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ABSTRACT

Designing a SoC for applications with mixed time-criticality
is a complex and time-consuming task. Even when SoCs
are built from components with known real-time properties,
they still have to be combined and configured correctly to
assert that these properties hold for the complete system,
which is non trivial. Furthermore, applications need to be
mapped to the available hardware resources and correctly
integrated with the SoC’s software stack, such that the real-
time requirements of the applications are guaranteed to be
satisfied. However, as systems grow in complexity, the de-
sign and verification effort increases, which makes it difficult
to satisfy the tight time-to-market constraint.

Design tools are essential to speed up the development
process and increase profit. This paper presents the design
flow for the CompSOC FPGA platform: a template for SoCs
with mixed time-criticality applications. This work outlines
how the development time of such a platform instance is re-
duced by means of its comprehensive tool flow, that aids a
system designer in creating hardware, the associated soft-
ware stack, and application mapping.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; B.8.2 [Performance and

Reliability]: Performance Analysis and Design Aids

General Terms

Design, Verification

Keywords

Virtual Execution Platform, Composability, Predictability,
FPGA, CompSOC

1. INTRODUCTION
The complexity of embedded systems is increasing, caused

by the growing functionality that is embedded in a single de-
vice. This trend is driven by increased connectivity, closer
interaction with the outside world through sensors and ac-
tuators, and diversification of applications [10]. The power
budget of embedded systems does not increase proportion-
ally [1,28], so resources have to be shared to reduce costs and
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power. This leads to the creation of heterogeneous multipro-
cessor architectures [19, 24] that execute many applications
of mixed time-criticality on a single chip.

In mixed time-criticality systems, some applications have
real-time requirements, while others do not. Sharing chip
resources amongst multiple applications makes their func-
tional and timing behavior interdependent, increasing the
verification effort significantly [1,10,22]. This leads to grow-
ing verification costs and reduced test coverage.

To alleviate these issues, applications would ideally be in-
dependently developed and verified. Composability and pre-
dictability are two concepts that facilitate this [4], and the
CompSOC platform template [11, 14] demonstrates this de-
sign philosophy. CompSOC provides applications with their
own composable virtual execution platform, thus isolating
their behavior down to the cycle level. This enables indepen-
dent development and verification of applications, because
they experience no inter-application interference at run time.
Each virtual execution platform is also predictable, such that
guarantees on the worst-case performance for formally ana-
lyzable applications can be derived.

Virtual execution platforms are hosted on a physical SoC.
Creating such a SoC is a big multi-disciplinary task that in-
volves the design of hardware, both at the component and
system level, algorithms for performance analysis, synthesis
tools, OS integration and application programming, map-
ping and verification. Tools and tool flows are essential for
design teams to bring all these disciplines together in an
efficient way and to be sufficiently productive.

This paper presents an outline of the FPGA tool flow
used to generate CompSOC platform instances. It consists
of three sub-flows that aid the system designer in several
ways. It offers:

1. A hardware tool flow, capable of translating a high-level
description of a CompSOC platform instance into a fully
synthesized implementation.

2. A system software flow, generating a software stack in-
cluding a composable micro kernel, resource managers,
drivers, and a virtual platform boot loader.

3. An application flow that automatically generates a vir-
tual platform configuration for applications that use the
Cyclo-static Data Flow (CSDF) [9] model of computa-
tion. The application is automatically mapped to that
virtual execution platform.

This tool flow applies platform-based design techniques [18]
to greatly reduce the design effort by automatically com-
bining a set of verified hardware and software components
into a platform instance based on a flexible template. Com-
bined with the complexity reduction resulting from the use



Figure 1: High-level view of the platform.

of virtual execution platforms, the time-to-market decreases
significantly.

This paper starts with a brief introduction to the Comp-
SOC platform in Section 2. Section 3 discusses the three
sub-flows of the tool flow. Finally, Section 4 shows the re-
sults of a run through the hardware flow, followed by con-
clusions in Section 5.

2. COMPSOC HARDWARE PLATFORM
CompSOC is a template for a heterogeneous processing

platform that provides virtual execution platforms to its ap-
plications. It contains processing, communication and mem-
ory resources, and a set of optional peripherals. A range of
techniques is applied to share these physical resources in a
composable and predictable way [4]. The tool flow presented
in this paper is targeted at an FPGA development board,
although most of the flow is target agnostic.

