
Real-Time Syst
DOI 10.1007/s11241-015-9229-9

A framework for memory contention analysis in
multi-core platforms

Dakshina Dasari1 · Vincent Nelis1 ·
Benny Akesson2

© Springer Science+Business Media New York 2015

Abstract The last decade has witnessed a major shift towards the deployment of
embedded applications on multi-core platforms. However, real-time applications have
not been able to fully benefit from this transition, as the computational gains offered
by multi-cores are often offset by performance degradation due to shared resources,
such as main memory. To efficiently use multi-core platforms for real-time systems, it
is hence essential to tightly bound the interference when accessing shared resources.
Although there has been much recent work in this area, a remaining key problem is
to address the diversity of memory arbiters in the analysis to make it applicable to
a wide range of systems. This work handles diverse arbiters by proposing a general
framework to compute the maximum interference caused by the shared memory bus
and its impact on the execution time of the tasks running on the cores, considering
different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent
and independent stages in the analysis of these upper bounds. The arbiter-dependent
phase takes the arbiter and the task memory-traffic pattern as inputs and produces a
model of the availability of the bus to a given task. Then, based on the availability of the
bus, the arbiter-independent phase determines the worst-case request-release scenario
that maximizes the interference experienced by the tasks due to the contention for
the bus. We show that the framework addresses the diversity problem by applying

B Dakshina Dasari
dakshina.dasari@gmail.com; dandi@isep.ipp.pt

Vincent Nelis
nelis@isep.ipp.pt

Benny Akesson
kessoben@fel.cvut.cz

1 CISTER-Research Unit, Porto, Portugal

2 Czech Technical University in Prague, Prague 6, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-015-9229-9&domain=pdf

Real-Time Syst

it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing
(TDM) arbiter, and an unspecifiedwork-conserving arbiter using applications from the
MediaBench test suite. We also experimentally evaluate the quality of the analysis by
comparison with a state-of-the-art TDM analysis approach and consistently showing
a considerable reduction in maximum interference.

Keywords Multicore · Timing analysis · Bus contention · Real-time embedded
systems · Worstcase execution time · Bus arbitration · Memory contention

1 Introduction

Embedded systems are increasingly based on multi-core platforms to cater to increas-
ing performance demands while satisfying power constraints (Kollig et al. 2009; van
Berkel 2009;Benini et al. 2012;Nowotsch andPaulitsch2012). These platforms reduce
cost by sharing resources, such as buses and external memories, between the appli-
cations executing on the cores. Many embedded applications have been successfully
deployed on these platforms and are harnessing the benefits of their computational
capabilities. However, system designers are unable to leverage the entire potential
provided by these platforms to deploy hard real-time applications, for which upper
bounds on worst-case execution times (WCET)must be determined at design time and
deadlinesmust be strictlymet at run time.Although techniques to determine theWCET
of tasks executing on a single-core architecture (Wilhelm et al. 2008) exist, there are
still many open issues in a multi-core setting due to the resource sharing between the
cores (Dasari et al. 2013). This paradigmof resource sharing does not adhere to the tem-
poral and spatial isolation of components desired by the system designers, because it
results in contention between tasks executing asynchronously on different cores,which
in turn further complicates the process of computing the WCETs of the tasks. Addi-
tionally, resource sharing also introduces a circular dependence between WCET and
inter-core interference and complicates the WCET analysis process. This problem
is important since memory-intensive tasks are stalled for considerable time during
data transfers between the cores and the memory (Nowotsch and Paulitsch 2012).
Failure to capture this contention at design time results in non-conservative bounds,
while pessimistic analyses may result in substantial over-estimation and lead to under-
utilized resources. A particular challenge is that the contention is heavily dependent
on the arbitration policy of the memory bus, which ranges from work-conserving
priority-based policies in high-performance soft real-time systems to non-work-
conserving time-division-multiplexing (TDM) for critical systems that require robust
partitioning.

Existing work addresses the problem of deriving upper bounds on memory bus
contention, but the analysis is tightly coupled to a particular arbitration policy, such
as TDM (Rosén et al.2007; Chattopadhyay et al. 2010, 2014; Kelter et al. 2011;
Schranzhofer et al. 2010, 2011) or non-specified work-conserving arbiters (Dasari et
al. 2011; Schliecker et al. 2010), and a generic framework to handle different arbitration
mechanisms does not exist. As a result, a change of memory arbiter currently implies
adopting a new analysis with different inputs and assumptions.

123

Real-Time Syst

This article addresses this problem by proposing a general framework for memory
bus contention analysis that addresses the range of arbitration policies in multi-core
systems. The three main contributions of this work are: (1) A model that captures the
best-case and worst-case availability of the shared memory bus. This model can be
applied to a range of arbitration policies in a streamlined manner, and we demonstrate
its flexibility by applying it to two very different cases, being non-work-conserving
TDM and work-conserving fixed-priority arbitration. We also show how round-robin
arbitration and unspecified work-conserving arbiters can be captured as special-cases
of these two arbiters. (2) An algorithm that uses the proposed bus model and leverages
the task request-profiles to compute the maximum memory bus contention that a
given task can incur. (3) A method to tighten the computed bounds and increase
the efficiency and scalability of the algorithm by splitting the task request-profile into
multiple smaller sampling regions.We experimentally evaluate the proposed approach
by applying it to a multi-core system providing access to an external DRAM via a
shared bus. The flexibility of the framework is demonstrated by applying it to different
arbiters on a set of applications from the MediaBench benchmark (Lee et al. 1997).
The tightness of the WCET bounds is also evaluated for different sample region sizes.
Lastly, our results are compared to a state-of-the-art approach (Schranzhofer et al.
2010), showing that our framework provides tighter bounds for TDM arbitration.

The rest of this article is organized as follows: Sect. 2 presents the system model,
followed by an overview of our four-step approach in Sect. 3. The different steps of our
approach are then discussed in detail, starting with our novel bus availability model
in Sect. 4. We then proceed by showing how to capture the worst-case interference
caused by the shared memory bus in Sects. 5 and 6. This is followed by a method
to improve the accuracy of the analysis and reduce its computation time in Sect. 7.
Related work is discussed in Sect. 8, before we experimentally evaluate the approach
in Sect. 9. The article is concluded in Sect. 10.

2 System model

First, we present the platform model, followed by a characterization of the tasks and
their corresponding request profiles. We then explain the assumptions on the task
scheduler, before formulating the exact problem studied in this work.

2.1 Platform model

The considered multicore platform contains m cores denoted by π1, π2, . . . , πm . It is
assumed that the cores do not share cache memory or that all levels of shared cache
are disabled or partitioned. This assumption of a private/partitioned cache aligns with
the recommendations for certification of hard real-time systems (IEC 61508 2010). A
cache miss in the last-level cache results in a memory request to the shared DRAM.
The cores are assumed to be fully timing compositional (Wilhelm et al. 2009), such as
the ARM7, and stall on every memory request. These assumptions are consistent with
current state-of-the-art approaches (Pellizzoni et al. 2010; Schranzhofer et al. 2010,
2010; Rosén et al. 2007) for bus contention analysis.

123

Real-Time Syst

The cores communicate with the memory through a shared memory bus. The bus
controller grants access to the bus in units of bus slots, where each slot is of constant
length TR that corresponds to an upper bound on the time to serve a memory request,
expressed in clock cycles at the frequency of the processor. Contention between the
cores is resolved by the memory bus arbitration policy, which depends on the con-
sidered platform. Fixed-priority arbitration is typically used in systems with diverse
response time requirements, TDM in systems that require robust partitioning between
applications, and round robin when a simple notion of fairness between applications
executing on different cores is required.

2.2 Task model

The applications are modeled by a set, τ , of sporadic and constrained-deadline tasks
in which a task τi ∈ τ is characterized by three parameters: Ci , Ti , and Di ≤ Ti .
The parameter Ci denotes an upper bound on the execution time of task τi when it
executes uninterrupted in isolation, i.e., with no contention on the shared memory
bus; Ti denotes the minimum interval between two consecutive activations of τi (the
period) and Di is the deadline of the task. In other words, every task τi releases a
(potentially infinite) sequence of jobs, each such job must execute for at most Ci time
units within Di time units from its release and two successive jobs of the same tasks
are released at least Ti time units apart.

The parameter Ci can be computed by well-known techniques in WCET analy-
sis (Wilhelm et al. 2008). This work focuses on computing C ′

i , which denotes an
upper bound on the execution time when τi executes with contention on the memory
bus, i.e., when co-scheduled tasks are running on the other cores. Clearly, the value
of C ′

i is not an inherent property of τi but depends on the arbitration policy of the
memory bus and on the memory request pattern of the tasks executing concurrently
on the other cores during τi ’s execution. Note that the proposed application model
is very general, as it only assumes sporadic constrained-deadline tasks executing in
parallel on cores and accessing a shared memory. As such, the work applies to many
application domains of real-time systems, e.g. automotive and avionics.

2.3 Request and region modeling

We proceed by introducing the notations required for modeling the memory traffic
generated by the tasks. To gain a deeper insight into the request distribution, the
execution time span of the job is divided into sampling regions or sampling intervals.
The entire execution of each job of task τi is divided into xi = Ci/L

reg-size
i sequential

temporal sampling regions , where L reg-size
i is the duration (in time units, for e.g.

processor cycles) of each region. For brevity, we shall use ‘task’ (instead of job of a
task) to refer to the execution instance in the rest of the document.

For each job of task τi , themaximumnumber ofmemory requests issuedwithin each
region is captured by executing the task a significant number of times over different
inputs and taking the maximum value. Some measurement-based analysis techniques

123

Real-Time Syst

Fig. 1 Illustration of task-region profiles, each with length L
reg-size
i time units

have been proposed to generate test data that would target good code coverage (Wenzel
et al. 2009). Figure 1 depicts this task segmentation. It illustrates a same task run three
times over different sets of inputs. During the first run, the number of requests issued
in each region is recorded and depicted as a yellow box. In that run, the task completes
within the fourth region. The green and orange boxes represent two other runs of the
same task that complete during the third and sixth region, respectively. The red boxes
are the maximum values observed in all runs in each region. Note that the flow-control
path leading to the maximum number of memory requests in a region may not be the
one that results in the maximum execution time of the application, which introduces
some pessimism in our analysis. It is key to understand that the regions defined in our
analysis are a sequence of equidistant sampling points in time and not the start and
end points of a function or any other chunk of code commonly referred to as basic
blocks in the literature.

This measurement-based method returns a set, Gi = {ηi,1, ηi,2, . . . , ηi,xi }, where
each ηi,g (g ∈ [1 . . . xi]) is the observed maximum number of requests that task τi can
generate within its g’th sampling region. Note that

∑xi
g=1 ηi,g denotes an upper bound

on the number of requests that task τi can generate during the entire execution of one
of its jobs and, for simplicity, we sometimes use the notation η(i) to denote this value,

i.e., η(i)
def= ∑xi

g=1 ηi,g .
We next denote by Ri = {reqi,1, reqi,2, . . . , reqi,η(i)

}, the set of all requests that
τi can generate during its execution. Each request reqi,k is modeled by the tuple
〈
reli,k, srvi,k

〉
, where reli,k and srvi,k denote the release and service time of request

reqi,k during τi ’s execution, respectively. Together, these values enable the cumulative

delay of τi due to shared resource accesses to be computed as
∑η(i)

k=1(srvi,k − reli,k).
Obviously, the exact values of reli,k and srvi,k are not known before run time.

2.4 Scheduler specification

We consider a partitioned scheme of task assignment in which each task is assigned
to a core at design time and is not allowed to migrate from its assigned core to another
one at run time, i.e. a fully partitioned non-migrative scheduling scheme. Regarding

123

Real-Time Syst

the scheduling policy on each core, we consider a non-preemptive scheduler and hence
do not deal with cache-related and task-switching overheads. We make the non-work-
conserving assumption as follows: whenever a task completes earlier than its WCET
(say on its assigned CPU πp), the scheduler idles the core πp up to the theoretical
WCET of the task. This assumption is made to ensure that the number of bus requests
within a time window computed at design time is not higher at run time due to early
completion of a task and the subsequent early execution of the following tasks.

2.5 Problem statement

After specifying the model for the platform, the tasks, and their request release and
service patterns, we are now ready to state the problem addressed in this work. Given:

1. a multi-core platform conforming to the model described in Sect. 2.1,
2. a set of tasks and their WCET Ci in isolation, as described in Sect. 2.2, and
3. the region-profiles of all these tasks, described in Sect. 2.3,

the problem is to compute theWCETC ′
i of τi when τi executes concurrentlywith other

tasks. This implies finding a tight upper bound on the cumulative delay incurred by all
memory requests of τi considering the contention for thememory bus. For each task τ j ,

we must choose a region length L reg-size
j and obtain as described in Sect. 2.3, the set of

region-profilesG j = {η j,1, η j,2, . . . , η j,x j }. Then, wemust compute the release times
and service times, rel j,k and srv j,k , ∀ req j,k ∈ R j , under different arbitration policies,

that result in the maximum cumulative delay Di (η(i)) = ∑η(i)
k=1(srvi,k − reli,k).

3 Overview

We proceed by giving a high-level overview of the proposed analysis framework. The
analysis is presented in four main steps, illustrated in Figure 2, to gradually build up
complexity. The four steps are briefly summarized in this section, while the following
sections present each step in detail.

3.1 Step 1: modeling the availability of the bus

Given that several tasks are co-scheduled on different cores and contend for the same
shared bus, a given task τi may not get access to the bus immediately after generating
a request. That is, when a task τi generates a memory request and therefore requests
access to the bus, the busmay ormay not be immediately available to serve that request.
Section 4 shows how we propose to model the availability of the bus to a given task
τi using a generic model Bi = 〈

T min
i (), T max

i ()
〉
. The functions T min

i (j) and T max
i (j)

are an abstraction of the shared resource that represent the earliest and latest instants
at which the bus is available to τi for the j th time, as stated in Definitions 1 and 2,
respectively. From now on, we refer to the bus slots that are available to the task τi
as the free bus slots of τi . We also re-state that each bus-slot is of duration TR and
refers to an upper bound on the time to make one memory access. Hence, we assume

123

Real-Time Syst

TDM arbiter
model

Other arbitra�on
models

Fixed-priority
arbiter model

Step 2:
Compute worst-case delay for a

sequence of requests

Step 3:
Compute request-set mapping

that maximizes delay

Arbiter dependent steps

Arbiter independent steps

Work-conserving
arbiter model

Step 1:
Compute bus

availability

Task-region
profiles

Step 4:
Tighten analysis using

task-region profiles

Fig. 2 The main steps of the general analysis framework

a discrete time-line (in units of TR) in which a request can be serviced only starting
at the beginning of a time slot.

Definition 1 The function T min
i (j) represents the earliest time-instant at which the

bus may be available to task τi for the j th time, or in other words, the earliest time-
instant of the j th free bus slot of τi .

Definition 2 The function T max
i (j) represents the latest time-instant at which the bus

may be available to task τi for the j th time, or in other words, the latest time-instant
of the j th free bus slot of τi .

The order in which the bus slots are granted to the tasks depends on the arbitration
mechanism. It hence follows that the two functions T min

i () and T max
i () also depend

on the arbitration mechanism, as shown in Fig. 2. As we shall see in the next section,
for some arbitration policies like Time-Division Multiplexing, the availability of the
bus modeled by T min

i () and T max
i () is independent from the traffic generated from

the other cores, while for many other arbitration mechanisms, such as fixed-priority
scheduling, the interfering requests do influence the time at which the analyzed task τi
can access the bus and hence play an important role in the computation of the functions
T min
i () and T max

i ().
Figure 3 illustrates the earliest and the latest instants atwhich a given slot is available

to task τi . As seen in the figure, the earliest instant at which slot 1 may be available to
task τi , T min

i (1), is at time 0, meaning that either there are no pending requests from
the other tasks that are co-scheduled on the interfering cores in π̄(i), or the task τi is
executing in isolation and thus there is no contention on the bus. In contrast, we have
T max
i (1) = 5 in this example, which means that τi may have to wait at most 4 slots

before getting access to the bus. Similarly, the availability for the subsequent slots is
depicted in the figure. Note that this illustrative example is not representative of any
particular arbitration mechanism.

