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ABSTRACT
Teaching embedded system design is challenging, as the sub-
ject covers a wide range of aspects, and also involves skills
that students do not learn from a text book. As a result,
hands-on projects, with varying degree of complexity, are
the most common approach in existing courses. Tradition-
ally, the projects are limited to uni-processor systems, and
do not address the complications involved in parallelising
applications and mapping them to multi-processor systems.

In this paper, we describe a two-year-old embedded systems
design course given at Eindhoven University of Technology.
In the course, the students, divided in groups of four, are
faced with the problem of putting an embedded JPEG de-
coder on the market within one semester. The starting point
is a decoder written in sequential C and an embedded multi-
processor system, running on an FPGA. We describe the
ideas and organisation of the course, and give examples of
what challenges the students are faced with. We exemplify
results and give suggestions to instructors wishing to teach
embedded multi-processor programming elsewhere.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

General Terms
Design, Algorithms, Experimentation

Keywords
Embedded System Design, Education, Multi-Processor Sys-
tem on Chip

1. INTRODUCTION
Embedded systems are characterised by the importance of
non-functional requirements, i.e. hard or soft real-time con-
straints, a limited power budget and limited resources, such
as memory footprint [17]. Furthermore, architectures must

be programmable to deal with changes in applications [3].
Architectures for embedded systems are the result of a com-
promise between efficiency and programmability. To limit
the design effort a platform-based approach is used, inte-
grating many Intellectual Property (IP) blocks, with multi-
ple processor cores of different types and distributed mem-
ories [12]. Examples of those platforms are Nexperia [3]
and OMAP [10]. Those are developed in large industrial
projects, sometimes involving hundreds of man-years with
the bottleneck moving more and more towards software.

The question can be asked how to teach this at university.
What should students know and how can they learn it? Are
hands-on exercises possible? PC-like systems are supported
by good classes (mainly in the CS dept) and excellent ma-
terial, but this is not so obvious for embedded platforms.
In this paper, we describe the approach followed at Eind-
hoven University of Technology. In the context of a master
program on embedded systems, which is a joint program of
EE and CS, there is a coherent set of four courses tackling
the aforementioned questions. Following a bottom-up ap-
proach, the first course focuses on the lower levels of design,
i.e. logic and register-transfer level synthesis used to develop
IP blocks like ALUs, multipliers, memories etc. The focus is
on FPGA implementation. The second course uses those IP
blocks to build a wide range of processor cores spanning the
whole spectrum from fully programmable microprocessors to
digital signal processors and application-specific instruction
set processors. The third course discusses the communica-
tion between those cores and Network on Chips (NoC) play
a central role. The fourth course, Embedded Systems Labo-
ratory, is devoted to 5 ECTS credits (120 hours distributed
across 12 weeks) of hands-on design exercise, integrating the
previous courses and applying the lessons learnt in those
courses. This paper describes this fourth course.

The Embedded Systems Laboratory is similar to project-
based courses given at other universities [2, 4, 13, 15, 18] in
that it integrates skills from a diverse set of subjects, e.g.
programming, processor architecture, computer organisa-
tion and NoCs. Most students have experience in these sub-
jects, but few have any experience integrating the skills [4].
We share the observation that hands-on sessions are indis-
pensable to acquire the necessary skills [2], with a good
balance between practical knowledge and fundamental un-
derstanding [4]. The course therefore consists of one large
project, focusing on the process of mapping a particular be-
haviour, in this case a JPEG decoder, onto an embedded



multi-processor platform. The assignment emphasises the
growing importance of software in embedded systems [13,
15], and resource-limited performance-oriented design [13,
19], but also involves challenges in areas like personal time
management and teamwork, similar to [4]. In contrast to
the aforementioned works, the emphasis is on the challenges
involved in going from uni- to multi- processor systems, and
the importance of communication and synchronisation.

The remainder of this paper is organised as follows. In Sec-
tion 2 we discuss the starting point of the assignment, being
the given application, the hardware platform, and the asso-
ciated tooling and development environment. Section 3 fo-
cuses on the assignment itself, explaining what the students
have to do and how they are organised. We also discus our
interaction with the student groups and give a structured
overview of the course. Next, we elaborate on what chal-
lenges are involved in porting the application to the hard-
ware platform in Section 4 and discuss the parallelisation in
Section 5. Section 6 highlights the performance evaluation,
followed by a discussion in Section 7. Finally, conclusions
are presented in Section 8.