Fig. 1 shows a high-level view of a CompSOC instance,
where master and slave Intellectual Property (IP) compo-
nents (marked with a black triangle) use the communication
core to exchange information: a master initiates transactions
while a slave can only react to requests from a master. Sec-
tion 2.1 discusses the master and slave IPs in more detail
and Section 2.2 explains the contents of the communication
core.

2.1 Master and Slave IPs
The processor tiles [6] execute the tasks that constitute

the applications running on the platform. The tiles are
built from a standard MicroBlaze processor, amended with
a custom-made Timer Interrupt Frequency Unit (TIFU),
which contains several hardware timers and controls the op-
erating frequency of the processor. It communicates with
a Composable Micro Kernel (CoMik) that runs on the tile
to share the processor cycles amongst multiple virtual exe-
cution platforms in a composable manner. The TIFU also
enables composable frequency scaling [21] and virtualizes in-
terrupts [8]. CoMik builds on the concepts introduced in [17]
to achieve this. At the most basic level it uses non-work-
conserving Time-Division Multiplexing (TDM) application
scheduling to isolate their execution in time. There are many
details that have to be addressed to achieve complete cycle-
level isolation [4], but they are out of the scope of this paper.

Tiles can be extended with one or more Direct Memory
Access (DMA) units, used by applications to decouple com-
putation and communication [20]. This allows applications
to be preempted while their DMA processes a transaction
independently, thus making the minimum preemption in-
terval independent from the communication latency. Each
tile contains a configurable number of communication mem-

ories that are primarily used as software-controlled FIFOs
for inter-task communication, both within the same tile and
across tiles.

Memories are complementary to the master IPs in the
system: they are the slaves that react to requests from the
masters. Composable shared memory access is made possi-
ble using the complete real-time memory solution proposed
in [5]. It consists of a generic front-end [3] that can be con-
nected to either an SRAM or SDRAM real-time memory
controller back-end [12].

Peripherals may have both master and slave ports. For
example, a TFT controller is the master of its connection to
a frame buffer memory, while it is a slave to the processor
that controls the output resolution it uses.

2.2 Communication Core
The communication core (Fig. 1) is the glue layer that con-

nects masters to slaves. At its heart lies the time-triggered
(d)AElite NoC [16,23] that uses non-work-conserving TDM-
based scheduling to temporally isolate traffic from sepa-
rate virtual execution platforms. Its primary purpose is to
bridge the physical distance between IPs in the platform in
a pipelined, wire-efficient way. It uses a streaming protocol,
uniform data widths and a single clock frequency. An op-
tional Ethernet bridge can be added to connect two NoCs
residing on separate chips [7].

All the shared memories are mapped within a global ad-
dress space, making them accessible to the masters in the
platform through the communication core. Furthermore,
all run-time configurable components have memory-mapped
configuration registers within this same address space and
are reachable using Memory Mapped I/O (MMIO) connec-
tions. To realize this distributed shared memory system,
two more hardware layers are built on top of the NoC.

The first layer is responsible for harmonization / diver-
sification of the connections that enter / leave the NoC.
It handles protocol conversions, bus width conversion and
clock domain crossings, and is basically a set of adapters
that allow a diverse set of masters with different properties
to use the same shared resource.

The sharing / distribution layer can multiplex traffic from
multiple masters into a single slave port, or demultiplex traf-
fic from a single masters into multiple slave ports [3, 15].
Several kinds of arbiters like TDM, round-robin (RR) or
Credit-Controlled Static-Priority (CCSP) [2] are available
in the CompSOC hardware library, and can be instantiated
to control accesses to shared resources. The following sec-
tions show how these building blocks are used in the Comp-
SOC flow.

3. TOOL-FLOW OVERVIEW
The flow can be divided in three sub-flows (Fig. 2), each

of which is responsible for generation of different aspects of
the platform:

1. The Hardware flow constructs the hardware and wraps it
in a project that is used by the FPGA synthesis tools.

2. The System software flow generates a software stack in-
cluding a composable micro kernel, resource managers,
drivers, and a virtual platform boot loader.

3. The Application flow maps applications to the tiles, mem-
ories and communication resources on the platform, gen-
erating a virtual platform configuration. It creates a bun-
dle of this configuration and the application code, which
can be loaded and started at run-time.



Figure 2: The tool flow. Blue, yellow and gray block represent contributed tools, pre-existing tools and files,

respectively.

