
A General Framework for Average-Case
Performance Analysis of Shared Resources

Sahar Foroutan

1
, Benny Akesson

2
, Kees Goossens

2
 and Frederic Petrot

1

1
TIMA Laboratory, Grenoble, France

2
Eindhoven University of Technology, Eindhoven, the Netherlands

IMA (CNRS

enoble, France
Abbas.Sheibanyrad@imag.fr

TIMA (CNRS/INPG/UJF)
 Grenoble, France
Frederic.Petrot@imag.fr

ABSTRACT. Contemporary embedded systems are based on

complex heterogeneous multi-core platforms to cater to the

increasing number of applications, some of which have (soft)

real-time requirements. To reduce cost, resources are shared

using diverse arbitration mechanisms, such as Time-Division

Multiplexing (TDM), Static-Priority (SP), and Round-Robin

(RR), depending on application and resource requirements.

However, resource sharing results in interference between

sharing applications making it difficult to estimate if the average

latency is sufficient to satisfy their real-time requirements.

Existing work proposes isolated models that either fail to address

the diversity of arbitration mechanisms or cannot capture the

dynamic arrival and service processes of applications and

resources in multi-core platforms.

This paper addresses this problem by proposing a general

framework for average-case performance analysis of shared

resources in multi-core platforms. The two main contributions

are: 1) a general model for resource sharing based on queuing

theory that can be used with different arbiters and that captures

architectural features of the shared resource, such as pipelining

and arbitration delay, and 2) three arbiter models for TDM, SP,

and RR, respectively that assume general distributions (G/G/1)

and fits within the framework.

I. INTRODUCTION

Embedded systems are growing in complexity as more

and more applications (functionality) are integrated into a

single system. In consumer electronics, this is driven by the

convergence of application domains, where applications

from previously independent products, e.g. media players,

navigators, personal digital assistants, handheld video

games, and telephones, come together in a single device,

such as a smart phone. To deliver on the computational

requirements of these applications in a cost-effective and

power-conscious manner, systems are based on

heterogeneous multi-processor platforms with shared

resources, such as interconnect and memories [1-3]. Access

to these shared resources is provided by different resource

arbiters, such as Time-Division Multiplexing (TDM),

Static-Priority Arbitration (SP), and Round-Robin (RR),

depending on resource characteristics and application

requirements.

Some applications have real-time requirements that

must be satisfied for the application to execute correctly.

This work considers soft real-time requirements that are

common in the multimedia domain. This type of

requirement must typically be satisfied, but can

occasionally be violated at cost of a slight decrease in

quality of the output, such as audible or visual artifacts in

an audio or video stream. To design these systems cost-

efficiently, performance analysis of soft real-time

applications typically consider the average execution time

of the application and hence requires estimates on the

average time required to access shared resources, which

can be derived using probabilistic models, for example

based on queuing theory. However, existing queuing

models either assume that arrival and service processes

follow an exponential distribution, which does not hold for

dynamic applications, or address only a single arbitration

mechanism in isolation, thus failing to recognize the

diversity of arbiters in complex systems.

This paper addresses this problem by proposing a

general framework for average-case performance analysis

of shared resources in multi-core platforms. The two main

contributions of the work are: 1) a general high-level model

for resource sharing based on queuing theory that can be

used with different arbitration mechanisms and that

captures architectural features of the shared resource, such

as pipelining and arbitration delay, 2) three arbiter models

for TDM, SP, and RR, respectively, that assume general

distributions of request inter-arrival and service times

(G/G/1). We experimentally evaluate the proposed

framework by comparing the models to results obtained by

simulation of a shared SRAM memory controller using

both synthetic traffic and traces from real applications in

the multimedia domain. We show that the models have

average deviations of 4.1% for TDM, 12.9% for SP, and

14.2% for RR with synthetic traffic and that although larger

deviations are observed for realistic applications, they

significantly outperform models assuming exponentially

distributed traffic.

The rest of this paper is organized as follows. Section II

discusses related work. Section III then presents our

resource model and a short introduction to queuing theory.

The proposed general framework is introduced in

Section IV before Section V presents three arbiter models

for TDM, SP, and RR, respectively, that fits within the

framework. The framework and its models are

experimentally evaluated in Section VI before conclusions

are drawn in Section VII.

