [s, s +∆t), where s is the mode change instant and ∆t > 0, is maximal if the mode change
occurs either (i) at a timeslot boundary or (ii) at the end of the server’s execution, i.e., OL + X L time
units after the last timeslot boundary, whereOL is the starting offset of the server in L-mode and X L is
its L-mode budget.

Proof. Assume the mode change occurs some s ′∈[0,S) time units after the last timeslot boundary.

LetW H |tr .
f (s ′,∆t) denote the workload function of the fake task over interval [s, s+∆t) as a function

of s ′. For a given s ′ this function is deterministic, but the actual value of s ′ can only be known at

run-time. To prove the lemma it therefore suffices to show that

W H |tr .
f (0,∆t) ≥W H |tr .

f (s ′,∆t), ∀∆t > 0, ∀s ′ ∈ [0,OL)

and

W H |tr .
f (OL + X L,∆t) ≥W H |tr .

f (s ′,∆t), ∀∆t > 0, ∀s ′ ∈ [OL, S)
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Fig. 2. All possible relative orderings between the mode change instant (s), budget change instant (b), and
arrival time (ai ) of the H-task under analysis and t idlehp(i), for 4 cases.

For visual reference, see Figure 3, which shows the workload functions of the fake task for

relevant values of s ′. The lines at the bottom, under each of the two graphs, represent the schedules

of the server under analysis, and show the relevant values of s ′. The server is scheduled during the

boxes, and the label inside each box is the respective server budget. The fake task "executes" in the

intervals when the server is not scheduled. The mode change occurs in the first period.

The first value (s ′ = 0) involves a mode change coincident with a timeslot boundary; the server

is denied the processor for the next OL
time units (i.e., until its starting offset). The fake task’s

workload for s ′ = 0,W H |tr .
f (0,∆t), is plotted in blue in the graph of Figure 3(a). For any s ′ > 0, up

to the value ofOL
, the fake task’s workload would never be larger, as illustrated by the pink line in

the same graph.

The other value to consider (s ′ = OL + X L
), corresponds to the mode change occurring just as

the server has run out of budget. The fake task’s workload for s ′ = OL + X L
,W H |tr .

f (OL + X L,∆t),

is plotted in blue in the graph of Figure 3(b). Smaller values of s ′ (i.e., OL ≤ s ′ < OL + X L
) would

mean that the server is executing immediately after the mode change and, as illustrated by the

pink line in the same graph, the workload of the fake task would never be larger. Greater values

(OL + X L < s ′ < S) would only decrease the amount of time (i.e., S − OL − X L + OH
) until the

server gets to execute for the first time after the mode change, leading to a workload function that

is related to the workload for s ′ = OL + X L
, as the workload function for s ′ < OL

is related to the

workload for s ′ = 0 (see Figure 3(a)). �

Lemma 4.2. Consider a server. The processor request of the fake task, modelling the unavailability
of the processor, over any time interval [s, s + ∆t), where s is the mode change instant and ∆t > 0 is
upper-bounded by

IH |tr .
f (∆t) = max

(
IH |tr .
f (0,∆t), IH |tr .

f (OL + X L,∆t)
)

(2)

where
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W
H|tr.
f (0,Δt)

W
H|tr.
f (s′

1
,Δt)

OL

OL

OL + XL S + OH + XHS S + OH

S + OH − XL

s′1

XL XH

timeslot boundaries

Δt
0

t


H|tr.
f (0,Δt)

S + OH − XL + (S − XH)

server server budget

(a)

W
H|tr.
f (OL + XL,Δt)

W
H|tr.
f (s′

2
,Δt)

S − (OL + XL) + OH

XL XH

timeslot boundary

Δt
0

t


H|tr.
f (OL + XL,Δt)

XH

S − (OL + XL) + OH

S − (OL + XL) + OH + XH

S − (OL + XL) + OH + S − XH

s′
2

S − (OL + XL) + OH + S
S − (OL + XL) + OH + XH + SOL

S OH

server server budget

(b)

Fig. 3. Workload (thicker solid lines) and processor request (thicker dashed lines) after the mode change of
the fake task for different values of s ′, 0 ≤ s ′ < S , the offset of a mode change with respect to the beginning
of the timeslot. The lines at the bottom represent the schedule of the server under analysis. (a) Illustrates
case 1 of Lemma 4.1, that the workload of the fake task for s ′ = 0,W H |tr .

f (0,∆t), plotted in blue, dominates

the workload for all other s ′ ∈ [0,OL). The pink line shows the workload for a particular such value, s ′
1
,

W
H |tr .
f (s ′

1
,∆t). (b) Illustrates one of two subcases of case 2 of Lemma 4.1, that the workload of the fake task

for s ′ = OL + XL ,W H |tr .
f (OL + XL,∆t), plotted in blue, dominates the workload for all other s ′ ∈ [OL, S).

The pink line shows the workload for a particular such value, s ′
2
∈ [OL,OL + XL),W H |tr .

f (s ′
2
,∆t).
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IH |tr .
f (0,∆t) = OL +min

(
1,

⌈
∆t −OL − X L

S

⌉
0

)
(S−X L−OL+OH )

+

⌈
∆t − S −OH − XH

S

⌉
0

(S − XH ) (3)

IH |tr .
f (OL + X L,∆t) = (S − X L −OL +OH )

+
⌊
∆t−S+OL−OH+X L−XH

S

⌋
0

(S − XH ) (4)

where, ⌊x⌋0 = max(0, ⌊x⌋) and ⌈x⌉0 = max(0, ⌈x⌉).

