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Abstract—Timing analysis of safety-critical real-time embed-
ded systems should be free of both optimistic and pessimistic
aspects. The multiframe model was devised to eliminate the
pessimism in the schedulability analysis of systems with tasks
whose worst-case execution times vary from job to job, according
to known patterns. However, this model is optimistic and unsafe
for multicores with shared memory controllers, since it ignores
memory contention, and existing approaches to stall analysis
based on memory regulation are very pessimistic if straight-
forwardly applied. This paper remedies this by adapting existing
stall analyses for memory-regulated systems of conventional
Liu-and-Layland tasks to the multiframe model. Experimental
evaluations with synthetic task sets (and different task and
memory budget assignment heuristics) show up to 85% higher
scheduling success ratio for our analysis, compared to the frame-
agnostic analysis, enabling higher platform utilisation without
compromising safety. We also explore implementation aspects,
such as how to speed up the analysis and how to trade off
accuracy with tractability.

Keywords-memory access regulation; multiframe task model;

I. INTRODUCTION

Modern embedded systems are ever more computationally

intensive. This motivates a shift to commercial-off-the-shelf

(COTS) multicore platforms, which offer significant advan-

tages in terms of raw computing power, energy consumption,

dimension and weight over single-cores. The transition to

multicores brings the sharing of resources, such as cache,

main memory and I/O devices among cores, which reduces

platform costs, but also makes the temporal behaviour of

applications harder to analyse. To meet the stringent timeliness

requirements in safety-critical domains (e.g, avionics, automo-

tive, health, automation and space), designers must therefore

integrate the effects of interference on shared resources into the

timing analysis [1], [2]. For each application domain, standards

( [3]–[6]) codify the requirements to be met (including tempo-

ral ones) to achieve certifiability. In avionics, the certification

authorities have also issued a position paper [7] with guidelines

for meeting certification requirements on multicore platforms

which specifically discusses interference on shared resources.
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Among the approaches devised for dealing with that issue,

the Single-Core Equivalence (SCE) framework [8] provides

several software-based mechanisms to mitigate the interfer-

ence on shared cache, main memory and I/O devices. The

cache is partitioned among the tasks via Colored Lock-

down [9]. The memory bandwidth is regulated among cores

by MemGuard [10], which assigns to each core a memory

access budget, for use within a regulation period. Any core

exceeding its allocated bandwidth is stalled until the start of

next regulation period, when memory budgets are replenished.

Existing techniques [11], [12] for computing (and integrating

to the schedulability test) the worst-case memory stalls under

such regulation assume a single worst-case execution time

(WCET) estimate per task, decomposable into worst-case net

processor computation and worst-case total memory access

time. However, sometimes such a simplistic characterisation

of task worst-case timing behaviour can cause platform under-

utilisation and over-engineering.

Namely, many computing tasks actually have very different

worst-case execution requirements from one instance (job) to

another, but that variation follows a repetitive pattern. Mod-

elling every job of such a task in the schedulability analysis

with the maximum WCET of all jobs is pessimistic [13]. Such

tasks are best modelled by the multiframe task model [14] – a

generalisation of Liu and Layland’s task model that captures

the WCET variation pattern. However, the existing analysis

for that task model ignores the contention for shared memory

controllers and buses, so it is unsafe for safety-critical systems.

Conversely, the memory stall analysis techniques mentioned

earlier cannot be directly applied to multiframe tasks. Discard-

ing frame information in order to apply them is pessimistic and

may lead to the system be deemed unschedulable or increase

system costs. Hence, new analysis is needed.

In response, our paper brings the following four contribu-

tions: (1) The worst-case memory stall with a memory regula-

tion mechanism is derived on a shared memory controller and

bus for a multiframe task model in a partitioned multicore

platform setting. (2) The derived memory stall is integrated

to new stall-aware schedulability analysis for the multiframe

task model. Implementation aspects of the new analysis and

tractability optimisations, at the cost of some pessimism,

are also elaborated. (3) Five memory bandwidth and task-

to-core assignment heuristics are proposed to achieve better



schedulability success ratio in the multiframe task-model.

(4) An experimental evaluation demonstrates that our analysis

achieves up to 85.1% of absolute difference in schedulability

success ratio over single-frame task model and stall analysis

techniques for task sets with different characteristics.

Next in this paper, Section II discusses the state-of-the-art

in memory-stall-aware scheduling for single-frame tasks and

in stall-oblivious schedulability analysis of multiframe tasks.

The system model used in this work is presented in Section III.

Some existing results serving as background for our analysis

are discussed in Section IV. Section V presents the techniques

for computing the worst-case memory stall and its integration

into the analysis for fixed-priority multiframe task scheduling.

Implementation aspects, such as speeding up the analysis and

trading off accuracy with tractability are also discussed. Five

task-to-core and memory bandwidth assignment heuristics are

introduced in Section VI. The experimental evaluation of the

proposed analysis and heuristics is presented in Section VII.

Section VIII concludes.

II. RELATED WORK

A. Regulation of memory accesses

Several techniques for mitigating memory interference on

shared channels in multicores [2], [10], [15]–[17] implement

periodic servers in software to manage the memory budgets of

the cores. Performance monitoring counters track the memory

accesses issued by the cores. Any core exceeding its assigned

memory budget is stalled until the start of the next memory

budget cycle. We assume the same software-based memory-

budget enforcement mechanism. Implementation-related is-

sues of such mechanisms are discussed in [18].

Such regulation does mitigate memory interference but it

also introduces new stalls that invalidate the existing schedu-

lability analyses, unless the latter are adapted to account

for them. Some efforts in this direction target partitioned

fixed-priority preemptive scheduling algorithms [11], [15] and

hierarchical scheduling [17]. The latter work is a server-

based scheduling mechanism that provides isolation between

independent applications scheduled and uses fixed-priority

scheduling inside each server. Mancuso et al. [11], under

their SCE framework [19], target fixed-priority-scheduled

partitioned multicores. The periodic software-based memory

regulation mechanism MemGuard [10] ensures that each core

gets an equal share of memory bandwidth in each regulation

interval (or period) and stalls until the end of the regulation

period if that budget is depleted. The resulting memory regu-

lation stalls are integrated into the schedulability analysis [11].

