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Abstract—The complexity of embedded application design is increasing with growing user demands. In particular, automotive

embedded systems are highly complex in nature, and their functionality is realized by a set of periodic tasks. These tasksmay have

hard real-time requirements and communicate over an interconnect. The problem is to efficiently co-schedule task execution on cores

andmessage transmission on the interconnect so that timing constraints are satisfied. Contemporary works typically deal with zero-jitter

scheduling, which results in lower resource utilization, but has lower memory requirements. This article focuses on jitter-constrained

scheduling that puts constraints on the tasks jitter, increasing schedulability over zero-jitter scheduling. The contributions of this article

are: 1) Integer Linear Programming and Satisfiability Modulo Theory model exploiting problem-specific information to reduce the

formulations complexity to schedule small applications. 2) A heuristic approach, employing three levels of scheduling scaling to

real-world use-cases with 10,000 tasks andmessages. 3) An experimental evaluation of the proposed approaches on a case-study

and on synthetic data sets showing the efficiency of both zero-jitter and jitter-constrained scheduling. It shows that up to 28 percent

higher resource utilization can be achieved by having up to 10 times longer computation timewith relaxed jitter requirements.

Index Terms—Real-time systems, automotive systems, resource scheduling, jitter control, integer linear programming,

satisfiability modulo theory

Ç

1 INTRODUCTION

THE complexity of embedded application design is
increasing as a multitude of functionalities is incorpo-

rated to address growing user demands. The problem of
non-preemptive co-scheduling of these applications on multi-
ple cores and their communication via an interconnect can
be found in automotive [1], [2], avionics [3] and other indus-
tries. For instance, automotive embedded systems (e.g., con-
temporary advanced engine control modules) are highly
complex in nature, and their functionality is realized by a
set of tightly coupled periodic tasks with hard real-time
requirements that communicate with each other over an
interconnect. These tasks may be activated at different rates
and execute sensing, control and actuation functions. Addi-
tionally, these embedded applications are required to real-
ize many end-to-end control functions within predefined
time bounds, while also executing the constituent tasks in a
specific order. To reduce the cost of the resulting system, it
is necessary to allocate resources efficiently.

The considered problem is illustrated in Fig. 1a, where
tasks a1; a2; a3; a4 are mapped to Cores 1 to 3, where each

core has its local memory and communicate via a crossbar
switch. This architecture is inspired by Infineon AURIX Tri-
Core [4]. The crossbar switch is assumed to be a point-to-
point connection that links an output port of each core with
input ports of the remaining cores. Although there is no con-
tention on output ports since tasks on cores are statically sched-
uled, scheduling of the incomingmessages on the input portsmust
be done to prevent contention. Moreover, there are two
chains of dependencies, indicated by thicker (red) arrows,
i.e., a1 ! a5 ! a2 and a3 ! a6 ! a4. Note that although this
example contains 6 resources to be scheduled, the only input
port that must be scheduled in this case is the one of Core 3,
since there are no incomingmessages to other cores.

The time-triggered approach, where the schedule is com-
puted offline and repeated during execution is commonly
used in scheduling safety-critical systems. However, con-
temporary time-triggered works mostly consider zero-jitter
(ZJ) scheduling [5], [6] also called strictly periodic schedul-
ing, where the start time of an activity, (i.e., task or message)
is at a fixed offset (instant) in every period. If there are two
consecutive periods in which the activity is scheduled at dif-
ferent times (relative to the period), we call it jitter-con-
strained (JC) scheduling. On one hand, ZJ scheduling results
in lower memory requirements, since the schedule takes
less space to store and typically needs less time to find an
optimal solution. On the other hand, it puts too strict
requirements on a schedule causing many problem instan-
ces to be infeasible, as we later show in Section 6. This may
lead to increasing requirements on the number of employed
cores for the given application, and thus makes the system
more expensive. Even though some applications or even
systems are restricted to being ZJ, e.g., some systems in the
avionics domain [7], many systems in the automotive
domain allow JC scheduling [8], [9]. Therefore, this article
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explores the trade-off between JC and ZJ scheduling.
Although not all activities have ZJ requirements, some of
them are typically sensitive to the delay between consecu-
tive occurrences, since it greatly influences the quality of
control [10]. Assuming constrained jitter instead of ZJ sched-
uling allows the resulting schedule to both satisfy strict jitter
requirements of the jitter-critical activities and to have more
freedom to schedule their non-jitter-critical counterpart.

An example of the JC schedule for the problem in Fig. 1a
assumes that activities a1, a2 and a5 have a required period
of 9 time units, while a3, a4, and a6 must be scheduled with
a period of 6. The resulting JC schedule is shown in Fig. 1b
with a hyper-period (length) of 18 time units, which is the
least common multiple of both periods. Hence, activities a1,
a2 and a5 are scheduled 2 times and activities a3, a4, and a6
are scheduled 3 times during one hyper-period, defining its
number of jobs, i.e., activity occurrences. Note that activities
a2 and a5 are not scheduled with zero-jitter since a2 in the
first period is scheduled at time 7, while in the second
period at time 5 (+9). Similarly, a5 is scheduled at different
times in the first and second periods (4 and 2(+9), respec-
tively). In contrast, Fig. 1c illustrates that using ZJ schedul-
ing results in collisions between a2 and a4 on Core 3, and
between a5 and a6 in the crossbar switch. Moreover, an
exact approach (see SMT formulation in Section 4) can
prove that the instance is infeasible with ZJ scheduling.
Thus, if an application can tolerate some jitter in the execu-
tion of activities a2 and a5 without unacceptable quality deg-
radation of control, then the system resources could be
utilized more efficiently, as shown in Fig. 1b.

The rest of this article is organized as follows: the related
work is discussed in Section 2. Section 3 proceeds by pre-
senting the system model and the problem formulation. The
description of the ILP and SMT formulations and their com-
putation time improvements follow in Section 4. Section 5
introduces the proposed heuristic approach for scheduling
periodic activities, and Section 6 proceeds by presenting the
experimental evaluation before concluding the article in
Section 7.

The three main contributions of this article are: 1) Two
models, one Integer Linear Programming (ILP) formulation
and one Satisfiability Modulo Theory (SMT) model with
problem-specific improvements to reduce the complexity
and the computation time of the formulations. The two
models are proposed due to significantly different computa-
tion times on problem instances of low and high complex-
ity, respectively. The formulations optimally solve the
problem for smaller applications with up to 50 activities in
reasonable time. 2) A heuristic approach, called 3-LS,

employing a three-step approach that scales to real-world
use-cases with more than 10,000 activities. 3) An experimen-
tal evaluation of the proposed solution for different jitter
requirements on a synthetic data sets that quantifies the
computation time and resource utilization trade-off and
shows that relaxing jitter constraints allows to achieve on
average up to 28 percent higher resource utilization for the
price of up to 10 times longer computation time. Moreover,
the 3-LS heuristic is demonstrated on a case study of an
engine management system, which it successfully solves in
43 minutes.

2 RELATED WORK

There are two approaches to solve the periodic scheduling
problem with hard real-time requirements: 1) Event-Trig-
gered (ET) Scheduling [11], where scheduling is performed
during run-time of a system, triggered by events, and
2) The Time-Triggered (TT) Scheduling that builds schedules
offline that are provably correct by construction. The TT
scheduling is commonly adopted in safety-critical systems,
due to the highly predictable behavior of the scheduled
activities, simplifying design and verification [12].

Even though this article targets the TT approach, the sur-
vey of related work would not be complete without men-
tioning articles that consider the ET paradigm. A broad
survey of works related to periodic (hard real-time) sched-
uling is provided by Davis and Burns in [11]. Next, Baruah
et al. [13] introduce the notion of Pfair schedules, which
relates to the concept of ZJ scheduling while scheduling pre-
emptively, i.e., where execution of an activity can be pre-
empted by another activity. Similarly to the ZJ approach
that requires the time intervals equal to execution times of
activities to be scheduled equidistantly in consecutive peri-
ods as a whole, Pfair requires equidistant allocation, while
scheduling by intervals of one time instant. On the non-pre-
emptive scheduling front, Jeffay et al. [14] propose an
approach to schedule periodic activities on a single resource
with precedence constraints. The problem of co-scheduling
tasks and messages in an event-triggered manner is consid-
ered in [15], [16], [17]. However, these works do not con-
sider jitter constraints, as done in this article.

