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ABSTRACT. Contemporary embedded systems are based on 

complex heterogeneous multi-core platforms to cater to the 

increasing number of applications, some of which have (soft) 

real-time requirements. To reduce cost, resources are shared 

using diverse arbitration mechanisms, such as Time-Division 

Multiplexing (TDM), Static-Priority (SP), and Round-Robin 

(RR), depending on application and resource requirements. 

However, resource sharing results in interference between 

sharing applications making it difficult to estimate if the average 

latency is sufficient to satisfy their real-time requirements. 

Existing work proposes isolated models that either fail to address 

the diversity of arbitration mechanisms or cannot capture the 

dynamic arrival and service processes of applications and 

resources in multi-core platforms. 

This paper addresses this problem by proposing a general 

framework for average-case performance analysis of shared 

resources in multi-core platforms. The two main contributions 

are: 1) a general model for resource sharing based on queuing 

theory that can be used with different arbiters and that captures 

architectural features of the shared resource, such as pipelining 

and arbitration delay, and 2) three arbiter models for TDM, SP, 

and RR, respectively that assume general distributions (G/G/1) 

and fits within the framework.  

I. INTRODUCTION 

Embedded systems are growing in complexity as more 

and more applications (functionality) are integrated into a 

single system. In consumer electronics, this is driven by the 

convergence of application domains, where applications 

from previously independent products, e.g. media players, 

navigators, personal digital assistants, handheld video 

games, and telephones, come together in a single device, 

such as a smart phone. To deliver on the computational 

requirements of these applications in a cost-effective and 

power-conscious manner, systems are based on 

heterogeneous multi-processor platforms with shared 

resources, such as interconnect and memories [1-3]. Access 

to these shared resources is provided by different resource 

arbiters, such as Time-Division Multiplexing (TDM), 

Static-Priority Arbitration (SP), and Round-Robin (RR), 

depending on resource characteristics and application 

requirements.  

Some applications have real-time requirements that 

must be satisfied for the application to execute correctly. 

This work considers soft real-time requirements that are 

common in the multimedia domain. This type of 

requirement must typically be satisfied, but can 

occasionally be violated at cost of a slight decrease in 

quality of the output, such as audible or visual artifacts in 

an audio or video stream. To design these systems cost-

efficiently, performance analysis of soft real-time 

applications typically consider the average execution time 

of the application and hence requires estimates on the 

average time required to access shared resources, which 

can be derived using probabilistic models, for example 

based on queuing theory. However, existing queuing 

models either assume that arrival and service processes 

follow an exponential distribution, which does not hold for 

dynamic applications, or address only a single arbitration 

mechanism in isolation, thus failing to recognize the 

diversity of arbiters in complex systems. 

This paper addresses this problem by proposing a 

general framework for average-case performance analysis 

of shared resources in multi-core platforms. The two main 

contributions of the work are: 1) a general high-level model 

for resource sharing based on queuing theory that can be 

used with different arbitration mechanisms and that 

captures architectural features of the shared resource, such 

as pipelining and arbitration delay, 2) three arbiter models 

for TDM, SP, and RR, respectively, that assume general 

distributions of request inter-arrival and service times 

(G/G/1). We experimentally evaluate the proposed 

framework by comparing the models to results obtained by 

simulation of a shared SRAM memory controller using 

both synthetic traffic and traces from real applications in 

the multimedia domain. We show that the models have 

average deviations of 4.1% for TDM, 12.9% for SP, and 

14.2% for RR with synthetic traffic and that although larger 

deviations are observed for realistic applications, they 

significantly outperform models assuming exponentially 

distributed traffic. 

The rest of this paper is organized as follows. Section II 

discusses related work. Section III then presents our 

resource model and a short introduction to queuing theory. 

The proposed general framework is introduced in 

Section IV before Section V presents three arbiter models 

for TDM, SP, and RR, respectively, that fits within the 

framework. The framework and its models are 

experimentally evaluated in Section VI before conclusions 

are drawn in Section VII. 

II. RELATED WORK  

Platform resources are shared with a diversity of 

arbiters to address the heterogeneous performance 

requirements of their applications. Several isolated 

performance models of such arbiters have been proposed 

[4-13], mostly based on queuing theory [5-12]. However, 

they typically assume that request inter-arrival times and 

resource service times follow Poisson (exponential) 

distributions [4-9, 11, 13], which do not cover the dynamic 



and bursty nature of applications executing through a cache 

or the behavior of resources with complex timing behavior, 

such as SDRAMs [14]. In [6], the authors propose a 

multiple-queue round-robin model for routers in best-effort 

networks-on-chips (NoCs). However, this model assumes 

data arrives according to a Poisson process, which is a 

common assumption in performance analysis of both off-

chip and on-chip networks [7, 9-11, 13]. For SP, there exist 

models in literature [12, 15] that consider traffic arrivals 

following a general distribution. Based on the SP model of 

[15], which assumes infinite arbiter queues, [12] proposes a 

model for arbiters with limited buffering space in routers of 

QoS NoCs. 