Yao et al. [20] and Pellizzoni and Yun [21] generalised the

previous analysis [11] by allowing uneven memory budget

assignment to cores, for greater efficiency when the cores

memory access requirements are too diverse. Even so, in

those works, the stall analysis for any core is agnostic to the

memory budgets assigned to the other cores. This motivated

Mancuso et al. [22] to explicitly consider the known memory

access budgets of other cores for greater accuracy. Agrawal et

al. [23] recently also proposed a dynamic memory bandwidth

assignment mechanism that varies the budgets over time, based

on the application requirements and formulated schedulability

analysis for this arrangement. Awan et al. [24] improved on

the SCE model [11] by considering periodic server-based

scheduling with EDF and uneven per-server memory budgets

assuming upper and lower bounds on the access time of a

single memory transaction. The stall time analysis consid-

ers per-core memory budgets that are variable at run time

and can provide inter-server isolation on the same core. An

ILP [24] can find a budget assignment that satisfies the timing

requirements of the tasks. Awan et al. [25] derived worst-

case memory stall analysis for a memory-regulated multicore

with two memory controllers and integrated the corresponding

stall terms into the schedulability analysis for fixed-priority

partitioned scheduling. Other related works integrate the mem-

ory regulation stall and effect of cache redistribution into the

schedulability analysis of mixed-criticality systems [26]–[28].

B. Multiframe task model

The multiframe task model by Mok and Chen [14] gen-

eralises Liu and Layland’s task model. Under this model,

the WCETs of successive jobs by the same task can vary,

according to a repeating pattern. For example, if a given

task’s “frame size” is N , there are up to N distinct WCETs

for its jobs, with the kth, (k + N)th, (k + 2N)th, . . . job

(“frame”) characterised by the same WCET. This is useful

for tasks whose execution time varies greatly from job to

another subject to a known pattern, as, e.g., in MP3 [29]

or MPEG video frame decoding [30]. By leveraging such

information, the analysis in [14] is much less pessimistic than

using the highest WCET over all frames as the WCET of

every job under Liu and Layland’s classic analysis. Baruah

et al. [13] considered the actual frame pattern, rather than

an accumulatively monotonic reordered pattern as in [14],

and produced more accurate analysis for the rate-monotonic

scheduling of multiframe tasks. Extensions to the model [31]

allow additional task attributes, other than the WCET, to differ

among frames.

Memory-stall-aware schedulability analysis has not yet been

formulated for multiframe task systems. However, since stall-

oblivious analysis is unsafe even for Liu-and-Layland task

systems, this trivially also holds for multiframe task systems,

which are a generalisation of the former. Conversely, while

stall-aware analysis exists for systems with a single per-task

WCET estimate, disregarding information of frame WCETs in

order to apply such analysis would be pessimistic (in the same

way that modelling a multiframe task as a Liu-and-Layland

task is), which may make the workload unschedulable on a

given system or risks increasing system cost. In this paper,

we formulate worst-case stall analysis for multiframe tasks

under per-core memory access regulation, and integrate the

stall terms into the schedulability analysis for the system.



III. SYSTEM MODEL

Platform and memory regulation: Our assumptions are

mostly inspired by the SCE framework [19] – specifically [12].

In a multicore platform, K identical cores access main

memory via a single shared memory controller. Cores can

have multiple outstanding memory requests. Prefetchers and

speculative units are disabled. The combined policy of both

the memory controller and its interconnect is round-robin [10],

[12]. The caches are either private to each core or partitioned

among cores. Memory accesses are regulated by software

(e.g., Memguard [10]) or hardware. As in [12], each memory

access takes a constant time of L. Performance monitoring

counters count the last-level cache misses by each core.

Memory accesses are regulated as follows. Each core k is

assigned a memory access budget Qk. This is the maximum

number of memory accesses allowed in each regulation period

of length P . As in [12], we measure Qk and P in terms of

L. These budgets are assigned at design time and may differ

for each core. A core exceeding its allocated memory access

budget is stalled until the start of the next regulation period.

Regulation periods on all cores are synchronized. The memory

bandwidth share of core k is bk = Qk

P
. The sum of the core

budgets does not exceed the available memory bandwidth of

the system, i.e.,
∑K

k=0
Qk

P
≤ 1. As in [12], CPU computation

and memory accesses do not overlap in time. Unlike e.g. [32],

[33], our model is agnostic with respect to the points in time

when memory accesses may occur within a task activation,

and hence imposes no particular programming model.

Task model: We assume a multiframe (MF) task-model,

in which a task generates jobs of varying execution re-

quirements with a regular pattern. More specifically, a task

τi = (Ĉi, Di, Ti) is characterised by a vector of worst-case

execution times Ĉi, a relative deadline Di, and a minimum

inter-arrival time of Ti between any two consecutive jobs. The

vector Ĉi = (C0
i , C

1
i , . . . , C

Fi−1
i ) provides the WCET of Fi

consecutive jobs (or frames) that repeat every Fi jobs. The

f th(f ≥ 1) job of τi is denoted as τfi and has an execution

requirement of C
((f−1) mod Fi)
i . A set of Fi consecutive jobs

of task τi is referred to as a superframe of τi.

A task-set τ = {τ1, τ2, · · · , τℓ} is composed of ℓ sporadic

tasks. These tasks are statically partitioned to the cores (no

migration). Tasks assigned to each core are scheduled with

preemptive fixed-priority scheduling. Each task is assigned

a distinct priority, e.g. using the deadline monotonic priority

assignment algorithm [34]. The WCETs of all jobs in a super-

frame are computed in isolation on a core assuming no inter-

ference from other cores on the shared memory controller and

its interconnect, e.g., using techniques and tools in [35]. Be-

cause we assume that CPU computation and memory accesses

do not overlap in time, every element Cj
i of the Ĉi vector is

decomposed into two parts: (a) CPU computation time, C
j|e
i ,

and (b) memory access time, C
j|m
i , and Cj

i = C
j|e
i + C

j|m
i .

Therefore, we refer to the WCET of the f th(f ≥ 1) job

Algorithm 1 Non-preemptive Task Worst-Case Stall

Input: System and task parameters: Cm, Ce, P , Q, K
Output: Worst-case stall for this task

1: if b = Q
P

< 1
K

then ⊲ Case 1

2: Compute stall as Equation (1)

3: else if r ≤ 1−b
b·(K−1) then ⊲ Case 2

4: Compute stall as Equation (2)

5: else ⊲ Case 3

6: Compute stall as Equation (3)

as the pair
(

C
((f−1)modFi)|e
i , C

((f−1)modFi)|m
i

)

. As for P ,

we express all timing parameter of tasks, including, C
f |e
i and

C
f |m
i , with 0 ≤ f < Fi, in time units of duration L, the

memory access latency.

