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Abstract

This article presents a semantics-based program verification framework for crit-
ical embedded real-time systems using the worst-case execution time (WCET)
as the safety parameter. The verification algorithm is designed to run on de-
vices with limited computational resources where efficient resource usage is a
requirement. For this purpose, the framework of abstract-carrying code (ACC)
is extended with an additional verification mechanism for linear programming
(LP) by applying the certifying properties of duality theory to check the opti-
mality of WCET estimates. Further, the WCET verification approach preserves
feasibility and scalability when applied to multicore architectural models.

The certifying WCET algorithm is targeted to architectural models based
on the ARM instruction set and is presented as a particular instantiation of a
compositional data-flow framework supported on the theoretic foundations of
denotational semantics and abstract interpretation. The data-flow framework
has algebraic properties that provide algorithmic transformations to increase
verification efficiency, mainly in terms of verification time. The WCET analy-
sis/verification on multicore architectures applies the formalism of latency-rate
(LR) servers, and proves its correcteness in the context of abstract interpreta-
tion, in order to ease WCET estimation of programs sharing resources.
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1. Introduction

The design of embedded real-time systems is, in general, guided by some
timeliness criteria. Timeliness in embedded real-time systems means that pro-
grams have operational deadlines, i.e. strict run-time constraints, and that the
system must guarantee such requirements to ensure safety. Timeliness evalua-
tion is performed at hardware level and is defined as the system ability to assure
that execution deadlines are met at all times. Therefore, when the risk of fail-
ure, in terms of system responsiveness, may endanger human life or substantial
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economic values [21], the determination of upper bounds for the execution times
of programs becomes a safety requirement.

The timeliness safety criteria is most commonly specified by the worst-case
execution time (WCET) [74]. This timing property is an over-approximation
of the execution time of the path inside the program that takes the longest to
execute. In general, the particular input data that causes the exact WCET is
unknown at compile time. Therefore, the exclusive use of measurement-based
techniques to determine the WCET for any possible run of the program is
not feasible in terms of computational cost (exception made, for example, to
straight-line programs, for which input data never changes execution order).
Alternative solutions use static analysis methods to guarantee sound estimates
of the WCET in finite time [73]. Nonetheless, state of the art WCET tool
suites like aiT [1] and Otawa [11] are conservative by nature and may require
manual intervention in order to predict tight WCET estimates. Also, end-to-end
measurement-based approaches can be combined with game-theoretic learning
approaches using SMT solvers in order to generate predictable WCET estimates
based on probabilistic guarantees [63].

In addition, embedded real-time systems often require incremental updates,
where critical “patches” may be required after deployment [6]. Traditionally,
this is done using manual and heavyweight processes, specifically dedicated to
a particular modification. However, incremental updates of real-time systems
can only be achieved if the system design abandons its traditional monolithic
and closed conception. We propose a novel approach to an ideal scenario, where
the WCET analysis is complemented with a verification mechanism, whose task
is to verify whether the computed WCET estimate is compliant with safety
requirements of an embedded real-time system.

State of the art WCET analyzers like aiT [1] make use of the theoretical foun-
dations of abstract interpretation [19] combined with linear programming [55].
Although such type of tool suites excel in computing tight and precise WCET
estimates using real-world hardware models, they do not easily fit to the task
of formal WCET verification. The reason is that, here, the focus needs to
be put more on the search of highly efficient mechanisms for WCET checking.
Although it is not our objective to reproduce the quality of state-of-the-art
WCET analysis, we have designed a comprehensive WCET tool prototype!,
based on declarative programming, where the underlying concepts of abstract
interpretation can be elegantly implemented [57]. The analysis is restricted to
source-to-assembler code compiled for the ARM target architecture.

We perform a flow-sensitive, path-sensitive and contezt-sensitive timing anal-
ysis. Apart from the induction of abstract interpreters that perform value and
cache static analysis based on state-of-the-art domains [57], in this article we
focus on a new approach to pipeline analysis that can be parametrizable by the
timing model of a generic processor. Sound upper bounds of execution time are
computed as the combined result of a simultaneous value, cache and pipeline

! Available at https://github.com/esmifro/wcetac



analysis. Along the lines of [1], estimates of the worst-case execution time of the
program are computed a posteriori by a path analysis using linear optimization.