A problem with the aforementioned works is that they 

model single arbiters and do not consider the diversity of 

arbiters in contemporary platforms, restricting performance 

analysis to different tools and models for every shared 

resource. To this end, we propose a general framework that 

captures several arbiters in a unified manner, simplifying 

implementation in performance analysis tools. It also 

captures architectural features of the shared resource, such 

as pipelining and arbitration delay. Furthermore, we present 

three arbiter models for RR, SP, and TDM, respectively, 

that fit within this framework. All three arbiter models 

consider generally distributed traffic arrival times and 

resource service times (G/G/1) to increase their suitability 

for real applications executing on multi-core platforms. 

III. BACKGROUND 
This section presents relevant background information, 

required to understand the discussions in this work. First, 

we describe the resource model used in this paper, followed 

by an introduction to queuing theory. 

III.1.  Resource Model 

We consider an abstract resource model, shown in 

Figure 1, with a single resource and multiple queues 

belonging to separate requestors competing for access to 

the shared resource. This single resource can be a memory, 

processor, or an output channel of a NoC router to which 

several input ports share access. We assume that the 

resource has separate queues per requestor and that they are 

sufficiently large to decouple production and consumption 

behavior. This is consistent with most other work on 

queuing theory, which assumes sufficiently large buffers 

either at the traffic source or at the resource. Although this 

assumption is not practical to implement in the context of 

embedded systems, it enables us to focus on modeling 

different arbitration mechanisms and to be comparable to 

related work. Improving on this assumption is left as future 

work. 

Depending on the latency requirements of the 

requestors, different arbitration mechanisms can be used to 

schedule requests, such as TDM, RR, or SP. An arbitration 

mechanism can be classified as either work-conserving or 

non-work-conserving. A work-conserving arbiter is never 

idle while there a requestor with waiting requests. 

Conversely, a non-work-conserving arbiter does not 

schedule a waiting request until it is eligible, i.e. when it is 

its turn in the TDM schedule or when the requestor has 

sufficient budget in budget-based schedulers. The main 

advantage of being work-conserving is that it improves 

resource utilization and reduces the average latency by 

using slack capacity, i.e. unallocated resource capacity or 

capacity allocated to other requestors that is not used [16]. 

In contrast, a non-work-conserving arbiter may be idle even 

though there are waiting requests. This approach is useful 

to keep traffic from different requestors independent from 

each other and is beneficial to reduce burstiness in 

networks of resources [17]. In this work, we use the 

convention that RR and SP are work-conserving arbiters 

and TDM non-work-conserving.  

 

III.2. Queuing Theory 

The real-time analysis in this work builds on queuing 

theory and the fundamentals of this framework are 

presented in this section. Although we consider a resource 

with multiple queues, we start by introducing the single-

queue model, which is the traditional model used in 

queuing theory. This is later generalized to a multiple-

queue model in Section IV.  

In queuing theory, a queuing model A/S/N represents a 

single-queue system, where A is the arrival process of 

requests to the queue, S represents the service process of 

requests in the resource, and N represents the number of 

resources (here N=1) [18, 19]. In a single-queue system, 

requests are served in the same order they arrive to the 

queue, i.e. in first-in first-out (FIFO) order. The average 

latency of an incoming request depends on the number of 

requests in the queue that, in turn, depends on the arrival 

and service processes. To capture the dynamic behavior of 

real applications, this work considers general arrival and 

service distributions (G/G/1) instead of the commonly used 

exponential distributions (i.e. Poisson process). This is 

required to better cover the irregular behavior and bursty 

arrival patterns of realistic applications executing through a 

cache, as well as the variable service times caused by 

different request sizes or resources with complex service 

time behavior, such as SDRAMs. We motivate this by 

showing two histograms of request inter-arrival times from 

a JPEG decoder and an H.263 decoder executing through a 

cache in Figure 2 (the exact setup that generated these 

histograms are later described in Section VI). The figures 
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Figure 1. A general shared resource with separate queues per requestor 

supporting multiple arbitration mechanisms.  

TDM RR SP 



clearly show that the inter-arrival times of these 

applications do not follow an exponential distribution, or 

any other simple distribution for that matter, requiring more 

general models. 

 
In a G/G/1 model, both request inter-arrival times and 

service times are independent and identically distributed 

with a general distribution. The inter-arrival times and 

service times are furthermore independent from each other. 