IV. BACKGROUND

A. Memory-stall analysis for the single-frame task model

Our proposed schedulability analysis integrates the memory

regulation stall based on the principles of Yao’s stall analy-

sis [12]. This section provides the background on this analysis,

as it will be used in Section V. In Yao’s stall analysis, a

memory access can stall its core either (i) because of regulation

(i.e., if the core’s memory budget is exhausted), hence called a

regulation stall, or (ii) because of concurrent memory accesses

by other cores (a contention stall). Let b = Q
P

(the core’s

bandwidth share or ratio) and r = Cm

Cm+Ce (the task’s stall

ratio), then Yao et al. bound the total stall of a task τi (omitting

the core and task indices for clarity), as given in Algorithm 1.

stall =

{

Cm

Q
(P -Q)+(K-1)Q if Cm%Q=0

⌈

Cm

Q

⌉

(P -Q)+(K-1)(Cm%Q) otherwise
(1)

stall = (P −Q) + (K − 1) ·Q (2)

stall =

{

(1 +A1)(P −Q) + r1 if C ≤ (1 +A1)Q
(

1 + C
Q

)

(P −Q) + r2 otherwise
(3)

where, A1 =

⌊

Ce

Q−RBS

⌋

, RBS =
P −Q

K − 1

r1 = min{P −Q, (K − 1)(Cm −A1 ·RBS)}

r2 = min{P −Q, (K − 1)(C%Q)}

All three cases consider an initial regulation stall of (P −Q),

occurring in the worst case if a task is scheduled to run, but

the core’s budget is already exhausted. The above equations

from [12] assume that a single task is running on the core,

so it is never preempted. At any time t, it is either executing,

accessing memory, or stalled. The worst-case stall suffered by

a task scheduled with other tasks via fixed-priority scheduling

on a given core is computed by applying a single-task analysis

on a “synthetic task”. In addition to the task under analysis,

it contains the CPU computation and the memory accesses of

all higher priority jobs that may arrive during the response
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Fig. 1: Different job sequences of a task τj =
((1, 0), (1, 1), (2, 1)), 10, 10), depending on their phasing.

time of the task under analysis. Yao et al. [12] integrates

this worst-case memory stall for memory-regulated single-

controller multicore architectures into the classical worst-case

response time (WCRT) equation, as given in Equation (4).

Rk+1
i = Ci + IH(Rk

i ) + Stall(Rk
i , τi) (4)

In (4), the WCRT for the single-frame task model (i.e., single

WCET per task) has three components: i) the WCET of

the task under analysis, ii) the interference from the higher

priority workload IH(Rk
i ), and iii) the worst-case memory

stall on a memory-regulated multicore platform Stall(Rk
i , τi).

In Section V, we state how a synthetic task is modelled for

multiple tasks in the context of a multiframe task-model.

B. Task interference in a multiframe task-model

The schedulability analysis for the multiframe task-model

proposed by Baruah et al. [13] does not include the effect of

memory stall. To compute the memory-stall oblivious response

time in the multiframe task-model, Baruah et al. [13] defined

functions gi(n) in Equation (5) and Gi(t) in Equation (6)

to compute the interference from higher priority tasks. The

former computes the maximum cumulative execution demand

of any sequence of n (1 ≤ n ≤ Fi) jobs (or frames) of τi:

gi(n) =
Fi−1
max
j=0

j+n−1
∑

q=j

Cq mod Fi

i (5)

The maximum cumulative execution demand gi(n) is hence

the maximum sum of n successive jobs’ WCET for τi,
starting from any job in a superframe and wrapping around,

if necessary. Gi(t) uses gi(n) to compute τi’s maximum

execution demand in any interval of duration t:

Gi(t) = q · gi(Fi) + gi(r) (6)

where, q = ⌊
⌈ t
Ti

⌉

Fi
⌋ and r = ⌈ t

Ti
⌉−(q·Fi). Hence, for a task τi,

the total interference from the higher-priority tasks IH(t, τi)
for any time interval of t is given in Equation (7).

IH(t, τi) =
∑

j∈hp(i)

Gj(t) (7)

V. SCHEDULABILITY ANALYSIS

The memory-aware WCRT analysis of Yao [12] cannot be

directly applied to multiframe tasks because in this model each

frame has its own WCET. This has two main consequences.

First, the analysis must ensure that every frame of every

task is schedulable. If some frame of a task is not schedulable,

then the task is not schedulable. Second, to upper-bound the

interference by higher-priority tasks and the stall in each

iteration of the worst-case response time (WCRT) recurrence

of a frame, the analysis may need to consider more than

just one sequence of jobs per higher-priority task. In the

single-frame model, the worst-case behaviour of every job

of a task is always the same. Therefore, to upper-bound

the interference of a higher-priority task, it is sufficient to

compute an upper-bound on the number of its jobs that may

arrive in the response time window under consideration. In

contrast, in the multiframe model, because different frames

have different worst case behaviours, to determine an upper

bound on the interference of a higher priority task, we may

need to consider also the phasing of the sequence of interfering

jobs in the response time window. Figure 1 illustrates 3

job sequences corresponding to different phasings of task

τ = (((1, 0), (1, 1), (2, 1)), 10, 10) with a superframe of 3

jobs. Over a time window of 34 time units, the job sequence

that starts with frame τ3 leads to more interference than the

other two job sequences. On the other hand, for a time window

of 17 time units, the sequence that starts with frame τ2 is

the worst. Generally, for a higher priority task τj with a

superframe of Fj frames, there may be Fj different interfering

job sequences for each response time window, depending on

the first frame, and each of these sequences may lead to a

different worst-case response time of the task under analysis.

For the memory-oblivious model, because the WCET is

a scalar, [36] provides a simple and efficient method to

determine the worst-case sequence of jobs per interfering task.

In our model, the WCET is a pair, i.e. it is decomposed in

a worst-case CPU computation time, C
f |e
i , and a worst-case

memory access time, C
f |m
i , and these are not interchangeable

because they affect the stall differently, see Algorithm 1. Thus

it appears that it is not possible to compose the analysis in

[36] with Yao’s stall analysis.