The TT approach attracted the attention of many
researchers over the past twenty years for solving the
problem of periodic scheduling. The pinwheel scheduling
problem [18] can be viewed as a relaxation of the jitter-
bounded scheduling concept, where each activity is
required to be scheduled at least once during each prede-
fined number of consecutive time units. If minimizing

Fig. 1. Multi-periodic scheduling problem description with examples of ZJ and JC solution, where a5 is a message between a1 and a2 and a6 is a mes-
sage between a3 and a4.
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number of jobs, the solution of the pinwheel problem
approaches the ZJ scheduling solution, since it tends to
have an equidistant schedule for each activity. Moreover,
the Periodic Maintenance Scheduling Problem [19] is iden-
tical to ZJ scheduling, as it requires jobs to be executed
exactly a predefined number of time units apart.

Considering works that formulate the problem similarly,
some authors deal with scheduling only one core [20], [21],
while others focus only on interconnects [22], [23]. These
works neglect precedence constraints and, in terms of
scheduling, consider each core or interconnect to be sched-
uled independently, unlike the co-scheduling of cores and
interconnects in this article. The advantage of co-scheduling
lies in synchronization between tasks executing on the cores
and messages transmitted through an interconnect that
results in high efficiency of the system in terms of resource
utilization. Steiner [5] introduces precedence dependencies
between activities, while dealing with the problem of sched-
uling a TTEthernet network. However, Steiner assumes that
all activities have identical processing times, which in our
case will increase resource utilization significantly.

Some works deal with JC scheduling without any con-
straints on jitter requirements, which is not realistic in the
automotive domain, since there can be jitter-sensitive activi-
ties. Puffitsch et al. in [9] assume a platform with imperfect
time synchronization and propose an exact constraint pro-
gramming approach. Abdelzaher and Shin in [24] solve a
similar problem by applying both an optimal and a heuristic
branch-and-bound method. Furthermore, the authors in [25]
consider the preemptive version of our problem that makes
it impossible to apply their solution to problem considered
in this article, since some activities can be scheduled with
interruption.

Jitter requirements are not considered in the problem for-
mulations of [26] and [27], where the authors propose heu-
ristic algorithms to deal with the co-scheduling problem.
Finally, in [10] the authors solve the considered problem
with an objective to minimize the jitter of the activities using
simulated annealing, while we rather assume jitter-con-
strained activities with no objective to optimize. Note that
these approaches with JC assumption are heuristics and the
efficiency of the proposed methods have not been compared
to optimal solutions.

There also exist works that schedule both tasks and
messages, while assuming ZJ scheduling. Lukasiewycz
and Chakraborty [28] solve the co-scheduling problem
assuming the interconnect to be a FlexRay bus, which
results in a different set of constraints. Their approach
involves decomposing the initial problem and solving the
smaller parts by an ILP approach to manage scalability.
Besides, Lukasiewycz et al. in [29] solve the co-scheduling
problem by introducing the preemption into the model
formulation. Moreover, Craciunas and Oliver [6] consider
an Ethernet-based interconnect and solve the problem
using both SMT and ILP. However, ZJ scheduling results
in a larger number of required cores, as shown in
Section 6. In summary, this work is different in that it is the
first to consider the periodic JC co-scheduling problem with jit-
ter requirements and solves it by a heuristic approach, whose
quality is evaluated by comparing with the exact solution for
smaller instances.

3 SYSTEM MODEL

This section first introduces the platform and the applica-
tion models used in this article. Then, the mapping of
activities to resources is described, concluded by the prob-
lem statement.

3.1 Platform Model

The considered platform comprises a set of homogeneous
cores on a single multi-core Electronic Control Unit (ECU)
with a crossbar switch, as shown in Fig. 1a. This is similar to
the TriCore architecture [4]. The crossbar switch provides
point-to-point connection between the cores, and input
ports act as communication endpoints and can receive only
a single message at a time. We assume that tasks on differ-
ent cores communicate via the crossbar switch that writes
variables in local memories of the receiving cores. On the
other side, intra-core communication is realized through
reading and writing variables that are stored in the local
memory of each core. The set of m resources that include m

2
cores and m

2 crossbar switch input ports is denoted by
U ¼ fu1; u2; . . . ; umg. Moreover, the cores are characterized
by their clock frequency and available memory capacity.

Although this work focuses on multi-core systems with
crossbar switches, the current formulation is easily extensible
to distributed architectures with multiple single-core proc-
essing units, connected by a bus, e.g., CAN [30]. Furthermore,
assuming systems with fully switched networks, e.g., sched-
uling of time-triggered traffic in TTEternet [31] leads to a sim-
ilar scheduling problem. However, scalability of the solution
presented below may be problematic in such case due to the
increased number of entities to schedule, since each message
needs to be scheduled on every network segment. The possi-
ble extension of this article in this direction can be found
in [32], where scheduling of only communication is done
unlike the co-scheduling considered in this article.

3.2 Application Model

The application model is based on characteristics of realistic
benchmarks of a specific modern automotive software sys-
tem, provided in [33]. We model the application as a set of
periodic tasks T that communicate with each other via a set
of messages M, transmitted over the crossbar switch. Then
A ¼ T [M, denotes the set of activities, which includes
both the incoming messages on the input ports of the cross-
bar switch and the tasks executed on the cores. Each activity
ai is characterized by the tuple fpi; ei; jitig representing its
period, execution time and jitter requirements, respectively.
Its execution may not be preempted by any other activity,
since non-preemptive scheduling is considered. The release
date of each activity equals the start of the corresponding
period and the deadline is the end of the next period. This
deadline prolongation extends the solution space. The
period of a message is set to the period of the task that sends
the message. Additionally, execution time of messages on
the input ports correspond to the time it takes to write the
data to the local memory of the receiving core. Thus, since
the local memories are defined by both their bandwidth and
latency, execution time for each message ai 2 M is calcu-
lated as ei ¼ szi

bnd þ lat, where szi is the size of the corre-
sponding transmitted variable given by the application
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model, while bnd is the bandwidth of the memory and lat is
its latency given by the platform model. This is similar to
latency-rate server concept [34].

Cause-effect chains are an important part of the model. A
cause-effect chain comprises a set of activities that must be
executed in a given order within predefined time bounds to
guarantee correct behavior of the system. As one activity can
be a part of more than one cause-effect chain, the resulting
dependency relations are represented by a directed acyclic
graph (DAG) that can be very complex in real-life applica-
tions [35], such as automotive engine control. Similarly to [6]
and [36], activities of one cause-effect chain are assumed to
have the same period. More generalized precedence rela-
tions with activities of distinct periods being dependent on
each other can be found in, e.g., [37]. Thus, the resulting
graph of precedence relations consists of distinct DAG’s for
activities with different periods, although not necessarily
only one DAG for each unique period. The set of precedence
relations between the activities is characterized by an adja-
cency matrix with elements AG ¼ fgi;lg of dimension n� n
where gi;l ¼ 1 if activity ai must finish before activity al can
start. An example of a precedence relation is shown in Fig. 2,
which includes the activities from Fig. 1. Note that many
activities may not have any precedence constraints, since
they are not part of any cause-effect chain. For instance, it
could be simple logging andmonitoring activities.

Lastly, each cause-effect chain has an end-to-end deadline
constraint, i.e., the maximum time that can lapse from the
start of the first activity till the end of the execution of the
last activity in each chain equal to two corresponding peri-
ods. However, as the first activity in each chain can be
scheduled at the beginning of the period at the earliest and
the last activity of the chain at the end of the next period at
the latest, the end-to-end latency constraint is automatically
satisfied due to release and deadline constraints of the activ-
ities. Therefore, end-to-end latency constraints do not add
further complexity to the model.

3.3 Mapping of Tasks to Cores

The mapping map : A ! U , map ¼ fmap1; . . . ;mapng of
tasks to cores and messages to the memories is assumed to
be given by the system designer, which reflects the current
situation in the automotive domain, for, e.g., engine control.
Note that for the previously discussed extension to fully
switched network systems, both mapping and routing (i.e.,
define path through the network for each message) that
respect some locality constraints are necessary. Since map-
ping influences routing and therefore message scheduling,
for such systems it is advantageous to solve the three steps
at once, as it is done, e.g., in [38].