123

Real-Time Syst

8

7

6

5

4

3

2

1

reb
mu

NtolSsuB

Time (in TR units)
1 2 3 4 5 6 7 8 9 10

Fig. 3 Illustration of the functions T min
i () and T max

i ()

3.2 Step 2: computing the maximum cumulative delay

Given the bus availability model Bi = 〈
T min
i (), T max

i ()
〉
of task τi , we propose an

algorithm to compute the maximum cumulative delay incurred by memory requests
of τi considering contention on the shared bus. To achieve this, we define the two
concepts of request-to-slot assignment and request-set mapping as follows.

Definition 3 A request-to-slot assignment in the context of a single request reqi,k is
denoted by σi (k) and defines that the kth request generated by τi , i.e. reqi,k , is served
in the σi (k)th bus slot available to task τi , i.e. in the σi (k)th free bus slot of τi .

Definition 4 For a given task τi , a request-set mapping
Mi = {σi (1), σi (2), . . . , σi (η(i))} defines that ∀k ∈ Ri : reqi,k is assigned to the

σi (k)th free bus slot of τi .

Given these definitions, we further divide this step into two phases; the first phase
focuses on the maximum delay incurred by a single request and the second focuses
on the maximum cumulative delay incurred by a set of consecutive requests.

Phase 1. Given the bus availability model Bi = 〈
T min
i (), T max

i ()
〉
of task τi , its kth

request reqi,k and a request-to-slot assignment σi (k) for that request, we
compute the maximum delay that reqi,k can incur by computing a lower-
bound on its release time, reli,k , and an upper-bound on its service time,
srvi,k , with the objective of maximizing its waiting time (i.e., srvi,k − reli,k).

Phase 2. In the second phase, given the bus availability model represented as
Bi = 〈

T min
i (), T max

i ()
〉
of task τi and a request-set mapping Mi =

{σi (1), σi (2), . . . , σi (η(i))} for all its requests, we compute the overall max-
imum cumulative delay that can be incurred by these requests.

This proposed analysis to compute the maximum cumulative delay for a given
request-set mapping is presented in Sect. 5.

123

Real-Time Syst

3.3 Step 3: finding the worst-case request-set mapping

While the previous step provides an algorithm to compute the maximum cumulative
delay for a given request-set mapping, the goal of this third step is to find a request-set
mapping for which the maximum cumulative delay is the largest among all feasible
mappings.We propose an algorithm in Sect. 6 to determine such a request-set mapping
for all the requests of a given task τi . Our technique first computes an upper bound,
UBsloti , on the number of free bus slots that can possibly be used by task τi . This
upper bound gives us a conservative range [1,UBsloti] of free bus slots within which
all the requests of the analyzed task τi will be served. Note UBsloti , may be much
greater than the number η(i) of requests to be served.

A naive approach to maximize the cumulative delay incurred by the (at most) η(i)

requests of τi is to apply brute force, i.e. all the request-set mappings are explored
and a maximum cumulative delay is computed for each of them using the method
proposed in Step 2; At the end, only the largest cumulative delay from all mappings
is returned. However, such a method does not scale and is computationally inefficient
due to the exhaustive exploration of all the possible mappings.We significantly reduce
the computation time of the proposed analysis by eliminating the request-set mappings
that cannot possibly lead to the worst-case delays at an early stage of the analysis.

3.4 Step 4: tightening the analysis using sampling regions

Having shown how to determine theworst request-setmapping in Step 3, and bounding
the maximum cumulative delay for that mapping using the technique explained in
Step 2, there is further scope of tightening the analysis by exploiting the information
about the maximum number of requests in each of the constituent regions of the
analyzed task. The region-based analysis limits the range of the potential free bus slots
used by a set of requests. For example, if the kth request of τi is generated in the g’th
region, then it cannot be served in the j th free bus slot of τi if T max

i (j) < L reg-size
i ×

(g−1), where L reg-size
i is the size of the sampling interval. From these constraints, we

define a range [LBsloti,g,UBsloti,g] for each region g, representing the first and last
free bus slots inwhich requests from region g can possibly be served. These bounds are
employed by the proposed algorithm to tighten the analysis by defining a request-set
mapping for each individual region. The maximum delays incurred by the requests
of each region are computed successively and the overall WCET is subsequently
computed. This process is described in detail in Sect. 7.

4 Modeling the availability of the bus

The memory bus is a shared resource, which means that any access to it by a given
task may be deferred because of concurrent accesses from other tasks. To estimate
the overall delay that can be incurred by a task due to the contention for a shared
bus, a basic approach could be to first derive an upper bound on the delay that a
single access may incur. This upper bound is computed by constructing a worst-case

123

Real-Time Syst

scenario in which every competing task gathers all its accesses to the bus within the
shortest possible time window. This creates a burst of accesses all concentrated in time
and occurring exactly when the request from the analyzed task is released, thereby
inducing the maximum delay for this request. Then, the overall delay that a sequence
of requests may suffer is computed by assuming that each access to the shared bus
incurs this precomputed maximum delay. This assumption will lead to conservative
estimates, since the other tasks keep progressing in their execution, alternating between
computation andmemory fetch phases, and do not congest thememory bus at all times.

We propose an alternative approachwhich bases its computation on a newmodeling
framework. Instead of computing aworst-case scenario for a single access to the shared
bus and then considering that scenario for each and every request of the analyzed task,
we model the overall availability of the bus to the analyzed task. Then, as the next
step, we leverage this new model to derive an upper bound on the cumulative delay
that a sequence of requests may incur.

Our model captures the best-case and worst-case availability of the shared bus. It is
based on the arbiter and coarse-grained memory access information provided by the
task-region profiles. Specifically, for a given task τi under analysis and any positive
integer j , we compute the two functions T min

i (j) and T max
i (j) that give the earliest

and latest instants of the j th free bus slot of τi . If τi is run in isolation, there are
no competing requests for a work conserving bus, and the bus is always available
to τi . In such a case T min

i (j) = T max
i (j) = (j − 1) · TR for all j > 0. In other

cases, when the task is in contention or the bus arbiter uses reservation of slots as in
TDM, we have T min

i (j) < T max
i (j). These two functions form what we call the bus

availability model Bi = 〈
T min
i (), T max

i ()
〉
of task τi . This model can be computed for

any predictable resource and awide range of arbitration policies. Next, we demonstrate
the computation of this bus model for two distinct cases: a non-work-conserving TDM
arbiter and a work-conserving fixed-priority arbiter.

4.1 Non-work-conserving TDM arbitration

A TDM arbiter works by periodically repeating a schedule, or frame, with fixed size,
f. Each core πp is allocated a number of slots φp in the frame at design time, such
that

∑
πp

φp ≤ f. There are different policies for distributing the slots allocated to a
core within the TDM frame, but here we consider the case where slots are assigned
contiguously for simplicity. An example of a TDM frame, a contiguous allocation,
and some of the associated terminology is illustrated in Fig. 4.

π1 π1

φ1 = 2
f = 7

Tmin
1 (1) = 0 Tmax

1 (1) = 6

Fig. 4 TDM frame with 7 slots using a contiguous slot allocation

123

Real-Time Syst

We consider a non-work-conserving instance of the TDM arbiter, which means that
requests from a core are only scheduled during bus slots allocated to that core. Empty
slots or slots allocated to other cores without pending requests are hence not utilized.
This type of policy makes the timing behavior of memory requests of tasks scheduled
on different cores completely independent. As a result, only the configuration of the
arbiter has to be considered when determining T min() and T max(). For non-work-
conserving TDM arbitration with a contiguous slot allocation, T min() and T max(), for
task τi assigned to core πp are derived according to Eqs. (1) and (2), respectively.

T min
i (j) =

(⌊
j − 1

φp

⌋

× f + ((j − 1) mod φp)

)

× TR (1)

T max
i (j) = T min

i (j) + (f − φp + 1) × TR (2)

The first term in the computation of T min() in Eq. (1) corresponds to the minimum
required number of full iterations of the TDM frame to produce j free slots for τi
and the second term corresponds to the remaining number of required slots after these
iterations. The computation of T max() is similar, except that it adds an additional
f − φp + 1 slots to account for releases with maximum misalignment with respect
to the set of contiguous slots allocated to the core in the TDM frame (including just
missing its own last slot, i.e. the “+1”). Note that these equations also cover non-work-
conserving round-robin arbitration, since it is just a special case of TDMwhere f equals
the number of cores sharing the bus and ∀πp φp = 1. Work-conserving versions of
both these arbitration policies can be derived by additionally considering the task-
region profiles, although this is omitted for brevity. Figure 4 graphically illustrates the
arrival times and waiting times corresponding to T min

1 (1) and T max
1 (1). As seen in the

figure, the T min
1 (1) = 0, is achieved for a request that arrives just at the beginning of

any of the two slots allocated to its corresponding core and T max
1 (1) = 6 for a request

arriving just after the last slot allocated to its core has been left idle. For this particular
arbitration policy, the best-case and worst-case arrival with respect to the TDM frame
is the same for any value of j , although this does not hold in general.

4.2 Work-conserving fixed-priority arbitration

In the context of bus arbitration policies, one of the challenges with currently existing
COTS-based multi-core systems is that the memory bus does not recognize/respect
task priorities. This is because the bus is generally designed with the aim of enhancing
the average-case performance and is not tailored for real-time systems. This can lead
to a scenario similar to priority inversion in which requests from higher priority tasks
are delayed by requests from lower-priority tasks on the bus. Although the scheduler
enforces these priorities while allocating cores to tasks, these priorities are not passed
over to the shared hardware resources like the memory bus, which have their own
scheduling policies. This problemhas been addressed in research by enabling priorities
in priority-driven arbiters to be software programmable directly (Akesson et al. 2009)
or indirectly by tagging each request with its priority (Zhou et al. 2011). We assume

123

Real-Time Syst

in this section that the memory bus is designed according to any of these strategies.
Based on this, we design a bus-availability model for a fixed-priority arbiter.

Assume that the analyzed task τi is scheduled on core πp. Despite the uncertainty
of the arrival patterns of the requests, it is important to determine a lower and upper
bound on the cumulative number of requests that tasks with higher priority than τi and
scheduled on the interfering cores πq �= πp may inject into the bus. These bounds are
denoted by the per-core request profiles PCRPmin

q (i, t) and PCRPmax
q (i, t) functions,

respectively, which can be computed as shown in Dasari and Nelis (2012) with a
pseudo-polynomial time complexity of O(C2

max), where Cmax denotes the maximum
WCET among tasks deployed on the given core.

The computation of these functions, in summary is akin to the bin packing problem,
inwhichwe need to pack themaximum (orminimum) number of (interfering) requests
in a given interval of duration t during which the analyzed task τi executes. To do so,
the tasks of higher priority than τi that run on the interfering cores are ordered by
request densities and then packed within an interval of time t in such a manner that
the minimum (or maximum) number of requests is derived, while respecting the task
arrival rates. With this information, we derive the corresponding earliest and latest
times at which free slots are available to the analyzed task τi assigned to core πp

according to Eqs. (3) and (4), respectively. Just like the computation of T max() for
TDM in Eqs. (2), (4) adds an extra TR to capture the possible situation where the task
just misses the last free slot before experiencing its worst-case interference pattern.

T min
i (j) = min

t≥0

⎧
⎨

⎩
t |t −

⎛

⎝
∑

πq �=πp

PCRPmin
q (i, t) × TR

⎞

⎠ = (j − 1) × TR

⎫
⎬

⎭
(3)

T max
i (j) = min

t≥0

⎧
⎨

⎩
t |t −

⎛

⎝
∑

πq �=πp

PCRPmax
q (i, t) × TR

⎞

⎠ = (j − 1) × TR

⎫
⎬

⎭
+ TR

(4)

From the perspective of the analyzed task τi executing on core πp, the memory bus can
be viewed as a resource with two alternating phases: a busy phase, in which it serves
the requests from the other cores and an idle phase, in which it is available to τi . Equa-
tion (4) canbe interpreted as follows:Theother coreswill issue

∑
πq �=πp

PCRPmax
q (i, t)

requests and utilize the corresponding number of bus slots, each of length TR. The
analyzed task can only serve its j th request after

∑
πq �=πp

PCRPmax
q (i, t) requests of

the interfering tasks are served and then a free slot is available. In the worst case, the
request will be released just after the beginning of the free slot. Hence the next slot
will be available for the request of the analyzed task after a time TR. Given this, when
in isolation,

∑
πq �=πp

PCRPmin
q (i, t) = 0 and

∑
πq �=πp

PCRPmax
q (i, t) = 0 and hence

T min
i (1) = 0 and T max

i (1) = TR. We pre-compute and store values of T max
i () and

T min
i () for all j while the resulting t ≤ Di .
Just like our TDMmodel can be used to capture the special case of round-robin arbi-

tration, the unspecified work-conserving arbiter presented in Schliecker et al. (2010),
Andersson et al. (2010) is just a special case of thefixed-priority arbiter presented in this

123

Real-Time Syst

section. The unspecified work-conserving arbiter was defined in the context of COTS
systems, where the arbitration mechanism is not always specified. However, it is still
possible to analyze the system if it can be assumed that the arbiter is work-conserving,
which is reasonable for example in the context of commercially-availablememory con-
trollers that are designed to optimize average performance. Capturing this arbiter with
thismodel only requires a slightmodification to the PCRP functions tomake every task
believe that it has the lowest priority in the system, which is the same way it was cap-
tured in the original publications. Although this is likely to result in a very pessimistic
estimation of the worst-case delay, it enables conservative analysis of the system.

As seen in this section, theT min
i (j) andT max

i (j) functions are arbitration dependent
and can be computed for different arbiters (TDM, round-robin, fixed-priority and the
unspecified work-conserving arbiter). These functions serve as an input to the next
steps of the proposed framework that compute the increased execution time based on
themodel. In contrast, themethods described in the following sections are independent
of the arbitration mechanism.

5 Finding the maximum delay for a request-set mapping

We have presented a model that captures the availability of the memory bus to a
given task and demonstrated its use for two very different arbitration mechanisms
and highlighted additional arbiters that are supported as special cases of these. This
section continues by first describing a method to compute the maximum waiting time
of a request reqi,k , given a request-to-slot assignment σi (k) for that request, and the bus
availability model Bi . The same rationale is then extended to compute the cumulative
waiting time for a sequence of requests of a given task τi .

5.1 Maximum delay for a single request

For a given request reqi,k and its request-to-slot assignment σi (k), the key idea to
maximize its waiting time is to release that request as early as possible and delay
its service time as much as possible. In other words, for a given request reqi,k and a
request-to-slot assignment σi (k), we need to determine a lower bound on its release
time and an upper bound on its service time and then compute the resulting waiting
time. This is done in Lemmas 1 and 2, respectively.

Lemma 1 (A lower bound on the release time of a request) For any task τi ∈ τ and
for all k > 1, let reqi,k−1 and reqi,k be two consecutive requests generated by τi . For
a given request-to-slot assignment σi (k − 1) and σi (k), if request reqi,k−1 has been
served at time srvi,k−1 in the σi (k − 1)’th free bus slot then it holds that the release
time reli,k of reqi,k is such that

reli,k ≥ max
(
T min
i (σi (k) − 1) + 1, srvi,k−1 +(σi (k) − σi (k − 1)) × TR

)
(5)

Proof The lemma is based on two simple observations, corresponding to the two terms
in Eq. (5).

123

Real-Time Syst

1. If it is given that reqi,k is served in the σi (k)’th free bus slot of τi then its earliest
release time is immediately after the earliest time-instant at which the bus can be
free for the (σi (k) − 1)’th time. Otherwise, the request would have been served
in the previous available free slot, (σi (k) − 1). Formally, this implies reli,k ≥
T min
i (σi (k) − 1) + 1.

2. Since we assume that a core stalls while its requests are being served, it fol-
lows that a request can only be released after the previous request from the same
task has been served, i.e. reli,k ≥ srvi,k−1. In addition, for request reqi,k to be
served in the σi (k)’th free bus slot of τi , it must hold that reqi,k has missed all
the intermediate free bus slots between the σi (k − 1)’th and the σi (k)’th, i.e.
reli,k ≥ srvi,k−1 +(σi (k) − σi (k − 1)) × TR.