The arrival process is characterized by the mean and 

standard deviation (or variance) of request inter-arrival 

times, TA and σA (or σ
2

A), respectively. Similarly, the 

service time is characterized by the mean and standard 

deviation (or variance) of service times, TS and σS (or σ
2

S). 

The mean arrival rate and mean service rate are determined 

by λ=1/TA and μ=1/TS, respectively, as indicated in Figure 

3. The average waiting time a request spends in the queue, 

referred to as the queuing delay, is computed according to 

Equation 1, where n is the average number of requests 

already waiting in the queue and R is the residual time, 

explained later. 

 

Equation 1: Queuing delay in a single-queue system.  

        

According to Little’s law [15], shown in Equation 2, the 

long-term average number of requests in a queue, n, is 

equal to the long-term average arrival rate, λ, multiplied by 

the average time a request spends in the queue, W. Little’s 

law is a general result holding for arbitrary distributions of 

inter-arrival times and service times, including G/G/1 

models [15]. Based on Little’s law, Equation 1 can be 

rewritten according to Equation 3. 

Equation 2: Little’s law [15].  

      

Equation 3: Queuing delay as a function of λ and μ. 

  
 

      
  

 

      
 

In queuing models, the utilization of the resource is 

defined as ρ= λ / μ, where ρ ≤ 1 to prevent overload. 

Equation 3 can hence be rewritten according to Equation 4. 

Equation 4: Single queue main equation.  

  
 

    
 

The residual time, R, is the mean remaining service 

time of a busy resource and is given by Equation 5. 

Equation 5: Residual time [15]: 

                                          

When a request arrives, the request already in service 

needs ts time units to be finished. This quantity (ts) is called 

the remaining service time and is approximated by 

Equation 6 for G/G/1 models [15], where CA and CS are 

coefficients of variation (CV) of the request inter-arrival 

distribution and service-time distribution, respectively. 

Here, we remind that the relationship between the CV of a 

random variable X and its mean (  ) and variance (  
 ) is 

expressed as    
    

   
  . 

Equation 6: Remaining Service time for G/G/1 model.  

   
   

    
  

  
 

In a single-queue model, the probability P(busy 

resource) in Equation 5 is the server utilization ρ. 

Therefore, using ρ and ts in Equation 5, we arrive at 

Equation 7.  Combining this with Equation 4 results in 

Equation 8, which is the well-known Allen-Cunneen 

approximation formula for G/G/1 queues [15]. Note that 

there is no exact queuing solution for G/G/1 queues and 

only approximations have been proposed in the literature, 

among which the Allen-Cunneen approximation is one of 

the most commonly used.  

Equation 7: Residual time for G/G/1 model. 

       
 

  
   

    
   

Equation 8: Allen-Cunneen approximation formula for 

G/G/1 queues. 

  
    

    
  

       
 

IV. GENERAL FRAMEWORK  

Having presented our resource model and the 

fundamentals of queuing theory, we proceed by presenting 

our general framework for resource sharing with multiple 

queues. This framework extends on the basic queuing 

theory presented in Section III.2 by considering different 

arbiters, as well as architectural features of the shared 

resource, such as pipelining and arbitration delay.  

For each requestor, we are interested in determining the 

average total time the requests of that requestor spend in 

the corresponding queue. This is referred to as the 

scheduling latency, expressed in Equation 9, and is defined 

as the (average) time between the moment a request arrives 

and the moment it is scheduled.  

Equation 9: Scheduling latency. 

                          

The scheduling latency comprises three components. 

The first component is the architecture delay (ArchDly), 

which is a constant delay affecting all requests, even when 

TA=1/λ  , σA 

S 

Queue Resource 

TS= 1/μ , σS 

Figure 3.  G/G/1 Single-queue, single-resource model 
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 Figure 2. Histograms of request intervals of JPEG and H.263 decoders 
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the queues are empty. This captures details of the arbiter 

architecture, such as pipelining. Pipelining typically only 

accounts for one to a few clock cycles, but this delay is still 

significant to model for resources that are shared at a very 

fine granularity, such as SRAM memories, where the 

service time may be as low as a single cycle for word-sized 

accesses. It is important to add this constant to the 

computed scheduling latency of requests and not to the 

mean service time, TS, since pipelining affects latency of 

requests, but does not reduce the throughput of the 

resource. 

The second component of the scheduling latency is the 

arbitration delay (ArbDly), which corresponds to the 

average time between two consecutive arbitration 

decisions. This models that arbitration in an idle resource 

does not always happen as soon as a request arrives, but 

may be restricted to predetermined, e.g. periodic, timeslots 

to create isolation between applications. For arbiters in 

which scheduling can take place every clock cycle, the 

arbitration delay is equal to zero. 

The final component of the scheduling latency is the 

queuing delay (W), previously introduced in Section III.2, 

which considers the average waiting time in the queue. 