To get a mapping for the problem instances used to vali-
date the approaches in this article, a simple ILP model for

mapping tasks to cores is formulated the following way. The
variables qi;j 2 f0; 1g indicate whether task i ¼ 1; . . . ; jT j is
mapped to resource j ¼ 1; . . . ; m2 (qi;j = 1) or not (qi;j = 0). Note
that we consider only Cores as resources and tasks on cores
as activities while mapping. The mapping tries to balance
the load, which is formulated as a sum of absolute values of
utilization differences on two consecutive resources in Equa-
tion (1). Since the absolute operator is not linear, it needs to
be linearized by introducing the load variables bj 2 R in
Equations (2) and (3)

Minimize :
X

j21;::;m2
bj (1)

subject to:

bj �
X

i¼1;...;jT j

ei
pi

� qi;j �
X

i¼1;...;jT j

ei
pi

� qi;jþ1; j ¼ 1; . . . ;
m

2
(2)

bj �
X

i¼1;...;jT j

ei
pi

� qi;jþ1 �
X

i¼1;...;jT j

ei
pi

� qi;j; j ¼ 1; . . . ;
m

2
: (3)

Moreover, each task must be mapped to a single resource,
as is stated in X

j¼1;...;m2

qi;j ¼ 1; i ¼ 1; . . . ; jT j: (4)

Note that this mapping is not considered a contribution of
this article, but only a necessary step to provide a starting
point for the experiments, since the benchmark generator
does not provide the mapping.

3.4 Problem Statement

Given the above model, the goal is to find a schedule with a
hyper-period H ¼ lcmðp1; p2; . . . ; pnÞ with lcm being the
least common multiple function, where the schedule is
defined by start times sji 2 N of each activity ai 2 A in each
period j ¼ 1; 2; . . . ; ni, where ni ¼ H

pi
. The schedule must sat-

isfy the periodic nature of the activities, the precedence rela-
tions and the jitter constraints. The considered scheduling
problem can be categorized as multi-periodic non-preemptive
scheduling of activities with precedence and jitter constraints on
dedicated resources.

The formal definition of a zero-jitter schedule is the
following:

Definition 1 (Zero-jitter schedule). The schedule is a ZJ
schedule if and only if for each activity ai Equation (5) is valid,
i.e., the difference between the start times sji and sjþ1

i in each
pair of consecutive periods j and jþ 1 over the hyper-period is
the same

sjþ1
i � sji ¼ pi; j ¼ 1; 2; . . . ; ni � 1: (5)

Zero-jitter scheduling deals exclusively with ZJ sched-
ules. If for some activity and some periods j and jþ 1 Equa-
tion (5) does not hold in the resulting schedule, we call it
jitter-constrained schedule.

The scheduling problem, where a set of periodic activi-
ties are scheduled on one resource is proven to be NP-hard
in [39] by transforming from the 3-Partition problem. Thus,
the problem considered (both ZJ and JC) here is also NP-
hard, since it is a generalization of the aforementioned NP-
hard problem.

Fig. 2. An example of the resulting precedence relations, where activities
in DAG 1 have period 6, activities in DAG 2 have period 9 and activities
in DAG 3 have period 18.
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4 EXACT MODELS

Due to significantly different timing behavior of the models
on problem instanceswith varying complexity (see Section 6),
both SMT and ILP models are formulated in this article.
Moreover, the NP-hardness of the considered problem jus-
tifies using these approaches, since no polynomial algo-
rithm exists to optimally solve the problem unless P ¼ NP.
This section first presents a minimal SMT formulation to
solve the problem optimally, then continues with a lineari-
zation of the SMT model to get an ILP model. It concludes
by providing improvements to both models that exploit
problem-specific knowledge, reducing the complexity of
the formulation and thus the computation time.

4.1 SMT Model

The SMT problem formulation is based on the set of varia-
bles sji 2 f1; 2; . . . ; Hg, indicating a start time of job j of
activity ai. Following the problem statement in Section 3.4,
we deal with a decision problem with no criterion to opti-
mize. The solution space is defined by five sets of con-
straints. The first set of constraints is called release date and
deadline constraints and it requires each activity to be exe-
cuted in a given time interval of two periods, as stated in

ðj� 1Þ � pi � sji � ðjþ 1Þ � pi � ei;

ai 2 A; j ¼ 1; . . . ; ni:
(6)

The second set, Constraint (7), ensures that for each pair of
activities ai and al mapped to the same resource
(mapi ¼ mapl), it holds that either a

j
i is executed before akl or

vice-versa. These constraints are called resource constraints.
Note that due to the extended deadline in Constraint (6),
the resource constraints must be added also for jobs in the
first period with jobs of the last period, since they can col-
lide

sji þ ei � skl _ skl þ el � sji ;

s1i þ ei þH � s
nl
l _ s

nl
l þ el � s1i þH;

ai; al 2 A : mapi ¼ mapl; j ¼ 1; . . . ; ni; k ¼ 1; . . . ; nl:

(7)

For the ZJ case, it is enough to formulate Constraints (7) for
each pair of activities only for jobs in the least common mul-
tiple of their periods, i.e., j ¼ 1; . . . ;

lcmðpi;pjÞ
pi

and
k ¼ 1; . . . ;

lcmðpi;pjÞ
pl

. Moreover, the problem for ZJ scheduling
is formulated using n variables. One variable s1i is defined
for the first job of each activity and other jobs are simply
rewritten as sji ¼ s1i þ pi � ðj� 1Þ.

The next set of constraints is introduced to prevent situa-
tions, when two consecutive jobs of one activity collide.
Thus, Constraint (8) introduces precedence constraints
between each pair of consecutive jobs of each activity, con-
sidering also the last and the first job

sji þ ei � sjþ1
i ;

s
ni
i þ ei � s0i þH;

ai 2 A; j ¼ 1; . . . ; ni � 1:

(8)

Next, due to the existence of cause-effect chains, prece-
dence constraints that are based on the previously mentioned
AG matrix are formulated in

sji þ ei � sjl ;

ai; al 2 A : gi;l ¼ 1; j ¼ 1; . . . ; ni:
(9)

The jitter constraints can be formulated either in terms of
relative jitter, where we bound only the difference in start
times of jobs in consecutive periods or in terms of abso-
lute jitter, bounding the start time difference of any two
jobs of an activity. Experiments have shown that defin-
ing jitter as absolute or relative does not significantly
influence the resulting efficiency. The difference in terms
of maximal achievable utilization is less than 1 percent
on average with relative jitter showing higher utilization.
Therefore, further in the paper we use the relative defini-
tion of jitter. Note that the results for absolute jitter for-
mulation do not differ significantly from the results
presented in this article. The formulation of relative jitter
is given in Equation (10), where the first constraint deals
with jitter requirements of jobs inside one hyper-period
and the second one deals with jobs crossing a border
between two hyper-periods

jsji � ðsj�1
i þ piÞj � jiti;

js1i þH � pi � s
ni
i j � jiti

j ¼ 2; . . . ; ni : j > k; ai 2 A:

(10)

4.2 ILP Model

The formulation of the ILP model is very similar to the
SMT model described above. The main difference in for-
mulation is caused by the requirement of linear con-
straints for the ILP model. Thus, since Equations (6), (8),
and (9) are already linear, they can be directly used in the
ILP model. However, resource Constraints (7) are non-
linear and to linearize them, we introduce new set of deci-
sion variables that reflect the relative order of each two
jobs of different activities

xj;k
i;l ¼ 1; if ajistarts before akl ;

0; otherwise:

(

Therefore, resource constraints are formulated by Equa-
tion (11), which ensures that either aji is executed before akl
(the first equation holds and xj;k

i;l ¼ 1) or vice-versa (the sec-
ond equation holds and xj;k

i;l ¼ 0). However, exactly one of
these equations must always hold due to binary nature of
xj;ki;l , which prevents the situation where two activities exe-
cute simultaneously on the same resource. Note that we use
2 �H in the right part of the Constraints, since the maximum
difference between two jobs of distinct activities can be
maximally 2 �H due to release date and deadline con-
straints

sji þ ei � skl þ 2 �H � ð1� xj;ki;l Þ;
skl þ el � sji þ 2 �H � xj;k

i;l ;

ai; al 2 A; j ¼ 1; . . . ; ni; k ¼ 1; . . . ; nl:

(11)

Furthermore, to formulate the jitter constraints (10) in a lin-
ear form, the absolute value operator needs to be elimi-
nated. As a result, Equation (12) introduces four sets of
constraints, two for the jobs inside one hyper-period and
two for the jobs on the border
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sji � ðski þ ðj� kÞ � piÞ � jiti;

sjþ1
i � ðsji þ ðj� kÞ � piÞ � �jiti

ðs1i þH � piÞ � s
ni
i � jiti

ðs1i þH � piÞ � s
ni
i � �jiti

j; k ¼ 1; . . . ; ni : j > k; ai 2 A:

(12)

Unlike the time-indexed ILP formulation [40], where each
variable yi;j indicates that the activity i is scheduled at time
j (having H � n variables), the approach used here can solve
problems with large hyper-periods when there are fewer
jobs with longer execution time. Hence, it utilizes only
njobs þ njobs�ðnjobs�1Þ

2 with njobs ¼
Pn

i¼1 ni variables, which is a
fraction of the variables that the time-indexed formulation
requires for this problem.