II. RELATED WORK

Platform resources are shared with a diversity of

arbiters to address the heterogeneous performance

requirements of their applications. Several isolated

performance models of such arbiters have been proposed

[4-13], mostly based on queuing theory [5-12]. However,

they typically assume that request inter-arrival times and

resource service times follow Poisson (exponential)

distributions [4-9, 11, 13], which do not cover the dynamic

and bursty nature of applications executing through a cache

or the behavior of resources with complex timing behavior,

such as SDRAMs [14]. In [6], the authors propose a

multiple-queue round-robin model for routers in best-effort

networks-on-chips (NoCs). However, this model assumes

data arrives according to a Poisson process, which is a

common assumption in performance analysis of both off-

chip and on-chip networks [7, 9-11, 13]. For SP, there exist

models in literature [12, 15] that consider traffic arrivals

following a general distribution. Based on the SP model of

[15], which assumes infinite arbiter queues, [12] proposes a

model for arbiters with limited buffering space in routers of

QoS NoCs.

A problem with the aforementioned works is that they

model single arbiters and do not consider the diversity of

arbiters in contemporary platforms, restricting performance

analysis to different tools and models for every shared

resource. To this end, we propose a general framework that

captures several arbiters in a unified manner, simplifying

implementation in performance analysis tools. It also

captures architectural features of the shared resource, such

as pipelining and arbitration delay. Furthermore, we present

three arbiter models for RR, SP, and TDM, respectively,

that fit within this framework. All three arbiter models

consider generally distributed traffic arrival times and

resource service times (G/G/1) to increase their suitability

for real applications executing on multi-core platforms.

III. BACKGROUND
This section presents relevant background information,

required to understand the discussions in this work. First,

we describe the resource model used in this paper, followed

by an introduction to queuing theory.

III.1. Resource Model

We consider an abstract resource model, shown in

Figure 1, with a single resource and multiple queues

belonging to separate requestors competing for access to

the shared resource. This single resource can be a memory,

processor, or an output channel of a NoC router to which

several input ports share access. We assume that the

resource has separate queues per requestor and that they are

sufficiently large to decouple production and consumption

behavior. This is consistent with most other work on

queuing theory, which assumes sufficiently large buffers

either at the traffic source or at the resource. Although this

assumption is not practical to implement in the context of

embedded systems, it enables us to focus on modeling

different arbitration mechanisms and to be comparable to

related work. Improving on this assumption is left as future

work.

Depending on the latency requirements of the

requestors, different arbitration mechanisms can be used to

schedule requests, such as TDM, RR, or SP. An arbitration

mechanism can be classified as either work-conserving or

non-work-conserving. A work-conserving arbiter is never

idle while there a requestor with waiting requests.

Conversely, a non-work-conserving arbiter does not

schedule a waiting request until it is eligible, i.e. when it is

its turn in the TDM schedule or when the requestor has

sufficient budget in budget-based schedulers. The main

advantage of being work-conserving is that it improves

resource utilization and reduces the average latency by

using slack capacity, i.e. unallocated resource capacity or

capacity allocated to other requestors that is not used [16].

In contrast, a non-work-conserving arbiter may be idle even

though there are waiting requests. This approach is useful

to keep traffic from different requestors independent from

each other and is beneficial to reduce burstiness in

networks of resources [17]. In this work, we use the

convention that RR and SP are work-conserving arbiters

and TDM non-work-conserving.

III.2. Queuing Theory

The real-time analysis in this work builds on queuing

theory and the fundamentals of this framework are

presented in this section. Although we consider a resource

with multiple queues, we start by introducing the single-

queue model, which is the traditional model used in

queuing theory. This is later generalized to a multiple-

queue model in Section IV.

In queuing theory, a queuing model A/S/N represents a

single-queue system, where A is the arrival process of

requests to the queue, S represents the service process of

requests in the resource, and N represents the number of

resources (here N=1) [18, 19]. In a single-queue system,

requests are served in the same order they arrive to the

queue, i.e. in first-in first-out (FIFO) order. The average

latency of an incoming request depends on the number of

requests in the queue that, in turn, depends on the arrival

and service processes. To capture the dynamic behavior of

real applications, this work considers general arrival and

service distributions (G/G/1) instead of the commonly used

exponential distributions (i.e. Poisson process). This is

required to better cover the irregular behavior and bursty

arrival patterns of realistic applications executing through a

cache, as well as the variable service times caused by

different request sizes or resources with complex service

time behavior, such as SDRAMs. We motivate this by

showing two histograms of request inter-arrival times from

a JPEG decoder and an H.263 decoder executing through a

cache in Figure 2 (the exact setup that generated these

histograms are later described in Section VI). The figures

λ1 , σ1

λ2 , σ2

λp , σp

Arbiter

S

μ , σS

Figure 1. A general shared resource with separate queues per requestor

supporting multiple arbitration mechanisms.