2. ASSIGNMENT STARTING POINT
In this section, we discuss the starting point of the assign-
ment, which is to map a JPEG decoder onto a multi-processor
platform. We start by giving a brief introduction to the con-
cepts of JPEG decoding in Section 2.1. We then proceed by
presenting the hardware platform and its building blocks in
Section 2.2. We end this section with an overview of the
development environment in Section 2.3.

2.1 Application
The application used in the course is a fully functional JPEG
decoder written in ANSI C [7]. Decoding a JPEG image is
a non-trivial task involving similar steps as many other me-
dia codecs, such as MP3, AAC, and H264. The core of
all the aforementioned standards is a discrete cosine trans-
form, that transforms data into the frequency domain. To
achieve a good compression ratio, the transformation into
the frequency domain is combined with other techniques,
like quantisation and run-length encoding.

The JPEG decoder can be generalised into three main de-
coding stages, shown in Figure 1: Variable Length Decod-
ing (VLD), Inverse Discrete Cosine Transform (IDCT) and
Colour Conversion (CC). The VLD decodes the variable-
length encoded JPEG data, dequantises it and arranges it
into blocks of 8x8 values, referred to as minimum coded
units (MCU). The MCUs initially contain frequency data,
but are transformed from the frequency domain to the pixel
domain, and up-scaled if necessary, by the IDCT step. Af-
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Figure 1: JPEG encoding and decoding.

ter this transformation, the blocks contain image data in the
YCbCr colour format that the CC step converts to RGB.

The JPEG decoder is suitable for the course for a number
of reasons: 1) It offers a reasonable amount of code to fa-
miliarise with. Some of the students have never encountered
C before, and the JPEG decoder proves to be manageable
also for those students. 2) The original decoder makes use
of dynamic memory allocation and file I/O, something that
is not natively supported by the target embedded platform.
3) The simpler JPEG decoder retains the technical com-
plexities of its audio and video counterparts, thus giving
the application good educational value. 4) The decoding is
data dependent, in that the different decoding steps require
a varying amount of computation (and communication) for
different images. 5) JPEG decoding is not trivially parallel.
The VLD is inherently sequential, whereas the IDCT and
CC are easy to parallelise. This leads to a wide variety of
parallelisations, trying to overcome the restrictions imposed
by the JPEG format. 6) The decoder is small enough to fit
in the local instruction memory of one processor. Thereby, it
is possible to break the assignment into several steps, where
the decoder is first ported, then optimised and parallelised.
Solving one problem at a time also gives intermediate deliv-
erables and deadlines, something we have found necessary
in tracking the progress. 7) The decoder has the benefit of
being familiar to the students and fun to work with, as the
results can be presented on a screen attached to the actual
hardware platform. As also observed by Edwards [4], video
is visually satisfying when it works, and it can be debugged
by inspecting the displayed images. 8) By decoding sequen-
tial JPEG images, the decoder is turned into a primitive
video player, adding real-time aspects to the assignment,
without causing faulty behaviour if the requirements are not
satisfied. Again, this helps in splitting the assignment into
manageable parts.

2.2 Hardware platform
The platform used in the course builds on the concept of
using multiple distributed computational and storage re-
sources, interconnected by a scalable NoC. Using this type of
programmable embedded platform in the course is represen-
tative for signal-processing architectures where low power,
and support for many features and standards is imperative.

Like Edwards [4], we want the students to experience real
hardware, and not only simulation or modelling. This is
made possible thanks to Silicon Hive [20], providing their
low-cost, low-power domain-specific Very Large Instruction
Word (VLIW) processor cores, and NXP, providing the Æthe-
real NoC interconnect fabric [6]. The students hence work
with industrially relevant IP components and tools. Using
an actual hardware instance of the platform increases the
amount of issues that the students have to solve, with more
tools to manage and more things that can go wrong. It also
increases the amount of work (and risk) involved in teach-
ing the course. The reward, however, is that the students
can see tangible results of their efforts, something that has
shown to be a great motivator.

The architecture we present the students with, depicted in
Figure 2, consists of three uniform Silicon Hive cores, a large
off-chip SRAM, and a frame buffer for video output. In
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Figure 2: Architecture template.

addition, a general-purpose host CPU is attached to the
system. The different components are interconnected by an
instance of the Æthereal NoC [6]. A brief discussion on the
different building blocks follow.

