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Abstract—Variability in the manufacturing process results in
variation in the maximum supported frequency of individual
cores in a Multi-Processor System-on-Chip (MPSoC). This vari-
ation needs to be considered when performing statistical timing
analysis in the system-level design. As our first contribution, we
present a framework to estimate the probability distribution of
application throughput (e.g. frames per second in video decoding)
in a system with Voltage-Frequency Island (VFI) partitions in the
presence of process variation. The novelty of the framework lies
in the computation of the probability distribution of throughput,
based on a user-specified set of clock-frequency levels per VFI
domain considering both within-die and die-to-die variations of
cores. As a second contribution, we provide a methodology to
perform variation-aware partitioning of the cores of an MPSoC
into VFIs for maximized timing yield (percentage of chips that
satisfy a given throughput requirement). On a case study, we
demonstrate how our methodology can be used by system
designers for two purposes: 1) to make trade-offs between the
number of VFI partitions (design cost) and timing yield; 2) to
estimate the impact of reducing circuit design margins on the
number of good dies on a wafer. We illustrate that the proposed
variation-aware partitioning provides up to 18% improvements
in the timing yield compared to a deterministic partitioning.

I. INTRODUCTION

Aggressive technology scaling has enabled the integration
of multiple processors and hardware accelerators on a single
silicon die, known as a Multi-Processor System-on-Chip (MP-
SoC). Present-day MPSoCs are implemented by means of the
Globally Asynchronous, Locally Synchronous (GALS) design
style, which was introduced to alleviate the bottleneck of
global clock distribution. The GALS architecture is composed
of synchronous blocks, communicating with each other on an
asynchronous basis. The concept of Voltage-Frequency Islands
(VFI), within the GALS design paradigm, enables scaling the
frequency (voltage) of each individual hardware component
(clusters of components) in a chip to reduce power.

On the other hand, scaling technology into minimum fea-
ture size nodes has made it practically impossible to precisely
control the manufacturing process. This leads to variability
in key design parameters, such as device channel length and
threshold voltage, and interconnect width. Parameter variabil-
ity, in turn, affects the performance characteristics of cores in a
Multi-Processor System-on-Chip (MPSoC) [2]. Variability of
up to 20% in the longest path delay of a processor at 32 nm
technology is demonstrated in [16].

Conventionally, circuits are implemented with conservative
design margins or guard-bands, often referred to as worst-
case design, to guarantee the target frequency of each core in
the manufactured chips. From an application’s perspective, the
cores have deterministic frequencies, leading to a conventional
application mapping, such that a certain timing requirement

(e.g. throughput or latency) imposed on the system is satisfied.
It is shown that guard-band reduction provides the benefits of
reduced circuit area (i.e. a higher number of gross dies on
a wafer), and lower dynamic and leakage power [10] [12].
With reduced guard-bands, the target frequency of cores is
not guaranteed any more, and the probability distribution of
frequencies needs to be considered when analyzing the system
timing. Therefore, models and a methodology is required
by system designers for evaluating the statistical timing of
a system. Ultimately, system designers need to be able to
estimate the impact of guard-band reduction on the number
of good dies (dies that satisfy the timing requirement of a
system) on a wafer.

This work has two main contributions. As our first con-
tribution, we present a framework to estimate the probability
distribution of application throughput (e.g. frames per second
in video decoding) in a system with VFI partitions in the
presence of process variation. The novelty of the framework
lies in the computation of the probability distribution of
throughput, based on a user-specified set of clock-frequency
levels per VFI domain considering both within-die and die-to-
die variations. The specified clock-frequency levels are (to be)
provided by Clock Generation Units (CGU) to VFI domains in
hardware. We use Synchronous Data-Flow (SDF) to model a
system consisting of a real-time streaming application mapped
to an MPSoC. SDF graphs are well-suited for modeling and
analysis of streaming applications. We allow resource sharing,
and assume Periodic Static-Order Scheduling (PSOS) among
tasks of an application allocated to the same core. As a second
contribution, we provide a methodology to perform variation-
aware partitioning of the cores of an MPSoC into VFIs for
maximized timing yield. The timing yield is a system-level
metric showing the percentage of chips that satisfy a given
throughput requirement imposed on the system. To the best of
our knowledge, this is the first work to address the problem
of VFI partitioning for improved timing yield in the presence
of process-driven variations. On a case study, we demonstrate
how our methodology can be used by system designers for
two purposes: 1) to make trade-offs between the number of
VFI partitions (design cost) and timing yield; 2) to estimate
the impact of reducing circuit design margins on the number
of good dies (dies that satisfy the throughput requirement of a
system) on a wafer. We illustrate that the proposed variation-
aware partitioning provides up to 18% improvements in the
timing yield compared to a deterministic partitioning.

The rest of the paper is organized as follows: Section II
presents the related work; system modeling is introduced in
Section III; in Section IV, we demonstrate how the probability
distribution of throughput is computed; Section V presents
the VFI partitioning algorithm; Section VI experimentally
evaluates our methods; and Section VII concludes the work.



II. RELATED WORK

The related work can be divided into two categories: VFI
partitioning; and system-level throughput analysis, considering
the impact of process variation. With regard to VFI parti-
tioning, the works in [11] and [9] address the problem of
partitioning a tile-based Network-on-Chip (NoC) architecture
into VFIs for minimized energy consumption, subject to
performance constraints. The authors in [18] solve a similar
problem, and propose a methodology for a run-time energy
management through voltage (frequency) scaling, given work-
load and technology-related variations. None of these works
consider process variation in the partitioning process. Majzoub
et al. include process, voltage and temperature variations in the
VFI partitioning process to minimize energy consumption [13].
They estimate expected voltage and temperature variations,
and assume a given core-frequency map across a chip due
to within-die process variation. In contrast, we consider both
within-die and die-to-die variations, such that different chips
have different core-frequency maps with associated probabil-
ities; this is how the variation in reality behaves, as demon-
strated by measurements in [19]. Moreover, the authors in [13]
perform VFI partitioning to minimize energy consumption,
while we maximize timing yield in a probabilistic setting. We
are not aware of any other work addressing the problem of VFI
partitioning for improved timing yield, considering process-
driven variations.