TDM RR SP

clearly show that the inter-arrival times of these

applications do not follow an exponential distribution, or

any other simple distribution for that matter, requiring more

general models.

In a G/G/1 model, both request inter-arrival times and

service times are independent and identically distributed

with a general distribution. The inter-arrival times and

service times are furthermore independent from each other.

The arrival process is characterized by the mean and

standard deviation (or variance) of request inter-arrival

times, TA and σA (or σ
2

A), respectively. Similarly, the

service time is characterized by the mean and standard

deviation (or variance) of service times, TS and σS (or σ
2

S).

The mean arrival rate and mean service rate are determined

by λ=1/TA and μ=1/TS, respectively, as indicated in Figure

3. The average waiting time a request spends in the queue,

referred to as the queuing delay, is computed according to

Equation 1, where n is the average number of requests

already waiting in the queue and R is the residual time,

explained later.

Equation 1: Queuing delay in a single-queue system.

According to Little’s law [15], shown in Equation 2, the

long-term average number of requests in a queue, n, is

equal to the long-term average arrival rate, λ, multiplied by

the average time a request spends in the queue, W. Little’s

law is a general result holding for arbitrary distributions of

inter-arrival times and service times, including G/G/1

models [15]. Based on Little’s law, Equation 1 can be

rewritten according to Equation 3.

Equation 2: Little’s law [15].

Equation 3: Queuing delay as a function of λ and μ.

In queuing models, the utilization of the resource is

defined as ρ= λ / μ, where ρ ≤ 1 to prevent overload.

Equation 3 can hence be rewritten according to Equation 4.

Equation 4: Single queue main equation.

The residual time, R, is the mean remaining service

time of a busy resource and is given by Equation 5.

Equation 5: Residual time [15]:

When a request arrives, the request already in service

needs ts time units to be finished. This quantity (ts) is called

the remaining service time and is approximated by

Equation 6 for G/G/1 models [15], where CA and CS are

coefficients of variation (CV) of the request inter-arrival

distribution and service-time distribution, respectively.

Here, we remind that the relationship between the CV of a

random variable X and its mean () and variance (
) is

expressed as

 .

Equation 6: Remaining Service time for G/G/1 model.

In a single-queue model, the probability P(busy

resource) in Equation 5 is the server utilization ρ.

Therefore, using ρ and ts in Equation 5, we arrive at

Equation 7. Combining this with Equation 4 results in

Equation 8, which is the well-known Allen-Cunneen

approximation formula for G/G/1 queues [15]. Note that

there is no exact queuing solution for G/G/1 queues and

only approximations have been proposed in the literature,

among which the Allen-Cunneen approximation is one of

the most commonly used.

Equation 7: Residual time for G/G/1 model.

Equation 8: Allen-Cunneen approximation formula for

G/G/1 queues.

IV. GENERAL FRAMEWORK

Having presented our resource model and the

fundamentals of queuing theory, we proceed by presenting

our general framework for resource sharing with multiple

queues. This framework extends on the basic queuing

theory presented in Section III.2 by considering different

arbiters, as well as architectural features of the shared

resource, such as pipelining and arbitration delay.

For each requestor, we are interested in determining the

average total time the requests of that requestor spend in

the corresponding queue. This is referred to as the

scheduling latency, expressed in Equation 9, and is defined

as the (average) time between the moment a request arrives

and the moment it is scheduled.

Equation 9: Scheduling latency.

The scheduling latency comprises three components.

The first component is the architecture delay (ArchDly),

which is a constant delay affecting all requests, even when

TA=1/λ , σA

S

Queue Resource

TS= 1/μ , σS

Figure 3. G/G/1 Single-queue, single-resource model

Request Intervals

Request Intervals

Fr
eq

u
en

cy

Fr
eq

u
en

cy

JPEG

H.263

 Figure 2. Histograms of request intervals of JPEG and H.263 decoders

Mean: 1819 ns
σ: 26040 ns

Mean: 52155 ns
σ: 3631632 ns

the queues are empty. This captures details of the arbiter

architecture, such as pipelining. Pipelining typically only

accounts for one to a few clock cycles, but this delay is still

significant to model for resources that are shared at a very

fine granularity, such as SRAM memories, where the

service time may be as low as a single cycle for word-sized

accesses. It is important to add this constant to the

computed scheduling latency of requests and not to the

mean service time, TS, since pipelining affects latency of

requests, but does not reduce the throughput of the

resource.