The Silicon Hive VLIW cores are customisable, making it
possible to adapt the costs and the performances of the
various computation nodes to a given application. For the
course, we use a simple, three-issue-slot architecture, with-
out a floating-point unit. The cores use a memory-mapped
architecture and have a master interface to enable reads and
writes to memories external to the processor. As shown in
Figure 2, every processor also has its own private instruction
and data memory. The memories are also accessible through
a slave port on the processors bus interfaces, forming a dis-
tributed memory together with the dedicated memory tiles.
The challenges that arise due to the selected processor ar-
chitecture are: 1) the application must use fixed-point arith-
metic, 2) multiplication and load/store operations compete
for the same instruction slot, 3) the application must fit in
a local memory of 32 kbyte (which is chosen to just barely
fit the complete JPEG decoder), 4) the processor core has
no caches and requires explicit memory management, 5) the
core has no operating system, thus leaving any task schedul-
ing to the programmer.

In addition to the 32 kbyte of data memory in each core, a
central memory tile, here after referred to as external mem-

ory, provides 8 Mbyte of SRAM. While being significantly
larger, the external memory has an access time an order of
magnitude larger than the local memories. This is due to
the traversal of the NoC, and the sharing of the memory
read and write port. The platform instance has only one
external memory, as is commonly the case, either for cost
reasons or due to a limited number of pins [14]. In addition
to the background memory, the cores can also write to a
frame buffer, where a designated display controller presents
the contents on a DVI output port. This functionality is
used during the laboratory sessions to get immediate visual
feedback of the results. Note that in contrast to [4], the
students do not have to implement any low-level drivers to
interface with e.g. DVI and USB interfaces. We believe that
earlier courses are sufficient in teaching the lower levels of
design, and leaving these elements out gives more time to
the higher-level issues we want to emphasize.

As seen in Figure 2, the system contains not only VLIW pro-
cessing cores, but also a host CPU. Like in the IBM Cell [11],
the host is a general-purpose processor that is responsible
for the initialisation and orchestration of the hardware re-
sources, e.g. loading the binaries to the VLIWs and configur-

ing the NoC connections [8] and memory arbiters. Although
the host processor is typically a part of the SoC, we choose
to map the host interface on the NoC to an external PC.
This enables the students to use their own PCs, running
Linux, as host CPUs during the labs.

All the ports of the aforementioned hardware blocks are
physically interconnected by the Æthereal NoC [6]. In Æthe-
real, the different master and slave interfaces are logically
interconnected by connections. A connection can be seen
as virtual wires, offering a certain throughput and latency
guarantee. Together, a set of connections forms a use-case,
which acts as a virtual on-chip infrastructure. Network re-
sources are pre-allocated for a number of given use-cases,
using the UMARS tool [9], and it is left as an exercise for
the students to choose an appropriate use-case for their spe-
cific JPEG decoder implementations. The hardware is thus
fixed, but the programming of the NoC is chosen from a set
of pre-computed use-cases [8]. The students select a use-
case based on which master and slave ports that need to
be interconnected for their specific parallelisation, and what
throughput and latency the desire between the different con-
nections.

A complete architecture instance is mapped to a Xilinx Vir-
tex4 LX-160 FPGA [21], fitted on an Agility RC340 board [1].
In contrast to [4] that uses many inexpensive boards, we are
using a single board, which sells for about $10.000. Since we
are targeting multi-processor systems, a fairly large FPGA
device is needed (our current system uses more than 50.000
LUTs). Moreover, the RC340 offers a range of peripherals
(audio, video, USB, memories) that are particularly attrac-
tive, as it enables results to be shown in far more elaborate
ways than blinking LEDs. Interfacing with the peripherals
is also fairly straight forward thanks to APIs from Agility.

The FPGA board is available in the classroom during the
laboratory sessions, connected to a server PC via USB, and
the students connect to this PC, in turn, via the local net-
work. Through this network connection, they can upload
bitfiles to the FPGA, and also have their PCs act as the
host CPU, once the device is configured. By allowing net-
work connections to the server with the board it is also pos-
sible to work remotely between sessions, something that is
greatly appreciated and extensively used by the students.
By these means, having a single board for 30 students has
proven to be manageable, although more boards would of
course be advantageous. Only during the last week of the
course, when all student groups are preparing for the evalu-
ation, did we experience that students lost considerable time
just waiting to access the board.