A. Generalization of Yao’s WCRT analysis for multiframe

To take into account that each frame in a multiframe task

may have a different response time, instead of computing a

single response time, Ri, per task τi, the analysis computes

the response time, Rf
i , of every frame f in a superframe of

task τi. Therefore the response time of multiframe task τi is:

Ri = maxFi−1
f=0 Rf

i (8)

To take into account the phasing of the sequences of interfer-

ing jobs, in each iteration of the WCRT recurrence, instead of

computing a single value, Rk+1
i , the analysis computes several

values for the response time, one for each combination of

the phases of the different higher priority tasks, and takes the

maximum of these values. Next, we describe this procedure

in detail.

As we have argued earlier, see Figure 1, for each task

τj with priority higher than that of the task τi under anal-

ysis, and a given response time window, there are Fj job



sequences, where each job executes for its WCET. Thus,

in a given response time window, the worst-case response

time will occur for some combination of these job sequences,

one sequence per higher priority task τj . Formally, let S
f |k
i,j

denote the set of Fj sequences of worst-case jobs of task

τj in the response time window, R
f |k
i , computed in the

k-th iteration of the WCRT recurrence for frame τfi . For

example, consider Figure 1, and assume that R
f |k
i = 17,

then S
f |k
i,j = {(τ1j , τ

2
j ), (τ

2
j , τ

3
j ), (τ

3
j , τ

1
j )}. Each tuple in the

Cartesian product of these S-sets:

Θ
f |k
i =

∏

j∈hp(i)

S
f |k
i,j (9)

may lead to the worst-case response time in iteration k + 1.

Thus, in iteration k + 1, we compute the worst-case response

time for each tuple, θ ∈ Θ
f |k
i , using (10), and take the

maximum of these values as the value R
f |k+1
i , see (11), to

be used in the following iteration:

R
f |k+1
i (θ) = Cf

i + IH(θ) + stall(τfi , θ) (10)

R
f |k+1
i = max

θℓ∈Θ
f|k
i

R
f |k+1
i (θℓ) (11)

where IH(θ) is just the sum of the WCET of all the jobs in the

job sequences of tuple θ; and stall(τfi , θ) is the stall computed

using Yao’s stall analysis, see Algorithm 1, for a synthetic task

composed of one job of the frame under analysis, τfi , and of

all the jobs in the job sequences of tuple θ.

We now provide the expressions to compute IH(θ) and

the synthetic task parameters for Algorithm 1. Let σj be a

sequence of jobs of task τj , and define:

(Ce
σj
, Cm

σj
) =





∑

k∈σj

Ce(k),
∑

k∈σj

Cm(k)



 (12)

where k ∈ σj denotes that job k is in sequence σj , and Ce(k)
and Cm(k) denote the CPU execution time and memory access

time of job k, respectively. Likewise, we define:

(Ce
θ , C

m
θ ) =





∑

σj∈θ

Ce
σj
,
∑

σj∈θ

Cm
σj



 (13)

where σj ∈ θ denotes that job sequence σj is one of the

sequences of tuple θ. Thus:

IH(θ) = Cθ = Ce
θ + Cm

θ =
∑

σj∈θ

(

Ce
σj

+ Cm
σj

)

(14)

Finally, the Ce and Cm parameters of the synthetic task for

Algorithm 1 are given by:

(Ce, Cm) = (C
f |e
i + Ce

θ , C
f |m
i + Cm

θ ) (15)

In the first iteration of the WCRT recurrence (11), we

use Rf,0
i , the WCRT obtained by applying the stall-oblivious

analysis for multiframe tasks of Baruah et al. [13], to compute

S
f |0
i,j for all higher-priority tasks τj , and therefore Θ

f |0
i .

B. Reducing the computational cost of the analysis

The analysis of Section V-A may be computationally very

costly. For each task, it computes the WCRT of each frame of

a superframe using a recurrence (8). That is, the total number

of recurrences is
∑n−1

i=0 Fi, and the cost of each recurrence’s

iteration of the frames of task τi is proportional to
∏

j∈hp(i) Fj ,

by the definition of Θ
j|k
i (9). However, it is often possible

to reduce the computational cost of the analysis, both the

number of recurrences and the number of tuples that need

to be considered in each iteration of a recurrence.

We consider the reduction in the number of recurrences first.

For example, for task τj shown in Figure 1, both elements

of the WCET of frame τ3j , (2, 1), are larger or equal than

the corresponding elements of the WCET of the other frames

in superframe (τ1j , τ
2
j , τ

3
j ). Therefore, to determine whether

task τj is schedulable, it suffices to check if frame τ3j is

schedulable: if frame τ3j is schedulable, so are τ1j and τ2j ,

because they have a ”smaller” WCET and the analysis is

sustainable; if τ3j is not schedulable, then τj is not schedulable

and so it is irrelevant whether τ1j or τ2j are schedulable.

Formally, we define the ≤ partial-order:

Definition 1: Consider a set of pairs (Ce, Cm), where Ce

is CPU computation time and Cm is memory access time. We

define the partial-order ≤ among the elements of this set as:

(Ce
k, C

m
k ) ≤ (Ce

ℓ , C
m
ℓ ) ⇔ Ce

k ≤ Ce
ℓ ∧ Cm

k ≤ Cm
ℓ

Consider frames τ ji and τki of task τi. Let us abuse the

notation and write τ ji ≤ τki iff

(C
j|e
i , C

j|m
i ) ≤ (C

k|e
i , C

k|m
i )

So, if τ ji ≤τki and j 6=k, then we need not compute the WCRT

of τ ji . Thus, we can reduce the set of frames of a task whose

schedulability must be checked to the subset of these frames

whose WCET is maximal under the ≤ partial-order. (From

partially ordered sets’ theory, an element is maximal, if there

is no other element in the set that is ”larger” than it.) Of course,

if two frames have the same WCET, i.e. (Ce, Cm), we need

to check the schedulability of only one of them.

Using the ≤ partial-order, one may also reduce the amount

of computation in each iteration of a frame’s WCRT recur-

rence. Now, rather than the (C
f |e
i , C

f |m
i ) pairs corresponding

to a given frame of a task, we consider the (Ce
σi
, Cm

σi
) pairs

corresponding to a job sequence, see (12). As before, we abuse

the notation and write σi ≤ σj iff

(Ce
σi , Cm

σi) ≤ (Ce
σj , Cm

σj )

In the analysis of the previous section, in iteration k + 1 of a

frame’s WCRT recurrence, (11), we consider the set S
f |k
i,j of

all the Fj sequences of jobs with WCET of higher-priority task

j that may fit in R
f |k
i . However, if σm

j , σℓ
j ∈ S

f |k
i,j ∧ σm

j ≤
σℓ
j and m 6= ℓ, then there is no need to analyse the tuples

with sequence σm
j : if frame τfi is schedulable when subjected



to the interference of a tuple θ with σℓ
j , then it will also be

schedulable when subjected to the interference of the tuple

obtained from θ by replacing sequence σℓ
j with σm

j . Let M
f |k
i,j

be the set of maximal WCET of the job sequences in S
f |k
i,j

under the ≤ partial-order. The number of sequence tuples we

need to analyse in the k+1 iteration can be reduced to:
∏

j∈hp(i)

|M
f |k
i,j |

where |U | denotes the number of elements in set U .