In order to satisfy both conditions, the maximum of the resulting values is consid-
ered. �	
Lemma 2 (An upper bound on the service time of a request) For any task τi ∈ τ and
for all k > 1, if request reqi,k is served at time srvi,k in the σi (k)’th free bus slot then
it holds that

srvi,k ≤ min
(
T max
i (σi (k)), reli,k + T max

i (1)
)

(6)

Proof The latest time at which request reqi,k assigned to slot σi (k) is served is
T max
i (σi (k)) (by definition). However, since T max

i (1) is defined as themaximum delay
that a request may suffer, the value of srvi,k cannot be greater than reli,k +T max

i (1).
Equation (6) upholds these two conditions by considering the minimum of the respec-
tive values. �	

The maximum delay for servicing the given request reqi,k in slot σi (k) is then given
by the difference between the upper bound on its service time and the lower bound on
its release time.

5.2 Maximum cumulative delay for a request-set mapping

In the previous section, we established a method to compute an upper bound on the
delay of a single request assigned to a given free bus slot. Now, we extend this result
to maximize the cumulative delay of a sequence of η(i) requests, given a request-set
mapping Mi = {σi (1), . . . , σi (η(i))} for that sequence. To maximize the cumulative
delay for themappingMi , we compute the individual maximum delay for each request
by applying Lemmas 1 and 2. Since the release time (and thus the delay) of a given
request reqi,k depends on the service time srvi,k−1 of the previous one (see Eq. (5)),
we start by computing the maximum delay of the first request reqi,1 and iterate up to
request reqi,η(i)

. We show in Lemma 3 that this iterative process leads to a worst-case
cumulative delay. The lemma is proven by induction and case enumeration and is
found in the Appendix. The main benefit of the lemma is that it establishes that the
maximum cumulative delay of a request-set mapping can be computed in an iterative
manner. We exploit this in the next section as we present an algorithm to find the
worst-case request-set mapping.

123

Real-Time Syst

Lemma 3 (Worst-case cumulative delay) Let Mi = {σi (1), . . . , σi (η(i))} refer to a
request-set mapping for the η(i) requests of task τi and Di (k) the maximum cumu-
lative delay for the first k requests {reqi,1, reqi,2, . . . reqi,k}, given this mapping Mi .

The cumulative delay Di (η(i)) = ∑η(i)
k=1(srvi,k − reli,k) of the η(i) requests of τi is

maximized for:

reli,k =
{
T min
i (σi (k) − 1) + 1, if k = 1

max(T min
i (σi (k) − 1) + 1, srvi,k−1 +Δk), otherwise

(7)

srvi,k = min
(
T max
i (σi (k)), reli,k + T max

i (1)
)

(8)

where Δk = (σi (k) − σi (k − 1)) × TR.

A detailed proof is presented in the Appendix and the interested reader may please
refer the same.

6 Finding the worst-case request-set mapping

We have presented a bus availability model and shown how to leverage it to com-
pute the maximum cumulative delay for a given sequence of requests and a given
request-set mapping. This section proceeds by presenting how to efficiently deter-
mine a request-set mapping for which the maximum cumulative delay is the highest
among all possible request-set mappings, i.e. a worst-case request-set mapping. First,
we present the basic algorithm to find this worst-case mapping. Then, we proceed by
presenting how to eliminate, at an early stage of the computation, many intermediate
mappings considered by the algorithm so that the computation time and the memory
requirements are reduced.

6.1 Algorithm description

This section proposes an algorithm to find the request-set mapping that maximizes
the cumulative delay. In order to eliminate unfeasible mappings that will provably not
contribute to the global maximum, we start by presenting an important corollary of
Lemma 3 followed by a relevant observation, which eventually forms the basis of the
algorithm.

Corollary 1 (Dependency between worst-case cumulative delays) Let us assume a
sequence of k requests {reqi,1, reqi,2, . . . , reqi,k} from task τi and a given request-set
mapping Mi = {σi (1), σi (2), . . . , σi (k)} for these requests. Let us denote by Di (k)
themaximum cumulative delay for these k requests (computed using Lemma 3). Now,
suppose that we extend the sequence with an extra request with index (k+1) assigned
to slot h, i.e. σi (k + 1) = h such that h > σi (k). The maximum cumulative delay
Di (k + 1) for the k + 1 requests can be obtained simply by adding to Di (k) the
maximum delay for that last request reqi,k+1. This maximum delay for reqi,k+1 can be
obtained by using Eqs. (7) and (8), where srvi,k is the service time of the kth request
that was obtained during the computation of Di (k).

123

Real-Time Syst

Proof The corollary is a direct consequence of Eqs. (7) and (8). When apply-
ing the method of computation of Lemma 3 to the set of (k + 1) requests
{reqi,1, reqi,2, . . . , reqi,k+1}, the resulting cumulative delay Di (k) after the kth itera-
tion is the same as the delayDi (k) obtained when applying this method to the set of k
requests {reqi,1, reqi,2, . . . , reqi,k}. In other words, the computation of the maximum
cumulative delay for the first k requests is independent of whether or not there is a
(k + 1)’th request in the input sequence. �	
Observation 1 If a sequence of (k + 1) consecutive requests of a task τi are served
within the first and the h’th slot available to τi , i.e. within the range [1, h] of free
bus slots of τi , then the maximum cumulative delay for these (k + 1) requests is the
maximum between the largest delay computed in the following two scenarios:

1. The (k + 1) requests are all served within the range [1, h − 1] of free bus slots.
2. The first k requests are served within the slots [1, h−1] and the (k+1)’th request

is served in slot h.

This observation holds true as these two cases are mutually exclusive and jointly
exhaustive, which implies that any feasible assignment falls either in Cases 1 or 2 and
taking the maximum among the resulting delays is trivially safe.

Based on this corollary and observation, we construct an algorithm to compute
Di (k) fromDi (k−1), ∀k, which ultimately yieldsDi (η(i)). The proposed algorithm is
safe-by-construction as it computesDi (η(i)) by investigating all possible assignments
of these η(i) requests to the free bus slots and only discards assignments that are proven
unfeasible. The algorithm is shown in Algorithm 1 and we proceed by discussing it in
detail.

The request-setmappings are captured in a two-dimensional arraywithη(i) rows and
UBsloti columns. The input to the algorithm is the number η(i) of requests of the ana-
lyzed task τi , and an upper bound on the available slots in which the η(i) requests may
be served. Note that the variables k and j are used to refer to requests and slots, respec-
tively. Each cell(k, j) of this array holds a list of tuples ek, j = 〈

Di (k), σi (k), srvi,k
〉
,

where each tuple ek, j in that list reflects a feasible request-set mapping of the first k
requests to k free bus slots within the range [1, j] of slots available to τi . The members
of this tuple denote:

– Themaximum delayDi (k) that can be obtainedwith the corresponding request-set
mapping,

– The free bus slot in which the kth request has been served to reach that maximum
delay Di (k), i.e. σi (k) ∈ [k, j], and

– The corresponding time srvi,k at which that kth request has been served in that slot
to obtain the delay Di (k).

The algorithm proceeds in a row-wise manner: it assigns the first request reqi,1 to
all feasible free bus slots and computes the maximum cumulative delay for each such
assignment. Then, it proceeds to analyze the second request (next row of the array) and
so on. For the first request and first free bus slot, the algorithm computes theworst-case
delay when the first request is assigned to that slot (Lines 7, 9, 10). To do so, it uses
Lemma 3 and adds the corresponding tuple e1,1 to the list of cell(1, 1) in Line 11. In

123

Real-Time Syst

Algorithm 1: MaxRegDelay(η(i), UBsloti)
input : η(i): no. of requests, UBsloti : last available slot
output: Di (η(i)): maximum cumulative delay incurred by τi .

1 Create a 2D array of η(i) rows and UBsloti columns, where each cell(k, j) at row k and column j is
a list of tuples ek, j , as explained in the description. ;
Set every cell of this array to an empty list ∅;

2 for k ← 1 to η(i) do
3 for j ← k to UBsloti −(η(i) − k) do
4 if k = 1 then
5 if j > 1 then cell(k, j) ← cell(k, j − 1);

6 reli,k ← T min
i (j − 1) + 1;

// we assume T min
i (0) = −1

7 if reli,k < Ci then
8 srvi,k ← min(T max

i (j), reli,k +T max
i (1));

9 Di (k) ← srvi,k − reli,k ;
10 cell(k, j). add(

〈
Di (k), j, srvi,k

〉
);

11 end
12 else
13 cell(k, j) ← cell(k, j − 1);

// cell(k, j − 1) = ∅ if j = k
14 foreach ek−1, j−1 ∈ cell(k − 1, j − 1) do

// ek−1, j−1 = 〈
Di (k − 1), σi (k − 1), srvi,k−1

〉

15 reli,k ← max(T min
i (j − 1) + 1, srvi,k−1 +(j − σi (k − 1)) × TR);

16 if reli,k < srvi,k−1 +Ci and reli,k < Ci + Di (k − 1) then
17 srvi,k ← min(T max

i (j), reli,k +T max
i (1));

Di (k) ← Di (k − 1) + srvi,k − reli,k ;
cell(k, j). add(

〈
Di (k), j, srvi,k

〉
);

18 end
19 end
20 end
21 end
22 end

// Return the max value of the Delay among the list of tuples
stored in the topmost right corner cell, i.e. cell(η(i),UBsloti)

23 forall the eη(i),UBsloti ∈ cell(η(i),UBsloti) do

// eη(i),UBsloti =
〈
Di (η(i)),UBsloti , srvi,η(i)

〉

24 maxDelay ← max(maxDelay,Di (η(i)));
25 end
26 return maxDelay;

this case, we have reli,1 = 0, srvi,k = T max
i (1), and e1,1 = 〈

T max
i (1), 1, T max

i (1)
〉
.

The list contains only this tuple. The if-statement of Line 8 aims at reducing the com-
putation time of the algorithm by discarding all the request-to-slot assignments which
impose on the first request reqi,1 to be released after the task has run for Ci time units,
which is impossible.

For k = 1 and j > 1, the algorithm computes all the maximum delays by consid-
ering every assignment of the first request, reqi,1 , to free bus slots ≤ j . First, the list
of the current cell(1, j) is initialized to the list of the previous cell(1, j − 1) (Line 6),
thereby carrying on all the possibleworst-case delays that were obtainedwhen this first

123

Real-Time Syst

request was assigned to a previous free bus slot < j . Then, the algorithm addresses
the case where the first request is assigned to the j th bus slot by making use of the
equations of Lemma 3 to compute reli,1 and srvi,1 and appends the corresponding
tuple e1, j to the list of cell(1, j) (Lines 7, 9, 10, and 11 again).

When k > 1 and j ≥ k, the algorithm computes all worst-case delays that can
be obtained when the first k requests of τi are assigned to any free bus slots within
[k, j]. On Line 14, the algorithm initializes the list of cell(k, j) to the list of results
obtained for the cell(k, j −1). Informally, this reflects Case 1 in Observation 1, which
states that the worst-case cumulative delay of the first k requests may be found in the
set of maximum delays obtained when these k requests are all served before the j th
free bus slot. Then on Line 15, the algorithm inspects every maximum delay that has
been obtained assuming that the first k − 1 requests were served before the j th free
bus slot. For each of these delays Di (k − 1), assuming that the kth request is now
served in the j th free bus slot, Lines 16 and 18 compute the release and service time of
that request reqi,k using the equations of Lemma 3, by referring to the corresponding
request-to-slot assignment σi (k − 1) of the (k − 1)’th request, as well as its service
time srvi,k−1 in this free bus slot σi (k − 1). This reflects Case 2 in Observation 1 as
the maximum delay Di (k) for the first k requests is computed assuming that request
reqi,k is assigned to the j th free slot and the previous k − 1 requests are served in
the earlier bus slots. Note that the computation of the resulting maximum cumulative
delay Di (k) in Line 19 is safe as explained in Corollary 1.

Similarly to Line 8, the condition of Line 17 is used to filter out a host of unfeasible
solutions. In short, the time interval between the release of the currently considered
request reqi,k and the service time of the previous one cannot exceed the total execu-
tion requirement of the task and the current request cannot be released later than the
maximum execution requirement of the task plus the maximum delay Di (k − 1) that
τi may incur till there due to interference with the first (k − 1) requests.

Note that k spans from 1 to η(i), while j takes all values within the range
[k,UBsloti −(η(i) − k)]. The reason for limiting the range of j is because the kth
request of τi cannot possibly be served in a free bus slot< k (leading to a lower bound
j ≥ k) and the next (η(i) − k) requests following reqi,k require at least (η(i) − k) slots
in order to be served (leading to the upper bound j ≤ UBsloti −(η(i) − k)).

6.2 Elimination of unfeasible request-set mappings

Having proposed an algorithm to determine the worst-case request-set mapping, we
proceed by improving its efficiency. Algorithm 1 carries on all possible request-set
mappings and their associated maximum delays, finally returning the one leading to
the maximum cumulative delay. This section presents two methods to identify which
request-set mappings cannot lead to the worst-case cumulative delay and discard them
at an early stage of the computation. By pruning the solution space at each iteration, the
set of candidate solutions is substantially reduced, thereby improving the scalability
of the algorithm with respect to the number of requests and potential free bus slots.
Lemmas 4 and 5 present the theoretical foundation for our pruning mechanisms. They
establish two relations between a pair of request-set mappings which, if satisfied,

123

Real-Time Syst

allows one of the mappings be pruned without risk of discarding the mapping leading
to the worst-case cumulative delay. The proofs of the two lemmas are similar and are
both based on case enumeration. However, for completeness, they are both provided
in the appendix.

Lemma 4 Let Mi = {σi (1), . . . , σi (k)} refer to a request-set mapping for the first k
requests of task τi . LetDi (k)be themaximumcumulative delay for these k requests con-
sidering this mappingMi , and let srvi,k be the absolute time at which the kth request is
served in a scenario leading to this delayDi (k). Similarly, letM′

i = {σ ′
i (1), . . . , σ

′
i (k)}

denote another request-set mapping for the first k requests of task τi . Let D′
i (k) be

the maximum cumulative delay considering this mapping M
′
i , and let srv′

i,k be the
absolute time at which the kth request is served in a scenario leading to this delay
D′

i (k). If it holds that

σi (k) ≤ σ ′
i (k) (9)

and Di (k) ≤ D′
i (k) (10)

and srvi,k +(σ ′
i (k) − σi (k)) × TR ≥ srv′

i,k (11)

then for all h > σ ′
i (k), assigning an extra request reqi,k+1 to the h’th free bus slot in

both mappings Mi and M
′
i , i.e., σi (k + 1) = σ ′

i (k + 1) = h, leads to

σi (k + 1) = σ ′
i (k + 1) (12)

and Di (k + 1) ≤ D′
i (k + 1) (13)

and srvi,k+1 +(σ ′
i (k + 1) − σi (k + 1)) × TR ≥ srv′

i,k+1 (14)

A detailed proof is presented in the Appendix and the interested reader may please
refer the same.

Lemma 5 Under the same conditions as in Lemma 4, if it holds that

σi (k) ≤ σ ′
i (k) (15)

and Di (k) + (srv′
i,k − srvi,k) ≤ D′

i (k) (16)

and srvi,k +(σ ′
i (k) − σi (k)) × TR ≤ srv′

i,k (17)

then for all h > σ ′
i (k), assigning an extra request reqi,k+1 to the h’th free bus slot in

both mappings Mi and M
′
i , i.e., σi (k + 1) = σ ′

i (k + 1) = h, leads to

σi (k + 1) ≤ σ ′
i (k + 1) (18)

and Di (k + 1) + (srv′
i,k+1 − srvi,k+1) ≤ D′

i (k + 1) (19)

and srvi,k+1 +(σ ′
i (k + 1) − σi (k + 1)) × TR ≤ srv′

i,k+1 (20)

A detailed proof is presented in the Appendix and the interested reader may please
refer the same.

The vital inference from the expressions in Lemmas 4 and 5 is that the maximum
cumulative delay for the first (k + 1) requests of τi is higher by using the mapping M

′
i

123

Real-Time Syst

for the first k requests instead of the mapping Mi . Then, since Conditions (12), (13),
and (14) are the same as Conditions (9), (10), and (11) (and the corresponding relation
holds for the conditions in Lemma 5), the lemmas continue to hold for all subsequent
requests>k+1until the last request of τi . Thismeans thatMi canbe safely omitted dur-
ing the computation ofAlgorithm 1 as it cannot lead to themaximum cumulative delay.