Proof. Equations (3) and (4), describe the processor request of the fake task if the mode change

occurs s ′=0 or s ′=OL+X L
time units after a timeslot boundary – the two values of s ′ one of

which (by Lemma 4.1) maximises the fake task’s workload. The maximum of the two therefore

upper-bounds that request over [s, s + ∆t), ∀∆t > 0. Equation (2) follows directly from Lemma 4.1,

through the relation between processor request function and workload function. Figures 3 a) and

b) show (3) and (4), respectively, as thick dashed blue lines. IH |tr .
f (0,∆t) is initially OL

, increases

once by (S −OL − X L +OH ) time units at ∆t = OL + X L
and thenceforth periodically by (S − XH )

time units at every ∆t = kS +OH + XH
, k = 1, 2, 3, . . .. Likewise, IH |tr .

f (OL + X L,∆t) is initially

S −OL − X L +OH
, increasing by (S − XH ) at every ∆t=kS−OL−X L+OH+XH ,k=1,2,. . .. �

Now, we can analyse the 4 cases (Figure 2) one by one:

Case 1: This case considers H-tasks that are caught in their execution window by the mode

switch, and hence may suffer the interference both from L-tasks and H-tasks of higher priority. The

interference from such tasks can be upper-bounded according to the existing AMC-max analysis.

However, the task in consideration also suffers interference from the unavailability of the server

(which we model as a fake task). Let us therefore incorporate IH |tr .
f (∆t) into a hybrid AMC-max

schedulability test for this case. Namely, we can upper-bound the response time of an H-task τi ,
released at or before the mode change instant s but not yet completed by s , as

RH |1

i = max(Rs |1i ), ∀s ∈ [0,RLi ) (5)

where

Rs |1i = C
H
i +

∑
τj ∈hpL(i)

ILj (s) +
∑

τk ∈hpH (i)

IHk (s,R
s |1
i ) + ILf (s) + I

H |tr .
f (Rs |1i − s)︸                         ︷︷                         ︸

f ake task

(6)

where hpL(i) and hpH (i) are the sets of higher-priority low- and high-criticality tasks in the same

server, respectively, and

ILj (s) =

(⌊
s

Tj

⌋
+ 1

)
CL
j (7)

ILf (s) =
( ⌊ s
S

⌋
+ 1

)
(S − X L) (8)

IHk (s, t) = M(k, s, t)CH
k +

(⌈
t
Tk

⌉
−M(k, s, t)

)
CL
k (9)
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where, as in [6],M(k, s, t) = min

(⌈
t−s−Tk−Dk )

Tk

⌉
+ 1,

⌈
t
Tk

⌉)
.

By replacing IHk in (6) with the RHS of (9), we obtain:

Rs |1i =C
H
i +

∑
τj ∈hpL(i)

ILj (s)

+
∑

τk ∈hpH (i)

(
M(k, s,Rs |1i )CH

k +
(⌈

t
Tk

⌉
−M(k, s,Rs |1i )

)
CL
k

)
+ ILf (s) + I

H |tr .
f (Rs |1i − s)

Splitting the second summation and reordering the terms:

Rs |1i =C
H
i +

∑
τj ∈hpL(i)

ILj (s) + ILf (s)

+
∑

τk ∈hpH (i)

(⌈
t
Tk

⌉
−M(k, s,Rs |1i )

)
CL
k

+
∑

τk ∈hpH (i)

M(k, s,Rs |1i )CH
k + I

H |tr .
f (Rs |1i − s)

Finally, in a slight accuracy optimisation of ours,

Rs |1i = CH
i +

�
IL(s,Rs |1i )

�s
+ IH (s,Rs |1i ) (10)

where:

IL(s,Rs |1i ) =
∑

τj ∈hpL(i)

ILj (s) + ILf (s)

+
∑

τk ∈hpH (i)

(⌈
t
Tk

⌉
−M(k, s,Rs |1i )

)
CL
k

IH (s,Rs |1i ) =
∑

τk ∈hpH (i)

M(k, s,Rs |1i )CH
k + I

H |tr .
f (Rs |1i − s)

and the operator ⟦·⟧max
is defined as ⟦x⟧max

def

=

{
x if x ≤ max

max if x > max

.

Under the original AMC-max, the operator ⟦·⟧s is not used. Our slight improvement acknowl-

edges that the interference from all jobs completed before the mode change cannot exceed s . 2

Case 2: In this case, the H-task τi under analysis is released at some instant ai , after the mode

change instant s , but before t idlehp(i).

Since τi is not released before the mode change, it does not suffer any direct interference from
jobs of L-tasks. However, in the general case, it may suffer indirect push-through interference by

such tasks that executed before its release. By this, we mean that any higher-priority H-task jobs

released before the mode change instant s and not completed before time ai (the release of τi ) may

have suffered interference from L-tasks of even higher priority (if any), before the mode change.

This would comensurately push their execution to the right, along the time axis. In any case,

we do not need to quantify the push-through interference from L-tasks in Case 2 (or even test

2
Not enclosing the expression by ⟦·⟧s , would mean the analysis holds even for a variant model that allows any L-jobs

caught up in the mode change to complete, executing for up to their L-WCETs. This follows from the original AMC-max [6].
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schedulability in Case 2 at all!), because, as we will prove below, if τi is proven to be schedulable in

the L-mode and in Case 1, it will always also be schedulable in Case 2.

Lemma 4.3. If an H-task τi is schedulable in L-mode and schedulable in H-mode under the assump-
tions of Case 1, then it is also schedulable in H-mode under the assumptions of Case 2.