Despite the common use of complex hardware features to increase instruc-
tion throughput, most embedded systems have limited computing resources.
Therefore, mechanisms for WCET verification face new challenges due to the
design complexity of WCET estimation. For this reason, the computational
burden resulting from the integration of the complete WCET toolchain into
the trusted computing base (TCB) of embedded systems with real-time con-
straints would be unacceptable. Well-known solutions that address this issue
are Proof-Carrying Code (PCC) [50], Typed-Assembly Languages (TAL) [48]
and Abstraction-Carrying Code (ACC) [9].

The main objective of this article is to present a verification mechanism that
efficiently checks if a program satisfies a given safety specification in terms of
WCET [60]. Along the lines of the previously mentioned approaches, we propose
a lightweight and standalone method, which does not depend on a third-party
certifying entity to monitor the transmission of one program through an “un-
trusted” communication channel. We extend the existent ACC framework with
an efficient mechanism to check the solutions of the linear optimization problem.
This mechanism is illustrated in Fig. 1 by the component “LP Checker”.
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Figure 1: Overview of the extended ACC certifying platform

The verification mechanism uses fizpoint theory [40] to check the least fix-
point solution of the static analyzer, complemented with duality theory [47] ap-
plied to the simplex method [36]. The application of the verification mechanism
to multicore architectures is based on the sound abstractions of the concrete
timing model provided by the formal model of LR-servers [67].

1.1. Abstract-Carrying Code

The Abstract-Carrying Code framework attributes the meaning of programs,
[P], to least fixpoints in some abstract domain D,,, given the semantic operator
Sp. The correctness of the analysis ensures that such an abstraction can be
used as certificates for verification purposes: Cert, = [P] = Ifp(S%). These



certificates contain abstract invariants that can be statically classified as valid
by abstract interpretation in respect to some safety specification, I, such that
Cert, C I,. The checking mechanism decides if the certificates are indeed
fixpoints in a single pass: (S%(Cert,) = Cert,,).

According to Fig. 1, the use of certificates in distributed embedded systems
clearly separates the roles played by a code “supplier” and a code “consumer”.
The main advantage is that the computational cost associated with verifica-
tion of safety properties is shifted to the supplier side, where the certificate
is generated. To be effective, the certificate checker should be an automatic
and stand-alone process and much more efficient than the certificate generator.
Additionally, the size of the certificates is also relevant, since it determines if
the verification process can be performed stand-alone and in reasonable time.
Techniques to certificate size reduction use specific graph traversal strategies
to classify entries in the certificates that are indeed relevant for the checker to
reproduce the certificate in a single pass [7].

1.2. Fizpoint Semantics

The identification of infeasible program paths and upper bounds for loop
iterations on the source code are typically referred to as program flow informa-
tion. The accuracy of this particular type of information is essential to avoid
WCET overestimation [28]. In order to automatically compute loop bounds
and infeasible paths across fixpoint iterations, the fixpoint semantics proposed
in this article is based on chaotic iteration strategies [15, 20] without the use of
convergence accelerators [18, Section 2.

Iteration strategies provide a systematic way to recursively traverse the pro-
gram syntactical structure until fixpoint stabilization is reached. As opposed
to work-list algorithms, chaotic strategies follow the syntactic structure of the
program, exactly computing fixpoints as a syntax-direct denotational seman-
tics would do. The design of our program-flow analysis is based on an instru-
mented abstract domain that is used for value analysis and shares its results
with the pipeline analysis, where the history of computation is particularly rel-
evant. Hence, iteration strategies automatically provide flow-sensitivity, paving
the way for automatic extraction of program flow information [57, Section 6.4].

A path-sensitive analysis is achieved by computing backward abstract inter-
pretations of conditional branches [16]. The computation of necessary precon-
ditions enables the static analyzer to combine the abstract domains used for
value, cache and pipeline static analysis and to perform the latter within a sin-
gle data-flow analysis, which can be regarded as a simulation in the combined
abstract domain [57, Section 6.8].

However, the computational efficiency of our approach to WCET estimation
is significantly less efficient when compared to the [1] toolchain, which com-
prises separate analyses for each abstract domain. For example, the analysis
of loops in the context of cache behavior prediction has been greatly improved,
notably by the VIVU approach [46]. However, our approach is able to reduce
over-approximation of timing properties because abstract cache states are not
propagated to the pipeline analysis. Moreover, our requirements to design a



stand-alone verification mechanism enforce automatic extraction of program
flow information. This implies full loop-unrolling and, naturally, loss of effi-
ciency in the presence of programs with finite, but very high loop bounds.