With regard to variation-aware system-level throughput
analysis, Marculescu et al. analyze the probability distribution
of latency of systems with multiple VFIs, considering within-
die variation [14]. Their approach is only applicable to systems
specified as acyclic task graphs. Acyclic task graphs are not
able to capture the iterative and overlapping execution of many
real-life streaming applications (e.g. our modem benchmark
application presented in Section A), which are primarily con-
strained by a throughput requirement. We allow arbitrary task
graphs that may include cyclic data dependencies. We model
a system by means of an SDF graph, which is well-suited for
modeling and analysis of real-time streaming applications with
throughput requirements. A methodology to perform system-
level throughput analysis of multiple VFI designs, considering
process variation, is presented by Garg et al. [7]. However, they
account for only within-die variation, while we consider both
within-die and die-to-die variations. Their approach is based on
Homogeneous SDF (HSDF) graphs, which is a special case of
an SDF graph, where all token rates associated with edges are
equal to 1. We use an SDF graph for system modeling. A SDF
graph provides much more compact application models, which
is why many real-time streaming applications are modeled in
an SDF formulation. To be able to use the approach in [7] for
an application specified as an SDF graph, a conversion from
the SDF graph to an equivalent HSDF graph is required [22].
This can lead to an exponential increase in the graph size (in
terms of the number of actors and edges), as compared to the
original SDF graph. For example, the SDF graph of our MP3
Playback benchmark application consists of only four actors,
while the number of actors in an equivalent HSDF graph after
conversion becomes 10601. Performing throughput analysis on
a large graph results in prohibitively high computation times,
making the approach in [7] unsuitable for many applications.
Additionally, the work in [7] assumes a one-on-one mapping
of tasks to processing elements, while we allow resource
sharing and assume Periodic Static-Order Scheduling (PSOS)
among tasks of an application allocated to the same core.

Mirzoyan et al. [17] solve an application to MPSoC mapping
problem for improved timing yield, considering the impact
of process variation. We assume a specified mapping, and
analyze the throughput of a system with VFI partitions. As
in our work, they also use an SDF graph for system modeling.
They introduce a set of operating points (possible frequency
values) to model the impact of process variation. In contrast,
we explicitly model within-die and die-to-die variations with
Probability Density Functions (PDF), and compute the prob-
ability distribution of application throughput based on a user-
specified set of clock-frequency levels.

III. FORMALIZATION

This section introduces the formal models that the pro-
posed framework relies on. We first define a hardware multi-
processor platform and present the modeling of within-die
and die-to-die variations in hardware resources. Later, an
SDF model of a real-time throughput-constrained application,
named an unbound graph, is introduced. This model is unaware
of the binding of application actors to hardware resources,
and is hence decoupled from hardware variation. Finally,
for a specific binding and static-order schedule of actors on
shared resources, we define an SDF model of a system named
a parametric bound graph. This model is used to derive
the probability distribution of system-level throughput. The
presented techniques are general and apply to any system
that implements the models in this section. Examples of such
systems are CoMPSoC [8] and CA-MPSoC [21].

Although, the presented models are inspired by the ones in
[17], our modeling differs in the following ways. They model
variation as a set of operating points (frequency values), but we
explicitly model die-to-die and within-die variations by means
of Probability Density Functions (PDF) of the maximum
supported frequency of a resource (this is what is known from a
statistical characterization). Our models allow users to specify
any set of clock-frequency levels in the frequency range
covering both die-to-die and within-die variations (these are the
clock-frequency levels to be implemented in hardware and to
be provided to each island). This set of clock-frequency levels
is used to construct the probability distribution of throughput,
as described in Section IV.

A. Hardware Platform

We refer to a hardware multi-processor platform as a set R
of resources connected to each other by an interconnection net-
work. Each resource is a generic processing element, such as a
processor, DSP or a hardware accelerator. We assume a Glob-
ally Asynchronous, Locally Synchronous (GALS) architecture,
where the resources are partitioned into VFIs. Communication
between islands is done by means of mixed-clock First-In-
First-Out (FIFO) buffers. A Clock Generation Unit (CGU),
which provides a set of clock-frequency levels, is dedicated to
each island. Depending on the desired clock-frequency levels,
the complexity of a CGU can vary. Starting from a simple
hardware clock divider, a CGU can consist of a programmable-
length ring oscillator controlled by an on/off-chip voltage
regulator, for high resolution clock-frequency generation. For
simplicity, we assume zero-latency data communication be-
tween resources over the network. However, non-zero-latency
communication can be dealt with by modeling the delay for
sending data over the network in the application SDF graph,
as shown in [24].



Manufacturing process variation can be classified into die-
to-die and within-die variations. Die-to-die variation, also
referred to as global variation, acts globally on the entire chip
die, affecting parameters of all devices (i.e. transistors) on the
die identically. Global variation is seen between dies within
a wafer and across wafers (due to wafer-to-wafer variation);
therefore, overall global variation presumes multiple wafers. In
contrast, within-die variation, also known as local variation,
affects parameters of devices on the same die differently. It
can be classified into systematic and random components.
Systematic local variation exhibits spatial correlation, such
that nearby devices possess similar parameter values due to
high correlation, which dies out quickly as a function of
distance [6]. While the parameter correlation between adjacent
devices is high, the correlation between larger adjacent logic
blocks on a die, such as cores, is typically much lower.
Furthermore, random local variation, which is purely random
from device to device, further reduces this spatial correlation.
For simplicity, we assume zero correlation between maximum
supported frequencies of resources (cores) in a chip. To further
support our assumption, Pang et al. [19] show that at 45 nm
technology, systematic local variation is insignificant, as ran-
dom local variation has increased, resulting in insignificant
spatial correlation. The models given below can be extended,
such that it is possible to specify correlation between maximum
supported frequencies of resources. This extension will not
affect the rest of the models and the methodology presented
in this work. The treatment of correlation is left as future work.