In order to leverage the result of Lemmas 4 and 5, we implement a function
“ListReduce(cell(k, j))” at the end of the first inner loop, i.e., “for j ← k to
UBsloti −(η(i) − k)” in Algorithm 1. This function makes sure that � two distinct
tuples ek, j and e′

k, j in the list of cell(k, j) such that the conditions in Lemmas 4 and 5
hold. Each time such a pair of tuples is found, only the one with the highest cumulative
delay is kept while the other is discarded. This is a key addition to the algorithm that
significantly reduces the number of tuples in cell(k, j).

7 Region-based analysis

As seen in Sect. 2.3, we can obtain more information on the distribution of the requests
by dividing the execution of each task into a sequence of sampling regions. For each
region, we can derive an upper bound on the number of requests that can be issued by
the task within that region. However, Algorithm 1 did not leverage this region-specific
information and used only coarse-grained information about the number of requests in
the entire task, represented by η(i). In other words, Algorithm 1 views the input task τi
as a single region that can issue up to η(i) requests, which may result in a pessimistic
upper bound.

In contrast, finer-grained regions with a bounded number of requests and duration
allows the analysis to narrow down the range of slots to which the requests can be
mapped. This region-based analysis has the advantage of limiting the number of pos-
sible candidate slots that must be explored, which decreases the computation time and
tightens the analysis. We proceed by elaborating on the theoretical foundations of the
analysis, followed by a detailed description of the algorithm.

7.1 Theoretical foundation

When a task is divided into regions and runs in conjunction with other tasks, the time
at which each of its regions starts executing depends on the delays incurred by the
requests issued in its previous regions. This raises questions about what the worst-case
starting time of a region is. Lemma 6 below expresses a relation that exists between
the starting time of a region and the maximum delay that it can incur. In essence, it
shows that any region that incurs the maximum delay by starting at a time t1 cannot
finish later than if it had started at its maximum starting time t2. This property enables
a fine-tuned WCET analysis in which the distribution of requests across regions is
exploited to obtain region-accurate estimates.

Lemma 6 Let g be a region of a task τi that starts at time t and finishes at time f
after incurring its maximum blocking delay d. It holds that any earlier starting time
t ′ < t for region g results in a maximum finishing time f ′ ≤ f .

123

Real-Time Syst

Fig. 5 Illustration of Scenarios 1, 2, and 3 used in the proof of Lemma 6

Proof The proof is obtained by contradiction. Let us assume two execution scenarios
for region g. In Scenario 1, region g starts executing at time t and finishes at time f
after incurring its maximum blocking delay d whereas in Scenario 2, it starts at time
t ′ < t and finishes at time f ′ > f (it thus incurs a delay d ′ > d). That is, in Scenario 2
region g starts its execution earlier and finishes later than in Scenario 1. We show by
contradiction that Scenario 2 is impossible. To do so, two cases must be explored: In
Scenario 2,

Case 1 region g releases its first request at or after time t .
Case 2 region g releases its first request before time t .
Case 1 In this case, the request-to-slot assignments that led to the blocking delay

d ′ in Scenario 2 can also be used in Scenario 1, since the available free slots are the
same in both scenarios. This would result in a delay d equal to d ′ in Scenario 1 and
since t > t ′ we get f > f ′, which contradicts the initial assumption that f < f ′.

Case2 In this case, region g releases its first request before time t . Figure 5 illustrates
the two scenarios in such a situation. An “X” represents the release of a request, a
continuous line represents the execution of the region, and a dashed line is an interval
of time during which the task stalls, waiting for its last request to be served. It is
assumed in this illustration that region g generates a maximum of ηi,g = 4 requests.

Suppose that in Scenario 2, region g incurs themaximumdelay of (t−t ′) in the time-
interval [t ′, t], by releasing a single request at the very beginning of its execution. The
delay incurred by this single request can even extend until time t ′′ > t , as depicted
in Scenario 2 in Fig. 5. This situation can easily be shown to be a worst case for
Scenario 2 (with respect to its finishing time), as it generates the maximum delay with
the fewest requests and it delays the actual workload of L reg-size

i units of execution as
much as possible.

Now, let us denote by {σi (2), . . . , σi (ηi,g)} the request-set mapping of the (ηi,g−1)
last requests of region g in Scenario 2 (note that, unlike what is depicted in Fig. 5, the
mapping of these requests may be the same as in Scenario 1). We can create a third
scenario, in which region g starts its execution at time t (as in Scenario 1) and such
that its first request is released at the beginning of its execution, thereby incurring the
same delay between [t, t ′′] as in Scenario 2, and all the subsequent requests follow the
same request-to-slot assignments as in Scenario 2, thereby incurring again the same
delay as in Scenario 2. In this new Scenario 3, it thus holds that region g starts at time
t and finishes at time f ′′ = f ′ > f , which contradicts our initial assumption defining
d as the maximum delay that region g can incur when starting at time t .

123

Real-Time Syst

In short, we showed in this proof that for any scenario in which a given region g
starts before a time t , releases requests before that time t , and finishes at a time f ′
(like Scenario 2 in our proof), we can create a corresponding scenario (like Scenario 3
here) in which region g starts at time t and finishes at time f ′ as well. Therefore, if
we compute the maximum delay for a given region and a given starting time, it gives
us a maximum finishing time for that region that cannot be earlier than in a scenario
where the region starts earlier, which proves the lemma. �	

The important inference from Lemma 6 is that the WCET of a task (considering
contention) can be determined by computing the worst-case finishing time f1 of its
first region, and then iterating over the subsequent regions, assuming for each region
g, a starting time of fg−1. TheWCET of the entire task is then given by the worst-case
finishing time of its last region. This is exploited in our algorithm for region-based
analysis, presented next.

7.2 Algorithm for region-based analysis

With Algorithm 2, we propose an arbiter-independent method to determine the worst-
case cumulative delay. It is basically an extension of Algorithm 1 that augments it with
region-based information. Since the inputs to this algorithm are the T min

i (), T max
i ()

functions and the details of the analyzed task, any arbiter for which these values can
be determined can leverage this algorithm.

Algorithm 2: ComputeTaskWCET(τi)
input : τi
output: WCET of τi (considering contention)

1 wi = Ci

L
reg-size
i

;

2 for region g in task τi from 1 to wi do
3 ηi,g ← No of requests in region g;

UBTimei,g ← fi,g−1 + L
reg-size
i + ηi,g · T max

i (1);
// with fi,0 = 0
// Find the earliest slot for which T max() is greater that the

finishing time of the previous region
4 LBsloti,g ← minx>0{x | T max

i (x) ≥ fi,g−1};
// Find the earliest slot for which T min() is greater that the

coarse upper bound of the current region

5 UBsloti,g ← minx>0{x | T min
i (x) ≥ UBTimei,g};

6 δi,g = MaxRegDelay(ηi,g,LBsloti,g,UBsloti,g);

7 fi,g = fi,g−1 + L
reg-size
i + δi,g ;

8 end
9 return fi,wi ;

The algorithm commences by computing the number wi of regions (Line 1) and
then considers each region g successively (Line 2), which was shown to be safe by
Lemma 6. Next, given the number ηi,g of requests in the analyzed region g, it finds

123

Real-Time Syst

a coarse upper bound on its increased execution time UBTimei,g assuming that each
request in region g may incur a delay of T max

i (1). Then, it computes the range of
the free bus slots that the requests of region g may occupy (Lines 5–6), assuming on
Line 5 a starting time of fi,g−1.

To compute the worst-case delay of each region, the algorithm invokes a slightly
modified version of Algorithm 1 in which:

1. j now spans from k +LBsloti,g to UBsloti,g −(ηi,g − k), assuming that LBsloti,g
is passed to Algorithm 1 as an additional input parameter and k is the slot index
in the algorithm on Line 4,

2. the 2D array contains UBsloti,g −LBsloti,g columns,
3. all the references to a cell(k, j) are replaced with a reference to cell(k, j −

LBsloti,g), and

4. references to Ci are substituted for references to L reg-size
i .

Note that a task modeled as a single region is a special case in which LBsloti,1 = 1,
the region size L reg-size

i is Ci , and the maximum number of requests is η(i). The delay
of the currently analyzed region δi,g is computed on Line 7 and is then accounted for
in the worst-case finishing time fi,g computed on Line 8. The process is repeated for
all the regions and the finishing time of the last region gives the WCET of the task
including the maximum cumulative delay for accesses to shared resources.

It can be seen that for two consecutive regions g and (g + 1), the ranges of candi-
date free bus slots

[
LBsloti,g,UBsloti,g

]
and

[
LBsloti,g+1,UBsloti,g+1

]
computed at

Lines 5 and 6 may overlap. As a result, the finishing time fi,wi that is returned by the
algorithm may sometimes consider a request-set mapping of all the requests in which
two requests from two different regions of the task are assigned to a same free bus slot.
Even though it may lead to pessimistic (i.e. over-approximated) results, it is safe and
sometimes necessary for our region-based analysis technique toworkwith this assump-
tion, because the aggregation of local maximum delays (local to each region) does not
always lead to a global maximum delay for the entire task. To illustrate that claim, let
us consider an intuitive example: consider a task τi with only 2 regions where each one
can generate up to 2 requests. As depicted in Fig. 6, their respective ranges of candidate

Fig. 6 Example of overlapping regions

123

Real-Time Syst

free bus slots overlap. Since we do not assume any specific shape for the functions
T min
i () and T max

i (), let us assume that these two functions are defined such that:

1. there is a free bus slot within
[
LBsloti,1,LBsloti,2

]
that can generate a maximum

delay of 6 and all the other slots in that interval generate a delay no greater than 3.
2. all the free bus slots that are available to both regions, i.e. within

[
LBsloti,2,

UBsloti,1
]
, generate a maximum delay of 5.

3. all the free bus slots within
[
UBsloti,1,UBsloti,2

]
, generate a maximum delay

of 2.

With these assumptions, let us create two different request-set mappings for the 4
requests of τi . We call these two mappings: Scenarios 1 and 2 (see Fig. 6). In Sce-
nario 1, the localmaximumdelay for the first region is 11 and it is obtained by assigning
its first request within

[
LBsloti,1,LBsloti,2

]
to get the maximum delay of 6 and then

assign its second request to one of the free bus slots within
[
LBsloti,2,UBsloti,1

]
to

get a delay of 5. By doing so, the second region that starts after the completion of
the first one is only able to get a total delay of 4, which leads to an overall delay of
6+ 5+ 2+ 2 = 15 for Scenario 1. In contrast, Scenario 2 assigns the second request
of the first region to another time slot within

[
LBsloti,1,LBsloti,2

]
, which leads to a

delay of 9 time units for that first region. Even though a delay of 9 for the first region
is not a local maximum, it enables the second region to start its execution earlier and
benefit from a first delay of 5 time units, by assigning its first request to a slot within[
LBsloti,2,UBsloti,1

]
, and a second delay of 2 by assigning its second request to a

free bus slot within
[
UBsloti,1,UBsloti,2

]
. In this second scenario, the overall delay

is 16, which is higher than in the first scenario. This is why any region-based analysis
technique that is based on analyzing each task region separately must be aware that the
global maximum delay cannot be obtained by simply adding up the maximum delays
local to each region. In order to make the aggregation of local maxima possible (i.e.
safe and correct), we allow the ranges of candidate free bus slot slots of each region
to overlap. It can be shown that by doing so, the resulting maximum delay obtained
for the entire task is pessimistic but it is safe.

7.3 Reducing time-complexity

Algorithm 1 computes the maximum delay that a given task τi may incur with a
non-polynomial time-complexity. This non-polynomiality is due to the exponential
growth in the number of request-set mappings that each cell(k, j) holds when k and
j increase. Specifically, the number of request-set mappings listed in c(k, j) is equal
to the number of mappings in c(k, j − 1), see Line 14, plus the number of mappings
in c(k − 1, j − 1); For each mapping of c(k − 1, j − 1) considered at Line 15, one
mapping is indeed added to c(k, j) in Line 20. Although Lemmas 4 and 5 provide
two mechanisms that potentially reduce the number of mappings carried on from
one iteration of the algorithm to the next, they do not provide any guarantee on the
number of mappings that they will be able to discard and hence, they do not reduce the
theoretical time-complexity. It is important to highlight that the algorithm proceeds
in phases: Once T min() and T max() values are pre-computed for the given arbiter,

123

Real-Time Syst

they are accessed in constant time in the algorithm and therefore the complexity of
Algorithm 1 is agnostic to the underlying arbiter.

A simple way to reduce the complexity is to set up an upper limit on the number
of mappings that each cell can hold. Let us denote this limit by L . At run time, at the
end of each iteration in the inner loop (between Lines 23 and 24), we add a simple
test that counts the number X of mappings of the current cell cell(k, j). If this number
X is lower than our pre-set limit L then the algorithm proceeds with the next cell.
Otherwise, the algorithm takes all the mappings of c(k, j) and collapses them all
into a single “dummy” mapping that contains the maximum cumulative delay, the
minimum service time, and the latest request-to-slot assignment among the delays,
service times, and request-to-slot assignments of all the collapsed mappings. It can
be easily showed by looking at Algorithm 1 that this choice of parameters for the
dummy mapping are the worst, in the sense that those parameters will lead to the
maximum resulting delay incurred by the analyzed task τi . With this technique, the
time-complexity of Algorithm 1 is reduced to O(L × η(i) × UBsloti) at the cost of
adding pessimism in the computation, since the dummy mappings retain only the
worst parameters that may come from different mappings. This trick hence represents
a programmable trade-off between computation time and accuracy of the proposed
analysis.

Our experimental evaluation uses an implementation of Algorithm 1 that integrates
the two optimization mechanisms provided by Lemmas 4 and 5 as well as the region-
based analysis detailed in Sect. 7. Our implementation currently does not use this
method, as it successfully ran and analyzed all the benchmark programs used in the
experiments in a reasonable time. Therefore, we only present this method here in
order to show that there exist solutions to a (theoretical) complexity issue that may
potentially arise when running the analysis, but we did not investigate these solutions
further as we have not experienced such problems in our simulations. Also we have
not yet evaluated the increased pessimism that the ‘dummymappings’ could introduce
at this point and will consider it for future work.

8 Related work

Several frameworks, such asReal-TimeCalculus (Thiele et al. 2000) andNetworkCal-
culus (Cruz 1991) have been proposed for general delay analysis of shared resources,
such as tasks executing on processors, network packets and memory requests. These
frameworks typically compute delays as the maximum difference between worst-case
supply and demand functions. Since the frameworks are general, it is up to the user to
derive appropriate supply and demand functions for a particular problem. A key chal-
lenge addressed by our approach that is not covered by existing literature onReal-Time
Calculus or Network Calculus is that the worst-case demand function is not exactly
known, as we only have coarse-grained information about the number of requests
from the sampling regions. A main innovation of our work can hence be described
as determining what the worst-case demand function actually looks like, given these
sampling regions and information about the arbiter. This in turn enables us to compute
the maximum cumulative delay.

123

Real-Time Syst

The specific topic of bus contention analysis has received considerable attention in
recent years and these efforts can be classified into two classes: (1) approaches that
modify the hardware or the software of the system to enable or improve analysis, and
(2) approaches that analyze a given system without assuming any modification of the
hardware and/or software. We proceed by discussing each of these in turn.

On the hardware side, a number of memory controllers have been designed specif-
ically for real-time systems and proposed together with corresponding analyses that
bound the WCRT of memory requests (Akesson and Goossens 2011; Reineke et al.
2011; Paolieri et al. 2009; Shah et al. 2012; Wu et al. 2013; Li et al. 2014). These
analyses benefit from full knowledge of the internals of the memory controller, such
as page policies, transaction scheduler and theDRAMcommand scheduler, and exploit
this information to produce tight bounds. On the software side, servers with memory
budgets, built into the operating system, have been proposed to limit thememory inter-
ference (Nowotsch et al. 2014; Yun et al. 2012; Behnam et al. 2013; Yun et al. 2013)
from tasks executing on other cores, enabling it to be managed based on enforcement
rather than characterization. Our work contrasts to these efforts in the sense that it
considers both the software and hardware to be given with no interface or any other
means to modify/re-configure it.

Several approaches have been proposed for bus contention analysis in given COTS
platforms. Similarly to our work, most analyses consider multi-core systems with a
bus providing access to a shared memory with a single port (Schliecker et al. 2010;
Schliecker and Ernst 2011; Pellizzoni et al. 2010; Dasari et al. 2011; Dasari and Nelis
2012; Chattopadhyay et al. 2014; Rodrigues et al. 2013). However, these works are
quite different with respect to the considered task models and scheduling policies for
both the tasks themselves and their memory requests.