One may further reduce the number of tuples that need to

be analysed in each iteration of a frame’s WCRT recurrence,

by defining the ≤ partial-order over the (Ce
θi
, Cm

θi
) pairs

corresponding to tuples, see (13). However, once θ has been

computed, the computation of R
n|k+1
i (θ) is comparable to the

cost required to determine whether θ is upper-bounded by

another job-sequence tuple in Θ
f |k
i . Therefore our experiments

(Section VII), forego this additional reduction step.

C. Trading-off tightness of the analysis for computation time

The reduction in the amount of computation time afforded

by the use of the ”maximal sets” in each step of the WCRT

recurrence is case dependent. In the best case, i.e. if M
f |k
i,j

has only one element, the reduction per higher priority task

τj , is by a factor of Fj , whereas in the worst case, i.e. each

job sequence is maximal, there is no reduction.

When this reduction is not sufficient to make the analysis

feasible, we can trade-off the tightness of the analysis for

computation time. As observed in the previous subsection,

to reduce the computational cost of the analysis, we need to

reduce the number of tuples in each iteration of the WCRT

recurrence without computing all tuples. Thus, the idea is to

reduce the number of job sequences of higher priority tasks

below the number of maximals, by adding sequences that

upper-bound the elements in the ”maximal sets”. For example,

assume that M
f |k
i,j = {(3, 1), (1, 3)}. If we add a sequence

with a WCET of (3, 3), then in iteration k + 1 of the WCRT

recurrence, (11), it suffices to consider a single sequence for

task τj rather than 2, thus reducing to half the computation

cost in this iteration. These are virtual sequences in the sense

that they do not correspond to job sequences that can occur

in the response time window of the task frame under analysis.

But this is not an issue. The WCRT recurrence requires the

knowledge of only the WCET of the tuples, i.e. the (Ce
θ , C

m
θ ),

not the knowledge of the job sequences that lead to that

WCET, and the WCET of a tuple can be computed from the

WCET of the sequences that compose it, see (13).

Formally, let U
f |k
i,j be a set of (Ce, Cm) pairs, and V

f |k
i,j

be the set of maximals of M
f |k
i,j ∪ U

f |k
i,j under the ≤ partial

order; then it is safe to use V
f |k
i,j instead of M

f |k
i,j to generate

Θf,k
i used in the WCRT recurrence (10) and (11). If |V

f |k
i,j | <

|M
f |k
i,j | we can reduce the computational cost of iteration k+1

of the WCRT recurrence.

A generic algorithm to generate U
f |k
i,j from M

f |k
i,j is to

partition M
f |k
i,j in subsets, and for each of these subsets

compute the (Ce, Cm) that upper-bounds its elements under

the ≤ partial-order, by taking the maximum of the CPU

computation time and the maximum of the memory access

time of all elements in that subset. In this algorithm, V
f |k
i,j is

equal to U
f |k
i,j . Different algorithms can be obtained from this

generic algorithm depending on 1) the number of subsets of

the partition; and 2) the way these subsets are generated.

The specifics of these algorithms are crucial to ensure that

the schedulability test terminates, as we argue next. Assume

the algorithm bounds the number of maximals in each iteration

to the same value. Furthermore, assume that in iteration k, one

needs to reduce the number of maximals, i.e. U
f |(k−1)
i,j 6= ∅,

whereas in iteration k + 1 there is no such need, U
f |k
i,j = ∅.

Because reducing the number of maximals as described in the

previous paragraph adds pessimism, it may be the case that

R
f |(k+1)
i < R

f |k
i , and that from then on the response time

estimate ”oscillates” between these two values.

Clearly, termination is ensured if, for each interfering task,

the maximals of the WCET pairs used in one iteration of the

WCRT recurrence (11) upper bound the maximals used in the

previous iteration. Formally, if V
f |k
i,j is the set of maximals of

V
f |k
i,j ∪ V

f |k−1
i,j under the ≤ partial-order for all k > 1, then

the WCRT recurrence (11) terminates. There are many ways

to satisfy this condition. A simple approach, suggested by this

observation, is to set U
f |k
i,j to the set of elements of V

f |k−1
i,j

that is not upper bounded by M
f |k
i,j .

The addition of (Ce, Cm) pairs to reduce the number of

maximals leads to some extra pessimism that can be easily

eliminated by using (C,Ce, Cm) triples. Consider, e.g., two

job sequences, σ1 and σ2, of a given task with WCET

(Ce
σ1
, Cm

σ1
) and (Ce

σ2
, Cm

σ2
), respectively, such that Ce

σ1
> Ce

σ2

and Cm
σ1

< Cm
σ2

. If the (Ce
σ1
, Cm

σ2
) pair is added to re-

duce the number of tuples, as described in this section, the

computation of the IH term, (14), of the WCRT recurrence

(10), uses Ce
σ1

+ Cm
σ2

. However this value is larger than

max(Ce
σ1

+Cm
σ1
, Ce

σ2
+Cm

σ2
), which clearly upperbounds the

interference, without stall, caused by any of these two job

sequences. Thus, to mitigate some of the pessimism introduced

by the use of ”U-sets”, we can modify the analysis so that the

M, U and V are sets of (Cσ, C
e
σ, C

m
σ ) triples instead of the

(Ce
σ, C

m
σ ) pairs, the ≤ partial-order is extended to triples in

the obvious way, and for the computation of the IH term,

instead of (14) we use:

IH(θ) =
∑

σj∈θ

Cσj
(16)

In the experiments in Section VII, we use a particular

instance of the analysis described in this section, where we

consider the singleton partition of each M
f |k
i,j and there-

fore each U
f |k
i,j has only one (C,Ce, Cm) triple with each

component being determined by taking the maximum of the



corresponding component of all the triples in M
f |k
i,j :

C = max{Cℓ : (Cℓ, C
e
ℓ , C

m
ℓ ) ∈ M

f |k
i,j }

Ce = max{Ce
ℓ : (Cℓ, C

e
ℓ , C

m
ℓ ) ∈ M

f |k
i,j }

Cm = max{Cm
ℓ : (Cℓ, C

e
ℓ , C

m
ℓ ) ∈ M

f |k
i,j }

We call this analysis the ”fast analysis”, because it reduces the

most the computational cost of each iteration of the WCRT

recurrence (11). On the other hand, it leads to the least tight

upper-bound of the worst-case response time.