To reflect the impact of global variation, we describe the
maximum supported frequency of each resource r ∈ R in a
chip by a random variable f r

g distributed normally with f r
n

mean and σr
g standard deviation (i.e. f r

g = N(f r
n, (σ

r
g)

2)),
where f r

n is the nominal maximum supported frequency of
the resource. Global variation affects the maximum supported
frequency of all resources on a chip die identically. This results
in equally faster or equally slower resources on each manufac-
tured die. Therefore, we can say that the correlation between
(f ri

g , f
rj
g ) for any ri, rj ∈ R is equal to 1. Additionally, the

standard deviation to mean ratio (σr
g/f

r
n) is the same for all

resources.

For a given global frequency value f r
g = f0 of a re-

source, we introduce a normally distributed random variable
f r
l = N(f0 − δr, (σr

l )
2) to model the local variation with

respect to f0. Here, σr
l is the standard deviation and δr

models the reduction in mean frequency of the resource due to
multiple critical paths [2]. As we assume no spatial correlation
between the maximum supported frequencies of resources, the
covariance between (f ri

l , f
rj
l ) for any ri, rj ∈ R is equal to 0.

Figure 1 illustrates an example PDF φ(f r
g ) of f

r
g for a resource

with f r
n = 500 MHz, where σr

g = 25 MHz. The same figure
shows PDFs φ(f r

l ) of f r
l with respect to f r

g = 475, 500 and
525 MHz, where δr = 25 MHz and σr

l = 16 MHz; these
numbers are representative for current technology nodes [19].

To describe the maximum supported frequency of a re-
source by a single distribution, global and local distributions
are combined by convolution, as given by Equation (1).

φ(f r) = φ(f r
g )∗φ(∆f r

l ) (1)

In Equation (1), ∆f r
l = N(−δr, (σr

l )
2) is the deviation

from the global frequency value f r
g = f0, and is obtained

by shifting the distribution φ(f r
l ) by f0. It is known that

the convolution of two normal distributions is also a normal
distribution with added means and variances. Therefore, the
maximum supported frequency of a resource due to both global
and local variations is described by a normally distributed ran-
dom variable given by Equation (2). The combined distribution
for the example described in Figure 1 is shown in the figure.

f r = N(f r
n − δr,

(

σr
g

)2
+ (σr

l )
2
) = N(µr, (σr)

2
) (2)

350 400 450 500 550 600

0.005

0.01

0.015

0.02

0.025

Frequency (MHz)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

 

 

f
g

 r
=N(f

n

 r
,(σ

g

r
)
2
)

f
l

 r
=N(f

n

 r
−σ

g

r
−δ

r
,(σ

l

r
)
2
)

f
l

 r
=N(f

n

 r
−δ

r
,(σ

l

r
)
2
)

f
l

 r
=N(f

n

 r
+σ

g

r
−δ

r
,(σ

l

r
)
2
)

f
 r
=N(µ

r
,(σ

r
)
2
)

f
clk

 5
f
clk

 3
f
clk

 4
f
clk

 1
f
clk

 2

Fig. 1. fr
g PDF (due to global variation) for a resource with fr

n = 500 MHz,
σr
g = 25 MHz; fr

l
PDFs (due to local variation) with respect to fr

g = 475,
500 and 525 MHz, δr = 25 MHz, σr

l
= 16 MHz; combined PDF of fr

As explained, global and local variations in frequency
are modeled by means of normal distributions. However,
arbitrary distributions can be dealt with. In the case of arbitrary
distributions, the combined distribution is not given by Equa-
tion (2), but needs to be derived by performing convolution of
distributions (Equation (1)).

B. Unbound Graph

We model a real-time streaming application by means of
an SDF graph, which provides a good compromise between
expressiveness, modeling ease, analysis potential and imple-
mentation efficiency. With an SDF model, an application is
captured by a directed graph, where the nodes, called actors,
represent computation; actors communicate with each other
by sending streams of data elements, called tokens, over their
edges. Figure 2 illustrates an example SDF model of an H.263
encoder application. It consists of five actors connected to
each other by seven dependency edges; edges d3, d6 and d7
contain initial tokens, illustrated by black dots in the figure.
The execution of an actor is called a firing. When an actor fires
it removes a number of tokens from all its input ports and at
the end of the firing (after its execution), it produces a number
of tokens on each output port. These numbers of tokens are
called rates, and are shown near the channel ends in Figure 2.
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Fig. 2. Example SDF model of H.263 encoder



Formally, we denote the set of all actors as A, where each
actor requires a number of clock cycles to finish its execution
(Definition 1). For real-time applications, execution cycles can
be derived using worst-case execution-time estimation tools,
as explained in [27]. Note that the number of clock cycles
required for an actor’s execution can be different for each
resource if the platform is heterogeneous.

Definition 1: (Execution cycles) The number of cycles
required to execute an actor a ∈ A on a resource r ∈ R it
can be bound to is given by ec(a, r) : A×R → N.

A SDF model that is unaware of the binding of actors to
resources is given in Definition 2. Each actor in the graph is
characterized by a number of clock cycles of a resource, for
all resources to which it can be bound.

Definition 2: (Unbound graph) An unbound graph gu is a
3-tuple 〈A,D, ec(a, r)〉 consisting of a set A of actors, a set
D = A2×N

3 of dependency edges with rates and initial tokens
and the function ec(a, r) that describes each actor a ∈ A with
execution cycles on a number of resources in the set R.

C. Parametric Bound Graph

We assume that each actor can be bound to a number
of resources from the set R. Therefore, there are multiple
bindings of a set A of actors to a set R of resources. A
given binding of actors to resources is captured in a binding
vector, denoted as b, and is an N-dimensional vector for N
actors (Definition 3). Each element in b specifies the resource
each actor is bound to. For example, let us assume that the
unbound graph shown in Figure 2 is mapped to a multi-
processor platform comprising two resources; a2, a3 are bound
to r1 and a1, a4, a5 are bound to r2. This is given in a binding
vector (a1, a2, a3, a4, a5) → (r2, r1, r1, r2, r2).

Definition 3: (Binding vector) A binding vector of a set A
of actors specifies the resource r ∈ R every actor a ∈ A is
bound to, and is given by b(a) : A → R.

For a given binding vector b, the execution cycles ec(a, r)
of each actor a ∈ A is known from Definition 1. The execution
time et(a, r) in seconds is obtained by the division of ec(a, r)
by the frequency f r of the resource the actor is bound to
(Definition 4). As f r is a normally distributed random variable,
et(a, r) can have a range of values depending on f r.

