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Abstract

A Credit-Controlled Static Priority (CCSP) arbiter has been proposed that circumvents two key
downsides of alternative arbiters in real-time embedded systems. The first is that it enables a better
resource utilization by decoupling essential properties, such as allocated rate, allocation granularity
and latency. Secondly, it has a fast and small hardware implementation whose correctness is formally
proved. However, the existing dataflow model of the arbiter, which is based on the general model for a
class of latency-rate (LR) servers, does not capture bursty provided service. As a result, system-level
analysis of CCSP leads to unnecessarily large resource allocation to satisfy application requirements.
In this document, we present a new dataflow model to address this drawback. The new dataflow model
is based on a piecewise linear service guarantee that accurately models the provided service by CCSP.
As a result of the new dataflow model, a given resource under CCSP arbitration can support more
requestors, or a given set of requestors can be accommodated with less resource.

I. INTRODUCTION

The service guarantee of an arbiter is defined as the minimum service available to a requestor,
irrespective of the situation of other requestors sharing the resource. This minimum service is nor-
mally computed by considering the worst-case scenario. For a requestor under a Credit-Controlled
Static-Priority (CCSP) arbiter, this worst-case scenario happens when it experiences the maximum
interference from higher priority requestors [1]. Given a set of requestors R that are sharing a common
resource under CCSP arbitration, the set of requestors that have higher priority than requestor € R is
denoted R;". Previous work [1] on the service guarantee of the CCSP arbiter shows that a requestor can
be guaranteed a minimum service at its allocated rate, p', after a maximum latency, ©. As illustrated in
Figure 1(a), this service guarantee defines a linear lower bound, w’, on the provided service curve, w’,
during a time interval, referred to as active period. We refer to this lower bound as the latency-
rate service guarantee. Based on the latency-rate service guarantee, an active requestor r € R is
guaranteed a minimum service during an active period [y, 73] according to the following relation:
Vt € [11,72] + W.(71,t) = max(0,p). - (t — 71 +1—0O,)), where
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The latency-rate service guarantee is used in [2] to show that CCSP arbiter belongs to the class of

LR servers [3], which is a general framework for analyzing scheduling algorithms. In [4], a general

dataflow model is presented for arbiters in the class of LR servers. This dataflow model, which we

refer to as the latency-rate dataflow model, is illustrated in Figure 1(b). The latency-rate dataflow

model is a two-actor homogeneous (single-rate) dataflow model that defines a linear lower bound on

the provided service curve. Actor L,, models the maximum blocking requests encounter and actor

R models the time it takes to serve a request at the allocated rate. This means, a requestor r € R

is guaranteed to receive service at its allocated rate, p/., after a maximum latency, ©,., during every
active period.

However, a requestor under CCSP arbitration can receive service at a rate higher than its allocated

rate, after the maximum latency, ©,.. In other words, the provided service curve, w’, can have bursty

provided service intervals, as illustrated in Figure 1(a). This behavior is not captured in the linear
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(a) Latency-rate service guarantee (b) Latency-rate dataflow model

Fig. 1. Latency-rate service guarantee and dataflow model for CCSP arbitration

latency-rate service guarantee and its corresponding dataflow model. This results in a pessimistic
worst-case finishing time of requests, which ultimately leads to unnecessarily large resource allocation
to satisfy application requirements. This drawback is addressed in [5] through a piecewise linear
service guarantee for CCSP, which is referred to as bi-rate service guarantee.

Under the bi-rate service guarantee, a requestor » € R is guaranteed a minimum service at two
different rates, p» and p!., after a maximum latency ©,. This maximum latency, ©,., is the same as
the one in the latency-rate service guarantee, which is given in Equation (1). The bi-rate guarantee
is denoted w, and is illustrated in Figure 2. It is defined based on two linear equations: a higher-
rate guarantee " and an allocated-rate guarantee /%, which are given in Equation (2) and (3),
respectively.

WM, t)=p (-1 +1-0,) )
W (r,t)=p.-t—711+1-T,) (3)

where , “_1
T, = _% 4)

The bi-rate service guarantee is, then, the lesser of the two at any time. It is shown in [5] that during
an active period [11, 73], a requestor r € R is guaranteed a minimum service, . (71,t), as given in
Equation (5).

W (11, t) = maz(0, min(w™ (1, t), W' (1, 1)) (5)

The bi-rate service guarantee splits every active period into two intervals, depending on the rate at
which the requestor receives service. The first interval spans from the beginning of the active period
up to the time point referred to as the boundary cycle, T°, where a requestor receives service at the
higher service rate (cf. Figure 2). The second interval spans from the boundary cycle up to the end of
the active period, where the requestor receives service at its allocated rate, p’. For a requestor r € R,
the higher service rate, p?, is given by Equation (6). From this equation, we can see that p% > pl,
since for a valid CCSP configuration it should hold that Z p' < 1. The bi-rate guarantee applies

VreR
to all requestors where p} > pl. For pX = p/, it converges to the latency-rate guarantee. Note that

throughout this paper, we only consider requestors for which pf > p!, since otherwise the higher
service rate is equal to the allocated rate.

pr=1-— > p. 6)

VseR;
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Fig. 2. Improved Worst Case Finishing Time

For a requestor r € R during the active period [1, 72| of the worst-case scenario, the boundary cycle,
72, is given by Equation (7). The case where the end of an active period is before this boundary cycle
implies that the requestor receives service at the higher rate throughout the entire active period [5].
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A bi-rate service guarantee that takes into account the higher service rate, p*, improves the worst-
case finishing time of requests, as illustrated in Figure 2. A in the figure illustrates the improvement
as compared to the latency-rate service guarantee.