Applications are typically modeled as independent periodic/sporadic task sets or
acyclic task graphs (Rosén et al. 2007; Chattopadhyay et al.2010), and the scheduling
is often based on fixed-priorities (Dasari et al. 2011; Schliecker and Ernst2011), while
tasks in task graphs are statically scheduled using techniques that respect precedence
constraints, e.g. list scheduling. The approaches support different task preemption
models, ranging from fully preemptive (Schliecker et al. 2010; Schliecker and Ernst
2011) to non-preemptive (Dasari et al. 2011; Dasari and Nelis 2012; Rosén et al. 2007;
Chattopadhyay et al. 2010), and with limited-preemption at the granularity of TDM
time slots as a compromise in between (Pellizzoni et al. 2010). Most of these works
consider analysis of shared resources as a separate analysis, while (Chattopadhyay et
al. 2014; Rodrigues et al. 2013) integrate it into the WCET estimation tool to exploit
information about the execution of the application, such as when memory requests are
issued.

A problem with most of the previously mentioned analysis approaches is that
they only support a single bus arbiter, such as an unspecified work-conserving
arbiter (Dasari et al. 2011; Schliecker et al. 2010), fixed-priority arbitration, round
robin (Dasari and Nelis 2012), TDM (Rosén et al. 2007; Chattopadhyay et al. 2010,
2014; Schranzhofer et al. 2010, 2011) or first-come first-served (FIFO). This does
not address the diversity of memory arbiters in contemporary platforms, making them
point-solutions exclusive to a single platform rather than a reusable framework that
applies more generally.

123

Real-Time Syst

Of particular interest is the work in Schranzhofer et al. (2010), which computes the
worst-case completion time for tasks accessing a resource shared by a TDM arbiter.
Unlike our approach, the arbiter grants access to the resource in a coarse-grained man-
ner, where each bus slot has a fixed longer duration that typically fits many requests.
Similarly to the naive approach of using a constant worst-case delay for every memory
request, the proposed assumes that each request is issued at the worst-case time just
at the end of the allocated TDM slot, maximizing the delay. However, it outperforms
a naive analysis by considering the maximum number of allocated TDM slots during
which the application can execute without delay when accessing memory. In case this
number is less than the number of memory requests, the remaining number of memory
requests can be efficiently fetched one after the other during the following allocated
TDM slots, resulting in less pessimistic bounds. The approach hence capitalizes on the
fact that the execution requirements of the task may prevent the worst-case situation
from happening to all memory requests. We compare our generic method with this
approach in the next section.

9 Experimental evaluation

This section experimentally evaluates the proposed framework by simulating a multi-
core system running real application traces. First, the experimental setup is explained,
followed by three experiments. The first experiment demonstrates the generality of
our approach by executing the applications with three different arbiters and evaluat-
ing the computation time of the proposed analysis. The second experiment evaluates
the impact of different region sizes and shows how finer-grained task region-profiles
improve the accuracy and increase the efficiency of the analysis. Lastly, the final
experiment compares our framework to a state-of-the-art analysis approach for TDM
arbitration, i.e. the approach proposed in Schranzhofer et al. (2010).

9.1 Experimental setup

The experiments consider a multi-core platform, where the processors are simulated
by the SimpleScalar 3.0 processor simulator (Austin et al. 2002) with separate data
and instruction caches, each with a size of 16 KB. The L2 cache is a private unified
128 KB cache with 64 B cache lines and an associativity of 4. The processor core
is assumed to run at a frequency of 1.6 GHz. The memory is a 64-bit DDR3-1600
DIMM (JEDEC 2012) running at a frequency of 800 MHz, meaning that one memory
cycle equals two processor cycles. The memory access time is TR = 80 processor
cycles, corresponding to an in-order dynamically scheduled DRAM controller with a
close-page policy (Li et al. 2014). The experiments consider a platform instance with 4
cores, each core running an application from theMediaBench test suite (Lee et al. 1997)
as a single independent task. For each application in the benchmark, memory-trace
files were generated by running it on the experimental platform. The traces were then
post-processed according to the sampling regions used in the experiments to compute
the region-profiles of the task. The experiments were executed on a computer equipped
with Intel Core I5 processor (2.0 GHz, 4 cores) and 4 GB memory.

123

Real-Time Syst

Table 1 Benchmark
characterization

Benchmark Exec. time
[Kcycles]

Requests Request density

unepic 15,775 67,664 4.290

jpeg-encode 46,160 92,905 2.013

epic 62,540 96,984 1.551

jpeg-decode 21,417 22,121 1.033

h263-encode 566,845 418,808 0.738

h263-decode 8462 5456 0.645

mpeg2encode 823,274 319,306 0.388

gsmdecode 43,012 10,104 0.235

mpeg2decode 100,454 28,744 0.286

adpcmdecode 4193 575 0.137

adpcmencode 6358 581 0.091

g721-decode 172,563 9792 0.057

g721-encode 152,829 7439 0.049

The essential characteristics of the benchmark applications, which we use in the
evaluation set are shown in Table 1. Note that the table does not contain all applications
from the suite, as some of them would not compile with the SimpleScalar toolchain
and others would not provide functionally correct output upon verification. Instead of
changing the code of these applications and thereby defeating the purpose of standard
benchmarks, we opted to exclude these applications. The table shows the execution
time of the used applications on the SimpleScalar processor, the total number of mem-
ory requests during its execution, and lastly the request density (requests per cycle) as
a measure of its memory intensity. It is clear from the table that the chosen benchmark
applications are not trivial as the execution times are typically several million cycles
during which thousands of requests are issued. This highlights the scalability of our
approach and contrasts to previous work that use much smaller applications from the
CHStone (Hara et al. 2008) and Malardalen WCET benchmarks (Gustafsson et al.
2010).

9.2 Application to different arbitration mechanisms

The objective of this experiment is to demonstrate the generality of our approach
by applying it to three commonly-used arbiters, being fixed-priority, an unspecified
work-conserving arbiter, and TDM, respectively. For each task, we determine the
interference from other tasks and compute the increase in WCET for each of the
three arbiters using a region size of 20 Kcycles. Other region sizes are evaluated in
the following experiment. We also examine the computation time of the proposed
analysis for the different arbiters. To get a representative sample of applications for
the WCET benchmark, we chose 4 applications considering the 2 highest and the 2
lowest densities as shown in Table 1.

123

Real-Time Syst

2.47
1.00

32.67

1.74

16.00 16.80

1.05

9.90
7.55

1.11

5.72 5.72

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

TDM Fix Prio. Work Cons.

In
cr

ea
se

 fa
ct

or

unepic jpegencode g721decode g721encode

Fig. 7 Increase in WCET for different arbitration mechanisms

The results of the experiment are shown in Fig. 7, where tasks are arranged in
descending order of priorities (unepic has the highest priority) for the case of fixed-
priority arbitration. As expected, for the fixed-priority scheduler the task with the
highest priority experiences no interference (an increase factor of 1x) from the other
tasks. We observe a counter-intuitive effect in that jpegencode (priority 2) experiences
a larger increase in WCET than the lower priority tasks. This is because jpegencode
has higher request density than the two lower priority tasks, implying that it is more
memory intensive. Despite having lower delay per memory access due to the higher
priority, this results in higher impact of the cumulative delay on the increase factor.

For the unspecified work-conserving arbiter, the requests of a given task may be
blocked by all requests from all concurrently executing tasks. During this time, more
requests can be injected by other tasks, thereby further blocking the requests of the
analyzed task. Hence, T max

i (1) is very high for a task blocked by a memory-intensive
task. This increases the possible number of slots in which requests of the analyzed
task may fit and many of these requests may incur a delay of T max

i (1), leading to a
high WCET estimate, as seen in the figure.

Note that this arbitrationmechanism is equivalent to fixed-priority arbitrationwhere
every task is assumed to have the lowest priority. This can be seen in Fig. 7, where
the lowest priority task, g721encode, has the same WCET with fixed-priority arbi-
tration and the unspecified work-conserving arbiter. It is interesting to note that for
jpegencode, there is only aminor difference in the increase factor in the two arbitration
mechanisms. This is because the other two low-density tasks affect its performance
very marginally and the major interference is still from the task unepic.

Unlike the previous two arbiters, TDM is neither priority-based, nor work con-
serving. Here, it is configured with a frame size of 24 and each of the four cores is
allocated 6 slots. Other configurations are evaluated in the final experiment. We note
from the results that TDM arbitration performs remarkably well compared to fixed-
priority arbitration, as only the highest priority task has a smaller increase factor using

123

Real-Time Syst

1.37 1.00

2.87

1.29
2.23

9.92

1.03
1.67 1.81

1.05
2.03 2.03

0.00

2.00

4.00

6.00

8.00

10.00

12.00

TDM Fix Prio. Work Cons.

In
cr

ea
se

 fa
ct

or

jpegdecode h263decode adpcmencode adpcmdecode

Fig. 8 Increase in WCET for different arbitration mechanisms

fixed-priorities. An explanation for this is that the worst-case per-core request-profile
(PCRP) computation for the interfering cores becomes quite pessimistic as it deter-
mines the worst possible release time of all higher-priority requests in the region. On
the other hand, the worst-case for TDM is independent of the release times of other
tasks and the only uncertainty comes from the possible misalignment between the
release of the requests and the TDM table, which is bounded by the frame size.

Similar trends are seenwhen the three arbitrationmechanisms are applied to another
set of benchmarks as shown in Fig. 8.

Considering the computation time of the analysis, the fixed-priority arbitration took
8 h to complete for the entire task set. The tasks with higher priorities complete faster
than the slower ones, since they are less impacted by interference, resulting in fewer
possible request-set mappings. This is reflected in the analysis of the unspecified
work-conserving arbiter, where all tasks can suffer interference from all other tasks,
increasing the analysis time to around 15 h for the entire task set. In contrast, the TDM
arbiter is non-work-conserving and thereby completely independent of other tasks,
enabling the computation of T min

i () and T max
i () in constant time. Furthermore, small

TDM frame sizes provide relatively few possible request-set mappings, reducing the
total analysis time to less than 45 min.

9.3 Impact of the region size

We also evaluated the impact of the region sizes. To this end, we re-ran the previous
experiments using both smaller and larger region sizes. Three different sizes are used:
30, 40 and 50 Kcycles, respectively, where larger region sizes imply fewer regions
and coarser-grained request profiles for each region. We choose two benchmarks with
a high request density, epic and mpeg2-decode, and two benchmarks that have low
request density, g721encode and g721decode. The results of the experiment using the

123

Real-Time Syst

1.00 1.00 1.00
1.85 2.09 2.21

6.89
7.83 7.91

13.82
15.10

16.40

30K 40K 50K

r otcaF
esa erc nI

Region Size (cycles)

epic g721decode g721encode mpeg2decode

Fig. 9 Increase in WCET for different region sizes (in cycles) using fixed-priority arbitration. The highest
priority is given to the task epic followed by g721decode, etc

fixed-priority arbiter are shown in Fig. 9. Note that the highest priority task, epic,
experiences no interference across all region sizes. For the other tasks, the results
generally follow the intuition that smaller regions result in tighter WCET. This is
because finer-grained task-region profiles provide more information about the actual
request distribution, eliminating unfeasible request releases in the PCRP computation
(see Dasari and Nelis 2012 for details about the PCRP computation).

Results similar to those in Fig. 9 were also observed for the unspecified work-
conserving arbiter, whose analysis is very similar and also relies on the PCRP
computation. However, the TDM arbiter is largely insensitive to changes in the region
size. The explanation for this is that it is independent of the behavior of the other
clients and does not benefit from finer-grained information about their behavior.

9.4 Comparison against the state-of-the-art

The final experiment compares our approach against the state-of-the-art. Given that
no other unified framework exists for comparison, we compared our approach against
the approach in Schranzhofer et al. (2010), specifically targeting TDM arbiters. The
results are presented in Table 2 and show the percentage increase inWCETconsidering
the cumulative delay to serve all the memory requests in the available slots. The
comparison was done for different TDM configurations, where different number of
consecutive slots, φp, are allocated to four tasks executing on the different cores. The
frame size in this experiment is hence equal to f = 4 × φp.

The results indicate that our approach provides tighter worst-case estimates than the
previous approach formost of the configurations. The cases inwhich the SOAperforms
better, are highlighted in bold, and it can be seen that the difference is marginal. Both
approaches perform better with a smaller number of allocated slots, since this reduces
the worst-case misalignment between a request release and the next slot allocated to
the processor running the task.

123

Real-Time Syst

Table 2 Comparison of the increase factor between our unified framework (UF) and the state-of-the-art
(SOA) (Schranzhofer et al. 2010).

Benchmark φp = 1 φp = 5 φp = 10

UF SOA UF SOA UF SOA

unepic 2.37 2.36 2.45 4.33 2.53 4.59

jpeg-encode 1.64 1.64 1.73 3.35 1.82 4.35

epic 1.50 1.49 1.57 2.59 1.65 3.27

adpcm-decode 1.04 1.04 1.05 1.08 1.05 1.12

adpcm-encode 1.03 1.03 1.03 1.06 1.03 1.08

g721-decode 1.01 1.02 1.04 1.07 1.08 1.15

g721encode 1.01 1.01 1.05 1.07 1.06 1.11

gsmdecode 1.08 1.07 1.11 1.29 1.15 1.52

h263decode 1.21 1.20 1.27 1.69 1.34 2.02

h263encode 1.29 1.29 1.34 1.99 1.40 2.38

jpegdecode 1.33 1.33 1.36 2.11 1.39 2.15

mpeg2decode 1.12 1.12 1.15 1.45 1.19 1.73

mpeg2encode 1.12 1.12 1.14 1.44 1.18 1.58

10 Conclusions

The necessity of deriving tight upper bounds on the contention delay due to the shared
memory bus is an indispensable prerequisite in order to efficiently compute the worst-
case execution time (WCET) of real-time tasks. To maximize the applicability of the
analysis, this must furthermore be done in a general way that can easily be applied to
the diversity of arbiters in modern systems.

This work proposed a general framework to address this problem. A key novelty
of this framework is a general bus availability model that seamlessly allows different
arbiters to be analyzed using a simple interface. We demonstrated how to use this
interface to characterize a fixed-priority arbiter, time-division multiplexing (TDM),
and explained how these characterizations are modified to also cover round robin and
an unspecified work-conserving arbiter. The bus availability model was then leveraged
by an arbiter-independent analysis to compute theWCET of a task when co-scheduled
with other tasks contending on the bus. A key feature of this analysis is that it allows
information aboutmemory requests to be provided inmultiple smaller regions to speed
up the analysis while improving its accuracy.

We experimentally demonstrated that the approach addresses the diversity problem
by applying it to three different arbiters using applications from theMediaBench suite.
The scalability of the analysis was shown as the analysis completed in 45 min to 15 h
depending on the arbiter when considering four concurrently executing applications
with execution times of several million clock cycles during which they issue thousands
of requests. We also evaluated the impact of region size for fixed-priority arbitration
and showed how finer-grained information about requests improve the accuracy of the
analysis. Lastly,we evaluated the quality of the analysis by comparing itwith a state-of-

123

Real-Time Syst

the-art approach to TDM analysis and showed that our approach consistently resulted
in lower WCET of the analyzed applications for the considered TDM configurations.

Acknowledgments This workwas partially supported byNational Funds through FCT/MEC (Portuguese
Foundation for Science and Technology) and co-financed by ERDF (European Regional Development
Fund) under the PT2020 Partnership, within project UID/CEC/04234/2013 (CISTER Research Centre); by
FCT/MEC and the EU ARTEMIS JU within project ARTEMIS/0001/2013—JU grant nr. 621429 (EMC2);
by theNorthPortugalRegionalOperational Programme (ON.2—ONovoNorte) under theNational Strategic
Reference Framework (NSRF), through ERDF, and by National Funds through FCT/MEC, within project
NORTE-07-0124-FEDER-000063 (BEST-CASE, New Frontiers); and by the European Union under the
Seventh Framework Programme (FP7/2007-2013), grant agreement n◦ 611016 (P-SOCRATES) and by the
European social fund within the framework of realizing the project “Support of inter-sectoral mobility and
quality enhancement of research teams at Czech Technical University in Prague”, CZ.1.07/2.3.00/30.0034.