Definition 4: (Execution time) The execution time in sec-
onds of an actor a ∈ A on a resource r ∈ R that has a
frequency f r is given by et(a, r) : A×R → R, and is defined
as et(a, r) = ec(a, r)/f r

Several actors, as specified by a binding vector, can be
bound to the same resource; therefore, the actors have to
be scheduled on the shared resource. This is accomplished
by a Periodic Static-Order Schedule (PSOS), which specifies
the sequence of actor firings repeated indefinitely (Defini-
tion 5). For the example binding vector (a1, a2, a3, a4, a5) →
(r2, r1, r1, r2, r2), presented for the graph shown in Figure 2,
the PSOSs for the two resources can be s(r1) = ((a2)

99a3)
∗

and s(r2) = (a1(a4)
99a5)

∗; where (ai)
j specifies that ai

fires j times, and ∗ indicates that the schedule is repeated
indefinitely.

Definition 5: (Periodic static-order schedule) A periodic
static-order schedule of the actors bound to a resource r ∈ R
is given by s(r) : R → S, where S is the set of all schedules.

For a binding vector b and a periodic static-order schedule
s(r), given for each resource r ∈ R, an SDF model, called

parametric bound graph, is defined (Definition 6). In a paramet-
ric bound graph, the execution time of each actor a ∈ A, bound
to a resource r ∈ R, is a function of the resource frequency
f r, and is given by et(a, r) (Definition 4).

Definition 6: (Parametric bound graph) A parametric
bound graph gb is a 4-tuple 〈gu, b, et(a, r), s(r)〉 consisting
of an unbound graph gu, a binding vector b of actors A to
resources R, the function et(a, r) that describes the execution
time in seconds of each actor as a function of f r and the
function s(r) that determines the periodic static-order schedule
for each resource r ∈ R.

An approach is presented in [3] to model given PSOSs in
an SDF graph by adding additional actors with zero execution
time and edges to enforce the actor firings according to the
schedule. We use this approach in our work to model the
schedules s(r) in the parametric bound graph gb.

A technique is introduced by Damavandpeyma et al. [4]
to perform throughput analysis of an SDF graph, where the
actor execution times are specified as a function of parameters.
The outcome is a set of parametric expressions describing
the throughput for specified parameter intervals. They use
the theory of Max-Plus algebra to perform fast throughput
computations of an SDF graph, without converting it to an
equivalent HSDF graph that can be much larger in size.
We use their approach to perform throughput analysis of a
parametric bound graph, where the execution time of actors is
a function of frequency f r. We specify a parameter interval
of [µ − 3σ, µ + 3σ] for f r; the interval covers 99.7%
of samples in a normal distribution. The result is a set E
of parametric throughput expressions, where each expression
e ∈ E describes the throughput of a cycle in the graph.
Equation (3) shows the representation of an expression, where
cr are constants. An expression (cri/f ri + crj/f rj)−1 shows
that there is a cycle in the graph mapped across resources ri
and rj (i 6= j).

e =
1

∑

r∈R

cr/f r
(3)

IV. THROUGHPUT DISTRIBUTION

This section details how the probability distribution of the
throughput of a parametric bound graph is constructed. From
an implementation perspective, each CGU, associated with a
VFI, provides a set of discrete clock-frequency levels. We
chose the clock-frequency levels from the combined distribu-
tion φ(f r) (Equation (1)), so that frequency levels are available
in the overall resource-frequency range that covers both global
and local variations. Each resource is operated at one of the
clock-frequency levels depending on its maximum supported
frequency. In this work, we select the clock-frequency levels
equidistantly in the range [µ − 3σ, µ + 3σ] (Definition 7),
for the reason that equidistant clock-frequency levels are
easier to implement in hardware (e.g. hardware clock-dividers,
programmable ring oscillators) than non-equidistant clock fre-
quencies. However, in principle the user can specify any fre-
quency levels. Figure 1 illustrates how five equidistant clock-
frequency levels are obtained from the combined distribution.

Definition 7: (Clock-frequency levels) A set of n equidis-
tant clock-frequency levels available to a resource r ∈ R is
given by c(r, n) : R× N → P(R+), and is defined as

c(r, n) = {(µr−3σr)+(k−1) · (6σr/n)| k = 1, 2, .., n} (4)



Given that each resource can be operated at any clock-
frequency level in the set c(r, n), for a set R of resources
in a chip, there are multiple possible combinations of clock-
frequency levels. An instance of clock-frequency levels for
the overall number of resources in a chip is captured in a
chip-frequency vector, denoted as fc, and is an M-dimensional
vector for M resources (Definition 8). Each element in fc repre-
sents a clock-frequency level fclk ∈ c(r, n) for a corresponding
resource r ∈ R. The set of all possible chip-frequency vectors
is obtained by the Cartesian product of individual sets c(r, n)
(Definition 9).

Definition 8: (Chip-frequency vector) A chip-frequency
vector for a set R of resources specifies a frequency
fclk ∈ c(r, n) for every resource r ∈ R, and is given by
fc(r) : R → R

+.

Definition 9: (All chip-frequency vectors) The set of all
possible chip-frequency vectors for a set R of resources is
given by

FC =
∏

r∈R

c(r, n) (5)

Each chip-frequency vector fc ∈ FC is associated with a
probability, which is the probability that resources in a chip are
clocked at the particular clock-frequency levels specified by fc.
By computing the probability and the resulting throughput of
a parametric bound graph for each fc ∈ FC, the probability
distribution of system-level throughput is constructed. From
probability theory, it is known that the joint probability of
independent events equals the product of their individual
probabilities. Frequencies of resources in a chip described by
random variables f r are not independent due to the corre-
lated global variation in the resources. In contrast, resource
frequencies described by random variables f r

l are independent,
as we assume no spatial correlation due to local variation. For
this reason, the joint probability of a chip-frequency vector fc
is represented as a sum of components. Each component is
the joint local probability, which is the probability that the
resources are clocked at the particular clock-frequency levels
based on local distributions with respect to a global frequency
value.