D. Implementation details

The description of the analysis may have given the im-

pression that it is hard to implement because of the need to

compute the WCET of the job sequences in the S
f |K
i,j sets,

but actually the implementation is not much different from

that required by Barauah et. al. [13]. We keep one Fi × Fi

matrix, Wi, per task τi. Element Wi[j, k] of the Wi matrix

is the WCET (the (Ce, Cm) pair) of the sequence of jobs

of τi that starts with frame j (0 ≤ j < Fi) and has length

k (0 ≤ k < Fi) (all elements of the first column are the pair

(0, 0)). Furthermore, we use a vector S, with one element per

task τi; element S[i] of S is the WCET of τi’s superframe.

Let:
⌈

R
f |k
i

Tj

⌉

= Fj × qk + rk ∧ 0 ≤ rk < Fj − 1

where qk and rk are non-negative integers, be the maximum

number of arrivals of jobs of τj in R
f |k
i , the response time

window of τfi computed in iteration k of the WCRT recurrence

(11). Then the set of the WCET of the job sequences in the

S
f |k
i,j set, is the set of (Ce, Cm) pairs, such that:

(Ce, Cm) = Rj [ℓ, r
k] + qk × S[j], ℓ = 0 . . . (Fi − 1)

where we treat (Ce, Cm) pairs as vectors and use ordinary

vector addition and multiplication of a vector by a scalar.

VI. MEMORY BANDWIDTH ALLOCATION AND

TASK-TO-CORE ASSIGNMENT HEURISTICS

Five heuristics are devised for task-to-core and memory

bandwidth assignment, to explore the benefits of our memory-

aware schedulability analysis of multiframe tasks.

Even first-fit (Even-FF): All cores get an equal share of the

memory bandwidth, i.e., bk = 1
m
, ∀k. Subject to this memory

bandwidth assignment, the tasks are assigned to cores using

first-fit bin-packing.

Uneven first-fit (Uneven-FF): The heuristic assigns the

tasks in at most two rounds. In each round, it uses first-

fit for the unassigned tasks. It either terminates successfully,

with all tasks assigned or fails, when some task in Round

2 cannot be assigned. Round 1 uses first-fit assuming even

budgets for all cores. If some task cannot be assigned, it

is set aside for Round 2, and the next task is considered.

If Round 1 ends and there exist unassigned tasks, we trim-

off the superfluous bandwidth from each core, using binary-

search-based sensitivity analysis [37], [38]. This leaves each

core with the minimum budget sufficient for the schedulability

of the tasks assigned to it. In Round 2, the leftover tasks are

tested for assignment on each core using first-fit, by adding all

the reclaimed memory bandwidth to the target core’s budget.

Upon successful assignment, that core’s budget is retrimmed

using sensitivity analysis, with the reclaimed bandwidth used

for the next task. Both first-fit-based heuristics (Even-FF and

Uneven-FF) are designed to efficiently utilise the processing

capacity of the platform.

Memory fit (MF): This heuristic prioritises the efficient

use of memory bandwidth. Initially, each core is assigned a

memory bandwidth of zero, i.e., bk=0, ∀k, and the available

bandwidth (i.e., not yet assigned to any core) is Q. For each

task, we compute, for each core, the required increase in

memory bandwidth if we added that task to the set of tasks

already assigned to that core. A task τi is assigned to the core

k that requires the smallest increase to its memory bandwidth

bk. Again, we use the binary search approach described in [37],

[38] to compute this increase. This additional bandwidth re-

quirement is subtracted from the available memory bandwidth.

The heuristic terminates successfully when all tasks have been

allocated, or else, if the available bandwidth becomes negative,

the task set is not schedulable using this heuristic.

Memory density worst-fit (MDWF): This heuristic assigns

tasks using worst-fit bin-packing based on the memory density

of a core. The memory density of a task τi is defined as

MD(τi) ≡
∑Fi−1

f=0
C

f|m
i

Di
. It corresponds to the average,

over all frames, of the per-frame worst-case rate of memory

accesses, over a job activation window. In turn, the memory

density of a core k is defined as

MDk ≡











0 if τ(k) = ∅
∑

τi∈τ(k)

MD(τi) otherwise (17)

where τ(k) is the set of multiframe tasks assigned to core k.

We now describe the heuristic. Initially, no core has any

assigned task; the tasks are assigned one after the other.

To assign task τi to a core, the cores are first sorted in

non-decreasing memory density order. Next, the heuristic

tentatively assigns task τi to each core, in order, and tests

the schedulability of the core’s resulting task set, assuming

that all the available memory budget is added to the core’s

budget. Among all feasible target cores, the task is assigned

to the one for whose memory density post-assignment would

be the lowest. Then, the excess memory bandwidth assigned

to the core is trimmed, to be made available for other tasks, if

any. If a task is not schedulable in any core, then the taskset is

not schedulable with this heuristic. Note that because initially,

MDk=0, ∀k, the first K tasks are assigned each to one of

the K empty cores. This heuristic tries to balance the number

of memory accesses originating from each core. Worst-fit bin-



packing heuristic has the inherent ability to balance the cores

based on the target metric – in this case, memory density.

Total density worst-fit (TDWF): This heuristic is analo-

gous to MDWF, but instead of memory density it attempts

to balance using Worst-Fit the total execution density (i.e.,

computation plus memory accesses). The expectation is that

it could perform better in systems whose workload is CPU

intensive.

Let τ(k) be the set of multiframe tasks assigned to core k.

We define the total density, TDk, of core k, as follows:

TDk ≡















0 if τ(k) = ∅

∑

τi∈τ(k)

∑Fi−1
f=0 Cf

i

FiDi

otherwise
(18)

VII. EVALUATION

A. Experimental setup

A Java tool was developed to implement the proposed anal-

ysis for multiframe task-model that incorporates the memory

regulation stalls and to evaluate the scheduling performance

of different budget assignment heuristics. This tool has two

modules. The first module generates the synthetic workload

(tasks with frames) with given input parameters for the

specified multicore platform. The second module performs

the schedulability analysis with the proposed task-to-core

assignment and memory bandwidth allocation heuristics.

task set generation: Task periods are generated with a

log-uniform distribution in 10 millisecond to 1 second range.