Appendix

This appendix contains the proofs of Lemmas 3, 4, and 5. These proofs are all quite
long as they are all based on case enumeration. Althoughmany of the cases in the proof
are similar, some even identical, the presented proofs cover all cases exhaustively for
completeness.

Proof of Lemma 3

Proof We prove the lemma by induction. First, we show in the basic step that the
claim is true considering only the first request reqi,1 and its slot assignment σi (1).
That is, we show that the release and service times given by Eqs. (7) and (8) result
in a maximum cumulative delay Di (1) = srvi,1 − reli,1. Then, in the inductive step,
we show that if the claim is true considering the set of the first k requests, k ≥ 1
(induction hypothesis), then the property holds for the first (k + 1) requests as well.
In other words, assuming that Eqs. (7) and (8) assign a release and service time to
the k first requests that result in a maximum cumulative delay Di (k), then the same
equations provide a maximum cumulative delay Di (k + 1) when applied to the first
(k + 1) requests. Both the basic and inductive steps are proven by showing that any
other choice of release and service time, for any of the requests in the considered set
of requests, results in a lower cumulative delay.

Basic stepByconsidering only thefirst request reqi,1, it is easy to see that any release
time reli,1 different from that given byEq. (7) leads to reli,1 > T min

i (σi (1)−1)+1. This
follows from the fact that having reli,1 < T min

i (σi (1)−1)+1 is not possible, as shown
in Lemma 1. Besides, choosing any other release time reli,1 > T min

i (σi (1) − 1) + 1
would have as sole impact, a decrease in the difference (srvi,1 − reli,1), and subse-
quently a lower delay Di (1) incurred by request reqi,1. In short, since T min

i (σi (1) −
1)+1 is a lower bound on the release time of request reqi,1 (from Lemma 1), choosing
reli,1 = T min

i (σi (1) − 1) + 1 is the best choice to guarantee a maximum delay for
the first request. Similarly, since min(T max

i (σi (k)), reli,k +T max
i (k)) was shown to be

an upper bound on the service time of request reqi,k , ∀k (see Lemma 2), it is easy
to see that the choice of srvi,1 by Eq. (8) also guarantees a maximum delay for this
first request. In conclusion, we showed thatDi (1) = srvi,1 − reli,1 is maximum when
reli,1 and srvi,1 are given by the equations of Lemma 3.

123

Real-Time Syst

Inductive stepAssuming that Eqs. (7) and (8) define a release and a service time for
the first k requests of τi such that their cumulative delay Di (k) is maximized, we will
show that defining reli,k+1 and srvi,k+1 using the equations of Lemma 3 maximizes
Di (k + 1). By applying the same reasoning as in the basic step, it is evident that
choosing any other value of reli,k+1 greater than its lower bound (given in Lemma 1
and Eq. (7)) and/or any other service time srvi,k+1 lower than its upper bound (given
in Lemma 2 and Eq. (8)) induces a lower delay for request reqi,k+1, and thus a lower
cumulative delay Di (k + 1).

However, it may be noted from the release-time equation (Eq. 7) that the
choice of service time srvi,k of the previous request reqi,k influences the lower
bound on reli,k+1, and subsequently an upper bound on srvi,k+1 (see Eq. (8)). One
should therefore investigate the following question: although choosing srvi,k =
min(T max

i (σi (k)), reli,k +T max
i (1)) guarantees a maximum cumulative delay Di (k)

for the first k requests (from the induction hypothesis), doing so might define a range
of possible values for reli,k+1 that discards those leading to a maximum cumulative
delay Di (k + 1). The remainder of this proof consists of showing that any value of
srvi,k different from that given by Eq. (8) results in a lower cumulative delayDi (k+1).

To figure out how srvi,k affects the range of possible values for reli,k+1
and srvi,k+1, let us consider different values X and Y for srvi,k , where X =
min(T max

i (σi (k)), reli,k +T max
i (1)) (as given by Expression (8)) and Y is any pos-

itive number < X . We show in the following that Di (k + 1) is always maximum for
srvi,k = X .

We first introduce two symbols for compaction and readability:

Kmin
k+1

def= T min
i (σi (k + 1) − 1) + 1 (first term in Eq. (5))

Δk+1
def= (σi (k + 1) − σi (k)) × TR (parts of second term in Eq. (5))

We know from Lemma 1 that reli,k+1 ≥ max(Kmin
k+1, srvi,k +Δk+1) and thus three

cases may arise depending on the request-to-slot assignment σi (k + 1) of request
reqi,k+1 (these three cases are a simple enumeration of all possible “dominance” rela-
tions between the three considered terms):

1. Kmin
k+1 ≤ Y + Δk+1 < X + Δk+1

2. Y + Δk+1 < Kmin
k+1 ≤ X + Δk+1

3. Y + Δk+1 ≤ X + Δk+1 ≤ Kmin
k+1

We proceed by proving each of these cases.

Case 1 Kmin
k+1 ≤ Y + Δk+1 < X + Δk+1

In this case, choosing srvi,k = Y leads to reli,k+1 ≥ Y + Δk+1 (from Lemma 1).
By setting reli,k+1 to Y + Δk+1, we get

Di (k + 1) =
k+1∑

	=1

(srvi,	 − reli,)

=
k−1∑

	=1

(srvi,	 − reli,) + (srvi,k − reli,k) + (srvi,k+1 − reli,k+1)

123

Real-Time Syst

=
k−1∑

	=1

(srvi,	 − reli,) + Y − reli,k + srvi,k+1 −(Y + Δk+1)

=
k−1∑

	=1

(srvi,	 − reli,) + srvi,k+1 − reli,k −Δk+1 (21)

On the other hand, choosing srvi,k = X leads to reli,k+1 ≥ X+Δk+1 (fromLemma 1).
Then, if we set reli,k+1 = X+Δk+1 (i.e., the earliest possible release time) then apply-
ing the same reasoning as above leads to the same equality, i.e.,

Di (k + 1) =
k−1∑

	=1

(srvi,	 − reli,) + srvi,k+1 − reli,k −Δk+1 (22)

Since (21) = (22), it is correct to claim that choosing srvi,k = X leads to a worst-case
cumulative delay Di (k + 1).
Case 2 Y + Δk+1 < Kmin

k+1 ≤ X + Δk+1

In this case, choosing srvi,k = Y leads to reli,k+1 ≥ T min(σi (k + 1) − 1) (from
Lemma 1). Let reli,k+1 = T min

i (σi (k + 1) − 1) (i.e., the earliest possible release
time-instant), from a reasoning similar to that above it holds that

Di (k + 1) =
k+1∑

	=1

(srvi,	 − reli,)

=
k−1∑

	=1

(srvi,	 − reli,) + Y − reli,k + srvi,k+1 −Kmin
k+1

<

k−1∑

	=1

(srvi,	 − reli,) + Y − reli,k + srvi,k+1 −(Y + Δk+1)

<

k−1∑

	=1

(srvi,	 − reli,) − reli,k + srvi,k+1 −Δk+1 (23)

On the other hand, choosing srvi,k = X leads to reli,k+1 ≥ X + Δk+1 (from
Lemma 1). If reli,k+1 = X + Δk+1, then the cumulative delay Di (k + 1) of requests
req

,1, req,2, . . . , req,k+1 is given by

Di (k + 1) =
k+1∑

	=1

(srvi,	 − reli,)

=
k−1∑

	=1

(srvi,	 − reli,) + X − reli,k + srvi,k+1 −Kmin
k+1

123

Real-Time Syst

≥
k−1∑

	=1

(srvi,	 − reli,) + X − reli,k + srvi,k+1 −(X + Δk+1)

≥
k−1∑

	=1

(srvi,	 − reli,) − reli,k + srvi,k+1 −Δk+1 (24)

Since (24)> (23), we can conclude that the cumulative delay is higher for srvi,k = X .
Case 3 Y + Δk+1 ≤ X + Δk+1 ≤ Kmin

k+1

In this case, choosing either srvi,k = Y or srvi,k = X leads to reli,k+1 ≥
T min
i (srvi,k+1 −1) (fromLemma1). Therefore, the range of possible values for reli,k+1

is not affected by the choice of srvi,k and the maximum cumulative delay is obviously
obtained for srvi,k = X . �	

10.1 Proof of Lemma 4

Proof The proof must show that given Conditions (9), (10), and (11), Eqs. (12), (13),
and (14) hold. From the claim itself, Eq. (12) trivially holds.We stated this equality only
for completeness in order to show that the situation after assigning the (k+1)’th request
is identical to the situation before assigning it. Let us start the proof by introducing
some symbols to improve readability:

Kmin
k+1

def= T min
i (σi (k + 1) − 1) + 1

Kmax
k+1

def= T max
i (σi (k + 1))

Δk+1
def= (σi (k + 1) − σi (k)) × TR

Δ′
k+1

def= (σ ′
i (k + 1) − σ ′

i (k)) × TR

According to these new symbols and the equations of Lemma 3, the four quantities
srvi,k+1, reli,k+1, srv′

i,k+1, and rel′i,k+1 can be re-written as

reli,k+1 = max
(
Kmin

k+1, srvi,k + Δk+1
)

(25)

srvi,k+1 = min
(
Kmax

k+1, reli,k+1 + T max
i (1)

)
(26)

rel′i,k+1 = max
(
Kmin

k+1, srv
′
i,k + Δ′

k+1

)
(27)

srv′
i,k+1 = min

(
Kmax

k+1, rel
′
i,k+1 + T max

i (1)
)

(28)

From (11), it holds that

srv′
i,k −σ ′

i (k) × TR ≤ srvi,k −σi (k) × TR

By adding h × TR to both sides of this inequality, we get

srv′
i,k +(h − σ ′

i (k)) × TR ≤ srvi,k +(h − σi (k)) × TR

123

Real-Time Syst

and the symbols Δk+1 and Δ′
k+1 can now be used to simplify this result:

srv′
i,k +Δ′

k+1 ≤ srvi,k + Δk+1 (29)

In order to prove that Inequalities (13) and (14) always hold true, we must investi-
gate three cases. These three cases simply come from an enumeration of all possible
“dominance” relations between the three termsKmin

k+1, srvi,k +Δk+1, and srv′
i,k +Δ′

k+1:

– Case 1 srv′
i,k + Δ′

k+1 ≤ srvi,k + Δk+1 ≤ Kmin
k+1

– Case 2 srv′
i,k + Δ′

k+1 ≤ Kmin
k+1 ≤ srvi,k + Δk+1

– Case 3 Kmin
k+1 ≤ srv′

i,k + Δ′
k+1 ≤ srvi,k + Δk+1

Case 1 srv′
i,k +Δ′

k+1 ≤ srvi,k +Δk+1 ≤ Kmin
k+1

In this case, we have

reli,k+1 = rel′i,k+1 = Kmin
k+1 from (25) and (27)

and thus srvi,k+1 = srv′
i,k+1 from (26) and (28)

These service times trivially satisfy Condition (14) since σi (k + 1) = σ ′
i (k + 1) = h.

Then, using reli,k+1 = rel′i,k+1, srvi,k+1 = srv′
i,k+1, and Di (k) ≤ D′

i (k) from (10),
we get

Di (k) + srvi,k+1 − reli,k+1 ≤ D′
i (k) + srv′

i,k+1 − rel′i,k+1

This inequality can be re-written as

Di (k + 1) ≤ D′
i (k + 1)

which satisfies Condition (13).

Case 2 srv′
i,k + Δ′

k+1 ≤ Kmin
k+1 ≤ srvi,k + Δk+1

In this case, from (25) and (27) we have the following relation between the release
time-instants of the (k + 1)’th request in the mappings Mi and M

′
i :

reli,k+1 = srvi,k +Δk+1 ≥ rel′i,k+1 = Kmin
k+1 (30)

Next, we need to handle the relation between the service times srvi,k+1 and srv′
i,k+1

of this last request and we must explore three more sub-cases. These three sub-cases
simply come from an enumeration of all possible “dominance” relations between the
three terms Kmax

k+1, reli,k+1 + T max
i (1), and rel′i,k+1 + T max

i (1):

– Case 2.1 rel′i,k+1 + T max
i (1) ≤ reli,k+1 + T max

i (1) ≤ Kmax
k+1

– Case 2.2 rel′i,k+1 + T max
i (1) ≤ Kmax

k+1 ≤ reli,k+1 + T max
i (1)

– Case 2.3 Kmax
k+1 ≤ rel′i,k+1 + T max

i (1) ≤ reli,k+1 + T max
i (1)

Case 2.1 rel′i,k+1 + T max
i (1) ≤ reli,k+1 + T max

i (1) ≤ Kmax
k+1

123

Real-Time Syst

In this particular sub-case, it holds from (26) and (28) that

srvi,k+1 = reli,k+1 + T max
i (1) (31)

srv′
i,k+1 = rel′i,k+1 + T max

i (1) (32)

and it immediately follows from (30), (31) and (32) that srvi,k+1 ≥ srv′
i,k+1 , which

satisfies Condition (14) since σi (k + 1) = σ ′
i (k + 1) = h. Also from (31) and (32),

it holds that srvi,k+1 − reli,k+1 = T max
i (1) = srv′

i,k+1 − rel′i,k+1 and by using this
equality together with Di (k) ≤ D′

i (k) from (10), we obtain

Di (k) + T max
i (1) ≤ D′

i (k) + T max
i (1)

and thus

Di (k) + srvi,k+1 − reli,k+1 ≤ D′
i (k) + srv′

i,k+1 − rel′i,k+1

By re-writing this inequality we get

Di (k + 1) ≤ D′
i (k + 1)

which satisfies Condition (13).
Case 2.2 rel′i,k+1 + T max

i (1) ≤ Kmax
k+1 ≤ reli,k+1 + T max

i (1)
In this case, we have

srvi,k+1 = Kmax
k+1 from (26)

and srv′
i,k+1 = rel′i,k+1 + T max

i (1) from (28)

It thus holds fromCase 2.2 that srvi,k+1 ≥ srv′
i,k+1 and these service times trivially sat-

isfy Condition (14) since σi (k+1) = σ ′
i (k+1) = h. Then, assuming by contradiction

that Condition (13) is not satisfied, we must have:

Di (k + 1) > D′
i (k + 1)

which can be re-written as

Di (k) + srvi,k+1 − reli,k+1 > D′
i (k) + srv′

i,k+1 − rel′i,k+1

By replacing srvi,k+1 and srv′
i,k+1 with their values, we get

Di (k) + Kmax
k+1 − reli,k+1 > D′

i (k) + T max
i (1)

and then,

Di (k) > D′
i (k) + T max

i (1) − (Kmax
k+1 − reli,k+1)

123

Real-Time Syst

and since from Case 2.2 Kmax
k+1 − reli,k+1 ≤ T max

i (1), it follows from the above
inequality that

Di (k) > D′
i (k)

which contradicts Condition (10). This contradiction implies that Condition (13) is
satisfied.

Case 2.3 Kmax
k+1 ≤ rel′i,k+1 + T max

i (1) ≤ reli,k+1 + T max
i (1)

In this case it holds from (26) and (28) that

srvi,k+1 = srv′
i,k+1 = Kmax

k+1

and it immediately follows that srvi,k+1 ≥ srv′
i,k+1, which satisfies Condition (14)

since σi (k+1) = σ ′
i (k+1) = h. Then, assuming by contradiction that Condition (13)

is not satisfied, we must have:

Di (k + 1) > D′
i (k + 1)

which can be re-written as

Di (k) + srvi,k+1 − reli,k+1 > D′
i (k) + srv′

i,k+1 − rel′i,k+1

By replacing srvi,k+1 and srv′
i,k+1 with their values, we get

Di (k) + Kmax
k+1 − reli,k+1 > D′

i (k) + Kmax
k+1 − rel′i,k+1

and then,

Di (k) > D′
i (k) + reli,k+1 − rel′i,k+1

From Eq. (30), a case condition of Case 2,we have reli,k+1 ≥ rel′i,k+1 and it follows
from the above inequality that

Di (k) > D′
i (k)

which contradicts Condition (10). This contradiction implies that Condition (13) is
satisfied.
Case 3 Kmin

k+1 ≤ srv′
i,k +Δ′

k+1 ≤ srvi,k +Δk+1
In this case, from (25) and (27) we have the following relation between the release

time-instants of the (k + 1)’th request in the mappings Mi and M
′
i :

reli,k+1 = srvi,k +Δk+1

rel′i,k+1 = srv′
i,k +Δ′

k+1

123

Real-Time Syst

Next, we need to handle the relation between the service times srvi,k+1 and srv′
i,k+1

of this last request and we hence have the same three sub-cases to explore as in Case 2,
but with the slightly different case conditions of Case 3.