Depending on the maximum supported frequency, each
resource is operated at the highest possible clock-frequency
level. Let us consider the local frequency distribution shown
by the dashed line in Figure 1; it is with respect to a global
frequency value f r

g = 475MHz. For any actual f r
l in the range

[f2
clk, f3

clk), the resource is operated at f2
clk. The probability of

the resource being operated at f5
clk equals zero. Therefore, the

probability that a resource is operated at a clock-frequency
level f i

clk in a local distribution is given by the probability of
f r
l being in the interval [f i

clk, f i+1
clk ) if i 6= n or [f i

clk, ∞)
otherwise (Definition 10).

Definition 10: The probability of a resource r ∈ R being
operated at f i

clk in a local distribution with respect to a global
frequency value f r

g = f0 is given by pf(r, f0, f
i
clk) : R×R

+×
R

+ → R
+, and is defined as

pf(r, f0, f
i
clk) =

∫

I

φ(f r
l = N(f0, (σ

r
l )

2
)) df r

l

where I =

{

[f i
clk, f i+1

clk ) if i 6= n

[f i
clk, ∞) otherwise

(6)

Based on local distributions with respect to a global
frequency value (a frequency value for each resource), the
joint probability of a chip-frequency vector fc is computed
by the product of individual probabilities pf(r, f0, fc(r)) and
the probability of the global frequency value (Definition 11).

Definition 11: (Local probability of fc) The probability of
a chip-frequency vector fc ∈ FC with respect to a global
frequency value f0 is given by p(fc, f0) : FC × R

+ → R
+,

and is defined as

p(fc, f0) = φ(f0) ·
∏

r∈R

pf(r, f0, fc(r)) (7)

The overall probability of a chip-frequency vector fc is
obtained by adding the joint local probabilities for all possible
global frequency values (Definition 12).

Definition 12: (Probability of fc) The probability of a chip-
frequency vector fc ∈ FC is given by pc(fc) : FC → R

+, and
is defined as

pc(fc) =
∑

∀f0|φ(fr
g=f0) 6=0

p(fc, f0) (8)

The throughput of a parametric bound graph for a chip-
frequency vector fc is given by the minimum of all through-
put expressions (Definition 13). When multiple resources are
placed in a single voltage-frequency domain, the frequency of
the island (resources) is decided by the minimum frequency
of all resources in the island. Therefore, to compute the
throughput of a parametric bound graph for a given partitioning
of resources into VFIs, each chip-frequency vector fc ∈ FC is
modified according to the partitioning.

Definition 13: (Throughput of bg at fc) The throughput of
a bound graph at a chip-frequency vector fc ∈ FC is given by
t(fc) : FC → R

+, and is defined as

t(fc) = min
e∈E

(e) (9)

By computing the probability of each chip-frequency vector
fc ∈ FC (Definition 12) and the resulting throughput of
a parametric bound graph (Definition 13), the probability
distribution of system-level throughput is constructed.

V. VFI PARTITIONING ALGORITHM

In this section, we present a methodology to partition a
hardware platform comprising multiple resources into VFIs.
Each island is associated with a CGU that provides a set of
clock-frequency levels. By reducing the number of VFIs, we
effectively reduce the number of CGUs and FIFO buffers,
resulting in a lower cost (i.e. area and power) design. The
partitioning is performed for a given parametric bound graph,
and thus for a given mapping and scheduling of an application
to platform resources. When minimizing the number of VFIs,
the objective is to have maximized timing yield. The timing
yield for a given throughput requirement can be evaluated
by constructing the probability distribution of system-level
throughput, as detailed in Section IV.

We define a metric called resource criticality that guides
the process of partitioning resources into VFIs. It quantifies the
sensitivity of the throughput of a parametric bound graph to
the frequency of a resource. Figure 3 illustrates the normalized
throughput range for twelve parametric expressions describing



the throughput of an application mapped to a platform compris-
ing eight resources. Each expression describes the throughput
of a cycle in the graph. Each number in the figure represents
a resource index; multiple numbers in each bar show that the
cycles in the graph are mapped across different resources; the
same number in multiple bars indicates that the resource is
present in multiple cycles. As cycles 10 and 12 have the lowest
normalized throughput, they have higher probability of limiting
the throughput of the bound application, which is decided
by the minimum throughput of all cycles (Definition 13).
Resources r1 and r7 (indices 1 and 7 in the figure) have
high weights on cycles 12 and 10, respectively. This is shown
by the length of corresponding rectangles in a bar. Therefore,
the throughput is more sensitive to the frequency changes in
these resources, as captured by the resource-criticality metric.
It is defined as the worst-case reduction in the throughput of a
parametric bound graph as a result of reducing the frequency
of the resource from (µr +3σr) to (µr − 3σr) (for the rest of
the resources f r = (µr + 3σr)) (Definition 14).

Definition 14: (Resource criticality) The criticality of a
resource r ∈ R in a set of expressions e ∈ E is given by
cr(r) : R → R

+, and is defined as

cr(ri) = (t(fc′)− t(fc))/t(fc′)
where fc′(r) = (µr + 3σr) ∀r ∈ R

fc(r) =

{

(µr + 3σr) if r 6= ri
(µr − 3σr) otherwise

(10)
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Fig. 3. Throughput range of parametric expressions; each bar corresponds to
an expression; each number represents a resource index; the different lengths
of rectangles in a bar represent resource weights

Figure 4 demonstrates our proposed heuristic algorithm
for partitioning the resources into VFIs. Initially, all resources
are placed in separate VFIs. The islands are sorted based on
their criticality. The criticality of an island is given by the
resource criticality that is the highest among all resources
comprising the island. The algorithm consists of iterations.
In each iteration, two islands are merged together, forming
a single island. This process continues until all resources are
placed in a single VFI. As such, the algorithm evaluates all
possible granularities of partitions. Intuitively, islands having
the lowest criticality values, as given by the order of islands
based on criticality, are merged in each iteration. This allows
resources with higher criticality values, which are more likely
to limit the throughput of a parametric bound graph, to
remain in separate VFIs, resulting in maximized timing yield.
However, merging two adjacent islands (adjacent in the ordered
list of islands based on criticality) with higher criticality values
may result in lower throughput reductions (e.g. when these
islands have equal or close criticality values). For this reason,

the timing yield as a result of merging each pair of adjacent
islands is evaluated in each iteration. The grouping providing
the highest timing yield is chosen. This results in an overall
number of (M/2 ·(M−1)−1) evaluations of the timing yield,
M being the number of resources. Note that an exhaustive
evaluation of all possible groupings of resources into islands
requires (2M)!/((M +1)! ·n!) (given by the Catalan number)
evaluations, resulting in prohibitively long computation times
for a large number of resources.