2.3 Development environment
The Silicon Hive cores are supplied together with a retar-
getable compiler, assembler and linker, as well as a complete
simulation environment. In the Silicon Hive development en-
vironment, a number of steps are possible, going from fast
checking of the functional correctness, to cycle-accurate sim-
ulation. First, all code is compiled with gcc, to verify that
the algorithm is working for a supplied set of reference im-
ages. Second, the code that is to be run on the cores is com-
piled with hivecc, but not scheduled to instructions slots,
registers, etc. This enables the programmer to generate code
with instruction semantics of the specified core. Third, the
compiled code is scheduled to maximise Instruction Level
Parallelism (ILP), and the programmer thus gets a complete
view of the utilisation of the core’s resources, i.e. the regis-
ter files and intra-core interconnect. In this step, the tools
also provide feedback about memory usage, instruction slot
scheduling, and detailed profiling information. The fourth
and last step uses the FPGA with the student’s computer
acting as a host. The host then loads the microcode to the
embedded cores on the FPGA and starts the execution.

The availability of development tools and support libraries
removes much tedious and error-prone work, and thus en-
ables the students to focus on the higher-level issues involved
in programming multi-processor systems. The one big prob-
lem with the proprietary tools is that it complicates the in-
terpretation of any potential error messages. When using
gcc, for example, Google can most likely help to decipher
compiler and linker errors. That knowledge now has to come
from the instructors. Teaching assistants should thus be fa-
miliar with the tools and the architecture. In our case, all
teaching is done by people that are actively using, extending
and researching on the platform. We share the view of [15],
that integrated development environments shield the stu-
dents from the compilation process. Indeed, many students
express that they develop a new level of understanding af-
ter using make and a command-line based cross-compilation
environment.

To even further reduce the amount of low-level program-
ming, we provide the students with functional example pro-
grams (although not optimised) that demonstrate how to
read and write to the background memory, closely mimick-
ing the behaviour of fgetc, fseek and ftell. They also get
example code that shows how to interface with the frame
buffer and the display controller. As a result, already dur-
ing the first lab session, the students start with a simple
example application (adding two numbers), adapt it for the
embedded platform, simulate until they achieve the desired
behaviour, and run it on the actual FPGA. We have found
that, in contrast to our first beliefs, any help on this stage
saves a lot of valuable time, without compromising the ed-
ucational value of the course. In fact, we believe that the
relevancy of the course is improved by moving the focus from
idiosyncratic APIs and specification formats to higher-level
issues.

3. ASSIGNMENT OVERVIEW
In this section we describe how the assignment, to paral-
lelise and map the JPEG application on the presented hard-
ware platform, is actually carried out, from an organisational
point of view.

3.1 Course structure
Already from the first laboratory session, the students are
divided into groups of four people and presented with a prob-
lem: Put an embedded JPEG decoder on the market in three

months. Similar to [13], we treat each team like a start-up,
and effort is made to ensure that all groups are multi disci-
plinary and multi cultural, and hence contain students with
different educational and cultural backgrounds.

During the first week, the students focus on familiarising
with the development environment by mapping educational
examples to the platform. This is accompanied by lectures
introducing the VLIW cores, the NoC, the FPGA, the sup-
port libraries etc. The slides, together with a wide range
of publications on the architectural building blocks, form
the lecture material. Moreover, the students have access to
a Wiki, also containing useful information from past year’s
courses. All of this is available at the course web site [5].

After an initial week of introductory exercises of tutorial
nature, the teams assign roles with different responsibilities
to their members, much like what is proposed in [13]. The
four roles are: 1) application expert, 2) architecture expert,
3) embedded programming expert, and 4) group leader. The
task of the application expert involves learning the details of
the JPEG decoding algorithm, and to identify the important
functions in the code and their interfaces. The architecture
expert focuses on the details of the processing cores, NoC
and memories. The embedded programming expert learns
how to port and upload code to the embedded VLIW core,
and how to use the system support libraries. Lastly, the
group leader is responsible for dividing the work among the
members, reporting the team progress, and helping the team
wherever needed.

Experience shows that the workload quite often turns out
to be unevenly distributed. Many students suggest to dis-
tribute the four people over two sub-groups, focused on ex-
ploring different parallelisations. This also gives the benefit
of always doing pair programming. After roughly half the
course, six weeks, most groups resorted to such an organisa-
tion, and in future instances we will recommend such an ap-
proach. Furthermore, our experience is that groups should
not be larger than four persons. During the last instance
of the course, we had a few groups of five people. When
asked after the course, all but one such group reported that
it would even have been advantageous to have four members
instead of five.