4.3 Computation Time Improvements

While the basic formulations of the SMT and ILP models
were presented previously, four computation time improve-
ments for the models are introduced here in order to reduce
the complexity of the formulation and computation time of
the solver. Note that the improvements do not break the
optimality of the solution.

The first improvement removes redundant resource con-
straints. Due to the release date and deadline constraints (6), it
is known that sji 2 ½ðj� 1Þ � pi; ðjþ 1Þ � pi � ei� and skl 2 ½ðk �
1Þ � pl; ðkþ 1Þ � pl � el�. Therefore, it is necessary to include
resource constraints only if the intervals overlap. This
improvement results in more than 20 percent of the resource
constraints being eliminated, reducing the computation time
significantly since the number of resource constraints grows
quadraticallywith the number of activitiesmapped to a given
resource.

Instead of setting the release date and deadline Con-
straint (6), the second improvement provides this informa-
tion directly to the solver. Thus, each constraint is
substituted by setting the lower bound of sji on ðj� 1Þ � pi
and the upper bound on ðjþ 1Þ � pi � ei. Hence, instead of
assuming the variables sji in interval ½1; . . . ; H� and pruning
the solution space by the periodicity constraints, the solver
starts with tighter bounds for each variable. This signifi-
cantly cuts down the search space, thereby reducing compu-
tation time. Due to the different solver abilities for SMT and
ILP, this optimization is only applicable to the ILPmodel.

We can further refine the lower and upper bounds of the var-
iables by exploiting the knowledge about precedence con-
straints, which is the third improvement. For each activity
the length of the longest critical path of the preceding and
succeeding activities that must be executed before and after
the given activity, tb and ta respectively, are computed.
First, the values of t̂bi and t̂ai are obtained by adding up the
execution times of the activities in the longest chain of suc-
cessors and predecessors of the activity ai, respectively, as
proposed by [41]. For the example in Fig. 2, assuming the
execution times of all activities are equal to 1, t̂b1 ¼ 0, t̂a1 ¼ 2,
t̂b6 ¼ 1, t̂a6 ¼ 1, t̂b2 ¼ 2, t̂a2 ¼ 0. Additionally, the bounds can be
improved by computing the sum of execution times of all
the predecessors, mapped to the same resource, i.e.,

tbi ¼ max
X

l: l2Predi; mapl¼mapi

el; t̂
b
i

 !

tai ¼ max
X

l: l2Succi; mapl¼mapi

el; t̂
a
i

 !
;

where Predi and Succi denote the set of all predecessors and
all successors of activity ai, respectively.

For the example in Fig. 2 and a single core, the resulting
values are the following: tb1 ¼ 0, ta1 ¼ 2, tb6 ¼ 1, ta6 ¼ 2, tb2 ¼ 4,
ta2 ¼ 0. Hence, the lower bound of sji can be refined by add-
ing tbi and the upper bound can be tightened by subtracting
tai , i.e., sji 2 ½ðj� 1Þ � pi þ tbi ; ðjþ 1Þ � pi � ei � tai �. This can
also be used in the first improvement, eliminating even
more resource constraints.

The fourth and final improvement removes jitter con-
straints (12) for activities with no freedom to be scheduled with
larger jitter than required. For instance, for jobs of a2 from
Fig. 2 with e2 ¼ 1, tb2 ¼ 4, ta2 ¼ 0 and p2 ¼ 9, there are only 14
instants t, where it can be scheduled, i.e., t 2 f4; . . . ; 17g. If
jit2 � 13, the jitter constraint can be omitted since the activ-
ity can be scheduled only at 14 instants due to the third
improvement and it is not possible to have jitter bigger than
13 time units and still respect the periodicity of the activity.
We denote by Ii the worst-case slack of the activity, i.e., the
lower bound on the number of time instants where activity
ai can be scheduled and we compute it according to Equa-
tion (13). Hence, the jitter constraints are only kept in the
model if Inequality (14) holds, i.e., the activity has space to
be scheduled with larger jitter than required. We refer to an
activity satisfying Equation (14) jitter-critical. Otherwise, it is
a non-jitter-critical activity

Ii ¼ pi � ðtb þ ta þ eiÞ (13)

jiti � Ii � 2; ai 2 A: (14)

Experimental results have shown that even on smaller prob-
lem instances with 40-55 activities, the proposed improve-
ments reduce computation time by up to 30 times for ILP
model and 12 times for SMT model. Moreover, the first and
the third improvements result in the most significant reduc-
tion of the computation time. However, when experimen-
tally comparing these two improvements, we see that the
behavior is rather dependent on the problem instance char-
acteristics, as both the first and the third improvements can
be the most effective on different problem instances.

5 HEURISTIC ALGORITHM

Although the proposed optimal models solve the problem
optimally, this section introduces a heuristic approach to
solve the problem in reasonable time for larger instances,
possibly sacrificing the optimality of the solution within
acceptable limits.

5.1 Overview

The proposed heuristic algorithm, called 3-Level Scheduling
(3-LS) heuristic, creates the schedule constructively. It
assigns the start time to every job of an activity in a given
HP. Moreover, it implements 3 levels of scheduling, as
shown in Fig. 3. The first level inserts activity by activity
into the schedule, while removing some of the previously
scheduled activities, au, if the currently scheduled activity
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ac cannot be scheduled. However, in case the activity au to
be removed had problems being scheduled in previous iter-
ations, the algorithm goes to the second level, where two
activities that were problematic to schedule, ac and au are
scheduled simultaneously. By scheduling these two activities
together, we try to avoid problems with a sensitive activity
further in the scheduling process. Simultaneous scheduling
of two activities means that two sets of start times sc and su
are decided for activities ac and au concurrently. The third
scheduling level is initiated when even co-scheduling two
activities ac and au simultaneously does not work. Then, the
third level starts by removing all activities except the ones
that were already scheduled by this level previously and its
predecessors. Next, it co-schedules the two problematic
activities again. Note that although there may be more than
two problematic activities, the heuristic always considers
maximally two at once.

Having three levels of scheduling provides a good bal-
ance between solution quality and computation time, since
the effort to schedule problematic activities is reasonable to
not prolong the computation time of the approach and to get
good quality solutions. Experimental results show that 94
percent of the time is spent in the first scheduling level,
where the fastest scheduling takes place. However, in case

the first level does not work, the heuristic algorithm contin-
ues with the more time demanding second scheduling level
and according to the experimental results it spends 3 percent
of time in this level. The final 3 percent of the total computa-
tion time is spent in the third scheduling level that prolongs
the computation time the most since it unschedules nearly
all the activities scheduled before. Thus, three levels of
scheduling is a key feature to make the heuristic algorithm
cost efficient and yet still able to find a solution most of the
time. As seen experimentally in Section 6, it suffices to find a
good solutions for large instanceswithinminutes.

Note that the advantage of scheduling all jobs of one
activity at a time compare to scheduling by individual jobs
lies in the significantly reduced number of entities we need
to schedule. Hence, unlike the exact model that focus on
scheduling jobs for all of the activities at a time, the 3-LS
heuristic approach decomposes the problem to smaller sub-
problems for one activity. This implies that the 3-LS heuris-
tic is not optimal and is also a reason why it takes signifi-
cantly less time to solve the problem.

5.2 Sub-Model

The schedule for a single activity or two activities at the same
time, respecting the previously scheduled activities is found
by a so called sub-model. The sub-model for one activity ai
that is non-jitter-critical (i.e., ai for which Inequality (14) does
not hold) is formulated as follows. The minimization crite-
rion is the sum of the start times of all ai jobs (Equation (15)).
Note that the activity index i is always fixed in the sub-model
since it only schedules a single activity at a time

Minimize :
X

j21::ni
sji : (15)

The reasons for scheduling activities as soon as possible are
twofold. First, it is done for dependent activities to extend
the time interval in which the successors of the activity can
be scheduled, thereby increasing the chances for this DAG
component to be scheduled. Second, scheduling at the earli-
est instant helps to reduce the fragmentation of the sched-
ule, i.e., how much free space in the schedule is left between
any two consecutively scheduled jobs, resulting in better
schedulability in case the periods are almost harmonic, i.e.,
being multiples of each other, which is common in the auto-
motive domain [33].