Update VFI and island

highest timing yield
Merge the islands providing the

adjacent pairs (i, (i+ 1)) in VFI
Evaluate the timing yield for all

Sort VFI (R) in increasing cr(r)

All R placed in

criticalities

separate islands

Fig. 4. VFI partitioning algorithm

VI. EXPERIMENTAL RESULTS

On a case study, this section demonstrates how our frame-
work can be used by system designers for two purposes: to
make trade-offs between the number of VFI partitions (design
cost) and timing yield; to assess the impact of guard-band re-
duction on the number of good dies. We additionally illustrate
that the proposed VFI partitioning algorithm effectively groups
resources into islands for maximized timing yield.

A. Experimental setup

We consider a platform comprised of eight homogeneous
resources. Each resource has a nominal maximum supported
frequency of f r

n = 500 MHz. As reported in [5], at high
computing frequencies (in the order of GHz), the variation
is large. In our work, we target embedded systems running
streaming applications, where the typical frequencies are in the
order of hundreds of MHz. Measurements at 45 nm technology
in the frequency range of interest are provided by Pang et al.
[19]. Based on this data, we assume standard deviation to mean
ratios (3σr

l /f
r
n = 10%) and (3σr

g/f
r
n = 12%) for within-die

and die-to-die variations, respectively. We assume no reduction
in mean frequency due to multiple critical paths (i.e. δr = 0);
this assumption does not affect the results and observations
presented in this section. We select a set of eight equidistant
clock-frequency levels for each island (resource) as described
in Section IV.

To have fair trade-offs between the granularity of partitions
and timing yield, the application mapped to the platform is
required to have enough parallelism to be exploited by all eight
resources. We used the approach in [23] to generate a cyclic
synthetic SDF graph consisting of seventeen actors, which
has the required parallelism. To determine the mapping of the
application to the platform (i.e. binding vector b), we used the
variation-aware mapping algorithm given by Mirzoyan et al.
in [17]. The periodic static-order schedules s(r) for actors on
shared resources are determined by the common list scheduler
[15]. To construct the parametric bound graph and perform
parametric throughput analysis, the SDF3 tool set is used
[23]. The models and the algorithms presented in this work



are implemented in Matlab. In Appendix A, we additionally
present case studies based on real applications modeled as SDF
graphs. The reason a synthetic application is chosen over a real
application in this section is that it has a level of parallelism
that allows to demonstrate the important concepts.

B. VFI granularity and yield trade-offs

The parametric expressions describing the system-level
throughput for this use-case are graphically shown in Figure 3.
The order of resources, based on decreasing criticality cr(r),
is (r7, r1, r5, r8, r2, r4, r6, r3) with respective criticality values
(0.18, 0.17, 0.12, 0.095, 0.09, 0.032, 0.03, 0.025). As expected,
r7 and r1 have higher criticality values than the rest of the
resources. This shows that the throughput of the parametric
bound graph is more sensitive to the frequency changes in these
resources. Figure 5 illustrates the Cumulative Distribution
Function (CDF) of the inverse of the system-level throughput
for four different system implementations. Namely, VFI-8,
VFI-5, VFI-2 and FS. VFI-8 is an eight voltage-frequency
domain architecture, where each resource is in a separate
island. VFI-5 and VFI-2 are architectures, where the resources
are partitioned into five and two voltage-frequency domains,
respectively; the partitioning is decided by the proposed heuris-
tic VFI partitioning algorithm presented in Section V. For the
given throughput requirement (denoted as treq), the grouping
of the resources into islands for VFI-5 and VFI-2 is shown in
Figure 5. Finally, FS is a fully synchronous design, where
all resources are in a single VFI. It can be seen that the
throughput distribution for VFI-5 closely tracks the one for
VFI-8. This is because the resources r2, r4, r6, r3 have low
criticality values and grouping them in a single VFI results
in negligible throughput reductions. In contrast, the VFI-2
architecture results in noticeable reductions in the timing yield.
Note that resources r7, r1 with high criticality values are
placed in a single island. As shown above, these resources
have close criticality values (compared to the criticality values
of other resources). As suggested by the partitioning algorithm,
placing the resources in a single island provides the lowest
degradations in the timing yield. For the given throughput
requirement (indicated by the vertical line in Figure 5), VFI-8
provides a 71% timing yield, while VFI-2 achieves a 64%
yield. Note that for a different throughput requirement, the
reduction in the yield can be higher. For example, for a require-
ment resulting in a 66% yield with VFI-8, the reduction with
VFI-2 is 16% (the partitioning algorithm provides the same
resource grouping for this requirement). The FS architecture
results in a sub-sampled throughput distribution, and can lead
to considerable reductions in the timing yield. For the given
throughput requirement, FS gives only a 44% yield compared
to the 71% with VFI-8. This information can be used by system
designers to make informed trade-offs between the granularity
of VFIs, i.e. design cost, and timing yield.