– Case 3.1 rel′i,k+1 + T max
i (1) ≤ reli,k+1 + T max

i (1) ≤ Kmax
k+1

– Case 3.2 rel′i,k+1 + T max
i (1) ≤ Kmax

k+1 ≤ reli,k+1 + T max
i (1)

– Case 3.3 Kmax
k+1 ≤ rel′i,k+1 + T max

i (1) ≤ reli,k+1 + T max
i (1)

Case 3.1 rel′i,k+1 + T max
i (1) ≤ reli,k+1 + T max

i (1) ≤ Kmax
k+1

From (26) and (28), we get

srvi,k+1 = reli,k+1 + T max
i (1) (33)

and srv′
i,k+1 = rel′i,k+1 + T max

i (1) (34)

and it immediately follows from (33) and (34) that srvi,k+1 ≥ srv′
i,k+1, which satisfies

Condition (14) since σi (k+1) = σ ′
i (k+1) = h. Also from (33) and (34), it holds that

srvi,k+1 − reli,k+1 = T max
i (1) = srv′

i,k+1 − rel′i,k+1. Similarly to Case 2.1, by using
this equality together with Di (k) ≤ D′

i (k) from (10), we obtain

Di (k) + T max
i (1) ≤ D′

i (k) + T max
i (1)

and thus

Di (k) + srvi,k+1 − reli,k+1 ≤ D′
i (k) + srv′

i,k+1 − rel′i,k+1

By re-writing this inequality we get

Di (k + 1) ≤ D′
i (k + 1)

which satisfies Condition (13).
Case 3.2 rel′i,k+1 + T max

i (1) ≤ Kmax
k+1 ≤ reli,k+1 + T max

i (1)
In this case, we have

srvi,k+1 = Kmax
k+1 from (26)

srv′
i,k+1 = rel′i,k+1 + T max

i (1) from (28)

It thus holds fromCase 3.2 that srvi,k+1 ≥ srv′
i,k+1 and these service times trivially sat-

isfy Condition (14) since σi (k+1) = σ ′
i (k+1) = h. Then, assuming by contradiction

that Condition (13) is not satisfied, we must have:

Di (k + 1) > D′
i (k + 1)

which can be re-written as

Di (k) + srvi,k+1 − reli,k+1 > D′
i (k) + srv′

i,k+1 − rel′i,k+1

123

Real-Time Syst

By replacing srvi,k+1 and srv′
i,k+1 with their values, we get

Di (k) + Kmax
k+1 − reli,k+1 > D′

i (k) + T max
i (1)

and then,

Di (k) > D′
i (k) + T max

i (1) − (Kmax
k+1 − reli,k+1)

and since from Case 3.2 Kmax
k+1 − reli,k+1 ≤ T max

i (1), it follows from the above
inequality that

Di (k) > D′
i (k)

which contradicts Condition (10). This contradiction implies that Condition (13) is
satisfied.
Case 3.3 Kmax

k+1 ≤ rel′i,k+1 + T max
i (1) ≤ reli,k+1 + T max

i (1)
In this case, it holds from (26) and (28) that

srvi,k+1 = srv′
i,k+1 = Kmax

k+1

and it immediately follows that srvi,k+1 ≥ srv′
i,k+1, which satisfies Condition (14)

since σi (k+1) = σ ′
i (k+1) = h. Then, assuming by contradiction that Condition (13)

is not satisfied, we must have:

Di (k + 1) > D′
i (k + 1)

which can be re-written as

Di (k) + srvi,k+1 − reli,k+1 > D′
i (k) + srv′

i,k+1 − rel′i,k+1

By replacing srvi,k+1 and srv′
i,k+1 with their values, we get

Di (k) + Kmax
k+1 − reli,k+1 > D′

i (k) + Kmax
k+1 − rel′i,k+1

and then,

Di (k) > D′
i (k) + reli,k+1 − rel′i,k+1

From Case 3.3, we have reli,k+1 ≥ rel′i,k+1 and it follows from the above inequality
that

Di (k) > D′
i (k)

which contradicts Condition (10). This contradiction implies that Condition (13) is
satisfied. �	

123

Real-Time Syst

10.2 Proof of Lemma 5

Proof The proof must show that given Conditions (15), (16), and (17), Eqs. (18), (19),
and (20) hold. From the claim itself, Eq. (18) trivially holds since σi (k + 1) = σ ′

i (k +
1) = h.We stated this equality only for completeness in order to show that the situation
after assigning the (k + 1)’th request is same as the situation before assigning it. Let
us start the proof by introducing some symbols to improve readability:

Kmin
k+1

def= T min
i (h − 1) + 1 and Kmax

k+1
def= T max

i (h)

and Δk+1
def= (h − σi (k)) × TR and Δ′

k+1
def= (h − σ ′

i (k)) × TR

According to these newsymbols and from the equations ofLemma3, the four quantities
srvi,k+1, reli,k+1, srv′

i,k+1, and rel′i,k+1 can be re-written as

reli,k+1 = max
(
Kmin

k+1, srvi,k +Δk+1
)

(35)

srvi,k+1 = min
(
Kmax

k+1, reli,k+1 + T max
i (1)

)
(36)

rel′i,k+1 = max
(
Kmin

k+1, srv
′
i,k +Δ′

k+1

)
(37)

srv′
i,k+1 = min

(
Kmax

k+1, rel
′
i,k+1 + T max

i (1)
)

(38)

According to (17), we have

srvi,k −σi (k) × TR ≤ srv′
i,k −σ ′

i (k) × TR

and by adding “h × TR” to both sides we get

srvi,k +(h − σi (k)) × TR ≤ srv′
i,k +(h − σ ′

i (k)) × TR

which gives, by definition of Δk+1 and Δ′
k+1,

srvi,k +Δk+1 ≤ srv′
i,k +Δ′

k+1 (39)

With the help of Inequality (39), we will now prove that Inequalities (19) and (20)
always hold true (remember that Inequality (18) is always satisfied). Note that both
Inequalities (19) and (20) are indirectly based on the release and service time of
the (k + 1)’th request in both mappings Mi and M

′
i , i.e. they are based on the four

quantities srvi,k+1, reli,k+1, srv′
i,k+1, and rel′i,k+1. Therefore, if we first focus on the

relation between the release times reli,k+1 and rel′i,k+1 in the two mappings Mi and
M

′
i then it holds from (39), (35), and (37) that only three cases must be investigated:

– Case 1 srvi,k +Δk+1 ≤ srv′
i,k +Δ′

k+1 ≤ Kmin
k+1

– Case 2 srvi,k +Δk+1 ≤ Kmin
k+1 ≤ srv′

i,k +Δ′
k+1

– Case 3 Kmin
k+1 ≤ srvi,k +Δk+1 ≤ srv′

i,k +Δ′
k+1

123

Real-Time Syst

Case 1 srvi,k +Δk+1 ≤ srv′
i,k +Δ′

k+1 ≤ Kmin
k+1

Proof of (20) In this case, we have from (35) and (37), reli,k+1 = rel′i,k+1 = Kmin
k+1

and from (36) and (38), srvi,k+1 = srv′
i,k+1 , which satisfies (20) since σi (k + 1) =

σ ′
i (k + 1) = h.
Proof of (19) By combining (15) with (17) we get srvi,k ≤ srv′

i,k and thus it holds
from Inequality (16) that Di (k) ≤ D′

i (k). Therefore, since reli,k+1 = rel′i,k+1 and
srvi,k+1 = srv′

i,k+1 it also holds that

Di (k) + srvi,k+1 − reli,k+1 ≤ D′
i (k) + srv′

i,k+1 − rel′i,k+1

and thus,

Di (k + 1) ≤ D′
i (k + 1)

and since srvi,k+1 = srv′
i,k+1 in this case, we can write

Di (k + 1) + (srv′
i,k+1 − srvi,k+1) ≤ D′

i (k + 1)

which satisfies (19).
Case 2 srvi,k +Δk+1 ≤ Kmin

k+1 ≤ srv′
i,k +Δ′

k+1
In this case, we get from (35) and (37),

rel′i,k+1 = srv′
i,k +Δ′

k+1 ≥ reli,k+1 = Kmin
k+1 (40)

Next, we need to handle the relation between the service times srvi,k+1 and srv′
i,k+1

in the two mappings Mi and M
′
i and it holds from (36) and (38) that we have three

more sub-cases to explore:

– Case 2.1 reli,k+1 + T max
i (1) ≤ rel′i,k+1 + T max

i (1) ≤ Kmax
k+1

– Case 2.2 reli,k+1 + T max
i (1) ≤ Kmax

k+1 ≤ rel′i,k+1 + T max
i (1)

– Case 2.3 Kmax
k+1 ≤ reli,k+1 + T max

i (1) ≤ rel′i,k+1 + T max
i (1)

Case 2.1 reli,k+1 +T max
i (1) ≤ rel′i,k+1 +T max

i (1) ≤ Kmax
k+1

Proof of (20) From (36) and (38) we get

srvi,k+1 = reli,k+1 + T max
i (1) (41)

srv′
i,k+1 = rel′i,k+1 + T max

i (1) (42)

From (40), (41) and (42), it immediately follows that srvi,k+1 ≤ srv′
i,k+1, which

satisfies (20) since σi (k + 1) = σ ′
i (k + 1) = h.

Proof of (19)Also from (41) and (42), it holds that srvi,k+1 − reli,k+1 = T max
i (1) =

srv′
i,k+1 − rel′i,k+1. Using Di (k) + (srv′

i,k − srvi,k) ≤ D′
i (k) from (16), we get

Di (k) + (
srv′

i,k − srvi,k
) + T max

i (1) ≤ D′
i (k) + T max

i (1)

123

Real-Time Syst

and thus

Di (k) + (
srv′

i,k − srvi,k
) + srvi,k+1 − reli,k+1 ≤ D′

i (k) + srv′
i,k+1 − rel′i,k+1

which implies

Di (k + 1) + (
srv′

i,k − srvi,k
) ≤ D′

i (k + 1) (43)

Now, we have:

srv′
i,k+1 − srvi,k+1 = rel′i,k+1 + T max

i (1) − (reli,k+1 + T max
i (1))

from (41) and (42)

= rel′i,k+1 − reli,k+1

= srv′
i,k +Δ′

k+1 − Kmin
k+1

from (40)

≤ srv′
i,k +Δ′

k+1 − (srvi,k +Δk+1)

from Case 2

≤ srv′
i,k − srvi,k +(

Δ′
k+1 − Δk+1

)

≤ srv′
i,k − srvi,k +(

h − σ ′
i (k)

) × TR−(h − σi (k)) × TR

from the definition of Δk+1 and Δ′
k+1

≤ srv′
i,k − srvi,k +(

σi (k) − σ ′
i (k)

) × TR

≤ srv′
i,k − srvi,k

sinceσi (k) − σ ′
i (k) ≤ 0 from (15)

Therefore it holds from the above inequality and from (43) that:

Di (k + 1) + (
srv′

i,k+1 − srvi,k+1
) ≤ D′

i (k + 1)

which satisfies (19).
Case 2.2 reli,k+1 + T max

i (1) ≤ Kmax
k+1 ≤ rel′i,k+1 + T max

i (1)
Proof of (20) From (36) and (38), we get srvi,k+1 = reli,k+1 + T max

i (1) and
srv′

i,k+1 = Kmax
k+1. We thus get srvi,k+1 ≤ srv′

i,k+1, which satisfies (20) since
σi (k + 1) = σ ′

i (k + 1) = h.
Proof of (19) We use proof by contradiction. Suppose that Inequality (19) is not

satisfied, we must have:

Di (k + 1) + (
srv′

i,k+1 − srvi,k+1
)

> D′
i (k + 1)

and thus,

Di (k) + (
srv′

i,k+1 − srvi,k+1
) + srvi,k+1 − reli,k+1 > D′

i (k) + srv′
i,k+1 − rel′i,k+1

123

Real-Time Syst

which can be re-written as

Di (k) − reli,k+1 > D′
i (k) − rel′i,k+1

and since it holds from (40) that rel′i,k+1 = srv′
i,k+1 + Δ′

k+1 ≥ reli,k+1 = Kmin
k+1 and

Kmin
k+1 ≥ srvi,k +Δk+1 from Case 2, we get

Di (k) − (srvi,k +Δk+1) > D′
i (k) − (

srv′
i,k+1 +Δ′

k+1

)

and thus

Di (k) + (
srv′

i,k+1 − srvi,k
) + (

Δ′
k+1 − Δk+1

)
> D′

i (k)

As seen at the end of Case 2.1, we have Δ′
k+1 − Δk+1 ≤ 0 from (15) and from the

definitions of Δk+1 and Δ′
k+1, and thus it holds that

Di (k) + (
srv′

i,k+1 − srvi,k
)

> D′
i (k)

which contradicts (16). This contradiction implies that Condition (19) is always sat-
isfied.
Case 2.3 Kmax

k+1 ≤ reli,k+1 + T max
i (1) ≤ rel′i,k+1 + T max

i (1)
Proof of (20) From (36) and (38), we get srvi,k+1 = srv′

i,k+1 = Kmax
k+1 and it

immediately follows that srvi,k+1 ≤ srv′
i,k+1, which satisfies (20) since σi (k + 1) =

σ ′
i (k + 1) = h.
Proof of (19) The proof is identical to the proof of (19) in Case 2.2 and is repeated

here only for completeness. We use proof by contradiction. Suppose that Inequal-
ity (19) is not satisfied, we must have:

Di (k + 1) + (
srv′

i,k+1 − srvi,k+1
)

> D′
i (k + 1)

and thus,

Di (k) + (
srv′

i,k+1 − srvi,k+1
) + srvi,k+1 − reli,k+1 > D′

i (k) + srv′
i,k+1 − rel′i,k+1

which can be re-written as

Di (k) − reli,k+1 > D′
i (k) − rel′i,k+1

and since it holds from (40) that rel′i,k+1 = srv′
i,k+1 +Δ′

k+1 ≥ reli,k+1 = Kmin
k+1

and Kmin
k+1 ≥ srvi,k +Δk+1 from the Case 2, we get

Di (k) − (srvi,k +Δk+1) > D′
i (k) − (

srv′
i,k+1 +Δ′

k+1

)

123

Real-Time Syst

and thus

Di (k) + (
srv′

i,k+1 − srvi,k
) + (

Δ′
k+1 − Δk+1

)
> D′

i (k)

As seen at the end of Case 2.1, we have Δ′
k+1 − Δk+1 ≤ 0 from (15) and from the

definitions of Δk+1 and Δ′
k+1, and thus it holds that

Di (k) + (
srv′

i,k+1 − srvi,k
)

> D′
i (k)

which contradicts (16). This contradiction implies that Condition (19) is always sat-
isfied.
Case 3 Kmin

k+1 ≤ srvi,k +Δk+1 ≤ srv′
i,k +Δ′

k+1
In this case, we get from (35) and (37), reli,k+1 = srvi,k +Δk+1 and rel′i,k+1 =

srv′
i,k +Δ′

k+1 and thus, according to (39), it holds that

reli,k+1 ≤ rel′i,k+1 (44)

Again, we need to handle the relation between the service times srvi,k+1 and srv′
i,k+1

in the two mappings Mi and M
′
i and it holds from (36) and (38) that we have three

more sub-cases to explore:

– Case 3.1 reli,k+1 + T max
i (1) ≤ rel′i,k+1 + T max

i (1) ≤ Kmax
k+1

– Case 3.2 reli,k+1 + T max
i (1) ≤ Kmax

k+1 ≤ rel′i,k+1 + T max
i (1)

– Case 3.3 Kmax
k+1 ≤ reli,k+1 + T max

i (1) ≤ rel′i,k+1 + T max
i (1)

Case 3.1 reli,k+1 + T max
i (1) ≤ rel′i,k+1 + T max

i (1) ≤ Kmax
k+1

Proof of (20) From (36) and (38), we get

srvi,k+1 = reli,k+1 + T max
i (1) (45)

srv′
i,k+1 = rel′i,k+1 + T max

i (1) (46)

From (44), (45) and (46), it immediately follows that srvi,k+1 ≤ srv′
i,k+1, which

satisfies (20) since σi (k + 1) = σ ′
i (k + 1) = h.