The start time of each job j can take values from the set
Dj

i (Equation (17)), which is the union of intervals, i.e.,

Dj
i ¼ f½li;j1 ; rj1� [ ½li;j2 ; ri;j2 � [ � � � [ ½li;jw ; ri;jw �g;

ri;jo < li;joþ1; li;jo � ri;jo ; j ¼ 1; . . . ; ni; o ¼ 1; . . . ; w� 1;
(16)

and fli;j1 ; ri;j1 ; . . . ; li;jw ; ri;jw g 2 Z2�w, where w is the number of

intervals in Dj
i and li;jo ; ri;jo are the start and end of the corre-

sponding interval o. This set of candidate start times is

obtained by applying periodicity constraints (6) and prece-

dence constraints (9) to already scheduled activities and

changing the resulting intervals so that the activity can be

executed fully with respect to its execution time. Note that
since we insert only activities whose predecessors are

already scheduled, all constraints are satisfied if the start

time of the job sji belongs toDj
i .

Fig. 3. Outline of 3-level scheduling heuristic.
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For the example in Fig. 2with all the execution times equal
to 1, with a single core, and with no activities scheduled,
D1

2 ¼ f½0 � p2 þ tb2; 2 � p2 � ta2 � e2 � 1�g ¼ f½0þ 4; 18� 0� 1� 1�g ¼
f½4; 16�g, which is basically the application of the third
improvement from Section 4. Now, suppose in the previous
iterations a18 is scheduled at time 4 and a110 is scheduled at
time 6. Then, the resulting D1

2 ¼ f½5; 5� [ ½7; 16�g, since a12
must be scheduled after a18 and it cannot collide with any
other activity on the core

sji 2 Dj
i ; j ¼ 1; 2; . . . ; ni: (17)

Furthermore, similarly to the ILP model in Section 4, the
precedence constraints for consecutive jobs of the same
activity must also be added

sji þ ei � sjþ1
i ;

s
ni
i þ ei � s0i þH;

j ¼ 1; 2; . . . ; ni � 1:

(18)

The pseudocode of the sub-model is presented in Algo-
rithm 1. As an input it takes the first activity to schedule a1,
and the optional second activity to schedule a2 together
with their requirements, and the set of intervals D. If a2 is
set to an empty object, the sub-model must schedule only
activity a1. In case a1 is non-jitter-critical, this scheduling
problem can be trivially solved by assigning sji ¼ li;j1 and
checking that it does not collide with the job in the previous
period. If it does, we schedule this job at the finish time of
the previous job if possible, otherwise at the end of the
resource interval it belongs to. If the start time is more than
the refined deadline of this job from Section 4.3, the activity
cannot be scheduled.

Algorithm 1. Sub-Model Used by 3-LS Heuristic

Input: a1, a2,D
if a2 = NULL then
if a1 is non-jitter-critical then
S ¼ minx2Di

x : Constraint (18) holds;
else
S ¼ ILP ða1; DÞ;

end
else
S ¼ ILP ða1; a2; DÞ;

end
Output: S

It is clear that this rule will always result in a solution,
minimizing (15) if one exists. Moreover, if for some job sji ,
the intervalDj

i is empty, then there is no feasible assignment
of this activity to time with the current set of already sched-
uled activities. On the other hand, when a1 is jitter-critical,
the sub-model is enriched by the set of jitter constraints (12)
and the strategy to solve it has to be more sophisticated.
The sub-model in this case is solved as an ILP model, which
has significantly shorter computation times on easier prob-
lem instances in comparison to SMT, as shown experimen-
tally in Section 6. This is important for larger problem
instances where sub-model is launched thousands of times,
since the heuristic decomposes a large problem to many
small problems by scheduling jobs activity by activity.

Although this problem seems to be NP-hard in the general
case because of the non-convex search space, the computa-
tion time of the sub-model is still reasonable due to the rela-
tively small number of jobs of one activity (up to 1,000) and
the absence of resource constraints.

We formulate Constraint (17) as an ILP in the following
way. First, we set lj1 � sji � rjw defined earlier in this section,
and for each ri;jt and li;jtþ1 two new Constraints (19) and a var-
iable yi;j;t 2 f0; 1g are introduced, which handles the “_”
relation of the two constraints similarly to the variable xj;k

i;l

from the ILP model in Section 4

sji þ ð1� yi;j;tÞ �H � li;jtþ1

sji � ri;jt þ yi;j;t �H:
(19)

Finally, when the sub-model is used to schedule two activi-
ties at once, i.e., a2 is not an empty object, Criterion (15) is
changed to contain both activities, and the resource con-
straints (11) for a1 and a2 are added. The resulting problem is
also solved as an ILP model, but similarly to the previous
case takes rather short time to compute due to small size of
the problem.Note that the 3-LS heuristic also utilizes the pro-
posed computation time improvements for the ILP model
from Section 4 and always first checks non-emptiness of Dj

for each job j before creating and running the ILPmodel.

5.3 Algorithm

The proposed 3-LS heuristic is presented in Algorithm 2. The
inputs are the set of activities A, the priority rule Pr that states
the order in which the activities are to be scheduled and the
rule to choose the activity to unschedule Un if some activity is not
schedulable with the current set of previously scheduled
activities. The algorithm begins by initializing the interval set
D for each aji as Dj

i ¼ f½ðj� 1Þ � pi þ tbi ; j � pi � tai � ei � 1�g
(line 2). Then it sorts the activities according to the priority
rule Pr (line 3), described in detail Section 5.4. The rule
always states that higher priority must be assigned to a pre-
decessor over a successor, so that no activity is scheduled
before its predecessors. Note that the first part of the first level
of scheduling is similar to the list scheduling approach [42].

In each iteration, the activity with the highest priority ac in
the priority queue of activities to be scheduled Q, is chosen and
scheduled by the sub-model (line 7). If a feasible solution S is
found, the interval set D is updated so that all precedence
and resource constraints are satisfied. First, for each al that is
mapped to the same resource with ac, i.e., mapl ¼ mapc, the
intervals inwhich ac is scheduled are taken out ofDl. Second,
for each successor al of activity ac the intervals are changed
as Dj

l ¼ Dj
l n f½0; Sj þ ec � 1�g, since a successor can never

start before a predecessor is completed. Next, the feasible
solution is added to the set of already scheduled activities, repre-
sented by their schedules Sch, and Q is updated to contain pre-
viously unscheduled activities, if there is any. If the current
activity ac is not schedulable, at least one activity has to be
unscheduled. The activity to be unscheduled au is found
according to the rule Un and this activity with all its succes-
sors are taken out of Sch (line 15). Next, the set of intervalsD
is updated in the inversemanner compared to the previously
described new activity insertion. To prevent cyclic schedul-
ing and unscheduling of the same set of activities, a set R of
activities that were problematic to schedule is maintained.

122 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018



Therefore, the activity to schedule ac has to be added to R
(line 17) if it is not there yet. In case the activity to be unsched-
uled is not problematic, i.e., au 62 R, the algorithm schedules
ac without au scheduled in the next iteration. Otherwise, the
second level of scheduling takes place, as shown in Fig. 3. In
this case, the sub-model is called to schedule ac and au simul-
taneously (line 20) and the set of two schedules S are added
to Sch.

Algorithm 2. 3-Level Scheduling Heuristic

Input: A
1 Sch ¼ ;, R ¼ ;, Scratch ¼ ;;
2 D.initialize();
3 Q = sort(A, Pr);
4 while jSchj < jAj do
5 ac = Q.pop();
6 // Schedule ac alone
7 S = SubModel(ac, NULL,D);
8 if SubModel found feasible solution then
9 // Add previously unscheduled activities to Q
10 Q.update();
11 Sch.add(S) // First scheduling level

12 D.update();
13 else
14 au = getActivityToUnschedule(Sch, Un);
15 Sch = Sch n fau [ au:sucg;
16 D.update();
17 R.add(ac);
18 if R.contains(au) then
19 // Schedule ac and au simultaneously
20 S = SubModel(ac, au,D) ;
21 if SubModel found feasible solution then
22 Sch.add(S) ; // Second level

23 else
24 // Leave in Sch only activities from Scratch and

predecessors of ac and au
25 Sch ¼ Scratch [ ac:pr [ au:pr;
26 D.update();
27 S = SubModel(ac, au,D);
28 if SubModel found feasible solution then
29 Sch.add(S); // Third level

30 D.update();
31 Scratch.add(ac, au, ac:pr, au:pr);
32 else

Output: FAIL
33 end
34 end
35 end
36 end
37 end

Output: Sch

Sometimes, even simultaneous scheduling of two prob-
lematic activities does not help and a feasible solution does
not exist with the given set of previously scheduled activi-
ties Sch. If this is the case, we go to the third level of sched-
uling and try to schedule these two activities almost from
scratch, leaving in the set of scheduled activities Sch only
the set Scratch of activities that were previously scheduled in
level 3 and the predecessors of ac and au (line 29). The set
Scratch is introduced to avoid the situation where the same
pair of activities is scheduled almost from scratch more

than once, which is essential to guarantee termination of
the algorithm. At the third scheduling level, the algorithm
runs the sub-model to schedule ac and au with a smaller
set of scheduled activities Sch. In case of success, the
obtained schedules S are added to Sch (line 29) and ac
together with au and their predecessors ac:pr and au:pr
are added to the set of activities Scratch, scheduled
almost from scratch. If the solution is not found at this
stage, the heuristics fails to solve the problem. Thus, the
3-LS heuristic proceeds iteration by iteration until either
all activities from A are scheduled or the heuristic algo-
rithm fails. Note that the same structure of the algorithm
holds for both ZJ and JC cases.