As shown in Fig. 2, there are dependencies between the three
sub-flows, requiring the user to first generate the hardware
before initiating the system or application flow. It is impor-
tant to note, however, that applications can be developed
independently from one another, because their run-time be-
havior is isolated within their virtual execution platform.

The tools are written in C++, and most of the hardware
is written in VHDL. The majority of the input and output
files are proprietary XML documents that are incrementally
refined by the steps in the flow. This makes it easy to in-
sert or remove tools when required, and creates intermediate
points where manual modifications are possible. In the fol-
lowing sections, each of the sub-flows is discussed in more
detail.

3.1 Hardware Flow
The goal of the hardware flow is to generate instances of

the CompSOC platform with the least possible effort from
the designer by automating as much as possible. The prin-
ciple by which the flow is built is that a minimal high-level
architecture description should produce a working and fully
synthesized platform, based on a sensible default specifica-
tion. It is possible for the designer to deviate from the stan-
dard by describing the required platform more specifically
and let the tools check the specification for consistency. The
end product of the hardware flow is a bit file that can be
programmed onto the FPGA.

The platform is generated based on existing components
that are instantiated and connected on demand. Some of
these components are custom made, while others are stan-
dard hardware components from Xilinx’s library. Custom
hardware is used to attain the predictability and compos-
ability required to create virtual execution platforms. What
happens in the each of the steps in the hardware flow (Fig. 2)
is explained in the next sections.

3.1.1 IP Expansion

The designer provides an architecture file, describing the
master and slave IPs to be included in the platform, e.g.
processor tiles, memories and peripherals. The second in-
put to the IP expansion tool is the communication file that

describes the fan-in and fan-out of the slave ports and mas-
ter ports, respectively.

This minimal description is enough to start the tool flow,
but more details can be supplied to customize the hardware
synthesis process. For example, it is possible to specify extra
clock domains and to bind these to IP ports.

The IP expansion tool refines the architecture specifica-
tion with the implicit components that follow from the Comp-
SOC template. IP components that are known within our
hardware library are automatically populated with their de-
fault parameters and interfaces. It is thus not required to
specify their exact content or even interface, saving time and
reducing the chance of specification errors. For the processor
tiles for example, the TIFU, DMA, internal buses, and com-
munication, instruction and data memories are automati-
cally added. The interface description of the tile, which is
exposed to the rest of the platform, is automatically gener-
ated. The number of DMAs and the size of memories are
example parameters that can be explicitly set if required.
The tool requires a more verbose description for IPs that are
not known within the hardware library, enumerating their
ports and buses, the used bus standards, and data widths.

All ports are automatically annotated with their address
range, effectively generating the memory map. By the end of
this step, the interface descriptions of the IPs in the platform
is fully known, which is required to generate the communi-
cation core, as discussed in Section 3.1.2.

3.1.2 Communication Core Generation

The communication core is the glue layer that connects
IPs, and it is generated completely automatically. As dis-
cussed in Section 2.2, it consists of 3 layers that are created
sequentially.

First, the tool adds the sharing/distribution layer by con-
necting (de-)multiplexers to the IP ports based on the com-
munication file. The memory front-end [3] is inserted before
all shared memory ports. The designer may choose what
type of arbitration to use for a slave port, or leave it up to
the tool to instantiate a default round-robin arbiter. It is
possible to annotate connections to bypass the third (NoC)
layer completely, which can be used for IPs that require a



very low latency connection and can afford to be physically
close to each other on the platform.

Next, the harmonization/diversification layer is added,
which adapts all port interfaces such that they can be con-
nected to their immediate target (either the NoC or another
IP port). It resolves all mismatches in the interfaces au-
tomatically by instantiating protocol adapters, bus width
converters and clock domain crossings.

Finally, the NoC layer is generated. The designer has
to specify the NoC topology (e.g. mesh, ring, or fat tree),
and the number of routers and network interfaces (NI) to
generate. The number of ports on the NIs and routers is
then automatically determined by the flow, depending on
the number of connections that were specified. Optionally,
it is possible to bind specific network interfaces to an IP or
port, in case the designer wants to force a specific layout
onto the design.

All run-time configurable components in the platform,
like memory controller arbiter priorities, NI slot tables and
router paths for example, are accessible through a shared
configuration channel that is mapped on the NoC [13]. De-
multiplexers are added at NIs that are responsible for con-
figuring multiple components.