This depends on the average number of requests that are 

waiting to be served and depends on how the particular 

arbiter schedules requests from the different queues. Our 

goal is to have a general framework that covers multiple 

arbiters in a unified way. To achieve this, we introduce the 

general expression in Equation 10 to compute the queuing 

delay. 

 

The objective of this model is to approximate the 

average latency of a request arriving to any queue of a 

multiple-queue resource with p queues, as previously 

shown in Figure 1. Requests of each queue are served in a 

FIFO fashion with respect to each other (i.e. there is no 

reordering between requests in the same queue). Wi is the 

average waiting time (queuing delay) of queue i.     is the 

mean service time of any other queue j. The first part (I) of 

the equation represents the waiting time due to requests in 

the same queue (queue i), which is similar to the single-

queue waiting time from Section III.2. The second part of 

the equation (II) relates to the interference from other 

queues. At the arrival time of the considered request to 

queue i, there are a number of requests (nj) in any other 

queue j that depending on the scheduling policy may be 

served earlier. For example, with a static-priority arbiter, 

only those requests that belong to queues with a higher 

priority than queue i are served before the considered 

request. The main novelty of Equation 10 is function 

A(ni,nj) that indicates the interference of other queues on 

queue i and thus models the arbitration. We call this the 

arbitration indicator and we explain how it is determined 

for TDM, SP, and RR arbiters, respectively, in Section V. 

The third part of Equation 10 represents the residual time in 

multiple G/G/1 queue models. It is approximated according 

to Equation 11, which expresses the average residual times 

of all queues and is obtained similarly to Equation 7 (i.e. by 

multiplying tsi by the resource utilization, ρi, for each queue 

i) [15].         

Equation 11: Residual time for G/G/1 multiple-queue 

model. 

        
  
   

 

   

    
     

   

V. ARBITER MODELS 

After presenting our general framework for resource 

sharing with multiple queues, we introduce three arbiter 

models for TDM, SP, and RR, respectively, that fits within 

this framework. 

V.1. Time-Division Multiplexing 

TDM arbitration is based on a periodically repeating 

frame (table) with fixed period,     . Service is allocated 

to requestors by assigning slots within the frame, each 

corresponding to service of one request. TDM is usually 

non-work-conserving, and the arbiter thus idles if the 

requestor assigned to a particular slot does not have waiting 

requests. This makes the timing behavior of the queue 

completely independent from the other queues, as 

expressed by the arbitration indicator in Equation 12. This 

enables Equation 10 to be rewritten according to Equation 

13. Furthermore, since queues are independent, the residual 

delay (R) of each requestor depends only on mean and 

variance of request inter-arrival times to the same queue. 

Therefore R in Equation 13 is obtained from Equation 7 

(and not Equation 11). These insights convert the TDM 

delay model from a multiple-queue model to an equivalent 

single-queue model with         that can be 

approximated by Equation 8.  

Equation 12: Arbitration indicator for TDM. 

        
   

                  

 

Equation 13: TDM queuing delay for any requestor i. 

  
          

 

   

    

Note that Equation 13 depicts the most straight-forward 

(and the most commonly used) version of TDM in which 

each requestor is assigned a single timeslot. In the general 

case, each requestor j can be allocated one or more 

timeslots, each equal to the service time of one request 

coming from j (i.e.    ). There may furthermore be 

unallocated slots in the frame. Although, Equation 13 can 

be easily converted to capture the general case, we leave 

this out of the paper for simplicity. 

                         

 

          

    

I II III 

Equation 10: Unified model for queuing delay with 

multiple queues. 



V.2. Static-Priority 

Static-priority arbitration is a commonly used arbiter in 

systems with diverse latency requirements. A unique 

priority level is assigned to each requestor at design time 

and the mechanism simply works by always scheduling the 

requestor with highest priority that has waiting requests. 

The queuing delay of a requestor hence depends only on 

requestors with higher priority, which is shown in the 

arbitration indicator in Equation 14.  

Equation 14: Arbitration indicator for SP. 

        
  
  

                                     

           
  

 

A problem with queues no longer being independent is 

that the queuing delay depends on the number of requests 

in the queues of other requestors, which must first be 

determined. For SP, this is done by first solving the 

equation for the highest priority requestor, which is 

independent of others, as a single-queue model to obtain 

the average number of requests in the queue (n1). This is 

then used to compute the queuing delay for queues with 

lower priorities, one after the other in descending order of 

priority, using the multiple-queue model. The computed 

average number of requests in each queue is used for the 

queues with next lower priority, resolving the dependency. 