Implicit-deadlines are assumed in this evaluation, though the

analysis holds for the constrained deadline model. Initially,

we generate the first frame of each task1. The given target

utilisation is distributed among tasks with a UUnifast-discard

algorithm [39]. This algorithm takes number of processors,

task set size and target utilisation as an input and provides the

distribution of utilisation among tasks. The WCET of the first

frame of each task is C1
i = Ti×Ui. The number of frames for

each task are selected randomly within a range of [1, α], where

α is an user-defined integer parameter. The WCET of the other

frames of a tasks τi is generated with uniform distribution

within [β×C1
i , C

1
i ], where β ∈ (0, 1] is a user-defined bound

in WCET variation of task’s frames. A user-defined memory

intensity parameter γ ∈ [0, 1] is used to compute the memory

access time and CPU computation time for each frame of

a task. For a frame τfi , C
f |m
i is randomly selected within

[0, γ×Cf
i ] and C

f |e
i = Cf

i −C
f |m
i . The tasks are given unique

priorities based on deadline monotonic priority assignment

policy [34]. Each frame inherits the priority of the task.

The target utilisation is varied within a range of (0, 1]. We

defined different random class objects to generate minimum

1For convenience and without loss of generality (since shift-rotation of the
order of the frames results in an equivalent multiframe task), this is the frame
with the greatest WCET.

TABLE I: Overview of Parameters

Parameters Values Default val.

Number of cores (K) {2, 4, 8, 12} 4

task set size (ℓ) {8, 12, 16, 20} 16

Bound on number frames (α) {3 : 1 : 8} 6

Frame WCET variation (β) {0.1 : 0.1 : 0.9} 0.1

Memory intensity (γ) {0.1 : 0.1 : 0.9} 0.5

Regulation period (P ) 100µs 100µs

Memory accesses time 40ns 40ns

Inter-arrival time (Ti) 10ms to 1s N/A

Nominal utilisation {0.1 : 0.05 : 1} N/A

inter-arrival time, utilisation, WCET of each frame, number

of frames and memory accesses of each frame. Each random

object is seeded with a different odd number and reused in

successive replications [40]. For each set of input parameters,

we generate 1000 random task sets. Each memory access is

assumed to take 40 nanoseconds [12]. The regulation period

length is assumed to be 100 microseconds. The parameters

used in our experiments are summarised in Table I. The triple

given in this table corresponds to {minimum : increment

granularity : maximum} values of a parameter. Please note that

default value of γ = 0.5 tends to generate more CPU bound

workload. Similarly, the default value of β = 0.2 provides

wider range to choose the frame’s utilisation. This allows

us to demonstrate that our proposed analysis can harness

the benefits from this variation. Nevertheless, the effect of

memory intensive workload and restricted variation in Frame’s

utilisation on our proposed analysis are also explored.

B. Results

Instead of providing plots in terms of scheduling success

ratio for all heuristics, (i.e., the fraction of task sets deemed

schedulable under the respective schedulability test), we pro-

vide weighted schedulability plots due to space limitation. This

performance metric [41], [42] condenses a three-dimensional

plots into two dimensions. It is a weighted average that

gives more weight to task sets with higher utilisation that are

supposedly harder to schedule. Using notation from [42], let

Sy(τ, p) represent the result (0 or 1) of the schedulability test y
for a given task set τ with an input parameter p. Then Wy(p),
the weighted schedulability for that test y as a function p, is

Wy(p) =
∑

∀τ (U(τ) · Sy(τ, p)) /
∑

∀τ U(τ). Here, U(τ) is

the system utilisation for a given task set of τ .

We compare all the heuristics presented in Section VI.

Each heuristic is tested with both the tight schedulability

analysis, see Section V-B, and the fast schedulabily analysis,

see Section V-C. These represent the two extremes in a range

of possible analyses described in Section V; as implied by

their names the ”tight analysis” computes the tightest worst-

case response time upper-bound, whereas the ”fast analysis”

does the fastest computation of an upper-bound at the expense

of its tightness. To distinguish between the two, we add

to the name of the heuristic a suffix, ”-TA”, for the tight

analysis, and ”-FA”, for the fast analysis. In general, the

tight analysis has approximately similar scaling up effect over



the fast analysis across all heuristics. Hence, to reduce the

number of lines in the plots, only memory fit is plotted

with a fast schedulability analysis (denoted as MF-FA). The

naive analysis, which transforms each multiframe task into a

single frame task with parameters Cm
i = maxFi−1

f=0 C
f |m
i and

Ce
i = maxFi−1

f=0 C
f |e
i and Ci = Cm

i + Ce
i and uses Yao’s

response time analysis, is used a baseline in our experiments.

Furthermore, in the baseline, tasks are assigned using memory-

fit, because in the evaluation of the single frame task-model in

[27], memory-fit performed better than other heuristics. It is

denoted as Yao-MF in all figures. The difference in weighted

schedulability among density-based heuristics (total density,

memory density) is very small, hence, only single heuristic of

TDWF-TA is used to represent their performance.

Figure 2 presents the weighted schedulability for the dif-

ferent values of β (bound on the WCET variation of task’s

frames). The increase in β increases the execution demand of

tasks’ frames. Hence, the weighted schedulability decreases

with an increase in β. The MF-TA efficiently utilises the

memory bandwidth in those task set instances where it is

the performance bottleneck and hence, performs better than

other heuristics. The TDWF-TA heuristic balances the core

utilisation based on total utilisation. At larger values of β the

utilisation of the system increases and it becomes harder to

balance the cores, consequently, the performance of TDWF-

TA degrades compared to other heuristics. As expected,

the Uneven-FF heuristic performs better than the Even-FF

heuristic due to an additional task-to-core allocation loop and

uneven memory bandwidth assignment. The Yao-MF heuristic

performs worst when compared to proposed heuristics, due to

the inherent pessimism in the construction of the equivalent

Liu and Layland task-model. One important observation is

that MF-FA performs better than TDWF-TA, Uneven-FF-TA

and Even-FF-TA, even though it uses the fast schedulability

analysis, which is more pessimistic. This shows that the effect

of the task-to-core allocation and memory assignment may

dominate that of the schedulability analysis used.