5.4 Priority and Unscheduling Rules

There are two rules in the 3-LS heuristic: Pr to set the priority
of insertion and Un to select the activity to unschedule. The rule
to set the priorities considers information about activity peri-
ods P , activity execution times E, the critical lengths of the
predecessors execution before tb and after ta and the jitter
requirements jit. However, not only the jitter requirements
of the activity need to be considered, but also the jitter
requirements of its successors. The reason is that if some
non-jitter-critical activity would precede an activity with a
critical jitter requirement in the dependency graph, the non-
jitter-critical activity postpones the scheduling of the jitter-
critical activity, resulting in the jitter-critical activity not
being schedulable.We call this parameter inherited jitter of an
activity, computed as jitinheri ¼ minaj2Predi jitj. Using the
inherited jitter for setting the priority is similar to the concept
of priority inheritance [43] in event-triggered scheduling.

Thus, the priority assignment scheme Pr sets the priority
of each activity ai to be a vector of two components
prioritysched ¼ ðminðIi; jitinherÞ;maxðIi; jitinherÞÞ, where Ii is
the worst-case slack of the corresponding DAG, defined in
Equation (13). The priority is defined according to lexico-
graphical order, i.e., by comparing the first value in the vec-
tor and breaking the ties by the second. We compare first by
the most critical parameter, either jitter jitinheri or the worst-
case slack Ii, since those two parameters reflect how much
freedom the activity has to be scheduled and the activity
with less freedom should be scheduled earlier. This priority
assignment strategy considers all of the aforementioned
parameters, by definition outperforming the strategies that
compare based on only subsets of these parameters.

The rule Un to choose the activity to unschedule is a
multi-level decision process. The general rules are that only
activities that are mapped to the resource where activity ac is
mapped are considered and we do not unschedule the prede-
cessors of ac. Moreover, the intuition behind the Un rule is
that unscheduling activities with very critical jitter require-
ments or with already scheduled successors should be done
only if no other options exist. The exact threshold for being
very jitter-critical depends on the size of the problem, but
based on experimental results we set the threshold of a high
jitter-criticality level to the minimum value among all peri-
ods. Thus, whether or not an activity is very jitter-critical is
decided by comparing its jitter to the threshold value
thresh ¼ minai2Api.

The rule Un can hence be described by three steps that
are executed in the given order:
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(1) If there are activities without already scheduled suc-
cessors and with jiti � thresh, choose the one with
the highest Ii.

(2) If all activities have successors already scheduled, but
activities with jiti � thresh exist, we choose the one
according to the vector priorityunsched ¼ ðnumber
(number of successors scheduled, IiÞ comparing
lexicographically.

(3) Finally, if all activities have jit < thresh, the step
chooses the activity to unschedule according to the
priority vector priorityunsched ¼ ðjitinher; IiÞ compar-
ing lexicographically.

Step 1 is based on the observation that activitieswith very crit-
ical jitter requirements are typically hard to schedule, unlike
those with no jitter requirements or less critical ones. Besides,
unscheduling many activities instead of one may cause pro-
longation of the scheduling process and possibly more com-
plications with further scheduling of successors. Moreover,
since only activities of cause-effect chains are a part of prece-
dence relations, there are many activities with no predeces-
sors and successors that can be unscheduled. This is typical
for the automotive domain [33]. Step 2 allows unscheduling
of activities with already scheduled predecessors, preferring
to keep in the schedule activities with critical jitter require-
ments. Step 3 states that if all of the activities have very critical
jitter requirements, the activity with the highest value of
inherited jitter should be unscheduled. In all three steps, ties
are broken by choosing the activity with higher worst-case
slack I value by the same intuition as in thePr rule.

We have experimentally determined that comparing to
the unscheduling rule with only worst-case slack (Ii) con-
sidered, the gain of the presented unscheduling rule is 5
percent more utilization achieved on average.

6 EXPERIMENTS

This section experimentally evaluates and compares the
proposed optimal models and 3-LS heuristic on synthetic
problems with jitter requirements set differently to show
the benefits of JC scheduling in terms of utilization. Further-
more, we quantify the trade-off of additional cost in terms
of memory to store the schedule and increase in computa-
tion time versus this gained utilization. Note that the goal of
this section is to show the advantages and disadvantages of
the JC approach. The experimental setup is presented first,
followed by experiments that evaluates the proposed exact
and heuristic approaches for different jitter and period
requirements. We conclude by demonstrating our approach
on a case study of an Engine Management System with
more than 10,000 activities to be scheduled.

6.1 Experimental Setup

Experiments are performed on problem instances that are
generated by a tool developed by Bosch [33]. There are
five sets of 100 problem instances, each set containing 20,
30, 50, 100 and 500 tasks, respectively. The same problem
instance is presented with different jitter requirements.
The generation parameters for each dataset are presented
in Table 1, and the granularity of the timer is set to be
1 ms. Message communication times are computed for the
considered platform with the following parameters: band-
width bnd ¼ 400 MB/s and latency lat ¼ 50 clock cycles.

The mapping is found as described in Section 3.3 so that
load is balanced across the cores, i.e., the resulting mapping
utilizes all cores approximately equally. The resulting prob-
lem instances contain 30-45, 50-65, 90-130, 180-250 and
1,500-2,000 activities (tasks and messages) for sets with 20,
30, 50, 100 and 500 tasks, respectively.

While we initially assume a system with 3 cores con-
nected over a crossbar (resulting in 6 resources), inspired
by the Infineon Aurix Tricore Family TC27xT, the
approach can scale to a higher number of cores, as shown
in Section 6.2.4.

The metric for the experiments on the synthetic datasets
is the maximum utilization for which the problem instance
is still schedulable. The utilization is defined as ry ¼P

ai2A:mapi¼y
ei
pi
on each resource y ¼ 1; . . . ; 6. To achieve the

desired utilization on each resource, the execution times of
activities are scaled appropriately. The experiments always
start from a utilization of 10 percent, increasing in steps of 1
percent, solving until the approach is not able to find a feasi-
ble solution. The last utilization value for which the solution
was found is set as the maximum utilization of the approach
on the problem instance. Although this approach to set the
maximum schedulable utilization may not be completely
fair, the utilization is monotonic in most cases. Therefore,
we have chosen to approximate the results by setting this
rule to get results that are easier to interpret.

Experiments were executed on a local machine equipped
with Intel Core i7 (1.7 GHz) and 8 GB memory. The ILP
model and ILP part of the 3-LS heuristic were implemented
in IBM ILOG CPLEX Optimization Studio 12.5.1 and solved
with the CPLEX solver using concert technology, while the
SMT model was implemented in Z3 4.5.0. The ILP, SMT and
heuristic approaches were implemented in the JAVA pro-
gramming language.

6.2 Results

First, the experiments compare the computation time of the
two optimal ILP and SMT approaches to show for which
problem instances it is advantageous to use each of the
approaches. Second, we evaluate trade-off between the max-
imum achievable utilization and computation time of the 3-
LS heuristic and the optimal approaches for differently
relaxed jitter requirements. Third, since memory consump-
tion to store the final schedule is also a concern, the trade-off
between solution quality and required memory is evaluated
for systems of different sizes. Finally, a comparison of differ-
ent period settings is presented to show the applicability of
the approach to different application domains and to evalu-
ate the behavior of both ZJ and JC approaches for periods
set differently. A time limit of 3,000 seconds per problem

TABLE 1
Generator Parameters for the Sets of Problem Instances

Set jT j P [ms] Variable accesses Chains

per task per task

1 20 1, 2, 5, 10 4 4
2 30 1, 2, 5, 10 4 6
3 50 1, 2, 5, 10, 20, 50, 100 4 8
4 100 1, 2, 5, 10, 20, 50, 100 4 15
5 500 1, 2, 5, 10, 20, 50, 100 8 50
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instance was set for the optimal approaches to obtain the
results in reasonable time. Note that the best solution found
so far is used if the time limit is hit.