Formally, the fixpoint algorithm is constructively defined as the reflezive
transitive closure of a transfer function, which is regarded as an input-output
relation [16]. Relations are associated with the syntactic phrases in the assem-
bler program, each one defined between two labeled program states. In order to
correlate the relational shape of our fixpoint algorithm, we apply the semantics
projection mechanism proposed by Cousot [17] to derive a set of typed data-flow
functions in the denotational setting. The isomorphism between the relational
and the denotational semantic models is guaranteed by an intermediate graph
language, which encodes the intensional information contained in the iteration
strategy of a particular program.

1.3. Linear Programming

As already mentioned, the proposed WCET analyzer is based on static anal-
ysis and linear programming. However, the time necessary to compute the least
fixpoint solution is significantly greater than the time necessary to calculate the
solution of the linear program. The complexity of linear optimization when us-
ing integer linear programming (ILP) is NP-hard and cannot be reduced except
if some properties specific to WCET analysis can be exploited, in particular,
the reduction of the number of linear constraints imposing integral solutions.
Otherwise, the inclusion of an ILP solver in the embedded system’s TCB for
the purpose of verification is likely to be impracticable by design.

We propose the inclusion of the WCET checking phase inside the ACC
framework by conjecturing that the integer solution of the ILP program can
be soundly found by solving a LP relaxation of the linear constraints. This is
proved sound when the coefficient matrix of the integer linear problem is totally
unimodular [51], allowing the use of duality theory to check the LP solutions.
The mathematical properties of the primal and dual solutions of a LP program
reduce the complexity of the “LP solver”, to be solvable in polynomial time with
the best known algorithms. Hence, for verification purposes, the “LP checker”
is able to run in linear time and much more efficiently .

This article presents four technical contributions:

i/ A definition of a compositional and generic data-flow analyzer that uses
a dependency order over assembler instructions. Efficient and type-safe
fixpoint algorithms are automatically derived from an interpretation of
an intermediate graph language that encodes the syntax of unstructured
assembler code into expressions of a two-level denotational meta-language.

ii/ Inclusion of the WCET checking phase inside the ACC framework using
the certifying properties of duality theory of LP. The verification of opti-
mal solutions can be performed using simple linear algebra computations,
without the need to recompute the simplex method algorithm.



iii/ A definition of a pipeline analysis that simultaneously combines a value
analysis and a cache analysis in a single data-flow analysis by abstract
interpretation. The number of pipeline states included in ACC certificates
are largely reduced without affecting the soundness of the fixpoint checker.

iv/ A Novel approach to timing analysis in multicores by integrating the for-
mal LR-server model in the semantic framework of abstract interpretation.
The resulting abstraction of the temporal behavior of shared resources pro-
vides a compositional timing analysis compatible with our denotational
meta-language and preserves feasibility and scalability.

The rest of the article is organized with the following structure. We start
with an overview of the relevant technical areas in Section 2. In Section 3, we
describe the generic data-flow framework and how it can be parameterized to
perform static analysis by abstract interpretation. A particular instantiation
of this framework for the purpose of WCET analysis is presented in Section 4.
An extension of the ACC framework for performing a semantics-based program
verification using the WCET as the safety parameter is presented in Section 5.
Before concluding, we present our WCET analysis in multicores architectures
in detail in Section 6, where we also present the experimental results for a
comprehensive subset of the Malardalen benchmark programs.

2. Related Work

In this section, we introduce the technical areas at the foundations of our
WCET verification framework. Denotational meta-languages are introduced
first, followed by a summary of the related work on certifying algorithms. Then,
we briefly present and contrast the design of modern WCET tools with our
approach and, finally, we present the analytical model of LR servers.

2.1. Denotational Meta-Languages

The two-level denotational meta-language (TML) presented in [54] intro-
duces an important level of modularity to denotational definitions that use typed
A-calculus as a meta-language by making the distinction between “compile-time”
and “run-time” types. The two-level meta-language paved the way for system-
atic treatment of data-flow analysis and is important for efficient implementation
of programming languages with the objective to automatically generate compil-
ers. Code generation for various abstract machines can be specified by providing
different run-time interpretations of the meta-language [52].

We propose a modified TML aiming to express the semantics of program-
ming languages in a unified fixpoint form by means of algebraic relations. At
the higher level of the meta-language, meta-expressions are defined to encode
the dependency graphs of programs whose interpretation is always the same,
regardless of knowledge about the domains of interpretation and syntax defini-
tions. The correctness of denotational meta-programs depends on compile-time
information, more precisely on their syntactical topological orders [15].