A final dimensioning step determines the buffer and slot
table sizes that are used throughout the platform. The slot
table size determines the granularity at which resource bud-
gets can be handed out to virtual execution platforms, while
the buffer sizes influence the maximum attainable through-
put on a physical connection. By default, they are dimen-
sioned such that it is unlikely they limit mapability or are
the connection bottleneck, respectively, but the designer is
free to set the size manually when desired.

Once the communication core has been generated, the ar-
chitecture is ready to be instantiated.

3.1.3 HDL Instantiation

The communication core that was generated by the pre-
vious steps in the flow is turned into a HDL description of
the hardware in this step. It prepares the communication
core for processing by the synthesis tools by gathering the
HDL files of its components, and prints a top-level VHDL
file that instantiates them. The components are customized
with their generics and the inter-component wiring added.

The communication core is a generic hardware block that
can be used with any HDL synthesis tool. To make it com-
patible with the tools for the target FPGA, a Virtex-6 from
Xilinx, it is wrapped in their proprietary PCore format, es-
sentially turning it into one large black box. All custom IPs
that are not within the communication core receive the same
treatment, such that the complete platform can be instanti-
ated in a Xilinx project.

3.1.4 Xilinx Project Generation

The last step in this flow synthesizes the platform into a
bit file that can be programmed onto an FPGA. It is vendor
specific, and targets a Virtex-6 FPGA on either a ML605
board [29], or the Sundance FlexTiles board [27].

Xilinx Platform Studio (XPS) is used to synthesize the
platform. Our tool generates a platform description (MHS-
file) and synthesis constraint file (UCF-file), simply by iter-
ating over all IPs that are used in the platform, including
the communication PCore, and printing their contributions.
All specified clocks are assigned to clock generators, and the
global reset is synchronized to each clock domain, creating
per-domain synchronous resets. Fig. 3 shows an example of

Figure 3: An example platform instance.

a complete platform instance.
After generation of the project, the platform can be syn-

thesized into a bit file. No user input is required after the
initial input at the top of this flow, assuming all used IPs
are in CompSOC’s or Xilinx’s IP library. If other IPs are
used, their contributions to the XPS project would have to
be added manually.

3.2 System Software Flow
The system software flow builds a software stack for the

platform, consisting of resource managers, hardware drivers
and code required to boot virtual platforms. This flow was
also shown in Fig. 2, and is discussed here in more detail.

Each of the tiles runs an instance of CoMik, which is a
micro kernel that provides temporally isolated partitions in
which applications are executed. CoMik interfaces with the
hardware timers and interrupts provided by the TIFU to
achieve this isolation. It additionally handles the stack and
heap management, and provides an API for using the DMAs.
CoMik is treated as an OS by the Xilinx libgen tool, which
combines it with the MicroBlaze drivers into a single library.

The resource managers use the drivers to configure the
remaining run-time configurable resources in the platform,
e.g. the NoC paths, and the (de-)multiplexer arbiters and
memory maps for example (see Fig. 3). The resource man-
agers act as an abstraction layer, keep track of the resources
that are in use, and do basic checks for faulty configurations.
The completed architecture description specifies which con-
figurable resources are present in this platform instance, and
what their memory addresses are. This information is com-
piled into the resource management library.

The final piece of software that is added is the virtual
platform boot loader for the different tiles, which parses the
application bundles produced by the application flow at run
time (see Section 3.3.2) to instantiate a virtual platform.

The above mentioned software is compiled into an ELF file
for each tile, which is loaded into the appropriate memories
in the bit stream by the Xilinx Data2Mem tool. The bit
stream now contains a bare bootable system that is ready
to receive the application bundles from the application flow,
and to instantiate them at run time.



Figure 4: The architecture used in the hardware

generation experiment.

3.3 Application Flow
The final sub-flow is responsible for mapping applications

to processor tiles, memories and communication resources on
the platform. This can be seen as the dimensioning step for
the application’s virtual execution platform. The end prod-
uct is an application bundle that combines the application
code with a description of its virtual execution platform.

3.3.1 Mapping and Allocation

For real-time CSDF applications, the application flow starts
with the mapping tool. Its input is the application graph,
annotated with requirements on throughput and response
times, and the source code for its actors. A description of
the architecture produced by the hardware flow describes the
available hardware resources. With these inputs the map-
ping tool invokes the SDF3 tools [25, 26] to do a data-flow-
based design-space exploration that attempts to find a valid
mapping that satisfies the application requirements. The
mapping process can optionally be constrained to reserve
portions of the physical platform for other virtual execution
platforms. Alternatively, the result of previous mappings
can be used to determine which resources are already in use.
The first option separates the mapping process of different
applications, potentially at the cost of over-allocation. The
result of the design-space exploration is a description of the
used platform resources, and the required budget on those
resources in case they are shared.