6.2.1 Comparison of the ILP and SMT Models with

Different Jitter Requirements

First of all, we compare the computation time distribution for
Set 1 and Set 2 (of smaller instance sizes with 30-45 activities
and 50-65 activities, respectively) for SMT and ILP
approaches with jitter requirements of each activity ai 2 A
set to jiti ¼ pi

2 , jiti ¼ pi
5 , jiti ¼ pi

10 and jiti ¼ 0. Since the first
problem instance from Set 3 was computing for two days
before it was stopped with no optimal solution found for
both SMT and ILP models, the experiments with optimal
approaches only use the first two sets. We will return to the
larger sets in Section 6.2.3when evaluating the 3-LS heuristic.

The distribution is shown in the form of box plots [44],
where the quartile, median and three quartiles together
with outliers (plus signs) are shown. Outliers are numbers
that lie outside 1:5�the interquartile range away from the
top or bottom of the box that are represented by the top and
the bottom whiskers, respectively. Note that outliers were
also successfully solved within the time limit.

The number of problem instances from Set 1 and Set 2,
that the optimal approaches failed to solve within the given
time limit is shown in Table 2. Moreover, Fig. 4 displays the
computation time distribution on Set 1, where only problem
instances, that both the ILP and SMT solvers were able to
optimally solve all jitter requirements within the timeout
period are included. For Set 1, it is 82 (out of 100), and for
Set 2, it is 21 (out of 100) problem instances. The computa-
tion time distribution for Set 2 in show a similar trend, but
since the sample is too small to be representative, we do not
display them.

The results in Table 2 show that for more difficult prob-
lem instances the SMT model is significantly better than the
ILP model in terms of computation time, since it is able to
solve more problem instances within the given time limit.
On the other hand, the comparison on the problem instan-
ces that both approaches were able to solve in Fig. 4

indicates that the ILP runs faster on simpler problem instan-
ces that can be found at the bottom of the boxplots in
Section 6.2.1. As one can see, more relaxed jitter require-
ments result in longer computation time, which is a logical
consequence of having larger solution space.

Thus, the SMT model is more efficient than the ILP model
for the considered problem on more difficult problem instances,
while the ILP model shows better results for simpler instances,
which justifies the usage of the ILP model in the 3-LS heuris-
tic. Besides, more relaxed jitter requirements cause longer
computation time for the optimal approaches. Therefore, the
SMT approach results are used for further comparison
with the 3-LS heuristic.

6.2.2 Comparison of the Optimal and Heuristic

Solutions with Different Jitter Requirements

Fig. 5 shows the distribution of the maximum utilization on
Set 1 for SMT and 3-LS heuristic with different jitter require-
ments. For comparison, we use the solution with the highest
utilization, while the low value of initial utilization guaran-
tees that at least some solution is found. The time limit
caused 3 problem instances in Set 1 not to finish when using
the SMT approach and these instances are not included in
the results. The results for Set 2 are similar to that of Set 1,
but due to small number of solvable instances we do not
show them. The results for the optimal approach shows that
stricter jitter requirements cause lower maximum achiev-
able utilization. Namely, the average maximum utilization
is 89, 75, 69, 61 percent for Set 1 and 95, 81, 74, 67 percent for
Set 2 for the instances with jitter requirements equal to half,
fifth, tenth of a period and zero, respectively. Meanwhile,
the comparison of the 3-LS heuristic to the optimal solution
reveals that the average difference goes from 17 and 23 per-
cent for Set 1 and Set 2, respectively, with the most relaxed
jiti ¼ pi

2 to 0.1 percent for both sets with ZJ scheduling. This
difference for problem instances with more relaxed jitter
requirements is caused by very large complexity of the
problem solved. Furthermore, while the heuristic solves all
problem instances in hundreds of milliseconds, the SMT
model fails on 62 problem instances out of 200 within a time
limit of 3,000 seconds. This reduction of the computation
time by the heuristic is particularly important during
design-space exploration, where many different mappings
or platform instances have to be considered. In that case, it
is not possible to spend too much time per solution.

Hence, we conclude that heuristic performs better with
tighter jitter requirements and hence particularly well for ZJ
scheduling, resulting in an average degradation of 7 percent for
all instances. Moreover, unlike the SMT model, the 3-LS heuristic
always finds feasible solutions in hundreds of milliseconds, hence

TABLE 2
Number of Problem Instances Optimal Approaches Failed to

Solve Before to Time Limit of 3,000 Seconds

jiti pi=2 pi=5 pi=10 0

Set 1 Set 2 Set1 Set 2 Set 1 Set 2 Set 1 Set 2

ILP 14 76 9 53 6 45 4 27
SMT 2 51 3 13 2 9 2 7

Fig. 4. Computation time distribution for the SMT and ILP models with
different jitter requirements for Set 1.

Fig. 5. Maximum utilization distribution for the optimal SMT and 3-LS
heuristic approaches with different jitter requirements for Set 1.
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providing a reasonable trade-off between computation time and
solution quality.

6.2.3 Comparison of the Heuristic with ZJ and JC

Scheduling

While the previous experiment focused on comparing the
optimal approach and the heuristic, therefore using only
smaller problem instances, this experiment evaluates the 3-
LS heuristic on all sets. Due to time restrictions, only two jit-
ter requirements were considered, jiti ¼ pi

5 and jiti ¼ 0.
Fig. 6 shows the distribution of the maximum utilization for
the 3-LS heuristic on Sets 1 to 5. In all sets, 100 problem
instances were used for this graph. The results show that
with growing size of the problem instance, the maximum
utilization generally increases. The average difference in
maximum utilization of the 3-LS heuristic on the problem
instances with JC and ZJ requirements is 15.3, 9.7, 8.6, 4.2
and 7.5 percent for Sets 1 to 5, respectively, with JC achiev-
ing higher utilization. The decreasing difference with grow-
ing sizes of the problem is caused by the growing average
utilization. For instance, the average maximum utilization
for Set 5 is 89.1 percent for the problem instances with JC
requirements and 82.6 percent for the problem instances
with ZJ requirements, pushing how far the maximum utili-
zation for the JC scheduling can go. This tendency of
increasing maximum utilization for the ZJ scheduling can
be intuitively supported by the fact that more and more
activities are harmonic with each other, which results in eas-
ier scheduling. In reality, harmonization costs a significant
amount of over-utilization, especially when activities with
smaller periods are concerned. On problem instances with-
out harmonized activity periods the JC scheduling can
show notably better results for larger instances compared to
ZJ scheduling, as shown in Section 6.2.5.

Fig. 7 shows the computation time of ZJ and JC using the
3-LS heuristic. Similarly to the optimal approach, the 3-LS
heuristic takes longer to solve problem instances with JC

requirements due to the larger solution space. Specifically,
the average computation time for JC heuristic for Sets 1 to 5
are 0.3, 0.6, 3.6, 14.5 and 1003.6 seconds, respectively, while
for ZJ scheduling it is 0.15, 0.28, 1.6, 4 and 109 seconds.
Thus, solving a problem instance with JC requirements
with 1,500-2,000 activities takes less than 17 minutes on
average, which is still reasonable. Hence, the 3-LS heuristic
with JC scheduling provides better results, but requires more time
than the 3-LS heuristic with ZJ scheduling.

To summarize this experiment, JC scheduling is promis-
ing in terms of maximum utilization, as it schedules with up to
55 percent higher resource utilization. Besides, the computation
time of the proposed heuristic is affordable even for larger
problem instances, while the optimal models fail to finish in
reasonable time already for much smaller instances. More-
over, the proposed heuristic solves the problem instances with ZJ
requirements near-optimally with a difference of 0.1 percent in
schedulable utilization on average. Generally, the JC heuristic
provides more efficient solutions than the ZJ heuristic, while
requiring longer computation time.

6.2.4 Evaluation of Required Memory and Maximum

Utilization Trade-Off with Different Number of

Cores

The trade-off between maximum achievable utilization and
the amount of memory required to store the schedule is
evaluated by this experiment. Fig. 8 shows the average max-
imum utilization achieved on systems with different num-
ber of cores and with gradually increasing percentage of JC
jobs on 50 problem instances from Set 2 (due to time restric-
tions). The jitter constraint is set to jiti ¼ pi

5 and the instances
are solved to optimality. Furthermore, the problem instan-
ces with different numbers of cores are solved in steps of 5
percent of jobs with zero-jitter requirement, which reflects
how much memory is necessary to store the schedule for
such solutions. Note that the execution times of the activities
are scaled proportionally to the number of cores so that each
resource has a required utilization.