2.2. Abstraction-Carrying Code

The application of ACC to mobile code safety has been proposed by Albert
et al. in [8] as an enabling technology for PCC, a first-order logic framework
initially proposed by Necula in [50]. A partial specification check in PCC is per-
formed using first-order predicates (preconditions and postconditions on safety
properties) in order to verify if a given program P meets such a partial spec-
ification. The code supplier generates the set of proof obligations for P and
discharges them using some verification tool that produces proofs. Afterwards,
the program P is annotated into another program, P’, with the set of proof
obligations and their proofs, and sent to the code consumer. Upon reception,
the verification condition generator produces new proof obligations and checks
if they can be discharged using the proofs contained in P’.

A certified denotational abstract interpreter is presented in [13], where the
main objective is to demonstrate that PCC-based techniques can be used to
encode both the analyzer and the soundness proofs into the same logic, without
any semantic gap between the analysis that is proved correct on paper and the
analyzer that actually runs on the machine. Another relevant research project
aiming at the certification of resource consumption in Java-enabled mobile de-
vices is Mobility, Ubiquity and Security (MOBIUS) [12]. In this project, the
logic-based verification paradigm of PCC is complemented with a type-based
verification, whose certificates are derived from typing derivations or fixpoint
solutions of abstract interpretations.

In the context of Constraint Logic Programming (C)LP, the verification
conditions in ACC [8] are generated from a set of assertions in order to attest
the compliance of a program with respect to the safety policy. If an auto-
matic verifier is able to validate the verification conditions, then the fixpoint
abstract semantics constitute the certificate. The consumer implements a de-
fensive checking mechanism that not only checks the validity of the certificate
w.r.t. the program, but also re-generates a set of trustworthy verification con-
ditions to check the abstract properties contained in the certificate.

To improve the time efficiency of the verification mechanism, Albert et al.
present a fixpoint technique to reduce the size of certificates in [7]. The key
observation is that certain entries in a certificate may be irrelevant in the sense
that they can be reproduced by the checker in a single pass. The program
analysis graph is implicitly represented by means of two data structures, the
answer table and the dependency arc table. Under some queue handling strategy,
a table entry is relevant if after being “updated”, it imposes the recomputation
of other entries, i.e. if dependencies are found in the arc table. Hence, the
reduced certificate can be proven valid, i.e. it is either the least fixpoint or a
post-fixpoint, even if irrelevant entries are removed.

In the same direction, we propose a methodology that takes into account
data-flow dependencies and actualize abstract states at the program labels that
have their predecessors modified during the last iteration. As opposed to [7],
dependencies between labels are captured by a chaotic iteration strategy. In-
stead of using an extra field to classify relevant entries, we use the “depth” of



the program labels inside the topological order. Since iteration strategies are
encoded in our intermediate graph language, we are able to perform algebraic
transformation of these graphs by reducing the number of program labels and
by removing labels whose depth is greater than “0” [15]. In the latter case, the
meta-program extracted from such a dependency graph is a purely sequential
algorithm that checks if the received certificate is, indeed, the least fixpoint
point in a single pass. The checker in Fig. 1 is restricted to validate the least
fixpoint because the safety policy implies formal verification of the optimality
of the linear program solutions.

Even though incremental updates was identified as being a central concept
in our application scenario, this article only presents the initial steps required to
reach such level of flexibility in managing software updates. Notwithstanding,
ACC investigates an incremental approach to PCC by considering any arbitrary
program update over the original program [6]. This principle relies on the fact
that certain parts of the original certificate may not be affected by the updates.
Therefore, the optimized incremental checker not only rechecks those parts that
have been directly affected by a change caused by the update, but also the
indirect effect of these changes. This approach is not compatible with [7] because
information required by the incremental checker may have been removed by the
fixpoint reduction.

2.8. Certifying Optimization Methods

Certifying and checking algorithms using linear programming duality to pro-
vide a witness of optimality have been recently proposed by McConnell et
al. [47]. Our framework complements this approach with a formal definition
of the certifying algorithm for the WCET optimization problem that extracts a
system of linear equations (flow-conservation constraints) from a meta-trace se-
mantics using a right-image isomorphism on relations of labeled abstract states.
This soundness mechanism is based on the constructive design of a hierarchy
of program semantics presented in [17, Sec. 8]. In this way, we are able to
relax the ILP problem of WCET calculation to an equivalent LP problem un-
der the conjecture that the coefficient matrix of the linear program in totally
unimodular [51].