Once the roles are assigned, the work on the actual JPEG
decoder starts. The work is divided in three distinct phases:
1) porting the application to execute on a single core on
the target platform, 2) parallelising the application to use
multiple cores, and 3) optimising the solutions to improve
performance. The step-by-step arrangement is important as
it makes it easier for the students to organise their work into
smaller, yet meaningful parts. It also simplifies setting par-
tial deadlines that we follow up on by means of a group page
on the course Wiki. Updating this page is one of the most
important responsibilities of the group leader. In addition
to the Wiki, we also discus the progress of the individual
groups during bi-weekly meetings, where each group gets
roughly 20-30 minutes time with the teaching assistants.



After two or three weeks of the course, once all groups have
gotten sufficiently far to be able to contribute, we also ar-
range meetings for students with specific roles. In these
meetings we discus the difficulties (and any potential solu-
tions) that are unique to the FPGA expert, group leader,
etc. This allows the groups to help each other with organ-
isational as well as implementation issues, while still main-
taining a competitive atmosphere between the groups. Also
in the classroom, we encourage students to ask their peers
(also outside their group) for help before consulting a teach-
ing assistant. Our experience is that this approach works
well and that the groups still present unique solutions.

3.2 Examination
To pass the course, each team has to present: a demonstra-
tion of at least two working solutions, a design document
of about six pages, and a group presentation (and demon-
stration) for the rest of the class. Since students are graded
individually on a scale from one to ten, where six and above
is a passing grade, each student also gives an individual pre-
sentation and present their individual contributions during
an oral exam. Thanks to the interaction in the classroom,
most of the grading can be done before the individual presen-
tations, but having both is beneficial for the slightly less ex-
trovert students. Moreover, the individual presentations are
also an excellent opportunity to get the students’ opinions
on other fellow students. Often, the students are remark-
ably honest and not afraid to share their opinions. Similar
to [13], grading is based on visible, concrete contributions
to the final solutions (based on what role the student had
in the group). They are evaluated as application experts,
group leaders etc.

4. PORTING THE APPLICATION
The JPEG application is distributed as sequential C code
that executes on a normal desktop PC. The first challenge
of the design teams is to port the code to execute on a sin-
gle VLIW core. The major issues to solve involve memory
management, and handling of console and file I/O.

No standard library function is provided for dynamic mem-
ory allocation, since the memory architecture is non-uniform,
creating multiple placement options. Memory allocations
are hence done statically, and the programmer determines
if a particular variable should be mapped to the limited
amount of faster local memory of the core, or to the larger
but slower external memory. A challenge in this step is that
statically allocating arrays requires algorithmic knowledge
from the programmer, since they must be dimensioned for
the worst case.

The application, in its original form, makes rich use of the
console to print debug information in case there is some-
thing wrong in the implementation or the encoded image.
The target embedded system has no means of outputting
this information, since it does not have a console. Printing
this information is, however, very useful to limit debugging
time in case errors are introduced in the code during the
porting effort. For this reason, these commands are not re-
moved from the code, but rather redefined to empty state-
ments by the pre-processor before compilation for the VLIW
core. This allows all debug information to still be printed

if the code is compiled for a regular computer to verify its
functional correctness.

The original JPEG decoder uses file system I/O to read the
encoded bit stream and to write the decoded image. How-
ever, the provided architecture does not have a file system.
Instead, the core must read the encoded image from the ex-
ternal memory, which is the only memory large enough to
store it, and write the decoded image to the frame buffer.
The host is used to transfer the encoded image from the
file to the external memory, which requires familiarity with
the system support libraries for communication between the
host application and the FPGA. The decoded image is also
written back to external memory during development, allow-
ing the host application to read the output and compare to
a reference image that was decoded before porting the code.
Automating this procedure allows bugs introduced during
porting to be discovered quickly.

During the porting, the students learn to appreciate the dif-
ferent refinement steps of the development environment. It
quickly becomes apparent that the FPGA offers tremendous
speed, but complicates debugging due to the lack of observ-
ability. This is partly a result of how the students access the
FPGA, as the network connection makes it difficult if not
impossible to use facilities like ChipScope [21]. Most groups
resort to using the cycle-level simulation environment, and
only use the hardware for the final functional verification.
Approximately four weeks into the course, the decoder is
ported and working on the FPGA. This is when the paral-
lelisation begins.