Proof. Consider a schedule σ wherein ai is the first time instant strictly after the mode change

s that τi is released and it also holds that ai < t idlehp(i). This schedule then fulfills the assumptions of

Case 2. Any immediately preceding job by τi will have been released no later than s , so it would fall
under Case 1 or will have completed before the mode change, so in either case, it would have been

schedulable; this means that the job by τi released at time ai suffers no interference by previous

jobs of the same task; it only suffers interference from higher-priority tasks (including the fake

task).

Let us then transform this original schedule σ to another schedule σ ′
where, all other things

remaining equal, the release of the job by τi under analysis is shifted earlier, to some time instant

t ′′ (with the releases of all other jobs by τi also shifted earlier by the same amount), such that

the following things both hold: (i) The instant t ′′ is located at or before the mode change (i.e.,

t ′′ ≤ s); and (ii) The entire interval [t ′′, ai ) is occupied by execution of tasks in hp(i) or the fake
task. The fact that in the original schedule, the entire interval [s, ai ] was busy by higher-priority

tasks (including the fake task), means that such an instant t ′′ exists. It could be time instant s itself,
or some even earlier time instant.

Then, the response time of the job under analysis cannot decrease as a result of the schedule

transformation. Namely, in the transformed schedule σ ′
, the task τi does not execute at all over

[t ′′, ai ) (where ai refers to its release in the original schedule σ ), and from time ai onwards, its
execution intervals are the same as in the original schedule. Therefore its absolute completion

time fi is unchanged, even though its release is shifted earlier, to time t ′′ < ai . In turn, the

transformed schedule σ ′
belongs to Case 1, analysed earlier (i.e., τi being released no later than s

but completing after s). Therefore, the increased response time of the job is upper-bounded by Di ,

from the assumption that τi is schedulable in Case 1. Therefore the original response time of the

job in schedule σ was also upper-bounded by Di .

We will now show by contradiction that, if τi is schedulable in L-mode and in H-mode under

Case 1, there cannot be more than one job of τi released strictly after s and strictly before t idlehp(i).

Assume that in schedule σ the next job by τi , after the one released at ai , was released at time a′i
and that a′i < t idlehp(i). Then, the job released at time ai does not receive any execution time at all

during the interval [ai , a
′
i ), therefore it misses its deadline at time ai + Di ≤ a′i . This contradicts

the fact that, as proven earlier, it is schedulable. �

Therefore, the schedulability test for Case 1 subsumes Case 2. In other words, if τi provably
meets its deadline in L-mode and in H-mode under Case 1, then it also does so under Case 2. Since

we test for Case 1 anyway, testing for Case 2 is hence redundant.

Case 3: In this case, because the H-task τi under analysis is released at t idlehp(i) or later, there can

be no push-through interference from L-tasks. Therefore, there is only direct interference, from the

tasks in hpH (i) and from the unavailability of the server (i.e., from the fake task). The worst-case,

in terms of interference from tasks in hpH (i), is when these are released simultaneously as τi , at
time ai . This is the same as the worst-case interference from those tasks when we are in Case 1

and s = 0.

As for the worst-case interference from the fake task, since in Case 3 the release time ai of τi is
before the budget change instant, it is upper-bounded by (2), as in Case 1 (by Lemma 4.2).
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Combining our observations, the schedulability test for Case 3 is also subsumed by the test for

Case 1.

Case 4: Since τi is released at t idlehp(i) or later and also at the server budget change or later, it is not

subject to any transitive effects either from the mode change or from the budget change. Therefore,

to compute its WCRT, we can apply classic fixed-priority response time analysis, considering (i) the

tasks present in the H-mode and their respective WCET estimates for that mode, and (ii) a fake

top-priority task, modelling the unavailability of the server, with a WCET of S − XH
and period of

S . The corresponding equation is:

RH |4

i = CH
i +

∑
τj ∈hpH (i)

⌈
RH |4

i

Tj

⌉
CH
j +

⌈
RH |4

i

S

⌉
(S − XH )︸               ︷︷               ︸

f ake task

(11)

Note that the worst-case processor request by the fake task in Case 4, during an interval of ∆t

time units, which is

⌈
RH |4

i
S

⌉
(S − XH ) is not necessarily upper-bounded, in the general case, by the

expression IH |tr .
f (∆t) (Equation (2)) that describes the request by the fake task in Cases 1, 2 and 3

(i.e., when τi is released before the budget change). Therefore, the schedulability test for Case 4 is

not dominated by the schedulability test for Case 1; we must test for Case 4 separately.

4.2 Schedulability analysis at the system level
We can now explain how the schedulability of the entire system is tested and how the assignments

of execution budgets and starting offsets for the different servers in the two modes interdepend.

A system is schedulable if all servers are assigned non-overlapping execution windows inside

the timeslot in both modes and if they are all found schedulable by the schedulability test from

Section 4.1 with the assigned execution budgets and starting offsets.

If the servers appear in the same order inside the timeslot in both modes (as we already assume)

and their time windows are arranged back-to-back, with the first server aligned with the start of

the timeslot, then (if, without loss of generality, the servers are indexed from left to right), we have

OL
1
= OH

1
= 0; OL

i = O
L
i−1 + X

L
i−1; O

H
i = O

H
i−1 + X

H
i−1, ∀i > 1 (12)

Then, the schedulability condition can be expressed as

∀ i :
(
P̃i schedulable with (X

L
i ,X

H
i ,O

L
i ,O

H
i )

)
∧
(∑

X L
i ≤ S

)
∧
(∑

XH
i ≤ S

)
Interdependencies between the parameters of different servers. From (12), one can see that for a

given ordering (indexing) of the servers, the execution budgets of preceding servers in one mode

determine the starting offset of a given server in that mode. In turn, these offsets (OL
i and OH

i ) are

inputs (along with the budgetsX L
i andXH

i ) to the schedulability test for that server P̃i . Therefore the

execution budgets of all preceding servers indirectly affect whether or not a server P̃i is schedulable
with a given budget pair (X L

i , X
H
i ). The ordering of the servers within the timeslot thus matters a

lot.