The allocation tools then find configurations for the re-
sources that satisfy these budget requirements. The exact
output depends on the resource type: for a processor tile
it contains the TDM schedule, for the communication re-
sources it contains the path to take through the commu-
nication core and the NoC TDM schedule, and for shared
memories it contains the multiplexer arbiter configuration.

For applications that use a different model of computa-
tion, like time-triggered [8], general data flow, or non-real-
time applications, the designer manually has to specify the
requirements for the virtual execution platform. The alloca-
tion tools can then generate a configuration for the resources
to satisfy those requirements.

3.3.2 Application Bundles

The final step in the application flow is to generate the
software that runs on each processor tile. This involves
the creation of initialization and wrapper code for the ac-
tor functions that contain the appropriate API calls to use
the processor’s communication interfaces. Furthermore, the
platform configuration is translated into a format that can
be parsed by the run-time resource managers. These two
components are combined into a single application bundle
that contains all required information to deploy the appli-
cation on the platform.

Application bundles are stored in the SDRAM. When an

Figure 5: A 5-tile platform.

application is started, the bundle’s header is read by the
virtual platform boot loader, and the application’s virtual
platform configuration is interpreted by the resource man-
agers. After applying this configuration to the platform, the
application’s memory sections are copied to the appropriate
physical memories. The virtual execution platform is then
booted, and application execution starts.

4. HARDWARE FLOW DEMONSTRATION
This section demonstrates an example run of the hard-

ware flow, targeted at the ML605 board that contains a
Virtex-6 LX240T FPGA. As input, we specify an architec-
ture (Fig. 4) with five processor tiles, an SDRAM and a TFT
peripheral. Each tile has four input communication mem-
ories (CMEMIN), and two DMAs with an attached output
communication memory. The sizes of the local tile mem-
ories are set by hand (see Fig. 4). All tiles run in their
own 100 MHz clock domain, while the SDRAM controller
is clocked at 150 MHz. A small monitor tile gathers debug
information, which it sends to a host PC using a UART
connection.

The connectivity graph is specified as follows: each DMA
is connected to three NoC ports. The SDRAM receives
five NoC-based input ports, and each input communication
memory connects to two ports. A 2x3 mesh NoC topol-
ogy is specified to implement these connections. The TFT
controller works autonomously by reading pixel data from a
predefined SDRAM range using a sixth SDRAM port, and
it bypasses the NoC layer.

With this input, the tool flow generates a Xilinx project
in less than a minute, after which the synthesis tool uses
about three hours to create the bit stream. The resulting
placement is shown in Fig. 5. The complete design uses 19%
(59513) of the registers, and 59% (88953) of the LUTs on the
FPGA, spread out over 82% of the available slices. The local
tile memories are implemented as BRAM blocks, visible as
large horizontal bars in Fig. 5. The BRAM utilization is
87% and has a large influence on the placement of the tiles,
since it forces them to be spread across the entire FPGA to
get close to their memories. For the three left-most tiles, the
TIFU is separated from the other logic, and located on the
opposite end of the FPGA. The placement of the SDRAM



back-end and its PHY is driven by the location of the pins
connected to the SDRAM.

The communication core uses 8% of registers and 25% of
the available LUTs. This includes all the buffers used in the
NoC and memory front-ends, including that of the SDRAM
controller. These buffers are implemented such that they
map to distributed RAM and SRL shift register primitives
to efficiently store relatively large amounts of data on the
FPGA fabric.

After synthesis is complete, the system software flow is
executed. A small self-test is included in the generated files
to verify that all platform components are reachable and all
end-to-end connections function correctly. All tiles report
their success or failure to the monitor, which forwards the
status to the user, who can then start the application flow.

5. CONCLUSIONS
The growing complexity of SoCs increases their design

and verification time. This makes it more and more diffi-
cult to finish development and verify real-time application
behavior within tight time-to-market constraints. In this pa-
per, we have presented the comprehensive CompSOC tool
flow, which reduces the development and verification time
by aiding the system designer in the areas of hardware de-
sign, software stack generation, and application mapping.
These tools can be used to create customized instances of
the CompSOC platform, which uses virtual execution plat-
forms to enable verification in isolation for its applications,
further reducing the total system development time.
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