The second component of the scheduling latency is the

arbitration delay (ArbDly), which corresponds to the

average time between two consecutive arbitration

decisions. This models that arbitration in an idle resource

does not always happen as soon as a request arrives, but

may be restricted to predetermined, e.g. periodic, timeslots

to create isolation between applications. For arbiters in

which scheduling can take place every clock cycle, the

arbitration delay is equal to zero.

The final component of the scheduling latency is the

queuing delay (W), previously introduced in Section III.2,

which considers the average waiting time in the queue.

This depends on the average number of requests that are

waiting to be served and depends on how the particular

arbiter schedules requests from the different queues. Our

goal is to have a general framework that covers multiple

arbiters in a unified way. To achieve this, we introduce the

general expression in Equation 10 to compute the queuing

delay.

The objective of this model is to approximate the

average latency of a request arriving to any queue of a

multiple-queue resource with p queues, as previously

shown in Figure 1. Requests of each queue are served in a

FIFO fashion with respect to each other (i.e. there is no

reordering between requests in the same queue). Wi is the

average waiting time (queuing delay) of queue i. is the

mean service time of any other queue j. The first part (I) of

the equation represents the waiting time due to requests in

the same queue (queue i), which is similar to the single-

queue waiting time from Section III.2. The second part of

the equation (II) relates to the interference from other

queues. At the arrival time of the considered request to

queue i, there are a number of requests (nj) in any other

queue j that depending on the scheduling policy may be

served earlier. For example, with a static-priority arbiter,

only those requests that belong to queues with a higher

priority than queue i are served before the considered

request. The main novelty of Equation 10 is function

A(ni,nj) that indicates the interference of other queues on

queue i and thus models the arbitration. We call this the

arbitration indicator and we explain how it is determined

for TDM, SP, and RR arbiters, respectively, in Section V.

The third part of Equation 10 represents the residual time in

multiple G/G/1 queue models. It is approximated according

to Equation 11, which expresses the average residual times

of all queues and is obtained similarly to Equation 7 (i.e. by

multiplying tsi by the resource utilization, ρi, for each queue

i) [15].

Equation 11: Residual time for G/G/1 multiple-queue

model.

V. ARBITER MODELS

After presenting our general framework for resource

sharing with multiple queues, we introduce three arbiter

models for TDM, SP, and RR, respectively, that fits within

this framework.

V.1. Time-Division Multiplexing

TDM arbitration is based on a periodically repeating

frame (table) with fixed period, . Service is allocated

to requestors by assigning slots within the frame, each

corresponding to service of one request. TDM is usually

non-work-conserving, and the arbiter thus idles if the

requestor assigned to a particular slot does not have waiting

requests. This makes the timing behavior of the queue

completely independent from the other queues, as

expressed by the arbitration indicator in Equation 12. This

enables Equation 10 to be rewritten according to Equation

13. Furthermore, since queues are independent, the residual

delay (R) of each requestor depends only on mean and

variance of request inter-arrival times to the same queue.

Therefore R in Equation 13 is obtained from Equation 7

(and not Equation 11). These insights convert the TDM

delay model from a multiple-queue model to an equivalent

single-queue model with that can be

approximated by Equation 8.

Equation 12: Arbitration indicator for TDM.

Equation 13: TDM queuing delay for any requestor i.

Note that Equation 13 depicts the most straight-forward

(and the most commonly used) version of TDM in which

each requestor is assigned a single timeslot. In the general

case, each requestor j can be allocated one or more

timeslots, each equal to the service time of one request

coming from j (i.e.). There may furthermore be

unallocated slots in the frame. Although, Equation 13 can

be easily converted to capture the general case, we leave

this out of the paper for simplicity.

I II III

Equation 10: Unified model for queuing delay with

multiple queues.

V.2. Static-Priority

Static-priority arbitration is a commonly used arbiter in

systems with diverse latency requirements. A unique

priority level is assigned to each requestor at design time

and the mechanism simply works by always scheduling the

requestor with highest priority that has waiting requests.

The queuing delay of a requestor hence depends only on

requestors with higher priority, which is shown in the

arbitration indicator in Equation 14.

Equation 14: Arbitration indicator for SP.

A problem with queues no longer being independent is

that the queuing delay depends on the number of requests

in the queues of other requestors, which must first be

determined. For SP, this is done by first solving the

equation for the highest priority requestor, which is

independent of others, as a single-queue model to obtain

the average number of requests in the queue (n1). This is

then used to compute the queuing delay for queues with

lower priorities, one after the other in descending order of

priority, using the multiple-queue model. The computed

average number of requests in each queue is used for the

queues with next lower priority, resolving the dependency.