Intuitively, one would expect that ordering the servers such that they appear in the timeslot by

non-decreasing XH
i − X L

i would be a helpful heuristic for achieving good scheduling performance.

The reasoning is that if the servers appear in order of XH
i − X L

i in the timeslot and the timeslot

is fully utilised in both modes, then OL
i − OH

i ≥ 0 for all servers – and, in the timeslot where a

mode change occurs, this “benign" jitter would mean that the interval between a server completing

with a budget of X L
i and the start of the execution of the next server instance, with budget XH

i ,
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would be S or (in most cases) smaller than S . This implies a shorter effective transition time to the

new budgets (greater responsiveness to the new processing requirements), compared to the case of

OL
i −OH

i < 0. However, in the general case, we cannot know a priori in which order to arrange the

servers such that they appear in order of XH
i − X L

i , because the budgets can only be computed a

posteriori, using the offsets OL
i and OH

i as input, which themselves depend on the server ordering,

as we just explained earlier.

Additionally, in the general case, and for a given pair of starting offsets (OL
i , O

H
i ) there may

exist multiple budget pairs (X L
i , X

H
i ) for which a server is schedulable. If sensitivity analysis (e.g.,

binary search) is used to determine the least feasible budget XH
i for a given offset pair (OL

i , O
H
i ) as

a function of X L
i , then the pair (X L

i , X
H
i ) will exhibit the Pareto property. Namely, a more generous

L-mode budget X L
i might require a smaller XH

i budget for the L-mode (as, intuitively, the server

will have comparatively less “catching up" to do with the tasks’ demand) – and vice versa.

All these different interdependencies between the parameters of different servers and their

ordering, complicate the task of devising good heuristics for ordering the servers inside the timeslot

and assigning budgets to them for the two modes. However, as we will show in the next section, it

is still possible to leverage them in a useful way, and attain good performance.

5 BUDGET ASSIGNMENT HEURISTICS
We consider two scheduling arrangements (static and dynamic server budgets), with different

budget assignment heuristics.

5.1 Static server budgets (SSB)
Under this arrangement, the execution budget of a server is the same in bothmodes (i.e.,X L

i =X
H
i =Xi ∀i).

Additionally, the first server is positioned at the beginning of timeslot (OL
1
=OH

1
=0) and every subse-

quent server starts when its predecessor ends. These properties imply that OL
i =O

H
i ∀i , i.e, neither

the starting offset nor the execution budget of any server ever changes. Consequently, the analysis

of Section 4 is not needed. Rather, we can use the original AMC-max test [6] to size each server,

with the addition of a top-priority fake H-task τf with CL
f =C

H
f =S − Xi and Tf =S . The minimum

feasible budget Xi for a given server can be found via binary search over (0, S]. Note that for this
arrangement, each server can be sized independently of other servers and their attributes and the

order in which they are arranged in the timeslot is irrelevant.

Such independence between servers also holds when our analysis is used instead of the original

AMC-max, to test the feasibility while sizing servers with static budgets. Indeed, the offsets of the

server under analysis (and all others) can be disregarded because any static-budget server execution

pattern is transformable via shift-rotation along the time axis into an equivalent schedule where

the server under consideration has a given offset (conveniently, OL
i = OH

i = 0). Crucially, the

unavailability intervals for the server all have a duration of S − Xi and occur strictly periodically.

Nevertheless, even if our new analysis can accommodate static server budgets as a special case,

it does not necessarily outperform AMC-max for this arrangement because of the slight pessimism

introduced by upper-bounding the interferences from the unavailability of the server in L-mode

and in H-mode separately from each other (see Equation 6). In any case, for greater insight, in

Section 6, we plot results for SSB using both analyses.

5.2 Dynamic server budgets (DSB)
Under this arrangement, which our analysis was devised for, a server can have a different budget
after a mode switch. Once again, the servers execute back-to-back and the first server is aligned

with the start of the timeslot. Both the L-mode and H-mode server budgets are computed offline.
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To compute the minimum feasible H-mode budget XH
i of a server, we need to know its starting

offsets in each mode (OL
i and OH

i ) and its L-mode budget X L
i . In turn, the offset of a given server in

a given mode can only be computed if we already know the budgets of all predecessor servers. This

implies that the order in which the servers are arranged in the schedule is already decided. This is

one of the reasons why the particular budget assignment problem is, in our view, not amenable to

a tractable Integer Linear Programming (ILP). See related discussion in Section 5.3. Therefore, we

devised heuristics for selecting the server order (described in Section 5.2.1) and for server budget

assignment.

For the DSB arrangement, we explore two different heuristics. First, we consider a simple heuristic

that assigns L-mode budgets (X L
i ) to all servers, proportionally to the minimum feasible L-mode

budget Xmin
i for each server (identified with a binary search algorithm [32]). All server offsets and

H-mode budgets are eventually computed from that set of L-mode budgets, directly or indirectly.

As a second option, we explore the Simulated Annealing (SA) [25] metaheuristic, which accepts the

output of the previous heuristic as a starting solution (if not already feasible), and tries to mutate

the original set of X L
i budgets until it becomes feasible.