Our conjecture that the linear program can discard the integral constraints
without compromising precision is based on the fact that the coefficient matrix
of the linear program is an m X n integral matrix such that the determinant
of each square submatrix is equal to 0, 1, or -1. Since the infeasible paths
and loop bounds are automatically detected, the relaxation of the ILP prob-
lem does not impact the (integer) type of the LP solutions. However, the total
unimodularity conjecture excludes the class of LP programs where a given ca-
pacity constraint is capable of expressing loop-bound variables in terms of other
loop-bound variables, e.g. for a triangular loop. In this sense, our checking
mechanism is not complete with respect to all possible LP programs (consisting
of flow-conservation constraints and capacity constraints).

Based on the property of total unimodularity, our automatic loop bound
analysis supports nested loops in a way such that the execution counters at



every loop header is a constant value. Therefore, the proposed WCET analyzer
is a certifying algorithm that is both efficient and sound, for the reason that
the maximum timing properties provided as input to the simplex solver are
statically computed. The checkability of WCET estimates is guaranteed by the
generic and automatic process of compiling chaotic fixpoint algorithms from
dependency graphs combined with the applicability of the strong duality theory
to the linear program. Hence, besides a highly efficient fixpoint checker in terms
of verification time, the LP checker is designed to run in linear time.

A formally verified WCET estimation tool using the Coq proof assistant [27]
is presented in [45]. The parallel with our outlined certifying method is the use
of a posteriori validation to guarantee a correct ILP result. More specifically,
the result of ILP solving is verified by stating that any larger solution (than
the WCET) is infeasible. In order to prove the infeasibility of a linear system,
easily checkable inclusion certificates based on Farkas lemma are used [14]. The
checking is performed by a wvalidator that is itself proven correct. The output
of the validator is true if the certificate confirms that the ILP solution is valid.
Compared to LP verification using duality theory, these machine-check proofs
may incur non-negligible execution costs. In this aspect, we argue that our
solution is more suitable for embedded real-time systems due to the limited
computing resources of ACC consumer sites. Therefore, we require a trade-off
between having sophisticated program-flow analysis and having a quite simple
and efficient checking mechanism.

2.4. State-of-the-art WCET Analyzers

The prominent aiT WCET toolchain, performs a microarchitectural analysis
of a machine program running on a given hardware platform by computing ap-
proximations using abstract interpretation of the times that the system takes to
execute all allowed sequences of instructions. This requires abstract modeling
of the host processor, which most commonly includes the abstract semantics
of cache memory configurations [73] and the timing model of the processor
pipeline [62]. These tasks are preceded by a value analysis, which depends on
the abstract semantics of the processor instruction set and computes the range of
abstract values for registers and memory addresses. Solutions for program-flow
analysis include: 1) the VIVU approach [46], which transforms loops into proce-
dures and use the call-string approach to interprocedural analysis; 2) an internal
loop bound analysis using a combination of interval-based abstract interpreta-
tion and pattern matching [25]; and 3) a flow-facts annotation file format called
AIS [30]. The estimation of WCET is done using ILP [72].

In contrast to the VIVU (virtual inlining, virtual unrolling) approach in [46],
we perform full loop unrolling, rather than distinguishing the first loop itera-
tion from the rest [46], and we apply the functional approach to inter-procedural
analysis [57, Sec. 6.5]. However, many other techniques for program-flow anal-
ysis have been investigated in the literature. In fact, although flow analysis
is undecidable in general, automatic extract of precise flow constraints can be
achieve for a range of benchmark programs when using sophisticated abstrac-
tions [26, 34]. In particular, SWEET [42] is a tool that derives flow facts au-



tomatically using Abstract Execution [34]. This approach is highly flexible in
relation to the abstract domains used for value analysis, including both non-
relational and relational abstractions. The advantage of the latter is precision,
in the sense that some relationships between program states are preserved by
the abstraction. For example, the polyhedral abstraction [22] can be used to
extract parametric flow facts from triangular loops [41].

Abstract Execution has similarities to our approach, but there are also fun-
damental differences arising from the necessity of ”verification” of flow facts.
Although Abstract Execution is based on abstract interpretation, it does not
use traditional fixpoint analysis, where the abstract state for a program point
covers all concrete states in that program point, for all executions. Since our
approach uses fixpoint theory to verify the existence of a least fixpoint in the
abstract domain, we chose to design our flow analysis based in Church numerals,
where loop bounds have a well-defined semantics as a side effect of the value
analysis. A common aspect of Abstract Execution and our approach is the
explicitly use of time variables.