5. PARALLELISING THE APPLICATION
After successfully porting the application to the target plat-
form and performing initial benchmarks, the design teams
proceed by parallelising the application to make use of mul-
tiple cores. As mentioned in Section 3, the assessment crite-
ria require each group to implement and benchmark at least
two different parallelisations. The two most common solu-
tions involve exploiting data parallelism, by allowing multi-
ple cores to work on different parts of the image, and func-

tional parallelism, where the decoding functions are mapped
to the different cores. Many variations of these solutions
have been explored during the course, including hybrid ver-
sions that aim to combine the best of both. In this article,
we limit the discussion to the two basic solutions, which are
presented in Sections 5.1 and 5.2, respectively.

5.1 Data parallelism
The idea of a data parallel implementation of the applica-
tion is that multiple cores are assigned to decode different
parts of the image. A benefit of this approach is that very
few changes are required to the ported code executing on
a single core. All cores execute the same program, but use
a unique identifier to determine which part of the image to
decode. This parallelisation is so simple that some groups
even manage to go from a single-core decoder to a first data
parallel decoder during one lab session of three hours.

The first question that the students have to answer is how to
divide the image among the cores. Different strategies dis-
tribute the complexity of the image differently among the
cores. This is illustrated in Figure 3 where the image is par-



Figure 3: Strategies for data partitioning

titioned among three cores according to the different shades
of grey. Dividing the image in three horizontal slices, as
done in the left part of the figure, would create an unbal-
anced load in a scenic picture with a blue sky in the top,
since significantly less computation is required by the IDCT
for this part of the image. Another strategy that is better
in this respect is tiling, shown in the right part of the figure,
where a core decodes every third MCU block.

The main drawback with the data parallel JPEG decoder is
that the VLD is inherently sequential, and it is not possible
to know exactly where a block begins without decoding the
previous ones. This implies that all cores must read the en-
coded image from external memory and perform the VLD,
although the IDCT and colour conversion is skipped if the
current MCU block does not correspond to its assigned part
of the image. This is also seen in the results of the initial
parallelisation, where the groups report speed-ups of roughly
1.7 and 2.3 times for 2 and 3 cores, respectively. The stu-
dents thus get to experience the limited scalability of this
approach, and explore solutions to mitigate the effect. Con-
sider, for example, the partitioning strategy to the left in
Figure 3, which only requires the first core to read 1/3 of
the image from external memory, and the second core 2/3,
while the last core must read all of it. This can be com-
pared to the tiling strategy on the right in the figure, which
requires all cores to read the entire memory, increasing mem-
ory contention. Several groups also develop synchronisation
schemes that allow the cores to share information about the
parts of the image that are already decoded.

5.2 Functional parallelism
In this solution, the decoding functions are mapped to the
different cores, creating a pipeline where an MCU block is
processed by all the cores in sequence before decoding is
complete and it is written to the frame buffer. An impor-
tant challenge is to determine how to partition the func-
tions among the different cores to get a balanced load and
to minimise inter-core communication. For this purpose,
the students use the cycle-accurate simulation model, giv-
ing detailed profiling information. A common way to split
the decoder is according to the three stages, VLD, IDCT,
and CC that were explained in Section 2.1. This partition-
ing has the benefit of providing clear interfaces between the
functions where only frequency blocks and pixel blocks are
communicated between the cores.

A difficulty the students are faced with in the functional par-
titioning is that different pictures place very different com-
putational requirements on the functions in the decoding al-
gorithm. Figure 4 shows the decoding time required for the
VLD, IDCT, and CC, respectively, on a single core. The two
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Figure 4: Single-core profiling.

images are both XGA resolution (1024 x 768), but Noise

(748 kbytes) contains a lot of high frequency information
and is dominated by the VLD, whereas Quiet (53 kbytes)
contains mostly uni-coloured MCUs and is fairly balanced.
This shows that the data-dependent behaviour makes it ex-
tremely difficult to partition the decoder in a way that cre-
ates a good balance between the cores for all pictures.

In addition to the difficulties in splitting the decoder into
three equal parts, the students must also implement inter-
core communication and synchronisation. The groups typi-
cally start by synchronising using simple flags. Eventually,
most groups go for a double-buffered approach, or decide to
use circular buffers with read and write pointers. An im-
plementation of the C-HEAP protocol [16] is also provided
with the hardware platform for reference. The students also
evaluate the effects of placement of buffer data and adminis-
tration, as well as the size of the inter-task buffers. Profiling
is also carried out by looking at how often the various tasks
stall on full or empty buffers. In implementing the inter-task
communication, emphasis is put on hiding the latency of the
memory subsystem, i.e. the NoC and memory arbiter and
controller. The students thus have to employ concepts like
posted writes and burst transfers.