To guarantee a provided service at the higher service rate, p*, the requestor has to ask for it. Thus,
the new service guarantee applies only to requestors that have a minimum service request rate of
p* at least up to time point 7" (cf. Figure 2), given in Equation (8). We refer to such requestors as
high-rate requestors. A requestor r € R being served by a CCSP arbiter is said to be a high-rate
requestor during an active period [11, 2] if Equation (9) holds for the requested service curve, w.

=1 -6, (8)

py - (=1 +1) t<Th
w11, 7h) + ol - (- TP Otherwise

Vt € [ry, 2] t we(T1,t) > { )

State-of-the-art dataflow-based system-level analysis techniques require the various aspects of the
system, such as computation, storage and arbitration, to be modeled with dataflow components. We
have said earlier in this section that the existing dataflow model of CCSP arbiter is too pessimistic,
since it is based on the latency-rate service guarantee that does not capture the provided service at
the higher service rate, p*. A dataflow model of CCSP arbiter, which is based on the bi-rate service
guarantee, can significantly improve utilization of resources under CCSP arbitration. Since, the the bi-
rate service guarantee enables a given SoC resource under CCSP arbitration to support more requestors,
or accommodate a given set of requestors with less resource. In the next section, we present a dataflow
model of CCSP arbitration that is based on the bi-rate service guarantee.

II. DATAFLOW MODEL

In this section, we present a dataflow model of CCSP arbitration, based on the bi-rate service
guarantee given in Equation (5). Dataflow graphs (DFG) enable the modeling and analysis of real-
time applications. These models have effective analysis techniques to compute throughput and storage



requirements. Besides, they also capture cyclic data dependencies, which exist in many real-life
applications. Because of these reasons, DFGs can play an indispensable role in today’s MPSoC design
flow that carry out application mapping and resource scheduling [6], [7].

A DFG consists of nodes, called actors, which communicate tokens through their ports. Tokens are
sent from one actor to another over edges, called channels, which connect the ports of the sending
and receiving actors. A variety of DFGs exist today, which vary with their level of analyzablity,
expressiveness and implementation efficiency. Homogeneous Synchronous Dataflow (HSDF) graph is
one of them. In a self-timed execution of HSDF graphs, when there exists at least one token on every
input port of an actor, the actor fires. At the end of the firing, the actor produces one token on each
of its output ports. The execution duration of a single firing of an actor X is denoted x(X) € R™.

We present a HSDF model, which is shown in Figure 3, that models the service provision of CCSP
arbitration, based on the bi-rate service guarantee. A number next to a black dot over a channel
represents the number of initial tokens that should be available over the channel at the beginning of
the execution of the graph to prevent deadlock. The number of initial tokens &, for a requestor r € R
is determined by its allocated service and the allocated services of higher-priority requestors, R}

The dataflow model consists of three actors: latency actor (L,.), higher-rate actor (H,) and allocated-
rate actor (A,.).
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Fig. 3. Dataflow model for CCSP arbitration

The execution durations of the three actors for a requestor € R are given in Equations (10), (11)
and (12). The case where h, = 1 is unique from all other cases (h, > 1), since actors H, and A,
cannot be executed in parallel. This is because there can exist a maximum of only one token at a time
over their cyclic dependency. As a result, the execution duration of actor A,, x(4,), for h, = 1 is
different from the other cases.

X(LT):@ (10)
1
X(Hr) = — (11
(Hr) pr
N pi, if h, > 1 0
X( T)_ pi/_% ifhrzl ( )

The rate of completion of service units by the dataflow model, which is shown in Figure 3(b), is
equivalent to the bi-rate service guarantee, given in Equation (5). In this section, we formally prove
this equivalence. Before that, we give an intuition to this equivalence by explaining the execution of
the dataflow model.In this section we drop the subscript r in the notations from now on, since we
will be referring to the same requestor throughout the section.

Arriving requests at the input of the CCSP arbiter can be multiple service units long, i.e. for the
k" request s(w*) > 1. Each service unit is represented by a single token in our dataflow model. The
arrival of a request at the input of the arbiter is analogous to the arrival of multiple tokens at the input
of actor L. This means the arrival time of the j** token marks the arrival time of the j** service unit
at the input of the arbiter. £(j) denotes the arrival time of the j** token at actor L. Actor L produces
a single token for every arriving token after an execution time of © service cycles, which models the



maximum waiting time every service unit encounters. The production time of the j* token by the
latency actor equals £(j) + ©.

In HSDF graphs, a self-edge refers to a special type of channel that has the same source and
destination actor. The number of initial tokens on self-edges determines the auto-concurrency of the
actor, which is the number of possible simultaneous firings of the actor. It is important to note that actor
L does not have a self-edge. This implies that multiple tokens can wait in parallel, which accurately
reflects what actually happens at the input of the arbiter. On the other hand, actors H and A have
self-edges, each with a single initial token that implies only one service unit can be served at a time.

Output tokens produced by actor H represent completed service units. This means the production
time of the j* token by actor H marks the completion of the j* service unit. F(j) denotes the
finishing (production) time of the j*" token by actor H. The finishing time of the ;' token by actor
H is determined by the arrival time of tokens from its three input channels. These are: (1) the arrival
of the j* token from the output of actor L, £(j) + ©, (2) the finishing time of the previous firing,
F(j — 1), which models that only one service unit can be served at a time and (3) the production
time of the (j — h)*" token from actor A. The reasoning behind this is explained as follows. There are
already h initial tokens on this channel. For every served service unit, one token is consumed from
this channel by actor H. After all these h initial tokens are consumed, there may be still accumulated
tokens available on this channel that are produced by actor A, during the consumption of the h initial
tokens by actor H. As long as there are accumulated tokens available on this channel, service units
can be served at the higher rate. This is because, in order to fire, actor H does not have to wait for
the production of tokens by actor A. However, after all tokens are consumed, the rate of production
of tokens by actor H is determined by the rate of production of tokens by the actor A, which is
guaranteed to be lower. That means service units are served at the allocated rate of the requestor p’.
When there are no more service units to be served, it marks the end of an active period. As we later
show in Section II-D, the h initial tokens are completely restored before the beginning of a new active
period, since this operation of the dataflow model is shown to be valid for sequences of active periods.
Note that for h = 1, the rate of token production by actor H is the sum of the execution times of
both actor H and A. This is because the two actors cannot be fired simultaneously, since there can be
a maximum of one token over the cyclic dependency at a time. Hence, h = 1 is considered a special
case and its proof is also given separately, as we will show later.