In [29] a variant of Abstract Execution is presented, instrumented with time
variables holding upper and lower bounds for execution times, which eliminate
the need for ILP calculation. However, this approach is not compatible with
our verification scenario for one main reason: the WCET is a global variable
that is incremented until the worklist-based algorithm of Abstract Execution
terminates. To the best of our knowledge, such an algorithm has no certifying
properties on the time variables themselves. Although our solution also con-
siders collections of time variables, each timing property corresponds to local
execution times on every program point. Therefore, under the conjecture of to-
tal unimodularity, both local execution times and flow facts can be cross-checked
using duality theory applied to LP in a very efficient way.

The main drawback in our design is the efficiency of the fixpoint algorithm.
However, our main goal is focused on the efficiency of fixpoint ”verification”
and not on efficiency of fixpoint computation. Nonetheless, our option to com-
bine value, cache and pipeline analysis in a single data-flow analysis simplifies
the run-time structure of the WCET analyzer by reducing the sources of non-
determinism after determining infeasible program paths. In fact, we propose an
extension of the abstract pipeline semantics proposed by Schneider et al. [62] in
order to combine the intervals provided by the value analysis and the “execu-
tion facts” provided by the cache analysis in order to obtain reduce the number
of program paths. This redesign allows us to analyze the WCET on multicore
architecture models, because the access times to shared resources can be deter-
ministically computed (assuming that concurrent programs do not share data,
e.g. locks). By integrating the LR server abstraction into the pipeline analysis,
the WCET in multicores is efficiently estimated by computing provably sound
timing properties w.r.t. the concrete timing model of one single processor core.

An example of simulation in the abstract domain, where path analysis is in-
tegrated with accurate timing analysis is found in [43]. A common aspect with
our approach is that automatic extraction of loop bounds during value analysis
has high computational costs for loops that iterate many times. However, such
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a mechanism has the advantage of detecting infeasible paths and, consequently,
improving the accuracy of the timing analysis. Alternatively, GameTime [63],
explores loop unrolling (and inlined function calls) when maximum bounds are
statically known. After extracting the control flow graph of the program, a
subset of program paths, named basis paths, are extracted. The term basis is
used in the sense of standard linear algebra, where basis paths are those that
form a basis of all sets of paths. Satisfiability modulo theories (SMT) formulas
are extracted for each candidate basis path. Besides detecting infeasible basis
paths, the SMT solver generates test cases in order to perform end-to-end mea-
surements. The GameTime algorithm inputs machine programs, executes these
under the test cases and generates weighted graph models used to make predic-
tions about timing properties. Sound WCET estimates are obtained even on
architectures that include caches, complex pipelines and branch prediction.

Another common component in WCET tools is the existence of an inter-
mediate representation of control flow. In comparison with our approach, the
aiT toolchain is able to analyze and reconstruct control-flow graphs from disas-
sembled code, whereas the analyzer presented in this article is limited to ARM
assembler code. Another intermediate language used in static analysis are those
of Soot [69], a framework for optimizing Java bytecode. Among several pro-
gram analyses, a dominance analysis is especially useful for labeling program
states. In contrast, our intermediate language has a simple inductive definition
that expresses basic control-flow patterns and is able to encode dependency
graphs consisting of ternary relations, where each relation is an instruction de-
limited by two program labels. More interesting in the context of our work is
the control-flow representation presented in [5], where unstructured control flow
of bytecode is transformed into recursion. Along these lines, we have designed
a formal method for deriving fixpoint algorithms (abstract interpreters) that
traverse the dependency (control-flow) graph.

2.5. Latency-Rate Servers

The LR server abstraction [67] is a simple linear lower bound on the ser-
vice provided by a shared resource. The abstraction has two key benefits: 1) it
enables resource interference to be bounded for the many arbiters belonging to
the class [67], such as Weighted Round-Robin, Time-Division Multiplexing, and
several varieties of Fair Queuing, thereby addressing the diversity of arbitration
in complex systems in a unified manner; 2) it supports independent formal per-
formance analysis per application, enabling WCET estimation to be extended
to multicore platforms with shared resources in a scalable manner.

The model was originally developed for analysis of networks, but has gained
popularity in the context of real-time embedded systems in recent years. Ex-
ample uses of the model involve modeling buses [70], networks-on-chips [35],
and SRAM and SDRAM memories [2, 64], both in the context of performance
analysis using network calculus [23] and data-flow graphs [65]. The LR abstrac-
tion has also previously been used to compute WCET in single-path programs
accessing shared resources [64]. However, this is the first time it has been
integrated into a WCET static analyzer and proved correct in the context of
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abstract interpretation, enabling analysis of realistic programs sharing resources
in a multicore setting.

