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I. MOTIVATION AND PROBLEM FORMULATION

The problem of scheduling safety-critical systems with multiple cores that have small local memory and communicate
through a network, e.g. FlexRay, can be found in automotive, avionics and other industries. Periodic tasks, such as sensing
and actuation, execute on these cores and need to communicate with each other. Tasks have hard real-time requirements that
must be always satisfied to guarantee safe operation. Moreover, due to the nature of these systems, tasks have different periods,
since control tasks release jobs with different frequencies. The time-triggered approach is commonly used in safety-critical
systems due to highly predictable behaviour of the scheduled tasks, resulting in simplicity of both verification if a given solution
satisfies all constraints and debugging when something goes wrong.

We consider the problem of multi-periodic non-preemptive scheduling of tasks with precedence constraints on multiple
resources. The problem is shown in Figure 1a, where there are m cores C1, C2, · · · , Cm that communicate via a network. We
suppose that there are several transactions Tk in the form Ci → Network → Cj , where first some task must be executed
on core Ci, then there is communication via the network, followed by execution of a task τi with processing time ei on core
Cj 6= Ci. We can formalize each transaction as a chain of tasks τi → Network → τi+1, released at the beginning of each
period with implicit deadlines Di = pi, where each task τj , j = 1, 2, · · · , n is assigned to exactly one core where it must be
executed. In the example in Figure 1a, there are two transactions T1 = τ1 → Network → τ2 and T2 = τ3 → Network → τ4.
Each transaction Tk may have a different period pk and a required maximum end-to-end delay, Bk, i.e. the maximum time
from the beginning of the first task in a transaction to the end of the second and final task in the transaction is constrained by
the user. Thus, the problem is to find a time-triggered schedule for the tasks on the cores and communication on the network
such that the end-to-end delay of each transaction satisfies the requirement.
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Fig. 1: Multi-periodic scheduling problem description with examples of transactions and solution

A Gantt chart of a possible solution to the problem with transactions T1 and T2 from Figure 1a is shown in Figure 1b.
Here, tasks τ1, τ2, τ3, τ4 and their communication are scheduled on cores C1, C2, Cm and on the network. We can see that the
periods of tasks and their processing times are different and all tasks and transactions satisfy their deadlines and end-to-end
delay requirements. The solution to our problem is defined as a set of start times and durations (equal to the processing time of
each job) during a scheduling interval, called the hyperperiod. The hyperperiod is a least common multiple of all the periods
of the transactions.

Applying the stated problem on a real system brings additional constraints on the solution. First of all, the small local
memories of embedded systems can only store schedules of limited length, i.e. the hyperperiod of the final schedule may not
exceed a size L defined by the user. Moreover, the size of an average problem is in the range of thousands of transactions,
which requires the approach to be scalable, since it has to be possible to find a schedule to the problem in reasonable time.
Thus, an ILP approach does not seem to be a good final solution due to the large number of required decision variables,
resulting in very long computation time. However, some advanced exact optimization methods or heuristic approaches are
good candidates.

Problems similar to the presented problem were considered in different formulations before. In [1], the authors solved
similar problem with mono-periodic transactions, i.e. p1 = p2 = · · · = pN . Although it is possible to schedule all transactions
with the minimum possible period also in our problem, it results in large over-allocation and restricts the problem instances
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schedulable by the approach. Over-allocation here means that more time is reserved in the schedule than the tasks can consume.
In [2], [3], [4] and [5] the authors require perfectly periodic scheduling, where the whole schedule for all jobs from a task is
completely defined solely by the starting time in the first period. This results in over-allocation and significantly restricts the
set of solvable instances as well. The main difference of our problem with [2] is that the athours do not put any constraints
on end-to-end delays of transactions. Works [3], [4] and [5] consider the problem of multi-hop networks scheduling, which is
a generalization of our problem as it allows complicated network structure instead of a single communication channel in our
case and it adds some network constraints. Moreover, the authors in [3] target their solution to the problem with harmonic
periods (i.e. for each pair of periods pi ≥ pj holds pi|pj). The authors in [6] consider a similar problem without precedence
constraints and with periods that are determined by the hardware to be m · 2k, where m ∈ N is a constant and k ∈ N can
take any integer value. Their solution cannot be used for the described problem due to the absence of precedence constraints
between tasks.

II. OPEN PROBLEMS

The problems mentioned in Section I influence both the considered problem and the applied solution: 1) bounded storage
capacity, 2) the requirement not to over-allocate, 3) the requirement to be able to solve as many real-life problems as possible,
and 4) the scalability issue. The formulation of the problem is equally important as the method chosen to solve it. The reason is
that the problem, being formulated in a too constrained manner, can suffer unreasonably high rate of problem instances with no
possible solution. For instance, restricting ourselves to perfectly periodic allocation has following advantages: a straight-forward
analysis and the fact that the amount of memory required to save the obtained schedule grows linearly with the number of
transactions in contrast to the general case, where relatively prime periods can result in a very large hyperperiod. Moreover,
the problem of over-allocation is automatically solved as well, since it is not possible to over-allocate with perfectly periodic
allocation, considering initial periods. However, it seems that requiring perfectly periodic allocation on the initial problem is
too restrictive.

Another question is ”is it possible to slightly change the problem in order to have almost all the advantages of perfectly
periodic allocation at a lower cost in terms of number of unschedulable problem instances?”. By converting the initial problem
to a problem with harmonic periods similarly to [7], it is possible to schedule the tasks in a simple way with significantly
reduced length of the schedule. For instance, having a problem instance with three transactions with periods p1 = 2, p2 = 5
and p3 = 16 it is possible to convert it to the problem, where p2 = 4 with the rest of the periods unchanged. Then, instead of
having the schedule length of lcm(2, 5, 16) = 80 we have lcm(2, 4, 16) = 16, significantly saving the local memory space, but
resulting in over-allocation since now we schedule the tasks in T2 every 4 time units instead. Furthermore, scheduling becomes
easier, since there is less collisions in the schedule when allocating tasks perfectly periodically. However, this solution can
cause significant over-allocation, resulting in impossibility to solve instances with high load.

Ideally, it is required not just to solve the satisfiability problem, but also care about the utilization of the final schedule.
Typically, there are not only periodic tasks in the system, but also sporadic tasks that are required to be scheduled in an
event-triggered manner. It means that once in some relatively short interval there should be a gap in the schedule that we want
to maximise for sporadic tasks to be efficiently scheduled.
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