To show the benefits of variation-aware VFI partitioning,
we compare the proposed heuristic VFI partitioning algorithm
to a deterministic partitioning approach. From the perspective
of clock-tree routing, it is desirable to have a low number of
resources in each island, which can reduce the complexity of
local clock wiring in the partitions. Therefore, for a specified
number of voltage-frequency domains, the deterministic par-
titioning tries to equally distribute the resources into islands,
thus reducing the maximum number of resources in a single
partition. Figure 6 shows the CDF of the inverse of the
system-level throughput for four and two domain architectures,
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Fig. 5. Throughput CDF for VFI-8, VFI-5, VFI-2 and FS architectures; the
grouping of resources into islands for VFI-5 and VFI-2 is decided by the
proposed variation-aware VFI partitioning algorithm

based on both variation-aware and deterministic VFI partitions.
As shown, with the deterministic partitioning (DVFI-4 and
DVFI-2), the resources are equally distributed in the islands.
The choice of resources in the islands is based on the adjacent
resource index values. For the given throughput requirement,
the deterministic four-domain partitioning (DVFI-4) results in
an 11% lower yield than the one provided by the proposed
variation-aware algorithm (VFI-4). Similarly, an 18% lower
yield is achieved by DVFI-2, as compared to VFI-2. This
shows the importance of variation-aware voltage-frequency
partitioning for improved timing yield.
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Fig. 6. Throughput CDF for four and two domain architectures, based on
both variation-aware (VFI-4 and VFI-2) and deterministic partitions (DVFI-4
and DVFI-2)

C. Guard-band reduction impact on good dies

Reducing the design margins or guard-bands when imple-
menting a circuit provides the benefit of decreased circuit area,
resulting in a higher number of gross dies on a wafer. This
in turn may provide a higher number of good dies, which
satisfy the throughput requirement imposed on the system. In
this section, we demonstrate on the presented case study, how
our framework is used to estimate the impact of guard-band
reduction on the number of good dies on a wafer. The number
of gross dies on a wafer is given by Equation (11), where l is
the radius of the wafer and V is the die area [10]; the second
term in the equation accounts for wasted area around the edges
of the circular wafer.

Ngross = π ·
(

l2

V
− 2l√

2V

)

(11)



The number of good dies on a wafer (i.e. dies (chips) that
satisfy the system throughput requirement) is then given by
the product of timing yield (Yt) and the number of gross dies
(Equation 12). Note that random defect yield can also be taken
into account in the equation, as shown in [10]. However, due
to low error density values and a relatively small die size, as
assumed in our work, the random defect yield is high and
has a negligible impact on the number of good dies [10].
Furthermore, guard-band reduction has almost no impact on
random defect yield [10]. For these reasons, we do not take
random defect yield into consideration.

Ngood = Yt ·Ngross (12)

Circuit guard-banding is typically done by using corner-
files during the design and verification stages; these files de-
scribe the worst-case (WC) and best-case (BC) delay values of
standard-cells, corresponding to slow and fast process corners,
respectively. The change in circuit area when reducing these
guard-bands (i.e. implementing the circuit with reduced WC
and increased BC delay values) is assessed by Jeong et al. in
[10]. They use open-source cores and an industrial embedded
processor core with target clock frequencies ranging from 300
to 600 MHz; the cores are synthesized using 90, 65 and
45 nm technology model libraries. Based on measured data,
the authors provide a linear regression model for circuit-area
reduction versus guard-band reduction. Equation (13) shows
the model, where v is the area reduction factor and u is the
guard-band reduction in percent. We use this model to compute
the number of gross dies on a wafer due to reduced guard-
bands, and thus circuit area.

v = 1− 0.0033 · u (13)

As mentioned, each guard-band value results in a particular
circuit implementation with a certain area, after the design and
verification stages. By performing statistical characterization
(Monte Carlo simulations) on each circuit implementation, the
PDFs of the maximum supported frequency of the resources
is obtained. A statistical characterization flow is proposed
by Miranda et al. in [16]. As no data on the probability
distribution of the frequency of a core for different guard-
band values is given by Jeong et al. in [10], we make the
following intuitive assumptions. With the original guard-band
(i.e. 0% guard-band reduction), we assume that ≈ 99.7% of
manufactured resource instances satisfy the target frequency,
which is assumed to be 500 MHz in this analysis. This cor-
responds to a combined normal distribution of the maximum
supported frequency, where (µr

0 − 3σr
0) = 500 MHz, as de-

picted in Figure 7. The standard deviation to mean ratio for the
combined distribution is 3σr

0/µ
r
0 ≈ 15.6%, as 3σr

l /f
r
n = 10%

and 3σr
g/f

r
n = 12% (based on the available data at 45nm tech-

nology [19]). Therefore, µr
0 ≈ 592 MHz. With no guard-band

(i.e. 100% guard-band reduction), the combined distribution
has a mean µr

1 = (500 − δr) = 500 MHz (δr is assumed to
be zero), as shown in Figure 7. A u% guard-band reduction
results in a new combined normal distribution with a decreased
mean frequency of µr = µr

0 − u · (µr
0 − µr

1)/100. Figure 7
shows the combined distribution for u = 40%. We assume that
the standard deviation to mean ratio of the combined normal
distribution for any u% guard-band reduction is constant (i.e.
3σr/µr ≈ 15.6%). In reality, this ratio may change due to
local variation that depends on the design, which is different

for each u% guard-band reduction (global variation does not
depend on the design). However, only small differences in a
close nominal-frequency range are expected (e.g. the difference
between 500 MHz and 592 MHz nominal-frequency designs
is much less than between 500 MHz and 2 GHz).
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We assume that the eight-resource chip has a die area
of 10 mm2, out of which 7 mm2 consists of standard logic
cells and 3 mm2 comprises of embedded SRAM and IO cells.
This data is assumed based on an eight-core ARM Cortex-A5
processor at 45 nm technology. Note that, with original guard-
bands (u = 0%), all resources can be clocked at 500 MHz.
This requires a simple CGU providing a fixed clock frequency
for all eight resources. In contrast, a higher cost (i.e. area)
CGU per island is necessary with reduced guard-bands, as
described in this work. We account for this additional area due
to CGUs, and assume that a typical fine-grained CGU has a
die area of 0.03 mm2 [20]. For each guard-band reduction,
the corresponding die area and the number of gross dies
on a wafer are computed using Equations (13) and (11),
respectively. The timing yield is evaluated by means of the
proposed framework, using the PDFs of resource-frequency
corresponding to the guard-band reduction. The throughput
requirement of the cyclic synthetic application is set based on
the target clock frequency of the resources, being 500 MHz
for all eight resources. With the specified target frequencies,
we assume that the application just satisfies its throughput
requirement. This assumption enables us to have fair results
when estimating the impact of guard-band reduction on timing
yield (a relaxed throughput requirement creates a large slack
in performance). We use the approach in [17] and perform a
mapping of the synthetic cyclic application to the platform for
the specified 500 MHz frequencies, such that the throughput is
maximized. The result is a throughput value, which is taken as
the requirement. The timing yield for different u% guard-band
reduction, based on eight (VFI-8) and five (VFI-5) domain
architectures, is shown in Table I.