Bringing the above three limiting factors together, the finishing time of service units can be ex-
pressed with a max-plus equation [8] that bounds the completion time of service units as shown in
Equation (13). G(j) denotes the production time of the j** token at the output of actor A.

L maz(€(G) + 0, F(—1),G(j —h)+ 5+ 5>0
Fl) = { 0 ’ Otherwise (13)

In the remaining part of this section, the formal proof of the equivalence between the bi-rate service
guarantee and the dataflow model is given. The strategy of the proof is to first derive a relation that
bounds the finishing time of the j** service unit based on the bi-rate service guarantee. Then, we prove
the equivalence of this bound on finishing time and Equation (13) for both execution of service units
within an active period as well as for sequences of active periods. However, to bound the production
of tokens according to Equation (13), first we need to know the number of service units that can be
served at the higher rate to derive h as well as a bound on the arrival time of service units (£(j)).
Hence, the proof is organized as follows. In Section II-A, the number of service units that can be
served at the higher rate is derived. Relations that bound the arrival time of the j* service unit and
the finishing time of the j** service unit are derived in Section II-B and Section II-C, respectively.
Finally, Section II-D presents the proof that shows the equivalence between the bound on the finishing
time of service units and Equation (13). Table I presents the notation, for a requestor r» € R, that is
going to be used throughout the proof.



TABLE I
THE NOTATION USED IN THE FORMAL PROOF

Notation Description

[11, T2] Duration of an active period

k The first service unit arrived during the active period

J Any service unit arrived during the active period, where 7 > k

n The last service unit that is completed before the boundary cycle, 7°

W(r1,t)  The number of service units arrived in the time interval |71, ]
W(r1,t) A minimum bound on W (7y,t)

W'(r1,t) The number of service units completed in the time interval 71, t]
W'(r1,t) A minimum bound on W'(7y,t)

A. Number of Service Units Served at the Higher Rate

In this section, we derive the number of service units that can be served at the higher service rate
during the active period of the worst-case scenario. In terms of k& and n, the number of service units
that can be served at the higher rate, which is denoted as sy, is given by Equation (14).

sh=n—k+1 (14)

For a requestor r € R, s;, is determined by the allocated service of 7 and the allocated services of
higher-priority requestors, R;'. The derivation is given as follows.

The number of service units that can be served in an active period [r1, 72| is bounded by the service
guarantee given in Equation (5). Since the number of completed service units is an integer, we take
the largest integer value, as given in Equation (15).

W (11 — t) = max (0, |min(p* - (t =11 +1-0),p - t—71+1-T))]) (15)

Since we have two different rates in our service guarantee, part of the service units in the active
period are served at a higher rate and the rest at the allocated rate. From Equation (15), we can compute
how many of these service units can be served at the higher rate, p*. This is shown in Lemma 1.

Lemma 1: The number of service units that can be served at the higher service rate is given as:

sh:nkarl:{;__iJ. (16)

I

Proof: The number of finishes in the interval [r1, 7°] is equal to | p* - (7° — 71 +1—0)], according



to Equation (15). By equating this with Equation (14), we get the value of sj, as shown below.
s = n—k+1=|p"-(r"-7m+1-0)]

o —1+4+p + Z o,

* VsER;

= |p*- ” . +1— 0 | | (substitution by Equation (7))
p*—p

J’—l—i—p*—i—Za; ZO’;.

. VsERS VseRS

= |p"- v " (substitution by Equation (1) and algebraic reduction)

pr=p

prpt e Y ot p (0l 1)

.
_ wefr / (by algebraic operations)
pT—p
@ - F . . . . . « /
= T (by algebraic reduction - divide both the numberator and denominator by p - p!.)
Lo” o~

This shows that in the worst-case active period, the number of service unit a requestor can be served
at the higher rate is determined entirely by its allocated service (allocated rate and burstiness) and the
allocated services of its higher priority requestors. |

In the previous lemma, we have derived the number of service units that can be served at the higher
rate, sy. Another key information we need for the proofs of subsequent sections is a bound on the
arrival time of these sj, service units. The arrival time of the first service unit, £(k), is 71, the start
of the active period. Lemma 2 shows that the n'”* service unit arrives before = 7° — ©. That means
the first s; service units in the active period, which are served at the higher service rate, arrive at the
latest at 7" = 7 — © (cf. Figure 2).

Lemma 2: The arrival time of the n'" service unit, £(n), is less than or equal to 7° — ©.