This means that Equation 10 turns into Equation 16 for the 

case of SP, where R is obtained from Equation 11. We 

arrive at the case of the highest priority requestor (i=1) by 

substituting the arbitration indicator in Equation 14 into 

Equation 10, reducing it to only the first and last term, 

which is equal to Equation 1, and then substituting W using 

Equation 4. For requestors of lower priorities (     ) 

substituting the arbitration indicator in Equation 14 into 

Equation 10 gives: 

Equation 15: SP queuing delay for requestor with 

lower priorities   

                 

   

      

    

 Since the middle term of Equation 15 is previously 

solved (for requestors with higher priorities), it can be 

grouped with R (that together are considered as a constant 

for this step of computation because they are already solved 

independently). Then by substituting ni from Little’s law 

(Equation 2) in Equation 15, we arrive at the case of lower 

priority requestors (     ):    

Equation 16: SP queuing delay for any requestor i. 

  
    

                   

           

   

   
              

  

 

Models similar to the one in Equation 16 have been 

previously proposed in literature, e.g. in [15] and [12]. The 

model presented here is strongly related, but has been 

slightly adapted to be consistent with our general 

framework. 

V.3. Round-Robin   

A round-robin arbiter operates by cycling through the 

different queues, serving one request from each before 

starting over. It is hence similar to the special case of TDM 

where all requestors have a single assigned slot each, but 

with the difference that RR is typically work-conserving. 

This makes the round robin arbiter the most complex 

arbiter considered in this paper with respect to 

dependencies between the different queues. Queues in the 

TDM arbiter are completely independent and can be 

transformed into single-queue equivalent models. On the 

other hand, queues under static-priority arbitration only 

depend on queues with higher priority, enabling 

dependencies to be resolved by solving equations starting 

from the highest priority requestor and continue in 

descending order of priority. In contrast, the number of 

requests in each queue under round robin arbitration 

depends on the number of requests in all other queues, 

since arbitration is cyclic and work-conserving. This cyclic 

dependency between the equations of all queues must be 

solved either by a fixed-point iterative technique (e.g. in 

[4], [20] and [21]), or be formulated and solved as a matrix 

problem (e.g. in [6]). In [6], the authors proposed a closed-

form expression for the average number of packets at each 

buffer of a NoC router with RR arbitration. In their model, 

A(ni,nj)=nj for any i and j. This implies that the considered 

request (arriving to queue i) waits for all other requests of 

any queue j, which is more similar to FIFO arbitration. In 

contrast, our proposed arbitration indicator, shown in 

Equation 17, captures the cyclic behavior of RR arbitration 

by considering that there can be maximally ni interfering 

request and even less if there are less than ni waiting 

requests in queue j.  

Equation 17: Arbitration indicator for RR. 

        
  

                           

VI. EXPERIMENTAL RESULTS  

This section experimentally evaluates the proposed 

models and compares their accuracy to results obtained by 

simulation. We start by introducing the experimental setup, 

followed by two experiments. The first experiment 

considers synthetic traffic and the second traces from real 

applications in the multimedia domain. 

VI.1. Experimental Setup  

The experiments of this work are conducted on a cycle-

accurate SystemC implementation of a real-time memory 

controller, supporting a variety of memories and arbiters 

[14]. For simplicity, these experiments consider a 32-bit 

zero-bus-turnaround SRAM by the controller using the 

three arbiters considered in this paper. The memory runs at 

a frequency of 500 MHz (the clock period is 2 ns) and it 

has uniform access latency of a single cycle, resulting in a 

peak bandwidth of 2000 MB/s. Traffic is injected into the 

controller by traffic generators issuing either synthetically 

generated traffic or elastically replaying application traces. 



The experiments consider a setup of four requestors 

sharing the bandwidth of the memory. The request size in 

all experiments is set to 64 B (16 words), resulting in a 

uniform service time of 16 cycles for both reads and writes. 

This memory controller has 4 pipeline stages, resulting in 

an architecture delay of 4 clock cycles. The (average) 

arbitration delay is 8 cycles for work-conserving arbiters 

(RR and SP), corresponding to half a timeslot of 16 cycles. 

For our non-work-conserving TDM arbiter, it is half the 

TDM period, 32 cycles, since it can be seen as a single-

queue arbiter that makes new scheduling decisions once 

every TDM period (a requestor cannot be scheduled before 

its allocated slot). Requests from each requestor arrive in 

separate queues in the memory controller, as shown in 

Figure 1. These queues are dimensioned to be sufficiently 

large to decouple production and consumption behavior, 

which is a typical setup when evaluating average latency in 

multi-core platforms [22-24]. 