6. ADDRESSING PERFORMANCE
The two times we have given the course, all the student
groups have completed the project, meaning that they have
at least two parallel JPEG decoders working by the end of
the course. To get higher grades, we also require that the
students assess the performance of their decoders. Thus, the
evaluation is not only functional, but involves performance
measures such as execution time, time-to-market and mem-
ory footprint.

Once a solution is functionally correct, an iterative optimisa-
tion and benchmarking phase begins to improve its quality.
In Section 6.1 we elaborate on the benchmarking procedure.
We then discuss optimisations for a decoder executing on a
single core in Section 6.2 and on multiple cores in Section 6.3.

6.1 Benchmarks
The teams are encouraged to continuously evaluate their de-
signs through quantitative benchmarks throughout the de-
velopment process. This allows them to directly see the
impact of design decisions on quality, and learn about the



trade-offs involved. The benchmarking procedure is stan-
dardised by a committee, comprised of representatives from
all design teams. This ensures that all teams are familiar
with the procedure, and that their results are comparable.
The standardised benchmarks consider two aspects of em-
bedded systems being performance, in this case decoding
time, and memory requirements.

Decoding time is measured by starting a timer on the host
after uploading the encoded JPEG image to the external
memory. After starting the timer, the host starts the three
cores and waits until all of them have completed. A ben-
efit of this benchmarking method is that it is easy to im-
plement, although a drawback of the approach is that the
time required for the host to start the cores and to detect
that they finished execution is captured by the measure-
ment. Since the host processor is connected via USB, this
overhead may add up to a second to the decoding time. For
future instances of the course, we are planning to use on
on-chip cycle counter for time measurement. Benchmarking
the memory requirements of a solution is simple, as the re-
quired amount of instruction and data memory is output by
the tooling for every core.

We have observed that the students use greatly varying tech-
niques to improve their benchmark results. Some groups
simply adopt a trial-and-error approach. Other groups have
given example of systematically identifying and addressing
bottlenecks. We also see that most students are aware of
optimisations for general processors, but are not familiar
with the opportunities that present themselves in a multi-
processor system.

6.2 Optimisations for a single-core decoder
The optimisation process is guided by profiling the code us-
ing the cycle accurate simulator. Profiling helps identifying
functions that are called often or require a lot of time to
execute, indicating that they may be good candidates for
optimisation.

Optimisations targeting the single core decoder can be cat-
egorised as: 1) algorithmic short cuts, 2) adaptations to fit
with the computational cores, and 3) adaptations to fit bet-
ter with the communication infrastructure. The first cate-
gory involves using knowledge about the JPEG decoding al-
gorithm to speed up decoding, such as throwing away higher
frequency components, or exploiting common cases in the
image format. The second category concerns making the
computation more efficient by adapting it to the processor
core architecture to get a more efficient instruction sched-
ule. The third category considers rewriting the code to re-
duce the number of memory accesses. For the first category,
the programmer must have deep insight into the JPEG al-
gorithm. The latter two categories require the programmer
to be intimately familiar with the target architecture and
tooling.

The most influential algorithmic short cut in JPEG decoding
is that of IDCT-bypassing. That is, when an MCU is uni-
coloured and does not contain any frequency components,
the IDCT can be skipped. The short cut does not com-
promise the result, and in the case of the Quiet benchmark
image, more than half of the MCUs are skipped. Another

important optimisation is that of detecting common colour
encodings in the CC. Most JPEGs use only two types of
encoding (4:2:2 and 1:1:1), and by implementing special CC
functions for these common cases, the indexing in the CC is
greatly simplified.

There are many opportunities to improve the JPEG decod-
ing time by exploiting knowledge of the processor core ar-
chitecture. One of the major adaptations, done by many
groups, is to replace the given Loeffler IDCT with Chen-
Wang IDCT. The latter uses fewer multiplications and is
better matched to the VLIW in question. By further adapt-
ing the code to use variables rather than arrays, the load on
the register banks increases, but extra transfers to memory
are avoided, resulting in a net gain. Another technique that
we have seen examples of in the CC is to use look-up tables
with precomputed values.