En)y<tt—0. (17)
Proof: For the arrival time of the n'" service unit to be in the interval [y, (7% — ©)], we
need to show that the total number of arrivals in the interval [, 7% — O] i.e. w(r, 7" — ©) is at
least equal to n — k + 1. We know from Equation (9) that for a high-rate requestor, it holds that
vt € [r1, (% — ©)],w(r1,t) > p* - (t — 71 + 1). Hence,

w(r, ™" —0) > p (-0 -1 +1)

o —14p + Z o,

VseR;" " . .
= " ; +1—-0 |- p* (by substituting Equation (7))
pr=p
o' —1+p*+ z o, Z o,
S + S +
= o p\j LG ej;): - p* (by substituting Equation (1))

<@_F>
- 1 _ 1
P’ p*

> n—k+1(from Lemma (1))



This shows us that at least n — k -+ 1 service units arrive at 7" = 7® — ©, which proves Lemma 2. [J

Since we now know how many service units are served at the higher rate, we can also derive the
number of initial tokens h for our dataflow model, illustrated in Figure 3(a). The derivation for A is
given in Lemma 3.

Lemma 3: To guarantee that s;, number of service units are served at the higher service rate by the
dataflow model, illustrated in Figure 3(a), the number of initial tokens A that should be available on
the channel from actor A to actor H is given by Equation (18).

(n—k—-1)-p
p*
Proof: Let t,, denotes the total time interval the dataflow model takes to serve those s service
units at the higher rate. This gives us Equation (19).

h=sp — (18)

1
o =0 (19)
R’ denotes tokens produced by actor A during the time interval ¢,,. This means h’ equals the
number of firings of actor A during time interval ¢,, . Taking into account the number of initial tokens
h, this gives us Equation (20).

sp=n—k+1=h+Hn (20)

Let ¢4, denotes the starting time of the first firing of actor A and t.,4 denotes the time the last
firing of actor A should end to the latest. Actor A can start firing only after the first service unit

is served i.e. p% service units after the start of ¢, . In addition, the last firing of actor A should be
completed at least -1 service units before the end of ¢, so that the n*" service unit can be served

o*

before the end of ¢,,. Then, A’ can be computed as follows.

(tend - tstr)
W= 1
P’
1 1
= ((to =)= =)
((ts, )
Sh 2 / . .
= (= — =) p (according to Equation (19))
p
_ (sh-2)p
p*
—k-1)-p
= w (according to Equation (20)) 21
p
Putting back A’ into Equation (20), we get h, the number of initial tokens, as given in Equation (18).

|

From this section, we have now obtained relations for the number of service units that can be served
at the higher rate, s, the number of initial tokens, h, as well as a bound for arrival time of the nth
service unit. In the next section, we derive a bound on the arrival time of each service unit in the
active period.

B. Bound on Arrival Time of Service Units

In this section, we aim to derive a bound on the arrival time of each service unit. The basis of
this derivation is Equation (9), which defines a lower bound on the requested service curve, w. We
use it to bound the number of service units arrived since the start of the active period, as given in
Equation (22). We use Equation (22) in Lemma 4 to derive the bound on the arrival time of each
service unit.
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Yt € [y, 2], W(r,t) > W(m,t) :

y pr(t—m+1) <
_ 3 22
W(Th t) { W(7'1, Th) + p/ . (t _ Th + 1) Otherwise ( )

Lemma 4: Let E(k) = 7 and £(j) < 2. The bound ¢; on the arrival time of the j* service
unit £(j), given in Equation (23) is equivalent to bounding the number of arriving service units as in
Equation (22) during every active period.

n+E j<n

: 23
ot S j>n )

5(j)§¢j={

Proof: Let us split the proof into two cases where 7 < n and j > n.

e Case 1: j < n. From Lemma 2, we can tell that j < n implies E(j) < 7° — © and, hence, the
arrival rate is determined by the relation W (r,t) = p*- (¢ — 7 + 1), according to Equation (22).
Since ¢; is a bound on the arrival time of the jth service unit, it should hold that starting from

¢; the number of arrived service units is at least j — k: ie. V' > ¢, : W(m,t' —1) > j — k.
Expanding W (71,t' — 1) in this relation gives p* - (' — 71) > j — k. Rearranging gives:

j — k
>+ - (24)
From Equation (24), we get the bound ¢; on the arrival time of the 4" service unit as:
| — k
6 =T+ —. (25)

o Case 2: j > n. We use the same proof strategy as in the first case. From Lemma 2, since j > n,
the arrival time is determined by the relation W(ry,t) = W (r, 7" —©)+p - (t — 10 + ©),
according to Equation (23). Since ¢; is a bound on the arrival time of the 4t service unit,
it should hold that starting from ¢; the number of arrived service units is at least j — k: i.e.
V' > ¢;: W(r,t' —1) > j — k. After expanding W (r1,t — 1) in this relation, we get the

relation p* - (7° —© — 7 + 1)+ p' - (' — 7% + ©) > j — k, which after rearranging gives:

-k i—
Vem+—n+ 0 (26)

P P

From Equation (26), we get the bound ¢; on the arrival time of the 4t service unit as:
n—=k i —n
by =+ + 1 @7)
P P

1

Now, we have a relation that bounds the arrival time of individual service units. In the next section,
we follow a similar strategy to bound finishing time of individual service units. The bounds on the
arrival and finishing time of service units are later used in Section II-D to prove the equivalence
between Equation (13) and the bi-rate service guarantee.

C. Bound on Finishing Time of Service Units

In this section, we bound the finishing time of individual service units, as shown in Lemma 5. The
basis of this lemma is Equation (15), which bounds the minimum number of service units completed
since the beginning of the active period.

Lemma 5: Let £(k) = 7 and E(j) < 7. The bound t; on the finishing time of the j** service
unit as provided by Equation (28) is conservative with respect to Equation (15).