VI.2. Results with Synthetic Traffic 

We start by evaluating the accuracy of our models 

using synthetically generated traffic. The intervals between 

requests are determined according to a normal distribution 

N(TA,σA), where TA is the mean and σA the standard 

deviation of the request inter-arrival distribution (for ease 

of presentation we use σ instead of σA). Traffic is generated 

with different mean bandwidths, controlled with TA 

(straight-forwardly derived from the bandwidth and the 

fixed request size), and different burstiness (controlled by 

changing the standard deviation, σ). The settings are 

identical for all four requestors and the mean bandwidth is 

varied in a range from 0 to 500 MB/s per requestor in steps 

of 10 MB/s, while the standard deviation is set to 30, 60, 

90, and 120 ns, respectively. This results in reasonably 

regular traffic with some jitter, corresponding to the 

behavior of some hardware accelerators in the multimedia 

domain.  

Figure 4, Figure 5, and Figure 6 show the analytical 

average scheduling latencies obtained by applying the 

proposed models for TDM, RR, and SP arbiters, 

respectively, and compare them to results obtained by 

simulation. We start by making some general observations 

about the relation between requested bandwidth and 

latency for different burstiness (standard deviation) and 

scheduling policies. In Figure 4 and Figure 5, we see that 

higher burstiness leads to higher average latency, which is 

an expected result. This is because burstier traffic quickly 

increases queue fillings, resulting in high transient queuing 

delays and thus a significant growth in average latency. 

However, the increase of average latency towards infinity 

is due to a small mean request interval, i.e. high requested 

bandwidth, and not because of burstiness. When the 

arriving traffic persists indefinitely with mean request 

intervals close to mean service time, the number of queued 

requests grows towards infinity. In this case, the only 

impact of burstiness is how fast the latencies go towards 

infinity at the saturation threshold. 

 

 

 

Figure 6 shows the impact of static priorities on average 

latency when all requestors have the same stochastic 

characteristics. In this case, experiments were conducted 

with a standard deviation of 120 ns and results are shown 

for all four requestors. We see that only the queue with the 

lowest priority saturates, while the other three queues do 

not saturate even at high bandwidths. This is because 

requestors under static-priority arbitration are independent 

of requests generated by lower priority requestors, which 

means that the interfering load is decreasing with 

increasing priority. For this reason, the accuracy of the 

proposed model is better for higher priority requestors, 

since there is less room for variation in interference from 

other requestors. We also see that the requestors with the 

Figure 6. Average scheduling latency for SP, 4 requestors with 4 priority 

levels, and standard deviation σ =120 ns 

Figure 5. Average scheduling latency for RR, 4 requestors, and for 

standard deviations σ=30, 60, 90, and 120 ns 

Figure 4. Average scheduling latency for TDM, 4 requestors, and for 

standard deviations σ=30, 60, 90, and 120 ns  



two highest priorities have average scheduling latencies 

close to ArchDly plus ArbDly (see Equation 9). This shows 

that request arriving to these queues hardly experience any 

queuing delay and are served immediately.  

Results from the three different arbiters are summarized 

in Figure 7 for σ =120 ns. For SP, only the queue with the 

lowest priority is shown. We see that TDM scheduling 

leads to the worst average latency, even compared to the 

lowest priority requestor in SP scheduling. This is due to 

the non-work-conserving nature of the arbiter, which 

significantly increases average latencies by not exploiting 

idle slots. 

 
We conclude this experiment by evaluating the 

accuracy of the proposed models compared to simulation 

results. The figures show that the proposed models provide 

reasonable accuracy compared to simulations with average 

deviations of 4.1% for TDM, 12.9% for SP, and 14.2% for 

RR. The reason the model for TDM is more accurate is 

because it is non-work-conserving, suggesting that this 

property implies a trade-off between average performance 

and accuracy of the model. Note the average deviation of 

for SP is based on all queues (with all priorities) i.e. from 

Figure 6, while Figure 7 only shows the requestor with the 

lowest priority, which has the least accurate results.    

VI.3. Results with Real Applications  

To evaluate the accuracy of the proposed analytical 

model, we run experiments by injecting requests according 

to traces from two multimedia applications, an H.263 

decoder and JPEG decoder, respectively, taken from 

Mediabench benchmark suite [25]. For each application in 

the benchmark, a memory-trace file was generated by 

running it on a SimpleScalar 3.0 processor simulator [26]. 

The simulator was slightly modified to record the time and 

address of each L2 cache miss which results in a trace file 

containing all requests that go to the SDRAM. The traces 

are generated using the out-of-order execution engine (sim-

outorder) with default settings except for the cache 

configuration. We use a unified 128KB L2 cache with 64 

byte cache lines, 512 sets and an associativity of 4. We 

filtered out the L2 cache misses, and obtained a trace of the 

requests meant for the memory. The generated application 

traces assume a miss penalty of a single cycle, but are 

elastically replayed by the traffic generators to capture the 

actual latencies in the memory controller. The number of 

outstanding requests is set to 10, which means that after 

maximum 10 read requests without any returning 

responses, the traffic generator waits for at least one 

response, before sending the next request. However, this 

holds only for read requests since writes are posted and do 

not block the processor. There may hence be bursts of more 

than 10 write requests. The mean and standard deviation of 

request intervals are obtained from simulation and then 

used in the analytical model. The histograms of request 

inter-arrival times of these applications were previously 

shown in Figure 2.  