The results show that introducing more JC jobs and thus
increasing memory requirements for storing the final sched-
ules can significantly improve the average maximumutiliza-
tion. Namely, for the architecture with 4 cores, the maximum
utilization with all ZJ jobs is 61 percent, while relaxing jitter
requirements of half the jobs results in 69 percent utilized
resources, and relaxation all of the jobs increases the maxi-
mum utilization to 76 percent. Concerning the required

Fig. 6. Maximum utilization distribution for the 3-LS heuristic with jitter-
constrained and zero-jitter requirements in sets with 20, 30, 50, 100 and
500 tasks.

Fig. 7. Computation time distribution for the 3-LS heuristic with jitter-
constrained and zero-jitter requirements in sets with 20, 30, 50, 100 and
500 tasks.

Fig. 8. Utilization distribution for different percents of JC activities for dif-
ferent architectures.
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memory to store the schedule, the problem instances with 4
cores on average contain 80 jobs with JC scheduling and 49
jobs while scheduling in zero-jitter manner. Thus, assuming
we need 8 bytes to store the schedule of one job, the memory
overhead of relaxing jitter is 31 * 8 = 248 bytes, which is a rea-
sonable price to pay for utilization gain of 15 percent on aver-
age on each resource.

Concerning the increasing number of cores, the results
demonstrate that on average there is no significant depen-
dency on how much cores we have in the system. Hence, JC
scheduling can result in high utilization gain, although at the cost
of increased memory requirements to store the resulting schedule.

6.2.5 Comparison of the Different Period Settings

To show that the approach is applicable to other domains,
an experiment with different period settings is performed.
All problem instances from Set 2 are solved monoperiodi-
cally (pi ¼ 10 ms for each activity ai 2 A), or with harmonic
periods (activities with pi ¼ 2 ms are changed to pi ¼ 5 ms),
or with initial periods (i.e., with periods 1, 2, 5, 10 ms), or
with non-harmonic periods (with periods 2, 5, 7, 12 ms).
Fig. 9 displays the average maximum utilization achieved
by the 3-LS heuristic with ZJ and JC scheduling (jiti ¼ pi

5 ) on
100 problem instances from Set 2. Since the optimal
approach was not able to solve 7 out of 10 first instances
with non-harmonic periods within the given time limit, due
to its complexity and extended hyper-period, the optimal
approach results are not included in the figure.

The results show that the maximum utilization for both
ZJ and JC is achieved when scheduling monoperiodically,
which is explained by having less possible collisions in the
resulting schedule. An interesting observation is that for JC
scheduling all other period settings on average resulted in
very similar maximum utilization, while the ZJ approach
shows the variation of 27 percent with non-harmonic peri-
ods, 62 percent with initial periods and 65 percent with har-
monic period set. Relative insensitivity of JC scheduling to
period variations can be caused by significantly larger solu-
tion space due to relaxation of strict jitter constraints. This
allows to find solutions with high utilization even with the
non-harmonic period setting.

Besides, the same order of computation timedistribution is
shown by different period settings, i.e., monoperiodic sched-
uling is the fastest, while the problem instances in the non-
harmonic period set result in the longest computation time.

Thus, the proposed approach is applicable to other domains,
where the application periods have different degree of harmonicity.
Furthermore, increasing harmonicity of the period set results in
higher maximum utilization, lower computation time and lower
gain of JC scheduling in comparison with ZJ scheduling in terms
of maximum utilization.

6.3 Engine Management System Case Study

We demonstrate the applicability of the proposed 3-LS heu-
ristic on an Engine Management System (EMS). This system
is responsible for controlling the time and amount of air
and fuel injected by the engine by considering the values
read by numerous sensors in the car (throttle position, mass
air flow, temperature, crankshaft position, etc). By design, it
is one of the most sophisticated engine control units in a car
consisting of 1,000-2,000 tightly coupled tasks that interact
over 20,000 to 30,000 variables, depending on the features in
that particular variant. A detailed characterization of such
an application is presented by Bosch in [33], along with a
problem instance generator that creates input EMS models
in conformance with the characterization.

We consider such a generated EMSproblem instance, com-
prising 2,000 tasks with periods 1, 2, 5, 10, 20, 50, 100, 200 and
1000 ms and with 30,000 variables in total, where each task
accesses up to 12 variables. There are 60 cause-effect chains in
the problem instance with up to 11 tasks in each chain. We
consider the target platform to be similar to an Infineon
AURIX Family TC27xT with a processor frequency of
125 MHz and an on-chip crossbar switch with a 16 bit data
bus running at 200 MHz, thus having a bandwidth of 16-bit x
200 MHz / 8 = 400 MB/s. The time granularity is 1 ms, and
the resulting hyper-period is 1,000 ms. However, setting the
hyper-period to be 100 ms results in a utilization loss of less
than 0.5 percent, arising from shortening the scheduling peri-
ods of tasks with periods 200 and 1,000 ms and over-sam-
pling, which is a reasonable sacrifice to decrease the memory
requirements of the schedule. The tool in [33] provides the
number of instructions necessary to execute each task, which
is used to compute the worst-case execution time with the
assumption that each instruction takes 3 clock cycles on aver-
age (includingmemory accesses that hit/miss in local caches).

The mapping of tasks to cores by the simple ILP described
in Section 3 requires minimally 3 cores with the utilization
approximately 89.6 percent on each core and approximately
30 percent on each input port of the crossbar. Moreover, the
resulting scheduling problem has 10,614 activities with
104,721 jobs for the JC assumptions in total. Neither SMT nor
ILP can solve this problem in reasonable time, but the JC heu-
ristic with jiti ¼ pi

5 for all ai solves the problem in 43 minutes.
By gradually introducing more activities ai with jiti ¼ 0, we
have found a maximum value of 85 percent ZJ activities for
which the 3-LS heuristic is still able to find a solution, which
takes approximately 12 hours. Note that the computation
time has increased with introducing more ZJ activities due to
more restricted solution space.However, to store the schedule
in thememory for 0 percent ZJ jobs, 10,4721 * 8 = 818Kbytes of
memory is required assuming that one job start time needs 8
bytes, while with 85 percent ZJ jobs it is only 19,394 * 8 =
152 Kbytes. Thus, for realistic applications the optimal approaches
take too long, while the 3-LS heuristic approach is able to solve the
problem in reasonable time. Moreover, increasing the percent of ZJ
activities has shown to provide a trade-off between computation
time and requiredmemory to store the obtained schedule.

7 CONCLUSIONS

This article introduces a co-scheduling approach to find a
time-triggered schedule of periodic tasks with hard real-
time requirements that are executed on multiple cores and

Fig. 9. Utilization distribution for problem instances with different periods.
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communicate over an interconnect. Moreover, precedence
and jitter requirements are put on these tasks due to the
nature of such applications in the automotive domain. To
optimally solve the considered problem, we propose both
an Integer Linear Programming model and Satisfiability
Modulo Theory model with computation time improve-
ments that exploit problem-specific information to reduce
the computation time. Furthermore, a three-step heuristic
scheduling approach, called 3-LS heuristic, where the
schedule is found constructively is presented. The heuristic
works in three levels, where the scheduling complexity and
the time consumption grow for each level, providing a good
balance between solution quality and computation time.

We experimentally evaluate the efficiency of the proposed
optimal and heuristic approaches with jitter-constrained
requirements, comparing to the widely used zero-jitter
approach and quantify the gain in terms ofmaximumutiliza-
tion of the resulting systems for the optimal and heuristic
approaches. The results show that JC scheduling by the opti-
mal approaches achieves higher utilization with an average
difference of 28 percent compared to optimal ZJ scheduling.
Moreover, the experimental evaluations indicate that SMT
model is able to solve more problem instances optimally
within a given time limit than the ILP model, while the ILP
model shows better computation time on simpler problem
instances. We also show that the 3-LS heuristic solves the
problem instances with ZJ requirements near-optimally. The
computation time of the proposed heuristic is acceptable
even for larger problem instances, while the optimal models
fail to finish in reasonable time already for smaller problem
instances. Furthermore, the approach is demonstrated on a
case study of an Engine Management System, where 2,000
tasks are executed on cores, sending around 8,000 messages
over the interconnect. Here, we show that for realistic appli-
cations, the proposed SMT solution takes too long and the 3-
LS heuristic is able to find the solution in reasonable time,
providing a trade-off between required memory to store the
schedule and computation time depending on percent of
activities with zero-jitter requirements.
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