Ek)+0+12H j<n

¢n+j;/n ji>n

(28)

f(J')Sl/}jZ{

Proof: Let us split the proof into two cases where 7 < n and j > n.
e Case 1: j < n. Since j < n, ¢; < 70, Hence, the minimum service guarantee is determined
by the relation W'(71,t) = |p* - (t — 71 + 1 — ©)]. Since v, is a bound on the finishing time
of the j' service unit, at least j — k + 1 service units should be completed from 1; on: i.e.
Yt > ;o W’(ﬁ,t’ —1) > j — k+ 1. After expanding W’(ﬁ,t’ — 1) in this relation, we get
p*- (' =1 —©) > j— k+ 1. Rearranging gives:
j—k+1

*

t'>mn+0+ (29)
From Equation (29), we get v;, which is a bound on the finishing time of the 4" service unit

as:
j—k+1

b= 40+ (30)

o Case 2: j > n . We use the same proof strategy as in the first case. j — k + 1 service units should
be completed from v; on: i.e. V¢’ > ¢; : W'(m,t' — 1) > j — k + 1. Expanding the above step,
we get p*- (7P = O — 7 +1)+p - (t/ =7 —T) > j — k + 1. Substitution and algebraic reduction

gives:
— k41 _
>m+0+ ot I (31)
From Equation (31), we get v;, which is a bound on the finishing time of the jth service unit
as:
—k+1 -
G=m4oe i I (32)
P P
L

We now have relations from Section II-B and II-C that bound the arrival and finishing time of each
service unit in the active period, respectively. We use these bounds in the next section to prove the
equivalence between the bi-rate guarantee and the dataflow model, illustrated in Figure 3(a).

D. Proof of the Dataflow Model

In this section, we prove the equivalence between Equation (28) that bounds the finishing time of
each service unit and Equation (13) that determines the production time of tokens by actor H in the
dataflow model, illustrated in Figure 3(a). For the sake of simplicity, the main proof focuses on the
case where h > 1. This is because h = 1 is a trivial case that can be proved with simpler steps as
follows. h = 1 implies the requestor receives service at the higher rate only for the first service unit
in the active period. Since we have one initial token on the edge from actor A to actor H, the first
token is produced by actor H at £(k) +© + L However, for all subsequent tokens, actor H has to
wait the production of tokens by actor A before it can fire. That means, the rate of token production
by actor H is the sum of the rate of the two actors, x(A) + x(H), which equals ﬁ. Therefore, all
service units in the active period, except the first one, are served at the allocated rate. This proves that
the dataflow model, illustrated in Figure 3(a), is an accurate model for the bi-rate service guarantee
for h = 1.

In the remaining part of this section, we carry out the proof for & > 1 in two parts. First, in
Section 1I-D1, we derive a relation for the production time of tokens by actor A. Then, we use this
relation in Section II-D2 to finally prove the equivalence of Equation (28) and Equation (13).



1) Bounding Token Production by the Allocated-rate Actor: The production of tokens by actor A
is determined by the production of tokens by actor H and the finishing time of its previous firing, as
shown in Figure 3(a). G(j) denotes the production time of the j*" token by the allocated-rate actor.
Equation (33) defines it based on the finishing time of its previous firing, G(j — 1), and the production
time of the j* token by actor H, F(j).

L max(F(j),6( - 1)+ & j>0
g6) = { 0 ’ otherwise (33)

We need a conservative bound on the production time of tokens by actor A to bound the production
time of tokens by actor H, which corresponds to the bound on the completion time of service units.
Lemma 6 presents such a conservative bound on the production time of tokens by actor A.

Lemma 6: Function ¢(j), shown in Equation (34), is a bound to the production time of tokens by
actor A, G(j), shown in Equation (33), during any active period.

. Vi + jip# 7>0
= 34
90) { 0 otherwise (34)

Proof: We prove this lemma by induction in two parts. In the first part, we use induction to prove
for service units within the first active period. In the second part, we again use induction to prove for
sequences of active periods, but using the result of the first part as a base step.

Since ¢g(7) is a bound on G(j), we should be able to get an equivalent relation to g(j) if we bound
F(j) in Equation (33). In this proof, we show this equivalence. To bound F(j), we use 1;, given in
Equation (28).

Part 1: For service units within the first active period

Base step: £ =j = 1.

g(1) =1 + ﬁ, according to Equation (34). G(1) = maxz(y1,G(0)) + ﬁ =1 + % according to
Equation (33), proving the equivalence for the base step.

Inductive step: Assume g(j) = G(j) = ’(/Jk—f—jip#. We now need to show that g(j+1) = G(j+1).
g(j + 1) is given by Equation (35), according to Equation (34).

JH1—k+1

9(i+1) =tr + 5 (35)

G(j+1) is given as shown in Equation (36), according to Equation (33), after bounding F(j + 1).
, ) 1

G(j +1) = maz(;t1,6(j)) + 5 (36)

To evaluate the maz term in Equation (36), we need to compare ;41 and G(j). We know G(j)
from the assumption in the inductive step. But for 1,1, we need to consider three cases: for j < n,
7 > n and also for j = n, since it involves equations from both the case 7 < n and j > n.

Case I: j < n. This case implies j + 1 < n. Then, according to Equation (28), +; 1 is as given in
Equation (37).