This means that Equation 10 turns into Equation 16 for the

case of SP, where R is obtained from Equation 11. We

arrive at the case of the highest priority requestor (i=1) by

substituting the arbitration indicator in Equation 14 into

Equation 10, reducing it to only the first and last term,

which is equal to Equation 1, and then substituting W using

Equation 4. For requestors of lower priorities ()

substituting the arbitration indicator in Equation 14 into

Equation 10 gives:

Equation 15: SP queuing delay for requestor with

lower priorities

 Since the middle term of Equation 15 is previously

solved (for requestors with higher priorities), it can be

grouped with R (that together are considered as a constant

for this step of computation because they are already solved

independently). Then by substituting ni from Little’s law

(Equation 2) in Equation 15, we arrive at the case of lower

priority requestors ():

Equation 16: SP queuing delay for any requestor i.

Models similar to the one in Equation 16 have been

previously proposed in literature, e.g. in [15] and [12]. The

model presented here is strongly related, but has been

slightly adapted to be consistent with our general

framework.

V.3. Round-Robin

A round-robin arbiter operates by cycling through the

different queues, serving one request from each before

starting over. It is hence similar to the special case of TDM

where all requestors have a single assigned slot each, but

with the difference that RR is typically work-conserving.

This makes the round robin arbiter the most complex

arbiter considered in this paper with respect to

dependencies between the different queues. Queues in the

TDM arbiter are completely independent and can be

transformed into single-queue equivalent models. On the

other hand, queues under static-priority arbitration only

depend on queues with higher priority, enabling

dependencies to be resolved by solving equations starting

from the highest priority requestor and continue in

descending order of priority. In contrast, the number of

requests in each queue under round robin arbitration

depends on the number of requests in all other queues,

since arbitration is cyclic and work-conserving. This cyclic

dependency between the equations of all queues must be

solved either by a fixed-point iterative technique (e.g. in

[4], [20] and [21]), or be formulated and solved as a matrix

problem (e.g. in [6]). In [6], the authors proposed a closed-

form expression for the average number of packets at each

buffer of a NoC router with RR arbitration. In their model,

A(ni,nj)=nj for any i and j. This implies that the considered

request (arriving to queue i) waits for all other requests of

any queue j, which is more similar to FIFO arbitration. In

contrast, our proposed arbitration indicator, shown in

Equation 17, captures the cyclic behavior of RR arbitration

by considering that there can be maximally ni interfering

request and even less if there are less than ni waiting

requests in queue j.

Equation 17: Arbitration indicator for RR.

VI. EXPERIMENTAL RESULTS

This section experimentally evaluates the proposed

models and compares their accuracy to results obtained by

simulation. We start by introducing the experimental setup,

followed by two experiments. The first experiment

considers synthetic traffic and the second traces from real

applications in the multimedia domain.

VI.1. Experimental Setup

The experiments of this work are conducted on a cycle-

accurate SystemC implementation of a real-time memory

controller, supporting a variety of memories and arbiters

[14]. For simplicity, these experiments consider a 32-bit

zero-bus-turnaround SRAM by the controller using the

three arbiters considered in this paper. The memory runs at

a frequency of 500 MHz (the clock period is 2 ns) and it

has uniform access latency of a single cycle, resulting in a

peak bandwidth of 2000 MB/s. Traffic is injected into the

controller by traffic generators issuing either synthetically

generated traffic or elastically replaying application traces.

The experiments consider a setup of four requestors

sharing the bandwidth of the memory. The request size in

all experiments is set to 64 B (16 words), resulting in a

uniform service time of 16 cycles for both reads and writes.

This memory controller has 4 pipeline stages, resulting in

an architecture delay of 4 clock cycles. The (average)

arbitration delay is 8 cycles for work-conserving arbiters

(RR and SP), corresponding to half a timeslot of 16 cycles.

For our non-work-conserving TDM arbiter, it is half the

TDM period, 32 cycles, since it can be seen as a single-

queue arbiter that makes new scheduling decisions once

every TDM period (a requestor cannot be scheduled before

its allocated slot). Requests from each requestor arrive in

separate queues in the memory controller, as shown in

Figure 1. These queues are dimensioned to be sufficiently

large to decouple production and consumption behavior,

which is a typical setup when evaluating average latency in

multi-core platforms [22-24].