3. Generic Data-flow Analysis

This section introduces a generic data-flow analysis [38, 53] used for comput-
ing parametrizable abstract interpretations on assembler code. The certifying
property of the framework is based on the uniqueness of the least fixpoint so-
lution of a system of data-flow equations [40]. The data-flow equations of a
program are instantiated according to the data dependencies found in the pro-
gram at compile-time, modeled according to the weak topological order of the
program [15]. In this way, and in order to give a compositional characterization
to the fixpoint semantics, the order of the data-flow equations inside a Kleene
increasing chain is obtained by induction on the program syntactic structure.

3.1. Fizpoint Semantics

Topological orders, also named dominance orders in control-flow analysis
[10], establish a dependency order among syntactic terms. The main difference
is that the topological order considers program labels at the entry/exit points
of every instruction in the assembler code, reducing a basic block to a single
syntactic term. In this way, the dependency between data-flow equations can
be expressed by a dependency graph. In this case, the notions of weak topo-
logical order and dominance order are equivalent and both can be applied to
unstructured programs because the static information about relative offsets of
“branch”, “jump” or “call” instructions are preserved down to assembler level.

One advantage of expressing program semantics in this way is the ability
to define a compositional data-flow analysis at the denotational level. The
construction of a data-flow analyzer is achieved in two phases: 1) encode the
label-based topology of the program into a dependency graph at compile-time;
2) automatically generate the code of an efficient fixpoint algorithm by an in-
terpretation on terms of the dependency graph. To this end, the dependency
graph is encoded using an intermediate graph language [57, Section 5.3].

Our approach to the computation of least fixpoints follows from the de-
composition of fixpoint equations by partitioning as proposed in [20]. If such
equations are continuous, the least fixpoint can be computed by Gauss-Seidel’s
iterative method to accelerate the convergence by continually re-injecting previ-
ous results in a specified order. As advocated in [16], the compositional design of
an abstract interpreter should involve the choice of a chaotic iteration strategy
to mimic the actual program execution, in the sense of denotational semantics,
by induction on the program syntactic structure. In particular, our solution
applies the recursive chaotic strategy presented in [15].

3.2. Abstract Program Semantics

For the purpose of timing analysis, automatic determination of execution
times is accomplished by inspecting some assembler program, P € Prog, con-
sisting of a sequence of instructions, I € Instr. Program properties are defined
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in the abstract domain C, denoting all the possible abstract hardware states.
The analysis is based on the notion of labeled program states, (I,o) € X, that
associate a program label, | € Lab, with some invariant, o € Invs, that soundly
approximates the dynamic behavior of a program P € Prog at that label [18].

Instrs € Prog — p(Instr)

Instrs[Iy;...; L] £ {I1,..., I} (1)
Invs € Prog — p(Lab — C)
Invs[P] £ atp[P] — C (2)
¥ € Prog — p(Lab — Invs)
S[P] € atp[P] — Invs[P]r (3)

The type of program invariants Invs[P] is the set of total maps from a program
label, I, to an abstract environment, p € C. Let I € Instrs[P] be a program
instruction belonging to the program P. Every label [ inside a program is
contained inside the set inp, and identifies either the state “at” the beginning
or the state just “after” the instruction I.

inp € Instrs — p(Lab)

inp[I] £ {atp[I], afterp[I]} (4)
inp[[ll;...;ln]]gUinp[[li]] (5)

The program states of Def. (3) are proved to be uniquely identified by their
labels [18]. Hence, program states can be ordered according to the notion of
weak topological ordering presented in [15], using the total order < on inp[...].
For example, a possible order of a program with four components is given in
(6). The elements inside matching parentheses are called components and the
first element of a component is called the head.

(U 0 0 (0 ) A 1)) (6)

The labels of component 1 are ordered by the sequence I} --- [', where the

identifiers 1---n; (upper indices), define a set of labels sharing a sequential hi-
erarchy belonging to the same component (lower index). The second component
has a first sequential order of labels, I§ --- [57, starting with the identifier i and
ending with n;, then is interposed by a third component with a sequential hi-
erarchy of j---nj, and is finally completed with the fourth sequential hierarchy
of u---n,. The total order (<) is induced by the position of each label.

The first elements of topological components define the program points in
the assembler from where executions can “branch”, “jump”, “return”, etc. Con-
sidering the basic instruction-subset of the ARM platform, heads of components,
like the ones upper-indexed by 1, i, 7 and u in Ex. (6), are necessarily either an
entry point of a procedure (e.g. after a branch-and-link instruction, ‘bl’), the
head of an intraprocedural loop (before a conditional-branch instruction, ‘bgt’,
‘beq’, etc.) or the hook point on the caller procedure after a procedure return

13



(next instruction after a branch-and-link). The last labels inside a component,
ni, ng, nj and n, in Ex. (6), represent either the label before an intraprocedural
loop, the next-to-last label of an intraprocedural loop or the return point of a
procedure (after a load-registers-and-return instruction, ‘ldmfd’, ‘ldmfa’, etc. ).