+1—-k+1

Vit =Ek)+ 0O+ J 37)

*

Now comparing, Equation (37) and G(j) shows that G(j) is the maximum of the two. This
comparison is shown below.



i—k+1 i—k+1
p p
1 i —k+1 1 i —k+1
i +1—k+1 1 —k+1
Yiv1 < G(J)

Case 2: j = n. This case implies j + 1 > n. Then, according to Equation (28), ;1 is as given in
Equation (38).
Gy = E(k)+o 4 L EEL L (38)
P P
Now comparing, Equation (38) and G(j) shows that G(j) is the maximum of the two. This
comparison is shown below.

n*k n*k . ’ *

> < — (since p’ < p”)
1 -k 1 1 —k 1
ER)+0+— 4+ 42 < ) +0+—+ 4=
p p P p p p
-k+1 1 1 j—k+1
E(k)Jr@Jrni*Jrj < 5(k)+@+7+j7,

P P p p

Yiv1 < G(J)

Case 3: j > n. This case implies j + 1 > n. Then, according to Equation (28), +;41 is as given in
Equation (39).
n—k+1 j+1—n
* + /
P P
Now comparing, Equation (39) and G(j) shows that G(j) is the maximum of the two. This
comparison is shown below.

i1 =EKk)+O+ (39)

n—k n—=k . , .
> < — (since p' < p)
n—k 1 < n—k+1
p* P P
-k j- 1 —k+1 j-
n " J ,n - < i ,+ J /n (since j > n)
P pPp P p
1 n—k j—n+1 1 n—k+1 j—n
Eh)+0+—+ =4+ 17T < gy r0+ — 4TI
P p p p P p
n—k+1 j+1—n 1 i—k+1
Ek+o+ T I TR < g r0+ — LT
p p p p
Yirn < G())

For all the three cases, we have showed that 1;,1 < G(j). Hence, Equation (36) can be simplified
as shown below.



. . 1
Gli+1) = mafc(%ﬂﬂ(]))‘*‘;
. 1
= g(])‘f‘;
1 i —k+1 1
- Ek e+ -+l TEE L2
p p p
1k 41
= g LIRS
p
= g9(G+1)

This proves that g(j) is a bound to G(j) for the first active period. Now, we need to prove if the
bound holds for sequence of active periods. This is given in the second part of the proof.

Part 2: For sequence of active periods

Base step: We have showed in the first part of the proof that the bound holds for the first active
period.

Inductive step: Assuming the bound holds for the Ith active period, A!, we need to show if it holds
for the (I + 1)*" active period, A'*1. Let k! and k'*! denote the first service units in active period
Al and A1 respectively.

The production time of the first token produced by actor A in the (I 4 1)*" active period is as given
in Equation (40).

G = maz(F(ET), G - 1)) + 1 (40)

/

Let us now evaluate the max term in Equation (40). F(k'*1) is as given in Equation (41), according
to Equation (28).

1
FEHY =T +0+ = (41)
p
G(K"*1 — 1) is as given in Equation (42), according to Equation (34). This is because kt! —1

belongs to active period A' and based on our assumption in the inductive step, the bound holds for
active period A'.

EH—1— k41

/

G —1) = g(k"" —1) = Y+
]{:l+1 _ kl
0

Comparing Equation (41) and (42) shows that F (k') is the maximum of the two. This comparison
is given below. For Equation (43), note that /T —k! equals the total number of service units requested
(also served) in active period A'. The relation is based on the fact that the total service a requestor

would get if it were continuously served at its allocated rate, i.e p’ - (7o — 71 + 1), is always greater
than or equal to the total service it actually receives.

1
= &W+@+;+ (42)



p -t =7t +1) > k" — k! (from concept of active periods) (43)
0 (7'5r1 =D +p (-7l +1) > EF — K (since T{“ —7t>1)
T R T
p/ . (5(kl+1) _ g(k‘l)) > kl+1 _ kl
1+1 1 K — K
ERT)-E(K)) = —
kl+1 _ k‘l
5(kl+1) Z 5(]{3[) + -—
1 1 kg
a#ﬁ+@+ﬁ—_ aw+®+ﬁ+——7—
F (kl+1) > g (kHl — 1) (by substituting Equations (41) and (42))

Now, Equation (40) can be simplified as shown below.

G = mar(F(E), G 1) +
= FY 4L

/

1 1

= kY +0+—+—
p* o p

: _kl—i—l 41

= Y1+ jT

_ g(lirl)

This shows that the bound holds for the first service unit of active period A1 In addition, in the
inductive step of the first part of this proof, we showed that if G(j) = g(j), then G(j +1) = g(j + 1).
In that proof, we did not assume that service units j and j + 1 belong to the first active period. That
means, the proof also holds for any active period. Hence, with this we show that the bound holds for
active period At

This proves that the bound holds for all active periods, since we showed that the bound holds for
the (I 4+ 1) active period, assuming it holds for the /' active period. O

2) Equivalence between Dataflow Model and Bi-rate Guarantee: In this section, we give the proof
for the equivalence between the dataflow model, illustrated in Figure 3(a), and the bi-rate service
guarantee of CCSP. We do this by showing the equivalence between Equation (28) and Equation (13).
Equation (28) bounds the finishing time of each service unit according to the bi-rate service guarantee.
Equation (13) is a relation that gives the production time of tokens by actor H of the dataflow model.
Since the production of each token by actor H corresponds to the completion of one service unit,
the equivalence of these two equations shows the equivalence of the bi-rate service guarantee and the
dataflow model.

The proof is split into two theorems for the sake of readability. The theorems are proved by induction.
Theorem 1 first proves that the equivalence holds for the first active period. Then, Theorem 2 proves
that the equivalence also holds for sequences of active periods, making use of the proof from Theorem 1
as a base step.

Theorem 1 (Equivalence for the first active period): For the first active period, the bound on the
finishing time of service unit 7, 9, as defined in Equation (28) is equivalent to the bound F(j), as
defined by Equation (13).



Proof: We prove the theorem by induction.
Base step: For the first service unit, we have that

1
FU) = maz(E1)+6,7(0),6( - h)+ =
= £1)+06+ pi* ('since F(0) = G(1 — h) = 0 according to Equations (13) and (33))
1
= 711+ (C) + —
p

=
Inductive step: Assume for any service unit j in the active period, it holds that F(j) = ;. Then,
we need to prove that it also holds for the j + 1*" active period: i.e. F(j+1) =1,41. According to
Equation (13), F(j + 1) is given as given in Equation (44).