SA attempts to replace the current solution of a problem with a new (randomly obtained) solution

in each iteration. A candidate solution that improves on the current one is always accepted but,

occasionally, the algorithm also accepts a “worse" candidate solution, with a probability that

depends on the value of a probability function. This function takes as parameters a variable Θ (the

“temperature") and the difference of the “utilities" of the current solution and the candidate solution.

Higher temperatures and lower reduction in utility raise the acceptance probability for a “worse"

solution. Occasionally accepting “worse" solutions prevents getting stuck at a local optimum of the

optimization problem. The temperature Θ is gradually decreased with the number of iterations. In

our implementation, a solution is represented by the set of X L
i values (which uniquely determines

all eventual OL
i and OH

i offsets and XH
i budgets). As utility of a given solution, we define the sum

of the XH
i budgets calculated separately for each server, assuming the corresponding X L

i value and

OL
i = O

H
i = 0.

Algorithm 1 provides detailed pseudocode for both heuristics.

Initial Phase (Simple heuristic): Initially, we determine the minimum feasible L-mode budget

Xmin
i for each server separately (line 1). To do that, we assume that its H-mode budget is equal to S

(the entire timeslot) and its starting offsets are zero (i.e., XH
i = S and OL

i = OH
i = 0). With these

assumptions, we compute, using our new analysis as feasibility test, the corresponding minimum

feasible L-mode size Xmin
i for each server using binary search [32]. If the sum of Xmin

i for all

servers exceeds S or if any of the servers are infeasible with the maximal H-mode server size of S ,
we declare failure as the system is provably unschedulable, with any assignment of server budgets

(line 2). Otherwise, once Xmin
i is computed for all servers, we set X L

i = Xmin
i ∗ S∑

∀i Xmin
i

for each

server (line 5). The factor
S∑

∀i Xmin
i

proportionally scales up the Xmin
i value of each server to fill up

entirely the L-budget timeslot S . So, by construction,

∑
∀i X

L
i ≤ S .

The selected L-mode budgets are in turn used to compute the actual H-mode server budgets.

With a server order given a priori, the H-mode budget (XH
i ) of any ith server can be computed

using binary search over [0, S], assuming offsets of OL
i =

∑i−1
j=1X

L
j and OH

i =
∑i−1

j=1X
H
j (line 6). If

for the computed XH
i values it holds that

∑
∀i X

H
i ≤ S , we declare success (line 7). Otherwise, we

try the metaheuristic (Simulated Annealing), implemented in main loop:

Main Loop (Simulated Annealing): In any iteration k , two servers (P̃a and P̃b ) are selected
randomly (line 10). This heuristic incrementsX L

a of P̃a and decrementsX L
b of P̃b (line 12) by the same

value of β (computed via Algorithm 2), that is the server variation length parameter for this iteration.
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Algorithm 1 Simple heuristic and Simulated Annealing algorithm

Input: Sorted P̃ , S , ∆, Θ and Cooling Rate

Output: X L
i ,X

H
i ,∀i

1: Initial Phase:
2: Find Xmin

i for each server P̃i using binary search, assuming XH
i = S .

3: if (
∑

∀i X
min
i > S | | ∃ P̃i infeasible with XH

i = S) then return Failure

4: else ◃ scale up X L
i values

5: Set X L
i = Xmin

i × (S/
∑

∀i X
min
i ),∀i

6: Compute XH
i for each server, given X L

i values ∀i , with offsets

7: if (
∑

∀i X
H
i ≤ S) then return X L

i ,X
H
i ,∀i

8: Main Loop:
9: for (k = 0,Θ > 1;k = k + 1) do
10: Select two random servers P̃a and P̃b
11: Compute β for servers P̃a and P̃b with Algorithm 2

12: Set X L
a (k) = X L

a (k-1) + β and X L
b (k) = X L

b (k-1) − β

13: Set other servers X L
i (k) = X L

i (k − 1),∀i < a,b

14: Compute XH
i (k),∀i in kth iteration with offsets

15: if (
∑

∀i X
H
i ≤ S) then return X L

i (k),X
H
i (k),∀i

16: else
17: Compute XH

i (0,k),∀i with OL
i = O

H
i = 0 offset in iteration k

18: if (
∑

∀i X
H
i (0,k) <

∑
∀i X

H
i (0,k − 1)) then

19: Keep X L
i (k),X

H
i (0,k),∀i for k+1th iteration

20: else if (z ∈ (0,1] ≤ e

∑
∀i X

H
i (0,k−1)<

∑
∀i X

H
i (0,k )

Θ ) then
21: Keep X L

i (k),X
H
i (0,k),∀i for k+1th iteration

22: else
23: Discard this and keep (k-1)th iteration solution

24: Θ = Θ ∗ (1− Cooling Rate)

25: On for loop termination without success, return Failure

Adding and subtracting the same value of β from the two budgets keeps the sum of L-mode server

budgets in the kth iteration equal to that of the (k − 1)th iteration, i.e.,

∑
∀i X

L
i (k) =

∑
∀i X

L
i (k − 1).

By construction, the heuristic keeps

∑
∀i X

L
i ≤ S . Hence, the parameter β is computed by

Algorithm 2 such that this condition is never violated. In Algorithm 2, initially, βmax = −(∆ ∗ S) +
(2 ∗ γ ) gives the maximum variation in this iteration (line 1, Algorithm 2), where ∆ ∈ (0, 1] is an
input parameter, and γ is randomly generated over (0,∆ ∗ S]. Afterwards, βa and βb are selected

such that X L
a + βa remains in [Xmin

a , S] and X L
b − βb remains in [Xmin

b , S] (lines 2-13, Algorithm 2).