TABLE I. TIMING YIELD FOR U% REDUCED GUARD-BANDS

u% 0 10 20 30 40 50 60 70 80 90 100

Yt% (VFI-8) 99 99 98 97 94 88 79 69 51 38 27

Yt% (VFI-5) 99 99 98 97 94 88 78 67 49 36 24

Figure 8 illustrates the change in the number of good
dies per wafer against guard-band reduction for VFI-8 and
VFI-5 architectures and for two different assumptions: 1) a
design with fixed blocks, where the area of embedded SRAM



and IO cells does not change with guard-band reduction;
and 2) a design without fixed blocks (i.e. hard macros are
newly designed corresponding to the guard-band reduction).
Figure 8 shows that the number of good dies is maximized
at a 30% guard-band reduction for the VFI-5 architecture and
fixed blocks. This results in a 3.7%1 more dies that satisfy
the throughput requirement imposed on the system. When
there are no fixed blocks, a 40% reduction in the guard-
band leads to a 7.7% increase in the number of good dies.
Beyond 30%, 40% guard-band reduction, the number of good
dies gradually decreases; this is because the reduction in the
timing yield becomes considerable (see Table I). As Table I
illustrates, the VFI-5 architecture does not reduce the timing
yield of VFI-8 at 30% and 40% guard-band reductions. As
VFI-5 requires a lower number of CGUs (a smaller die size), a
1% higher number of good dies is provided by VFI-5 at 30%
or 40% guard-band reductions, as compared to VFI-8. Note
that, guard-band reduction also benefits in reduced dynamic
and leakage power. These results show that a higher number
of good dies with reduced guard-bands is obtained, increasing
profit.
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Fig. 8. Number of good dies per wafer against reduced guard-band for VFI-8
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VII. CONCLUSIONS

This work presents a framework to assess the timing yield
of a system with VFI partitions under the influence of within-
die and die-to-die process-driven variations. We model a
system consisting of a real-time streaming application mapped
to variation-affected resources in an MPSoC by means of an
SDF formulation. As a second contribution, we provide a
methodology to partition the resources in an MPSoC into VFIs
for maximized timing yield. On a case study, we demonstrate
how our methodology can be used by system designers to
make trade-offs between the number of VFI partitions (design
cost) and timing yield. To this end, we show that not all
reductions in the granularity of partitions reduce the timing
yield. Specifically, the five domain architecture, where our
partitioning algorithm groups resources with low criticality
values into a single island, results in only a negligible re-
duction in the timing yield, as compared to the eight domain
implementation. In contrast, the yield is lowered by 7% and
27% when moving to two clock-domain and fully synchronous
architectures, respectively. Additionally, we illustrate how the

1A 3.7% increase in the number of good dies is significant. For example, if
4 K wafers are required to produce 30 M good dies, a 3.7% higher number of
good dies per wafer translates into 143 less wafers for the same 30 M good
dies. For a wafer cost of 3000 $, the cost saving is 429000 $.

framework can be used to estimate the impact of reducing
circuit design margins on the number of good dies on a wafer.
We show that 30% guard-band reduction results in a 3.7%
increase in the number of good dies per wafer. Finally, we
show that the proposed variation-aware partitioning provides
up to 18% improvements in the timing yield compared to a
deterministic partitioning.
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APPENDIX

A. EXTENDED RESULTS

In this supplementary section, we present additional case
studies based on a set of four real applications modeled as
SDF graphs. The set contains an MP3 decoder [25], modem
[1], H.263 decoder [25] and MP3 playback [26]. An overview
to the application SDF graphs, showing the number of actors
and cycles, is shown in Table II. All four applications have
parallelism that can be exploited by three resources. Therefore,
they are mapped to a multi-processor platform consisting of
three resources. The assumptions on resource frequencies and
on the variation in them made in Section VI-A also hold in
this section. A set of eight equidistant clock-frequency levels
is selected for each island (resource). The mapping and the
scheduling of actors on shared resources is determined as
described in Section VI-A. The same section also details how
the proposed models are implemented.

TABLE II. APPLICATION OVERVIEW

SDF graph # actors # cycles

MP3 decoder 14 0

Modem 16 5

H.263 decoder 4 0

MP3 playback 4 1

Figure 9 illustrates the CDFs of the system-level through-
put for the MP3 decoder, modem, H.263 decoder and MP3
playback applications. For all applications, architectures with
three (VFI-3) and two (VFI-2) voltage-frequency domains,
as well as a fully synchronous (FS) system are considered.
For the MP3 decoder, VFI-3 and VFI-2 result in identical
throughput distributions. This is due to two resources having
equal criticality values. Grouping them in a single island does
not reduce the throughput of the parametric bound graph.
In contrast, FS can cause up to an 8% reduction in the
timing yield. For the modem application (Figure 9b), all three
implementations result in an identical distribution. This shows
that all three resources in the platform have equal criticality
values. Therefore, only a single CGU unit is sufficient for
achieving the maximum yield for this application; this results
in reduced design costs. For the H.263 decoder (Figure 9c),
the throughput distribution with VFI-2 closely follows the one
with VFI-3. In contrast, FS can lead to a considerable decrease
in the timing yield of up to 22%. For the MP3 playback
application (Figure 9d), the throughput distributions with VFI-
3 and VFI-2 are identical, again showing that two resources are
equally critical. The FS architecture results in a sub-sampled
throughput distribution over the one with VFI-3, and can lead
to an up to 6% reduction in the timing yield. However, based
on the throughput requirement, FS can also provide a timing
yield equal to the one for VFI-3.

The discussion presented in this section demonstrates on
realistic applications how the proposed framework can be used
by system designers to make trade-offs between the number
of VFI partitions, i.e. design cost, and timing yield.
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(a) MP3 decoder
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(b) Modem
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(c) H.263 decoder
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(d) MP3 playback

Fig. 9. Throughput CDF for VFI-3, VFI-2 and FS architectures; the grouping
of resources into islands for VFI-2 is decided by the proposed variation-aware
VFI partitioning algorithm