F(+1) = maz(€G + 1) + ©,F (), GG + 1 — k) + pi (44)

To evaluate the maz term in Equation (44), we need to consider three cases. The cases are for
j<mn,j=mnandj>n.

Case 1: j < n. This case implies that 541 < n. Let us expand all the three terms in Equation (44).
The arrival time of the (j + 1)*" service unit is as given in Equation (45), according to Equation (23).

j+1—k

EG+1)+O0=11+06+ - 45

We know from the assumption of the inductive step that F(5) holds. It is as given in Equation (46),
according to Equation (28).

. j—k+1
F)=m+0+L ="~ (46)
The third term G(j + 1 — h) is as given in Equation (47), according to Equation (33).
. . i +1—-h—Fk+1
GG +1=h) =g(j+1—h) =y -+ “7)

pl

Now let us compare the above three equations to compute the max term in Equation (44). It can
be seen that Equation (45) and Equation (46) are equal. Comparing them with Equation (47) reveals
that Equation (47) is the lesser. The comparison is shown below here.

| — k j — 1 —k-1
p p P
| — k j — 1 —k-1
J — = / n/—&— + 2 (since j+1—n<0andp <p*)
p p
| — k j — 1w
J " > % + — (according to Equation (21))
p p p
o . ,
j—k > J n+/h +1
p* p
j — k j+1—h—k+1
J " > I+ . + (according to Equation (20))
p p
j — k 1 +1—h—k+1
7_1_’_@_’_7*4_]* > 7'1—|—6)—|——*+j - +
prp p p
1 j—k +1—h—k+1
4O+ —+1 2 > g4 :

prp p

F(j) > G(j+1—h) (according to Equations (46) and (47))



Now, evaluating Equation (44) shows that F(j + 1) = ¢j41, as shown below here.

1
ﬂwu>::mwwu+n+&fmgu+rw»+;
1
= F()+—
(J) >
— 7—1+@_|_M
= z/Jj+1

Case 2: j = n. This case implies that j+1 > n. Let us expand all the three terms in Equation (44).
The arrival time of the (j + 1)*" service unit is as given in Equation (48), according to Equation (23).
. n—=k

EG+N)+0=711+0+ —

1
t5 (48)

We know from the assumption of the inductive step that F(j) holds. It is as given in Equation (46).
The third term G(j + 1 — h) is as given in Equation (47). Now let us compare Equations (48), (46)
and (47) to compute the max term in Equation (44). Equation (48) is greater than Equation (46), as
shown below here.

1 1
5 2
p P
n—k 1 n—k 1
T+ 0+ Tz T +O+ — o
EG+1H+0 = F()

Next, comparing Equation (48) and Equation (47) reveals that they are equal. The comparison is
shown below here.

—k 1 1 —k-1 ) — 1
n* +—- = 7*+n " —l—j n/—i— (since j = n)
p p p p
-k 1 1 n j — 1
n —+= = —+—=+ J n/—&— (according to Equation (21))
P P p* o p P
n—k 1 1 j—n+h+1
e
P P P P
-k 1 1 i+1—h—k+1
n - = —+ I - + (according to Equation (20))
P p p p
-k 1 1 i+1—h—k+1
1+ 0+ r - = n+O0+—_+ s - + (according to Equation (20))
* p*
EG+1)+O = G(j+1—h) (according to Equations (48) and (47))

Now, evaluating Equation (44) shows that F(j + 1) = 1;41, as shown below here.



FGi+1) = max(EG+1)+0,F(y),6(j+1 _h))"‘pi*

n—k 1 1

= m+6+ + =+~
P
n—k+1 1
= ntO+————+-
P P

—k+1 41—

= 71+®+n *+ +]+, n(sincej:n)

p

= Yjn

Case 3: j > n. This case implies that 541 > n. Let us expand all the three terms in Equation (44).
The arrival time of the (j + 1)*" service unit is as given in Equation (49), according to Equation (23).
_ n—-k j+1-n
EG+1+0=n+6+= +? i (49)
We know from the assumption of the inductive step that F(5) holds. It is as given in Equation (50),
according to Equation (28).

n—k+1 i —n
* + J /
P p
The third term G(j 4+ 1 — h) is as given in Equation (47). Now let us compare Equations (49), (50)

and (47) to compute the maz term in Equation (44). Equation (49) is greater than Equation (50), as
shown below here.

FlHl=m—+0O0+ (50)

1 1

pT o pt
n—k i—n 1 n—=~k i —n 1
nto+ Iy o s iy T
p p p P p

EG+1)+0 > F()

Next, comparing Equation (49) with Equation (47) reveals that they are equal. The comparison is
shown below here.

n—k j—-n+1 1 n—k—1+j—n—|—1
p* 4 p* p* 4
—k j-n+1 1 K j-n+l
n — T J n/—&— = —+5+ u (according to Equation (21))
p P p* P p
n—k j—-n+1 1 j—-—n+h+1
T = St
p P P p
—k | — 1 1 i+1—h—k+1
o — + J n/+ = — s / + (according to Equation (20))
p p P p
—k | — 1 1 i +1—h—k+1
T+ 0+ n — + J n/+ = n+O0+—+ s - + (according to Equation (20))
p p p p
E(GF+1)+O = G(j+1—h) (according to Equations (49) and (47))

Now, evaluating Equation (44) shows that F(j 4+ 1) = %11, as shown below here.