VI.2. Results with Synthetic Traffic

We start by evaluating the accuracy of our models

using synthetically generated traffic. The intervals between

requests are determined according to a normal distribution

N(TA,σA), where TA is the mean and σA the standard

deviation of the request inter-arrival distribution (for ease

of presentation we use σ instead of σA). Traffic is generated

with different mean bandwidths, controlled with TA

(straight-forwardly derived from the bandwidth and the

fixed request size), and different burstiness (controlled by

changing the standard deviation, σ). The settings are

identical for all four requestors and the mean bandwidth is

varied in a range from 0 to 500 MB/s per requestor in steps

of 10 MB/s, while the standard deviation is set to 30, 60,

90, and 120 ns, respectively. This results in reasonably

regular traffic with some jitter, corresponding to the

behavior of some hardware accelerators in the multimedia

domain.

Figure 4, Figure 5, and Figure 6 show the analytical

average scheduling latencies obtained by applying the

proposed models for TDM, RR, and SP arbiters,

respectively, and compare them to results obtained by

simulation. We start by making some general observations

about the relation between requested bandwidth and

latency for different burstiness (standard deviation) and

scheduling policies. In Figure 4 and Figure 5, we see that

higher burstiness leads to higher average latency, which is

an expected result. This is because burstier traffic quickly

increases queue fillings, resulting in high transient queuing

delays and thus a significant growth in average latency.

However, the increase of average latency towards infinity

is due to a small mean request interval, i.e. high requested

bandwidth, and not because of burstiness. When the

arriving traffic persists indefinitely with mean request

intervals close to mean service time, the number of queued

requests grows towards infinity. In this case, the only

impact of burstiness is how fast the latencies go towards

infinity at the saturation threshold.

Figure 6 shows the impact of static priorities on average

latency when all requestors have the same stochastic

characteristics. In this case, experiments were conducted

with a standard deviation of 120 ns and results are shown

for all four requestors. We see that only the queue with the

lowest priority saturates, while the other three queues do

not saturate even at high bandwidths. This is because

requestors under static-priority arbitration are independent

of requests generated by lower priority requestors, which

means that the interfering load is decreasing with

increasing priority. For this reason, the accuracy of the

proposed model is better for higher priority requestors,

since there is less room for variation in interference from

other requestors. We also see that the requestors with the

Figure 6. Average scheduling latency for SP, 4 requestors with 4 priority

levels, and standard deviation σ =120 ns

Figure 5. Average scheduling latency for RR, 4 requestors, and for

standard deviations σ=30, 60, 90, and 120 ns

Figure 4. Average scheduling latency for TDM, 4 requestors, and for

standard deviations σ=30, 60, 90, and 120 ns

two highest priorities have average scheduling latencies

close to ArchDly plus ArbDly (see Equation 9). This shows

that request arriving to these queues hardly experience any

queuing delay and are served immediately.

Results from the three different arbiters are summarized

in Figure 7 for σ =120 ns. For SP, only the queue with the

lowest priority is shown. We see that TDM scheduling

leads to the worst average latency, even compared to the

lowest priority requestor in SP scheduling. This is due to

the non-work-conserving nature of the arbiter, which

significantly increases average latencies by not exploiting

idle slots.

We conclude this experiment by evaluating the

accuracy of the proposed models compared to simulation

results. The figures show that the proposed models provide

reasonable accuracy compared to simulations with average

deviations of 4.1% for TDM, 12.9% for SP, and 14.2% for

RR. The reason the model for TDM is more accurate is

because it is non-work-conserving, suggesting that this

property implies a trade-off between average performance

and accuracy of the model. Note the average deviation of

for SP is based on all queues (with all priorities) i.e. from

Figure 6, while Figure 7 only shows the requestor with the

lowest priority, which has the least accurate results.

VI.3. Results with Real Applications

To evaluate the accuracy of the proposed analytical

model, we run experiments by injecting requests according

to traces from two multimedia applications, an H.263

decoder and JPEG decoder, respectively, taken from

Mediabench benchmark suite [25]. For each application in

the benchmark, a memory-trace file was generated by

running it on a SimpleScalar 3.0 processor simulator [26].

The simulator was slightly modified to record the time and

address of each L2 cache miss which results in a trace file

containing all requests that go to the SDRAM. The traces

are generated using the out-of-order execution engine (sim-

outorder) with default settings except for the cache

configuration. We use a unified 128KB L2 cache with 64

byte cache lines, 512 sets and an associativity of 4. We

filtered out the L2 cache misses, and obtained a trace of the

requests meant for the memory. The generated application

traces assume a miss penalty of a single cycle, but are

elastically replayed by the traffic generators to capture the

actual latencies in the memory controller. The number of

outstanding requests is set to 10, which means that after

maximum 10 read requests without any returning

responses, the traffic generator waits for at least one

response, before sending the next request. However, this

holds only for read requests since writes are posted and do

not block the processor. There may hence be bursts of more

than 10 write requests. The mean and standard deviation of

request intervals are obtained from simulation and then

used in the analytical model. The histograms of request

inter-arrival times of these applications were previously

shown in Figure 2.