Figure 8 shows analytical versus simulation results for 

the two applications for TDM, SP, and RR arbiters from 

left to right, respectively. For SP, the results of the 

requestor with the lowest priority, and hence the largest 

deviation from the simulated results, are shown. For each 

combination of arbiter and application, there is also a third 

bar on right of each set showing the analytical result 

obtained under the common assumption that traffic 

distributions in multi-processor embedded systems follow 

an exponential (Poisson) arrival distribution [6, 7, 9, 13]. 

 
Similarly to the results with synthetic traffic, we 

observe that work-conserving arbitration, such as TDM, 

results in much higher average latency compared to non-

work-conserving arbiters, such as RR and SP (even 

compared to the requestor with the lowest priority in SP). 

The errors of the proposed models compared to simulation 

are indicated beside the corresponding results in the figure. 

The errors are more significant with real traces compared to 

synthetic results, in particularly for the RR scheduler where 

an error of 60% is observed for the H.263 decoder. There 

are two main reasons for this inaccuracy. 1) The first 

reason that holds for all models presented in this paper is 

that limiting the number of outstanding requests has a 

similar effect as limiting buffering space in terms of 

controlling traffic injection. Both mechanisms impose a 

maximum burst length during which requests can be issued 

without any hardware restrictions. Then, traffic injection is 

stopped until the reception of a response (in case of limited 

number of outstanding requests) or until space is available 

in the destination buffer (in case of limited buffering 

Figure 8: Experiment with an H.263 decoder and a JPEG decoder for 
TDM, SP, and RR arbiters 
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Figure 7. Average scheduling latency with standard deviation σ=120 

ns, there are 4 requestors scheduled by TDM, RR, and SP arbiters. For 

SP, the latency of the queue with the lowest priority is reported. 



space). This implies a round-trip dependency between 

traffic consumption and traffic production that is not 

captured by the current state-of-the-art in queuing theory to 

the best of our knowledge, and is an important topic for 

future work to increase the applicability of queuing theory 

in the context of multi-core platforms. 2) The second 

reason that holds for work-conserving arbiters (e.g. SP and 

RR) is that the latency of each queue depends on arrival of 

traffic to other queues. This does not hold for non-work-

conserving arbiters, such as TDM, where queues are 

independent. This is why the maximum error of the TDM 

model is smaller than the two others, just like in the case of 

synthetic traffic.  

We conclude this experiment by discussing the effects 

of using the common assumption that applications in 

embedded systems follow an exponential arrival 

distribution. These results are derived by replacing the 

standard deviation in our equations with Poissonian 

characteristics, i.e. making it equal to the mean, which 

gives a coefficient of variation equal to one (CA=1) in 

related equations. Figure 8 shows that models assuming 

exponential arrivals grossly underestimate the latency. The 

relative error under this assumption is 89% using TDM for 

the H.263 decoder and 94% for the JPEG decoder, 

respectively. The corresponding numbers for SP are 88% 

and 82%, respectively, and for RR 56% and 63%. The 

reason is that the considered applications have standard 

deviations that are much higher than their mean, 69 and 

14.5 times higher for the H.263 decoder and JPEG decoder, 

respectively, which is ignored by a Poissonian traffic 

characterization. This clearly shows that using exponential 

distributions to model bursty memory traffic from 

applications executing through a cache to Poissonian traffic 

results in inaccurate results, highlighting the benefits of 

using queuing models based on more general distributions. 

VII. CONCLUSIONS 

This paper addresses the problem of average-case 

performance analysis in multi-core platforms with dynamic 

applications and resources shared by a diverse set of 

arbiters by proposing a general analysis framework based 

on queuing theory. The framework can be used with 

different arbiters and three models supporting general 

arrival and service processes are proposed for time-

division-multiplexing, static-priority, and round-robin 

arbitration, respectively. 

We experimentally evaluate the proposed framework 

by comparing the models to simulation results of a shared 

memory controller using both synthetic and traces from 

real applications. The results show that the models only 

have average deviations of 4.1% for TDM, 12.9% for SP, 

and 14.2% for RR with synthetic traffic and that although 

larger deviations are observed for realistic applications, 

they significantly outperform models assuming 

exponentially distributed traffic. 

REFERENCES 

[1] C. Van Berkel, "Multi-core for mobile phones," in Proceedings of 
the Conference on Design, Automation and Test in Europe, 2009, 

pp. 1260-1265. 