Between βa and βb , the one that gives the least change in server size is selected as β (lines 14-17,

Algorithm 2).

After selecting β , X L
a (k) and X

L
b (k) are updated to X L

a (k − 1) + β and X L
b (k − 1) − β , respectively.

All other severs get the previous-iteration values, i.e., X L
i (k) = X L

i (k − 1), ∀i , a, i , b (line 13).

Once L-server budgets are available for the kth iteration, the corresponding H-mode server sizes

are computed (employing binary search and our analysis as schedulability test), using the offsets

OL
i (k) =

∑i−1
j=1X

L
j (k) and O

H
i (k) =

∑i−1
j=1X

H
j (k), for any server P̃i (line 14).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 96. Publication date: July 2019.



96:16 M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson and E. Tovar

Algorithm 2 Server variation length parameter (β) computation

Input: P̃a , P̃b , S and ∆
Output: Server size variation factor β
1: βmax = −(∆ ∗ S) + (2 ∗ γ ) ◃ Parameter ∆ ∈ (0, 1]; γ ∼ unif(0,∆ ∗ S].
2: if (X L

a + βmax > S) then
3: βa = S − X L

a
4: else if (X L

a + βmax < Xmin
a ) then

5: βa = Xmin
a − X L

a
6: else
7: βa = βmax

8: if (X L
b − βmax > S) then

9: βb = X L
b − S

10: else if (X L
b − βmax < Xmin

b ) then
11: βb = X L

b − Xmin
b

12: else
13: βb = βmax

14: if (βmax ≥ 0) then
15: β = min{βa, βb }
16: else
17: β = max{βa, βb }

return β

If the process of computing XH
i (k) with the above offsets for the kth iteration is successful and∑

∀i X
H
i (k) ≤ S , we declare a success and exit the loop (line 15). Otherwise, the “utility" of the

current solution is computed. For that purpose, we calculate for each server what its least feasible

H-mode budget would be (XH
i (0,k)), with the current X L

i (k) budget and assuming OL
i = O

H
i = 0

(line 17). The utility of the solution is the sum of thoseXH
i values. If

∑
∀i X

H
i (0,k) <

∑
∀i X

H
i (0,k−1)

(i.e., if it is a “better" solution than the previous iteration), or if a randomly generated number z

in (0, 1] is less than or equal to acceptance probability of e

∑
∀i X

H
i (0,k−1)<

∑
∀i X

H
i (0,k )

Θ (i.e., occasionally

accepting the worse solution), then theX L
i (k) andX

H
i (0,k), ∀i are accepted for the (k+1)th iteration

(lines 18-21). Otherwise, these values are discarded, and X L
i (k − 1) and XH

i (0,k − 1), ∀i are used

for the (k + 1)th iteration (line 23). Finally, if the system cools downs without finding any feasible

solution, a failure is declared (line 25).

5.2.1 Server ordering heuristics. To achieve efficient dynamic server budget assignment, the order

of servers is an important initial step. We propose to sort the servers in non-decreasing order of

U H (P̃i ) −U L(P̃i ), where U
H (P̃i ) and U

L(P̃i ) represent the H and L-mode utilisation of server P̃i ,
respectively. The reason we chose this ordering was because it would result in a server ordering

that would approximate an ordering by non-decreasing XH
i − X L

i . Recall that in Section 4.2, we

identified that ordering servers by non-decreasingXH
i −X L

i would likely promote good performance.

However one can only confirm whether a given server ordering meets this property a posteriori, due
to the interdependencies of the servers’ parameters with each other and the ordering. Therefore, we

simply choseU H (P̃i ) −U L(P̃i ) (which is verifiable a priori) as a good proxy. We also experimented

with server ordering by non-increasingU H (P̃i )/U
L(P̃i ), but it performed slightly worse.
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5.3 Amenability to ILP formulation
Above, we opted for heuristics and metaheuristics for solving the server budget and offset as-

signment problem. It is, however, worthwhile to discuss whether an ILP formulation to solve this

problem could be devised and whether or not this would be worth pursuing.

As we will show, this specific problem is not particularly amenable to a tractable ILP formulation.

This is related to the fact that each server has not one, but two execution time budgets (one per

mode) but these also depend on the servers’ starting offsets in the two modes and, indirectly, on

the budgets and offsets of other servers. In more detail:

The server budget and offset assignment problem can be formulated as a 2-dimensional bin

packing problem in which one of the dimensions corresponds to L-mode and the other dimension

to H-mode. Each server can be represented by a rectangle, with dimensions (X L,XH ), and the

offsets OL
and OH

can be seen as the coordinates of the bottom-left corner of each rectangle,

representing a server. The problem then is to place all the servers in an S by S square, with a proper

orientation, such that the servers do not overlap, and the bottom-left corner is the bottom-left

corner of the square, for the first server, and the upper-right corner of the server that precedes

it, for the remaining servers. A similar formulation, i.e. based on a 2-dimensional bin packing

problem, is used in [4] for a problem of budget assignment to servers with two different budgets

per server, an execution time budget and a budget for memory accesses. In that work, to make the

solution tractable, all feasible budget pairs for each server (characterised by the pareto property)

are precomputed and encoded into the ILP as constants. However, in the particular problem that

we are targeting in the present work, this does not appear as a viable approach, because, whether

or not a budget pair (X L
, XH

) is feasible for a server also depends on the corresponding pair of

starting offsets (OL
, OH

) for the server, which in turn depends on the budgets of other servers.

Precomputing all feasible tuples (X L
, XH

, OL
, OH

) for each server and encoding into the ILP as

constants, in order to break this dependency would be intractable, because the number of tuples

would be too large.