The weighted schedulability for different task set sizes

is shown in Figure 3. More low-utilisation tasks are easier

to schedule than fewer high-utilisation tasks due to bin-

packing fragmentation. Hence, the weighted schedulability of

the heuristics increases with the task set size for the same

utilisation. The difference between Even-FF-TA and Uneven-

FF-TA decreases with larger task set sizes. A greater task set

size tends to result in more unscheduled tasks for the second

phase of Uneven-FF-TA, which are harder to schedule with the

remaining trimmed memory bandwidth. The unified task-to-

core assignment and memory bandwidth allocation approach

of TDWF-TA scales well with task set size.

The initial order of the task set plays an important role in

the assignment, as shown in Figure 4. Tasks sorted in non-

increasing order of total density (
∑Fi−1

f=0
C

f
i

Di
) performs better

than non-increasing order of deadlines and non-increasing

order of memory density (
∑Fi−1

f=0
C

f|m
i

Di
). The non-increasing

TABLE II: Maximum absolute difference in schedulability

success ratio of all heuristics from baseline Yao-MF in dif-

ferent experiments.

Heuristic β TSS TO α K γ

Even-FF-TA 69.5% 71.7% 67.1% 70.1% 74.5% 76%

Uneven-FF-TA 71.4% 72% 71.7% 73.4% 76.1% 76.8%

TDWF 70.4% 74.6% 70.4% 78.5% 74.2% 80.9%

MF-TA 76.2% 84.3% 77.7% 83.2% 83.9% 85.1%

MF-FA 75.3% 83.4% 76.9% 82.2% 82.9% 84.9%

total density sorting tends to assign high density tasks initially

and low density tasks subsequently, making it easier for

all the heuristics to find a successful assignment of tasks.

This benefits more task-to-core heuristics that use first-fit

bin-packing heuristics (Even-FF-TA and Uneven-FF-TA) than

TDWF, which uses a task-to-core heuristic based on worst-fit.

The effect of the number of frames on all heuristics is

presented in Figure 5. Except Yao-MF, other heuristics are

essentially insensitive to the number of frames. By increasing

the number of frames, we increase the possibility of a frame

with either more memory access or more CPU computation.

In the case of Yao-MF, this leads to an equivalent task with

higher resource demands, and hence its performance degrades

with an increase in the number of frames.

Figure 6 shows the weighted schedulability for different

number of cores. In this set of experiments, the number of

tasks is equal to four times the number of cores and the

utilisation of the task set is proportional to the number of

cores, so that the normalised utilisation is independent of the

number of cores. The increase in the number of cores increases

the memory stall as memory contention becomes much higher

with more cores. Hence, the weighted schedulability of all

heuristics decreases as number of cores increases. Please note

that the memory bandwidth stays the same in this experiment

and does not scale with the number of cores.

The increase in the memory intensity parameter, γ, increases

the number of memory accesses. This leads to a higher

memory stall and a reduction in weighted schedulability of

all heuristics, as shown in Figure 7.

To provide a better sense of comparison among heuristics,

Table II provides, for each experiment, the maximum absolute

difference in the schedulability success ratio of all heuristics

over Yao-MF in each experiment. In Table II, TSS and TO

stand for the task set size and the initial task order experiments,

respectively. Bold values in each row show the maximum

observed difference between each heuristic and Yao-MF. In

the best case with our experimental setup, we achieved up to

85.1% of absolute difference in schedulability success ratio

when compared to baseline Yao-MF.

Finally, we performed experiments to analyse the running

time of the proposed heuristics. We used a hardware plat-

form with 16 GB RAM, 8 i7-4710MQ cores with maximum

frequency of 2.5 GHz and running Linux Mint 18.3 Sylvia

operating system. For the default parameters, Figure 8 presents
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Fig. 2: WCET variation of task’s frame
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Fig. 3: Variation in task set size
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Fig. 4: Different task set sorting orders
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of frames
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Fig. 6: Platforms with different number

of cores
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Fig. 7: Variation in memory intensity

parameter
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Fig. 8: Average running time against

different utilisation values
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Fig. 9: Average running time vs.

different task set sizes

3 4 5 6 7 8

20

40

60

80

100

120

Number of frames (α)

R
u
n
n
in

g
 t
im

e
 (

m
s
e
c
)

 

 

Yao−MF

Uneven−FF−TA

TDWF−TA

MF−TA

MF−FA

Fig. 10: Average running time for

different upper bounds on No. of frames

the average running time of heuristics (per task set analysed)

in msec for different task set utilisation values. In general,

Uneven-FF-TA and MF-TA consume more time when com-

pared to other heuristics. The latter checks the feasibility

of each task on every core to efficiently utilise the memory

bandwidth and hence, consumes more time. Another important

observation is that even though the MF-TA is a significant

improvement over the exhaustive analysis (more than 4 orders

of magnitude for the default parameters in terms of tuples,

i.e., Equation (10)), its average running time is in a reasonable

range of 100 msec and achieves up to 3.7% of absolute

(non-weighted) difference in schedulability success ratio when

compared to MF-FA, the latter is more than one order of

magnitude (11x) faster. The running time of all heuristics

decreases with increasing utilisation due to increasingly many

task sets failing early.

Figures 9 and 10 show the average running time of the

heuristics for different task set sizes and α values, respectively.

In these experiments, the average running time is computed

across all task set utilisation values. As expected, the running

times of the heuristics increase with larger task set sizes and

with more frames. Note that Uneven-FF-TA “overtakes” the

other heuristics in long running time with larger task set sizes

and more frames due to the additional computation in the

second phase of the heuristic. So, MF-FA is almost as good as

MF-TA, but scales much better in terms of computation time.

VIII. CONCLUSIONS

This paper proposes a stall-aware schedulability analysis

for multiframe task sets on multicores systems with memory

access regulation. The multiframe task model accurately rep-

resents the worst-case processing requirements of tasks whose

execution times vary according to a known pattern and this

promotes efficient platform utilisation, for certain workloads

such as media decoders. Meanwhile, memory regulation and

its stall analysis improve timing predictability, which is cru-

cial in the design of critical systems. Our experiments with

synthetic task sets confirm improvement in scheduling success

ratio for our approach of up to 85%(absolute), compared to the

frame-agnostic state-of-the-art stall-aware analysis. We also

proposed multiple optimisations for the running time of our

(anyhow tractable) analysis, achieving approximately 11-fold

speedup with little sacrifice of accuracy (no more than 3.7%

drop in schedulability ratio).
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