The last category of optimisations targets the memory archi-
tecture, aiming to reduce the number of accesses to remote
memories, and to use the accesses more efficiently. A sig-
nificant speed-up is achieved by using local memory rather
than the shared external memory (or the memory of an-
other core). The size is, however, very limited, and not
all data will fit in the local memories. To use the remote
memory accesses more efficiently, the code must be adapted
to read/write whole words rather than sub-words, such as
characters. The latter optimisation, for example, reduces
the time required for the VLD by almost two times.

6.3 Optimisations for parallel decoders
The optimisations used for the single-core decoder are also
applicable to the parallel decoders, but it is quickly noted
by the students that the speed-ups observed for the single-
core solution are not reflected when they are applied to code
that runs on multiple cores. This demonstrates the influence
that communication and synchronisation has on the decod-
ing time.

There are refinements of data parallel implementations, ad-
dressing the memory contention. One such refinement in-
volves ensuring that only one core performs the VLD on
a particular line and shares the important results with the
other cores through a structure in memory, allowing them to
skip the line. This optimisation reduces the decoding time
for both the aforementioned images by approximately 15%.
A drawback of this refinement is that additional memory
(approximately 2 kbyte) is required to store the information
shared by the cores. The optimisations for the functionally
pipelined version mostly considers moving smaller blocks of
code between the cores to improve the load balance, or re-
ducing the amount of data that is communicated between
the cores. We have also seen numerous examples of different
inter-task communication methodologies, aiming to reduce
the cost of data transfers.

7. DISCUSSION
Similar to [13], we focus on the embedded software aspects
from a systems perspective. The hardware is given. Still, the
platform offers a great amount of mapping decisions, with
distributed memory, multiple processors, and several NoC
use-cases to choose from. More freedom could of course be
given to the students, but we do not deem it feasible to do so



with the current 5 ECTS credits of the course. Moreover, we
try to minimise the problems involving understanding and
complying with idiosyncratic interfaces and I/O devices.

The students appreciate the problem-based nature and re-
port that they specifically learn about the concepts behind
JPEG compression, different parallelisations, and the method-
ology and importance of exploring different architectural
mappings. During the course, the student groups evaluate
roughly four or five different partitionings, and get to expe-
rience the non-linear speed-up. In their presentation they
often conclude with the observation that adding more hard-
ware is not the solution. More important than one more
core is to optimise the use of the ones that are there.

As in [13], we observe that students retain knowledge bet-
ter when working through actual implementations that force
them to confront the very real limitations and quirks of em-
bedded systems. That said, we feel it is important to reduce
the amount of practical knowledge and tool fighting as much
as possible. From the first to the second year we also simpli-
fied a lot of the lower-level issues, and now help the students
to get by the first hurdles in using the system. The amount
of tutorial exercises and demonstrative examples is also sig-
nificantly larger.

We believe that the Embedded System Laboratory delivers a
level of realism that helps in both motivating the students,
and reinforcing the experiences gained during the course.
Based on student evaluations, the course succeeds in bring-
ing together knowledge from other classes and teaches the
students skills that they do not learn from a text book [4],
e.g. the balance between top-down and bottom-up design,
the ability to seek and find the information you need, the
ability to debug and reason about observed behaviour, and
to understand the different factors affecting the performance
of a multi-processor system.

We continue to review and extend the course. With the ma-
turity of the existing tooling and IP we have the opportunity
to add more elements to the course and offer even more free-
dom, e.g. customisation of the processors and NoC instance.
This will, however, be optional, as we already find the course
sufficiently challenging.

8. CONCLUSIONS
In the Embedded Systems Laboratory, the students get to
familiarise with many of the difficulties involved in program-
ming multi-processor embedded systems. By the end of the
course, they have successfully ported a JPEG decoder to
the target multi-processor platform and evaluated a range
of parallelisations on an actual FPGA instance. The assign-
ment presents many challenges, ranging from working in a
group to choosing the right compiler directives for a critical
piece of an algorithm.

Embedded Systems Laboratory ran for the second time in
2008 with 31 participating master students, both from the
Electrical Engineering and International Masters programme
on Embedded Systems. The course concepts have further-
more been adopted by the Delft Technical University, where
a similar course was given by the Computer Engineering de-
partment for the first time this year. Next year, we aim to

keep improving the course in line with feedback from stu-
dents and teaching assistants, and prepare another class of
students for the problems we are facing with the wide-spread
adoption of multi-processor embedded systems.
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