6 EVALUATION
6.1 Experimental setup
We implemented the analysis and heuristics in Java, to explore the scheduling performance of

different scheduling arrangements and budget assignment heuristics and the effectiveness of the

analysis. One module generates the synthetic task sets and servers, for the given parameters.

Another module does the schedulability testing.

Task set generation: Task periods are generated with a log-uniform distribution in the 10-100

msec range. We generate implicit-deadline tasks (Di = Ti ), even though the analysis holds for

the more general constrained deadline model (Di ≤ Ti ). The given target L-mode utilisation is

distributed among tasks using UUnifast [10, 22] in an unbiased way. Then, for each taskCL
i = Ti ∗U

L
i ,

whereU L
i is its L-mode utilisation. The fraction of H-tasks is a user-defined parameter. The H-WCET

of a task is a linearly scaled up value of its L-WCET, according to an an input parameter κ (i.e.,

CH
i = κC

L
i . Tasks are assigned Deadline Monotonic priorities. The generated tasks are indexed in

order of increasing Di and are assigned to servers using round-robin. To better utilise the system’s

resources, one can explore the problem of efficiently assigning tasks-to-servers. However, designers

may not always have control over this, since the grouping of tasks is functional, on the basis of

appplication. The timeslot length (S), corresponding to the common period of all servers, is set to

the shortest Ti in the task set.

The target L-mode system utilisation varies in a range of [0.1, 1], in steps of 0.1. Different random
class objects are used to generate period and utilisation values. They are seeded with a different
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Table 1. Overview of Parameters

Parameters Values Default

Number of servers (q) {2, 3, 4, 5, 6} 3

Task-set size (n) {9, 12, 15, 18, 21, 24} 3/server

H-tasks share {20 : 10 : 80}% 30%

HWCET scaling (κ) {2 : 1 : 6} 3

Temperature (Θ) {.025, .05, .1, .5, 1, 5, 10}*1000 10000

Cooling rate {.001, .005, .01, .05, .1, .3, .5, .7, .9, 1} 0.005

Budget variation (∆) {.001, .005, .01, .02, .05, .1 : .1 : .9} 0.5

Server ordering {U H (P̃i ) −U L(P̃i ),U
H (P̃i )/U

L(P̃i )} 1
st

odd number and reused in successive replications. For each set of input parameters, we generate

1000 random task sets. Table 1 presents the range of values considered for all the parameters and

their defaults. The triples in this table corresponds to {min : step : max} values of a parameter. In

our experiments, we vary one parameter at a time, while the others conform to their defaults.

To save space, we present the results as plots of weighted schedulability. This performance

metric [7, 12] condenses three-dimensional plots into two dimensions. It is a weighted average

that gives more weight to task sets with higher utilisation – supposedly harder to schedule. Let

Sy (τ ,p) denote the result (0 or 1) of a schedulability test y for a given task set τ with an input

parameter p. ThenWy (p), the weighted schedulability for test y as a function of p, isWy (p) =∑
∀τ

(
U (τ ) ∗ Sy (τ ,p)

)
/
∑

∀τ U (τ ), whereU (τ ) is the utilisation of τ . Our plots are weighed according
to L-mode utilisation.

6.2 Scheduling arrangements and server ordering heuristics compared
Static Server Budgets (SSB): A server has the same budget in both modes. We use the original

AMC-max [6] for the schedulability test, for fairness. A server is assigned the smallest budget that

ensures schedulability, using sensitivity analysis (binary search).

Static Server Budgets with our analysis (SSBO): Same as above, but instead of AMC-max,

our new analysis is used with server offsets set to zero, i.e.,OL
i = O

H
i = 0∀i . Comparing SSBO with

SSB assesses the pessimism when the new analysis deals with the special case of X L
i = XH

i ∀i . Such
pessimism stems from independently bounding the fake task’s interference in the two modes.

Dynamic Server Budgets with Simple heuristic (SH): This approach for DSB declares a

success, if the system is feasible using the simple budget assignment heuristic, i.e., the “Initial

Phase" of Algorithm 1, using our new analysis.

Dynamic Budgets with Simulated Annealing (SA): This corresponds to the metaheuristic

(main loop of Algorithm 1). Our new analysis is used for schedulability testing. Success is plotted if

a task set is either schedulable using just SH, or, if it is not schedulable by SH, but the metaheuristic

in the second stage finds a feasible assignment of server budgets for both modes. Table 1 presents

the ranges used for the configuration parameters (Θ, cooling and ∆).
SA with all possible server orderings (SAAO): Instead of picking a predefined ordering, all

possible orderings in which the servers can be arranged are tested for a feasible solution. For each of

them, the SA heuristic described above is applied, with the specifed maximum number of iterations.

The SAAO heuristic allows us: (a) to analyze the effect of the server ordering, and (b) to quantify

the quality of the default ordering by U H (P̃i ) −U L(P̃i ) and, indirectly, the validity of the intuition

behind its selection.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 96. Publication date: July 2019.



Techniques and Analysis for Mixed-criticality Scheduling with Mode-dependent Server Execution Budgets 96:19

2 3 4 5 6

0.35

0.4

0.45

0.5

Number of Servers

W
ei

gh
te

d 
S

ch
ed

ul
ab

ili
ty

 

 

SSB
SSBO
SH
SA
SAAO
SHAO

Fig. 4. (Fixed tasks per server)
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Fig. 5. (Fixed number of total tasks)
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Fig. 7

SH assuming all possible server orderings (SHAO): Similar to SH, except that all possible

server orderings are checked.