[2] P. Kollig, et al., "Heterogeneous multi-core platform for consumer 
multimedia applications," in Design, Automation & Test in Europe 

Conference & Exhibition, 2009. DATE'09., 2009, pp. 1254-1259. 

[3] D. Melpignano, et al., "Platform 2012, a many-core computing 
accelerator for embedded SoCs: performance evaluation of visual 

analytics applications," in Proceedings of the 49th Annual Design 

Automation Conference, 2012, pp. 1137-1142. 
[4] S. Foroutan, et al., "An Iterative Computational Technique for 

Performance Evaluation of Networks-on-Chip," IEEE 
Transactions on Computers, 2012. 

[5] U. Y. Ogras and R. Marculescu, "Analytical router modeling for 

networks-on-chip performance analysis," in Design, Automation & 
Test in Europe Conference & Exhibition, 2007. DATE'07, 2007, 

pp. 1-6. 

[6] U. Y. Ogras, et al., "An analytical approach for network-on-chip 
performance analysis," IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, vol. 29, pp. 2001-2013, 

2010. 

[7] H. Sarbazi-Azad, et al., "Analytical modeling of wormhole-routed 

k-ary n-cubes in the presence of hot-spot traffic," IEEE 

Transactions on Computers, pp. 623-634, 2001. 
[8] H. Sarbazi-Azad, et al., "Performance analysis of deterministic 

routing in wormhole k-ary n-cubes with virtual channels," Journal 

of Interconnection Networks, vol. 3, pp. 67-83, 2002. 
[9] M. Ould-Khaoua, "A performance model for Duato's fully 

adaptive routing algorithm in k-ary n-cubes," IEEE Transactions 

on Computers, vol. 48, pp. 1297-1304, 2002. 
[10] Z. Guz, et al., "Network delays and link capacities in application-

specific wormhole NoCs," VLSI Design, vol. 2007, 2007. 

[11] W. Dally, "Performance analysis of k-ary n-cube interconnection 
networks," IEEE Transactions on Computers, pp. 775-785, 1990. 

[12] A. E. Kiasari, et al., "An Analytical Latency Model for Networks-

on-Chip," IEEE Transactions on Very Large Scale Integration 
(VLSI) Systems, pp. 1-11, 2011. 

[13] S. Foroutan, et al., "An analytical method for evaluating network-

on-chip performance," in Design, Automation & Test in Europe 
Conference & Exhibition (DATE), 2010, pp. 1629-1632. 

[14] B. Akesson and K. Goossens, "Architectures and modeling of 

predictable memory controllers for improved system integration," 
in Design, Automation & Test in Europe Conference & Exhibition 

(DATE), 2011, 2011, pp. 1-6. 

[15] G. Bolch, Queueing networks and Markov chains: modeling and 
performance evaluation with computer science applications: 

Wiley-Blackwell, 2006. 

[16] L. L. Peterson and B. S. Davie, Computer networks: a systems 
approach: Morgan Kaufmann, 2003. 

[17] B. Akesson, et al., "Real-time scheduling using credit-controlled 

static-priority arbitration," in Embedded and Real-Time Computing 
Systems and Applications, 2008. RTCSA '08. 14th IEEE 

International Conference on , vol., no., pp.3-14, 25-27 Aug. , 2008. 

[18] A. Willig, "A short introduction to queueing theory," Technical 
University Berlin, Telecommunication Networks Group, vol. 21, 

1999. 

[19] L. Kleinrock, "Queueing systems," ed: Wiley, New York, 1975. 
[20] J. Kim and C. Das, "Hypercube communication delay with 

wormhole routing," IEEE Transactions on Computers, vol. 43, pp. 

806-814, 2002. 

[21] J. T. Draper and J. Ghosh, "A comprehensive analytical model for 

wormhole routing in multicomputer systems," Journal of Parallel 

and Distributed Computing, vol. 23, pp. 202-214, 1994. 
[22] P. P. Pande, et al., "Performance evaluation and design trade-offs 

for network-on-chip interconnect architectures," IEEE 
Transactions on Computers, vol. 54, pp. 1025-1040, 2005. 

[23] E. Salminen, et al., "On the credibility of load-latency 

measurement of network-on-chips," 2008, pp. 1-7. 
[24] E. Salminen, et al., "On network-on-chip comparison," Euromicro 

DSD, pp. 503–510, 2007. 

[25] C. Lee, et al., "MediaBench: a tool for evaluating and synthesizing 
multimedia and communicatons systems," MICRO 30 Proceedings 

of the 30th annual ACM/IEEE international symposium on 

Microarchitecture, pp. 330-335, 1997. 
[26] T. Austin, et al., "SimpleScalar: An infrastructure for computer 

system modeling," Computer, vol. 35, pp. 59-67, 2002. 

 