Figure 8 shows analytical versus simulation results for

the two applications for TDM, SP, and RR arbiters from

left to right, respectively. For SP, the results of the

requestor with the lowest priority, and hence the largest

deviation from the simulated results, are shown. For each

combination of arbiter and application, there is also a third

bar on right of each set showing the analytical result

obtained under the common assumption that traffic

distributions in multi-processor embedded systems follow

an exponential (Poisson) arrival distribution [6, 7, 9, 13].

Similarly to the results with synthetic traffic, we

observe that work-conserving arbitration, such as TDM,

results in much higher average latency compared to non-

work-conserving arbiters, such as RR and SP (even

compared to the requestor with the lowest priority in SP).

The errors of the proposed models compared to simulation

are indicated beside the corresponding results in the figure.

The errors are more significant with real traces compared to

synthetic results, in particularly for the RR scheduler where

an error of 60% is observed for the H.263 decoder. There

are two main reasons for this inaccuracy. 1) The first

reason that holds for all models presented in this paper is

that limiting the number of outstanding requests has a

similar effect as limiting buffering space in terms of

controlling traffic injection. Both mechanisms impose a

maximum burst length during which requests can be issued

without any hardware restrictions. Then, traffic injection is

stopped until the reception of a response (in case of limited

number of outstanding requests) or until space is available

in the destination buffer (in case of limited buffering

Figure 8: Experiment with an H.263 decoder and a JPEG decoder for
TDM, SP, and RR arbiters

19%

25%

60% 33%

TDM

SP
RR

1% 38%

Figure 7. Average scheduling latency with standard deviation σ=120

ns, there are 4 requestors scheduled by TDM, RR, and SP arbiters. For

SP, the latency of the queue with the lowest priority is reported.

space). This implies a round-trip dependency between

traffic consumption and traffic production that is not

captured by the current state-of-the-art in queuing theory to

the best of our knowledge, and is an important topic for

future work to increase the applicability of queuing theory

in the context of multi-core platforms. 2) The second

reason that holds for work-conserving arbiters (e.g. SP and

RR) is that the latency of each queue depends on arrival of

traffic to other queues. This does not hold for non-work-

conserving arbiters, such as TDM, where queues are

independent. This is why the maximum error of the TDM

model is smaller than the two others, just like in the case of

synthetic traffic.

We conclude this experiment by discussing the effects

of using the common assumption that applications in

embedded systems follow an exponential arrival

distribution. These results are derived by replacing the

standard deviation in our equations with Poissonian

characteristics, i.e. making it equal to the mean, which

gives a coefficient of variation equal to one (CA=1) in

related equations. Figure 8 shows that models assuming

exponential arrivals grossly underestimate the latency. The

relative error under this assumption is 89% using TDM for

the H.263 decoder and 94% for the JPEG decoder,

respectively. The corresponding numbers for SP are 88%

and 82%, respectively, and for RR 56% and 63%. The

reason is that the considered applications have standard

deviations that are much higher than their mean, 69 and

14.5 times higher for the H.263 decoder and JPEG decoder,

respectively, which is ignored by a Poissonian traffic

characterization. This clearly shows that using exponential

distributions to model bursty memory traffic from

applications executing through a cache to Poissonian traffic

results in inaccurate results, highlighting the benefits of

using queuing models based on more general distributions.

VII. CONCLUSIONS

This paper addresses the problem of average-case

performance analysis in multi-core platforms with dynamic

applications and resources shared by a diverse set of

arbiters by proposing a general analysis framework based

on queuing theory. The framework can be used with

different arbiters and three models supporting general

arrival and service processes are proposed for time-

division-multiplexing, static-priority, and round-robin

arbitration, respectively.

We experimentally evaluate the proposed framework

by comparing the models to simulation results of a shared

memory controller using both synthetic and traces from

real applications. The results show that the models only

have average deviations of 4.1% for TDM, 12.9% for SP,

and 14.2% for RR with synthetic traffic and that although

larger deviations are observed for realistic applications,

they significantly outperform models assuming

exponentially distributed traffic.