FGi+1) = mazx(E(G+1)+0,F(),6(G+1—-h))+ pi*

1
= g(j+1)+@+;
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* +J /
P P

= 1+6+
= wj+1

We are now able to show for all the three cases that F(j+1) = ¢, assuming F(j) = ¢;. Hence,
by induction, this proves that the equivalence between F(j) and 1; holds for the first active period.
1

Theorem 1 now forms the base step for the proof by induction of Theorem 2 that shows that this
equivalence also holds for all active periods.

Theorem 2 (Equivalence for sequences of active periods): For any active period, the bound on the
finishing time of service unit 7, ¢;, as defined in Equation (28) is equivalent to the bound F(j), as
defined by Equation 13.

Proof: We prove this theorem by induction.

Base step: We have proved the equivalence holds for the first active period in Theorem 1.

Inductive step Let us assume the equivalence holds for the I*" active period, A4;. Let k'*! is the
first service unit in the (I 4+ 1)“’ active period, A1 and k! the first service unit in active period Al
In addition, 7/ denotes the beginning of the I*" active period, and n! and n!*! denote the last service
units served at the higher rate in the I*" and (I + 1)** active periods, respectively.

Now, we show that the equivalence holds for active period A'*!, by induction.

Base step: for active period A'*! - For the first service unit of active period A'*!, Equation (51)
holds, according to Equation (13).

FRL) = maz(E(K™) + 0, F(KH — 1), 6K — b)) + — (S1)

Now, let us compare the three terms in Equation (51) to evaluate the max term. Comparing
E(K1) 4+ © and F(k'*! — 1) shows that £(k'™!) +© > F(k'*! —1). This comparison is presented
as follows.

Since k!t is the first service unit of active period A'™!, k'*! — 1 belongs to active period A' and
Equation (52) holds, according to Equation (23) .

l N
rlp T D=k H{;l)_k Kt —1<n!
ERH —1) S gy = rl+ 22k KA —1=n (52)
R e ey Y

Since service unit k'*! does not belong to the active period A', we have Equation (53) where
the right side of the the equation would be the bound on the arrival time of k‘t! if it were in
active period A’

41 1
7'{—!—’“9[1“ Bt —1 < nt
1 l
e e Kt —1=n (53)
,7_{ 4 nl—k! + kTt _nl lirl —1> ,nl
p* P’

From the inductive step, we have assumed the equivalence holds for active period A;. Hence, the
bound on the finishing time of £+ —1 is given as shown in Equation (54), according to Equation (28).



Tl 04+ Bk Kt -1 <t
L O S L G (L 1 L YL oY
p* o’

Now evaluating €(k'T1) 4+ © and 9;:41_1, we can see that E(k'L) + 0 > Y.
D IR — 1 <l
kH—l _ kl

EEH+0 > H4+—+6
= Y+
2) If K — 1 =nl,
I _ k‘l 1
gkt +e > rre+” — + =
P
Bl —1 — k! 1
At —1) — k41
= 11+0+ ( )*
P
= Yprig
3) If KM —1 > nl,
S N A A R
Ry +0 > Aot T T
P P
. nt— kb kKL p! 1 1
> 1+ O+ " + / + -
P P prop
. nl—kl—Fl kl+1_1_nl
= T +0+ " + S
P P
= g
Therefore, from the above steps we have
EEY + 0 > Py (55)

Since we know the equivalence holds for active period A! from the inductive hypothesis, we have
F(K*t — 1) = 9ju41_;. Hence, from Equation (55), we get (k') +© > F(K!*! — 1). Now
to compute F(k'*!) of Equation (51), we need to compare £(k'*1) 4+ © and G(k'*' — h). This
comparison is given below.
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p -t =7l +1) > K — K (similar to Equation (43))
0 (T{H — Té -1 +/ (Té — T{ +1) > k' — k' (since T{+1 — Té >1)
o) > R
poERT) —ERD) = KT
kl+1 _ k‘l
g(kl-i-l) o 5(/€l) > —
P
kl+1 _ kl
g(kl+1) - g(kl) Z -
P
1 —h+1 EH_§! 1 —h+1
E(ETYH — &Y > P + pj— p (since > + pj_ <0)
1 —h+1 K —F
E(ETYH > &Y + > + p + "
+1 1l
E(RTYH > 5(kl)+i+ k hok o+l
* /
p p
1 K+ —h—Kk 41
EETH+e > gkh)y+0+—+ i
P

p
EEHHY+0 > Gk — h) (according to Equation (34)

Now, let us evaluate the maz term in Equation (51).

FETY = mazEET) + 6, F(ET —1),G(k" — h)) + pi*

1
E(ETH + 0+ o
= Yr41

This shows that the equivalence between JF and ¢ holds for the first service unit of active period A+,
Inductive step: for active period A™t! - In the inductive step of Theorem 1, we have showed for
the first active period that if F(j) = ¢; then F(j+1) = 1);41. That proof did not assume that service
units 7 and j + 1 belong to the first active period, and therefore it also holds for any active period.
Hence, with this we show the equivalence between F and ¢ holds for active period A'*!.
With this, we prove by induction that the equivalence between F and 1 holds for all active periods.
L

III. CONCLUSION

The Credit-Controlled Static-Priority (CCSP) arbiter fits very well for arbitrating accesses to heav-
ily loaded shared System-on-Chip resources with latency-critical requestors. However, the existing
dataflow model is based on a service guarantee that does not capture bursty provided service. As a
result, the system-level analysis gives pessimistic worst-case finishing time of requests. This ultimately
leads to over-allocation of resources to satisfy real-time requirements of applications. In this document,
we present a novel dataflow model of the arbiter and formally prove its equivalence to the bi-rate service
guarantee that captures bursty service provision. The new dataflow model significantly improves the
worst-case finishing time of requests, which leads to efficient resource utilization of resources under
CCSP arbitration.