6.3 Results
Figures 4 and 5 present the weighted schedulability for different number of servers. The number

of tasks per server is constant (3/Server) in Figure 4, while the total number of tasks to distribute

among servers via a round robin policy is constant (18 tasks) in Figure 5. Increasing the server

count results in lower schedulability, due to the reduced average per-server budget in a given time

slot. All curves follow this trend. The difference between SAAO and SA is small which validates

the selected server ordering by non-decreasing (U H (P̃i ) −U L(P̃i )) as a good choice. At low server

counts, SH performs similar to SA as the scaling of L-mode budgets to fully utilise the timeslot of

length S helps find more feasible H-mode budgets, already in the initial phase. An increase in the

number of servers makes it harder to fit the servers in the timeslot and hence, the main loop in SA

(Algorithm 1) becomes useful. Similar behaviour is seen when comparing SHAO and SAAO. In most

the cases, SHAO outperforms, indicating that the server ordering has high impact on scheduling

performance. SSB and SSBO behave almost the same. The slight lead of SSBO over SSB, where

present, is attributed to the optimisation in (10), upper-bounding the L-mode interference by s .
This seems to mask the pessimism from independently bounding the fake task’s interference in

the two modes. SSB and SSBO perform similarly when there are fewer servers. However, their

slight performance difference increases with more servers in the system. Conversely, the difference

between SA and SSB increases with more servers. This indicates that the proposed analysis performs

better with its intended dynamic setting. In general, SAAO and SA outperform SSB and other

variants.
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Table 2. Maximum and minimum average running times in microseconds.

SSB SSBO SH SA SAAO SHAO

Max. (µs) 410 465 690 69300 216060 1633

Min. (µs) 270 220 450 467 506 580

The number of tasks per server is larger in Figure 5 when compared to Figure 4. For a given

system utilisation, many light tasks per server are, more often than not, easier to schedule compared

to fewer, heavy tasks per server. Hence, the weighted schedulablity is slightly higher in Figure 5

against Figure 4. This observation is consistent with the result shown in Figure 6, as the weighted

schedulablity improves with a larger task set size. The number of servers is constant in Figure 6

and the larger task set size only increases the number of tasks per server, and consequently, the

improvement in weighted schedulability.

More H-tasks in a task set and a higher H-mode utilisation scaling factor κ (Figures 7 and 8)

both increase the H-mode utilisation, making the task sets harder to schedule. Hence, the weighted

schedulability decreases accordingly for all heuristics.

The temperature had negligible effect in our experiments. Cooling rates above 0.1 were slighly

detrimental for SAAO, and more so for SA. Meanwhile, a larger ∆ improved the performance of

SAAO and SA, but with diminishing returns above ∆ = 0.05. Ordering the servers by non-increasing

U H (P̃i ) −U L(P̃i ) performed slighly better than ordering by non-increasing order ofU H (P̃i )/U
L(P̃i )

– up to 0.5% in unweighted schedulability for SA; up to 0.8% for SH.

Compared to the baseline SSB, the absolute difference in terms of unweighted schedulability
success ratio was up to 52.8% for SAAO. Such improvement allows more task sets to be schedulable

on less powerful processors, hence reducing overall system cost.

Finally, we performed experiments to analyse the running time of the proposed heuristics. The

hardware platform used in these experiments has 16 GB RAM, 8 i7-4710MQ cores with maximum

frequency of 2.5 GHz and runs the Linux Mint 18.3 Sylvia operating system. Figure 9 presents

the average running time per taskset with default parameters of the heuristics for different task

set utilisation values. Table 2 shows the maximum and minimum average running times of the

different heuristics for this experiment. The maximum average running time of SAAO and SA is

approximately, 2 to 3 order of magnitude greater than other heuristics. The SHAO heuristic, with

up to 42 times / 132 times respectively shorter average running time than SA and SAAO, has an

unweighted scheduling success ratio up to 8.7% better than SA and marginally lower than SAAO

(for the specified number of iterations). Hence, the SAAO heuristic provides better schedulability
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success ratio, while the SHAO heuristic gives best results for computation time spent. For SA and

SAAO, the system takes longer to find feasible solutions for middle values of the utilisation range.

The drop at higher utilisation values happens due to early declaration of failure for unschedulable

task sets.

Figures 10 and 11 present the average running time of the heuristics for different task set sizes and

different number of servers, respectively. The running time of all heuristics increases approximately

linearly with the task set size, because the schedulability test requires checking the schedulability of

every task. However, this is visible only for SA and SAAO, because their running times are several

orders of magnitude higher than those of the remaining heuristics. The increase in the number

of servers exponentially increases the number of possible server orderings under both SHAO and

SAAO, and therefore also the average running time. Again, this is barely visible for SHAO whose

running time is several order of magnitude smaller than that of SAAO.

7 CONCLUSIONS
We proposed new schedulability analysis for mixed-criticality uniprocessor systems employing

periodic servers in a cyclic executive manner and using AMC as the scheduling policy within each

server. The novelty of the proposed scheduling analysis is that it supports varying server budgets in

different modes. Our proposed approach provides strict temporal isolation among applications with

the additional ability to efficiently utilise the available execution capacity across mode switches.

We also proposed static and dynamic heuristics for assigning budgets to servers in both modes and

for optimising the order of the servers in the cyclic executive schedule. Experimental evaluation

with synthetic task sets showed that mode-dependent budgets can improve schedulability ratios

by up to 52.8%, vs. static budgets. Even a simple heuristic can yield up to 27% of improvement.

The order of the servers in the schedule can influence the schedulability ratio and the proposed

heuristic for ordering them performs well in our experiments.
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