Proof of (19) From (45) and (46), it holds that srvi,k+1 − reli,k+1 = T max
i (1) =

srv′
i,k+1 − rel′i,k+1. Using Di (k) + (srv′

i,k − srvi,k) ≤ D′
i (k) from (16), we get

Di (k) + (
srv′

i,k − srvi,k
) + T max

i (1) ≤ D′
i (k) + T max

i (1)

and then

Di (k) + (
srv′

i,k − srvi,k
) + srvi,k+1 − reli,k+1 ≤ D′

i (k) + srv′
i,k+1 − rel′i,k+1

which implies
Di (k + 1) + (

srv′
i,k − srvi,k

) ≤ D′
i (k + 1) (47)

123

Real-Time Syst

Now, we have:

srv′
i,k+1 − srvi,k+1 = rel′i,k+1 + T max

i (1) − (reli,k+1 + T max
i (1))

from (45) and (46)

= rel′i,k+1 − reli,k+1

From (35) and (37) and Case 3

= srv′
i,k +Δ′

k+1 − (srvi,k +Δk+1)

= srv′
i,k − srvi,k + (Δ′

k+1 − Δk+1)

≤ srv′
i,k − srvi,k

because Δ′
k+1 − Δk+1 ≤ 0 from (15)

and the definitions ofΔk+1 andΔ′
k+1

Therefore, it holds from the above inequality and from (47) that:

Di (k + 1) + (
srv′

i,k+1 − srvi,k+1
) ≤ D′

i (k + 1)

which satisfies (19).
Case 3.2 reli,k+1 + T max

i (1) ≤ Kmax
k+1 ≤ rel′i,k+1 + T max

i (1)
Proof of (20) From (36) and (38), we get srvi,k+1 = reli,k+1 + T max

i (1) and
srv′

i,k+1 = Kmax
k+1. We thus get srvi,k+1 ≤ srv′

i,k+1, which satisfies (20) since
σi (k + 1) = σ ′

i (k + 1) = h.
Proof of (19) The proof is by contradiction. If Inequality (19) is not satisfied then

we must have:

Di (k + 1) + (
srv′

i,k+1 − srvi,k+1
)

> D′
i (k + 1)

and thus,

(
Di (k) + srvi,k+1 − reli,k+1

) + (
srv′

i,k+1 − srvi,k+1
)

> D′
i (k) + srv′

i,k+1 − rel′i,k+1

which can be re-written as

Di (k) − reli,k+1 > D′
i (k) − rel′i,k+1

By replacing the values of reli,k+1 and rel′i,k+1 from Case 3, we have

Di (k) − (srvi,k +Δk+1) > D′
i (k) − (

srv′
i,k +Δ′

k+1

)

and thus,

Di (k) + (
srv′

i,k − srvi,k
) + (

Δ′
k+1 − Δk+1

)
> D′

i (k)

and since Δ′
k+1 − Δk+1 ≤ 0 from (15) and the def. of Δk+1 and Δ′

k+1, it holds that

Di (k) + srv′
i,k − srvi,k > D′

i (k)

123

Real-Time Syst

which contradicts (16). This contradiction implies that Eq. (19) is satisfied.
Case 3.3 Kmax

k+1 ≤ reli,k+1 +T max
i (1) ≤ rel′i,k+1 +T max

i (1)
Proof of (20) From (36) and (38), we get srvi,k+1 = srv′

i,k+1 = Kmax
k+1 and it

immediately follows that srvi,k+1 ≤ srv′
i,k+1, which satisfies (20) since σi (k + 1) =

σ ′
i (k + 1) = h.
Proof of (19) The proof is by contradiction. If Inequality (19) is not satisfied, we

must have:

Di (k + 1) + (
srv′

i,k+1 − srvi,k+1
)

> D′
i (k + 1)

and thus,

Di (k) + (
srv′

i,k+1 − srvi,k+1
) + srvi,k+1 − reli,k+1 > D′

i (k) + srv′
i,k+1 − rel′i,k+1

By replacing srvi,k+1 and srv′
i,k+1 with their values, we get

Di (k) + (
Kmax

k+1 − Kmax
k+1

) + Kmax
k+1 − reli,k+1 > D′

i (k) + Kmax
k+1 − rel′i,k+1

and thus,

Di (k) + rel′i,k+1 − reli,k+1 > D′
i (k)

By replacing the values of reli,k+1 and rel′i,k+1 from Case 3, we have

Di (k) + (
srv′

i,k +Δ′
k+1

) − (srvi,k +Δk+1) > D′
i (k)

which gives

Di (k) + (
srv′

i,k − srvi,k
) + (

Δ′
k+1 − Δk+1

)
> D′

i (k)

and since Δ′
k+1 − Δk+1 ≤ 0 from (15) and the def. of Δk+1 and Δ′

k+1, it holds that

Di (k) + srv′
i,k − srvi,k > D′

i (k)

which contradicts (16). This contradiction implies that Eq. (19) is satisfied. �	

References

Akesson B, Goossens K (2011) Architectures andmodeling of predictable memory controllers for improved
system integration. In: Design, automation test in Europe conference exhibition (DATE), 2011, pp 1–6

Akesson B, Hansson A, Goossens K (2009) Composable resource sharing based on latency-rate servers. In:
12th Euromicro conference on digital system design, architectures, methods and tools, 2009, DSD’09.
IEEE Computer Society, Washington, DC, pp 547–555

Andersson B, Easwaran A, Lee J (2010) Finding an upper bound on the increase in execution time due to
contention on the memory bus in COTS-based multicore systems. ACM Sigbed Rev 7(1):4

AustinT,LarsonE,ErnstD (2002) SimpleScalar: an infrastructure for computer systemmodeling.Computer
35(2):59–67

123

Real-Time Syst

Behnam M, Inam R, Nolte T, Sjödin M (2013) Multi-core composability in the face of memory-bus con-
tention. SIGBED Rev 10(3):35–42

Benini, L., Flamand, E., Fuin, D., Melpignano, D.: P2012: Building an ecosystem for a scalable, modular
and high-efficiency embedded computing accelerator. In: Proc. of Design, Automation and Test in
Europe Conference, pp. 983–987 (2012)

Chattopadhyay S, Chong LK, Roychoudhury A, Kelter T, Marwedel P, Falk H (2014) A unified WCET
analysis framework for multicore platforms. ACM Trans Embed Comput Syst 13(4s):124:1–124:29

Chattopadhyay S, RoychoudhuryA,Mitra T (2010)Modeling shared cache and bus inmulti-cores for timing
analysis. In: Proceedings of the 13th international workshop on software & compilers for embedded
systems, pp 6:1–6:10

Cruz RL (1991) A calculus for network delay. I. Network elements in isolation. IEEE Trans Inf Theory
37(1):114–131

Dasari D, Akesson B, Nelis V, Awan MAA, Petters SM (2013) Identifying the sources of unpredictability
in COTS-based multicore systems. In: 8th IEEE international symposium on industrial embedded
systems (SIES)

Dasari D, Andersson B, Nelis V, Petters SM, Easwaran A, Lee J (2011) Response time analysis of COTS-
based multicores considering the contention on the shared memory bus. In: IEEE 10th international
conference on trust, security and privacy in computing and communications, pp 1068–1075

Dasari D, Nelis V (2012) An analysis of the impact of bus contention on the WCET in multicores. In: IEEE
9th international conference on embedded software and systems (HPCC-ICESS), pp 1450–1457

Gustafsson J, Betts A, Ermedahl A, Lisper B (2010) The Mälardalen WCET benchmarks—past, present
and future. OCG, Brussels, pp 137–147

Hara Y, TomiyamaH, Honda S, Takada H, Ishii K (2008) CHStone: a benchmark program suite for practical
c-based high-level synthesis. In: IEEE international symposium on circuits and systems, 2008, ISCAS
2008, pp 1192–1195

IEC 61508 (2010) Functional safety of electrical/electronic/programmable electronic safety-related systems
JEDEC Solid State Technology Association (2012) DDR3 SDRAM specification, JESD79-3F edn
Kelter T, Falk H, Marwedel P, Chattopadhyay S, Roychoudhury A (2011) Bus-aware multicore WCET

analysis through TDMA offset bounds. In: Proceedings of the 2011 Euromicro conference on real-
time systems, pp 3–12

Kollig P, Osborne C, Henriksson T (2009) Heterogeneous multi-core platform for consumer multimedia
applications. In: Proceedings of design, automation and test in Europe conference

Lee C, Potkonjak M, Mangione-Smith W (1997) Mediabench: a tool for evaluating and synthesizing mul-
timedia and communicatons systems. In: Proceedings of ACM/IEEE international symposium on
microarchitecture, pp 330–335

Li Y, Akesson B, Goossens K (2014) Dynamic command scheduling for real-time memory controllers. In:
26th Euromicro conference on real-time systems (ECRTS), pp 3–14

Nowotsch, J., Paulitsch, M.: Leveraging multi-core computing architectures in avionics. In: 2012 Ninth
European dependable computing conference (EDCC), pp 132–143. IEEE, Washington, DC (2012)

Nowotsch J, PaulitschM,HenrichsenA, PongratzW, Schacht A (2014)Monitoring andwcet analysis in cots
multi-core-soc-based mixed-criticality systems. In: Design, automation and test in Europe conference
and exhibition (DATE), pp 1–5

Paolieri M, Quinones E, Cazorla F, Valero M (2009) An analyzable memory controller for hard real-time
CMPs. IEEE Embe Syst Lett 1(4):86–90

Pellizzoni R, Schranzhofer A, Chen JJ, CaccamoM, Thiele L (2010) Worst case delay analysis for memory
interference in multicore systems. In: Conference on design, automation and test in Europe, pp 741–
746

Reineke J, Liu I, Patel H, Kim S, Lee EA (2011) PRET DRAM controller: bank privatization for pre-
dictability and temporal isolation. In: CODES+ISSS ’11: proceedings of the IEEE/ACM international
conference on Hardware/software codesign and system synthesis, pp 99–108

Rodrigues V, Akesson B, Melo de Sousa S, Florido M (2013) A declarative compositional timing analysis
for multicores using the latency-rate abstraction. Practical aspects of declarative languages. Lecture
Notes in Computer Science, vol 7752. Springer, Berlin Heidelberg, pp 43–59

Rosén J, Andrei A, Eles P, Peng Z (2007) Bus access optimization for predictable implementation of
real-time applications on multiprocessor systems-on-chip. In: Proceedings of the real-time systems
symposium, pp 49–60

123

Real-Time Syst

Schliecker S, Ernst R (2011) Real-time performance analysis of multiprocessor systems with shared mem-
ory. ACM Trans Embed Comput Syst 10:22:1–22:27

Schliecker S, NegreanM, Ernst R (2010) Bounding the shared resource load for the performance analysis of
multiprocessor systems. In: Proceedings of the conference on design, automation and test in Europe,
pp 759–764

Schranzhofer A, Chen JJ, Thiele L (2010) Timing analysis for TDMA arbitration in resource sharing
systems. In: 16th IEEE real-time and embedded technology and applications symposium, pp 215–224

Schranzhofer A, Pellizzoni R, Chen JJ, Thiele L, Caccamo M (2010) Worst-case response time analysis
of resource access models in multi-core systems. In: Proceedings of the 47th design automation
conference. DAC’10. ACM, New York, pp 332–337

Schranzhofer A, Pellizzoni R, Chen JJ, Thiele L, Caccamo M (2011) Timing analysis for resource access
interference on adaptive resource arbiters. In: Real-time and embedded technology and applications
symposium

Shah H, Raabe A, Knoll A (2012) Bounding WCET of applications using SDRAM with priority based
budget scheduling in MPSoCs. In: Design, automation test in Europe conference exhibition (DATE),
pp 665–670

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In:
The 2000 IEEE international symposium on circuits and systems, 2000. ISCAS 2000, Geneva, vol 4.
IEEE Computer Society Press, Washington, DC, pp 101–104

van Berkel C (2009)Multi-core for mobile phones. In: Proceedings of design, automation and test in Europe
conference, pp 1260–1265

Wenzel I, Kirner R, Rieder B, Puschner P (2009) Measurement-based timing analysis. Leveraging applica-
tions of formal methods verification and validation. Springer, Berlin

Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S,Whalley D, Bernat G, Ferdinand C, Heckmann R,
MitraT,Mueller F, Puaut I, Puschner P, Staschulat J, StenströmP (2008)Theworst-case execution-time
problem - overview of methods and survey of tools. ACM Trans Embed Comput Syst 7:36:1–36:53

Wilhelm R, Grund D, Reineke J, Schlickling M, Pister M, Ferdinand C (2009) Memory hierarchies,
pipelines, and buses for future architectures in time-critical embedded systems. Trans Comput-Aided
Des Integ Circ Syst 28(7):966–978

Wu ZP, Krish Y, Pellizzoni R (2013) Worst case analysis of DRAM latency in multi-requestor systems. In:
Proceedings of IEEE real-time systems symposium

Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2012) Memory access control in multiprocessor for real-
time systems with mixed criticality. In: 24th Euromicro conference on real-time systems (ECRTS),
pp 299–308

Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2013) Memguard: memory bandwidth reservation system
for efficient performance isolation in multi-core platforms. In: IEEE 19th real-time and embedded
technology and applications symposium (RTAS). IEEE Computer Society Press, Washington, DC, pp
55–64

Zhou M, Bock S, Ferreira A, Childers B, Melhem R, Mosse D (2011) Real-time scheduling for phase
change main memory systems. In: TrustCom, ICESS11, pp 991–998

Dakshina Dasari received her Masters Degree in 2004 from National
Institute of Technology, Surathkal (NITK), India and Ph.D from the
University of Porto in 2014. Prior to her Ph.D she has worked in the
networking domain at Sun Microsystems, Citrix Systems. Post Ph.D,
she has been working as an architect at the Robert Bosch Research
and Technology Centre, India. Her research interests include com-
puter architectures, real-time embedded systems with a focus on tim-
ing analysis and architectures for embedded automotive systems.

123

Real-Time Syst

Vincent Nelis received his Ph.D. degree in Computer Science at the
University of Brussels (ULB) in 2010. Since then, he has been work-
ing as a Research Associate at CISTER-ISEP Research Unit in Porto,
Portugal. His research interests include real-time scheduling theory,
with a focus on multiprocessor/multi-core systems, and in execution
time and interference analysis.

Benny Akesson received his M.Sc. degree at Lund Institute of Tech-
nology, Sweden in 2005 and a Ph.D. from Eindhoven University
of Technology, the Netherlands in 2010. Since then, he has been
employed as a Postdoctoral Researcher at Eindhoven University of
Technology, CISTER-ISEP Research Unit, and Czech Technical Uni-
versity in Prague. His research interests include design and analysis
of multi-core real-time systems with shared resources.

123

	A framework for memory contention analysis in multi-core platforms
	Abstract
	1 Introduction
	2 System model
	2.1 Platform model
	2.2 Task model
	2.3 Request and region modeling
	2.4 Scheduler specification
	2.5 Problem statement

	3 Overview
	3.1 Step 1: modeling the availability of the bus
	3.2 Step 2: computing the maximum cumulative delay
	3.3 Step 3: finding the worst-case request-set mapping
	3.4 Step 4: tightening the analysis using sampling regions

	4 Modeling the availability of the bus
	4.1 Non-work-conserving TDM arbitration
	4.2 Work-conserving fixed-priority arbitration

	5 Finding the maximum delay for a request-set mapping
	5.1 Maximum delay for a single request
	5.2 Maximum cumulative delay for a request-set mapping

	6 Finding the worst-case request-set mapping
	6.1 Algorithm description
	6.2 Elimination of unfeasible request-set mappings

	7 Region-based analysis
	7.1 Theoretical foundation
	7.2 Algorithm for region-based analysis
	7.3 Reducing time-complexity

	8 Related work
	9 Experimental evaluation
	9.1 Experimental setup
	9.2 Application to different arbitration mechanisms
	9.3 Impact of the region size
	9.4 Comparison against the state-of-the-art

	10 Conclusions
	Acknowledgments
	Appendix
	Proof of Lemma 3
	10.1 Proof of Lemma 4
	10.2 Proof of Lemma 5

	References