REFERENCES

[1] C. Van Berkel, "Multi-core for mobile phones," in Proceedings of
the Conference on Design, Automation and Test in Europe, 2009,

pp. 1260-1265.

[2] P. Kollig, et al., "Heterogeneous multi-core platform for consumer
multimedia applications," in Design, Automation & Test in Europe

Conference & Exhibition, 2009. DATE'09., 2009, pp. 1254-1259.

[3] D. Melpignano, et al., "Platform 2012, a many-core computing
accelerator for embedded SoCs: performance evaluation of visual

analytics applications," in Proceedings of the 49th Annual Design

Automation Conference, 2012, pp. 1137-1142.
[4] S. Foroutan, et al., "An Iterative Computational Technique for

Performance Evaluation of Networks-on-Chip," IEEE
Transactions on Computers, 2012.

[5] U. Y. Ogras and R. Marculescu, "Analytical router modeling for

networks-on-chip performance analysis," in Design, Automation &
Test in Europe Conference & Exhibition, 2007. DATE'07, 2007,

pp. 1-6.

[6] U. Y. Ogras, et al., "An analytical approach for network-on-chip
performance analysis," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 29, pp. 2001-2013,

2010.

[7] H. Sarbazi-Azad, et al., "Analytical modeling of wormhole-routed

k-ary n-cubes in the presence of hot-spot traffic," IEEE

Transactions on Computers, pp. 623-634, 2001.
[8] H. Sarbazi-Azad, et al., "Performance analysis of deterministic

routing in wormhole k-ary n-cubes with virtual channels," Journal

of Interconnection Networks, vol. 3, pp. 67-83, 2002.
[9] M. Ould-Khaoua, "A performance model for Duato's fully

adaptive routing algorithm in k-ary n-cubes," IEEE Transactions

on Computers, vol. 48, pp. 1297-1304, 2002.
[10] Z. Guz, et al., "Network delays and link capacities in application-

specific wormhole NoCs," VLSI Design, vol. 2007, 2007.

[11] W. Dally, "Performance analysis of k-ary n-cube interconnection
networks," IEEE Transactions on Computers, pp. 775-785, 1990.

[12] A. E. Kiasari, et al., "An Analytical Latency Model for Networks-

on-Chip," IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pp. 1-11, 2011.

[13] S. Foroutan, et al., "An analytical method for evaluating network-

on-chip performance," in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2010, pp. 1629-1632.

[14] B. Akesson and K. Goossens, "Architectures and modeling of

predictable memory controllers for improved system integration,"
in Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2011, 2011, pp. 1-6.

[15] G. Bolch, Queueing networks and Markov chains: modeling and
performance evaluation with computer science applications:

Wiley-Blackwell, 2006.

[16] L. L. Peterson and B. S. Davie, Computer networks: a systems
approach: Morgan Kaufmann, 2003.

[17] B. Akesson, et al., "Real-time scheduling using credit-controlled

static-priority arbitration," in Embedded and Real-Time Computing
Systems and Applications, 2008. RTCSA '08. 14th IEEE

International Conference on , vol., no., pp.3-14, 25-27 Aug. , 2008.

[18] A. Willig, "A short introduction to queueing theory," Technical
University Berlin, Telecommunication Networks Group, vol. 21,

1999.

[19] L. Kleinrock, "Queueing systems," ed: Wiley, New York, 1975.
[20] J. Kim and C. Das, "Hypercube communication delay with

wormhole routing," IEEE Transactions on Computers, vol. 43, pp.

806-814, 2002.

[21] J. T. Draper and J. Ghosh, "A comprehensive analytical model for

wormhole routing in multicomputer systems," Journal of Parallel

and Distributed Computing, vol. 23, pp. 202-214, 1994.
[22] P. P. Pande, et al., "Performance evaluation and design trade-offs

for network-on-chip interconnect architectures," IEEE
Transactions on Computers, vol. 54, pp. 1025-1040, 2005.

[23] E. Salminen, et al., "On the credibility of load-latency

measurement of network-on-chips," 2008, pp. 1-7.
[24] E. Salminen, et al., "On network-on-chip comparison," Euromicro

DSD, pp. 503–510, 2007.

[25] C. Lee, et al., "MediaBench: a tool for evaluating and synthesizing
multimedia and communicatons systems," MICRO 30 Proceedings

of the 30th annual ACM/IEEE international symposium on

Microarchitecture, pp. 330-335, 1997.
[26] T. Austin, et al., "SimpleScalar: An infrastructure for computer

system modeling," Computer, vol. 35, pp. 59-67, 2002.