Example 1. The weak topological order of a simple program.
As an illustrating example of program state labeling consider the source code
in Fig. 2(a) and a fragment of the corresponding labeled assembler program in
Fig. 2(b). This example is revisited throughout the rest of the article.

int main(void) int loop (int x)
int y = loop (3); while (x>0) { x——; }
return y; return x;

(a) Source code example

a1 C mov ip, sp root_0 {main} .m root_0 {main} Q exit {main}
bl 24 r |
call_11 {loop, main} (o) <—O n5 |
|
mov r3, r0 |
n7 O(— hook_6 |
- root_11 {loop} 1
Idmfd s r3,fp,sp,pc -
exit {main} P, {r3,fp.sp.pc} nl0 4—6 n5 hook_6
I
mov ip, sp U
nl2 O(— root_11 {loop} |d11
Idr r3 #-16! y
n18 M n17
bgt -20 :
n17 O(— head_22
bgt -20
n23 Q(g— n22
Idmfd sp, {r3,fp,sp,pc}
exit {loop} O(MO n25

(b) Labeled relational semantics (c) Meta-trace semantics

l
Y
call_11 {loop,main} (o)
|
|

head_22 exit {loop}

Figure 2: Source code example and the corresponding semantic representations

Fig. 2(b) shows two root labels, ‘root_0’ and ‘root_11’, one for each procedure
‘main’ and ‘loop’. They label the states just before the instruction ‘mov ip, sp’
which stores the intra-procedure pointer ‘ip’ into the stack pointer ‘sp’. The
procedure call is made through the branch-and-link instruction ‘b1’, which starts
with the intra-procedural sequential label ‘n_5" with the target label ‘call_11’.

The start label of the next instruction is a “hook” point (‘hook_6’), stat-
ing that the execution continues at this point after the return of the procedure
call. The intra-procedural loop inside the procedure ‘loop’ produces the “head”
(underlined) label ‘head_22’ that, in conjunction with the label ‘n_17’ (feedback
arc), states that the instructions between the labels 17 and 22 will be recursively
executed by the static analyzer until the conditional instruction bgt -20 eval-
uates to “false” in the abstract domain. Finally, each procedure returns with a
non-enumerable target label “exit” that can only be determined in function of
the caller’s “hook” point.

14



The corresponding weak topological order given by (7) and the corresponding
recursive iteration strategy by (8):

(0---5(1112---1620 ... (2217 ---21) 22---25 (6-- - 10))) (7)
0---511---162021 [2217 ---21]* 22---256---10 (8)

Label 22 is repeated after the [ ]* “iterate until stabilization” operator in order
to provide a path-sensitive analysis. Note that compared to the weak topological
order of (6), label 22 is denoted by both indices j and w. In this way, information
dependent on the predicates at conditional branch instructions is taken into
consideration. For instance, if a branch instruction represents a condition =z > 0
in the source code, then it would assume that indeed = > 0 holds at the beginning
of the target path of the branch (the head of the conditional component), and
that <= 0 holds at the fall-through branch. A

3.8. The Chaotic Fizpoint Algorithm

Our objective in applying chaotic strategies is to perform a context-sensitive
analysis of assembler programs, where the history of a computation needs to be
accounted for. This is particularly relevant for pipeline analysis, for which the
chaotic fixpoint algorithm naturally provides pipeline state traversal. Put sim-
ply, the fixpoint algorithm is able to mimic the execution order of the assembly
program by simulating the value of the program counter.

Fig. 2(b) illustrates how the assembly program is labeled according to a
weak topological order where every instruction is delimited by two labels. In-
tuitively, the representation in Fig. 2(b) uses a total order, (<), on program
labels to convey a relational semantics defined by a nondeterministic transition
system (X[P],7), where ternary relations 7 C (X[P] x Instrs[P] x X[P]) are
defined between program states X[ P] that are “connected” by the labeling pro-
cess. Given a syntactic object Instrs[P], an input-output relation is established
between a state (I,0) € E[P] (which we abbreviate as o, € X[P] for sake of
simplicity) and its possible successors in relation to [.

Let G be any rooted dependency graph. G is denoted by a triple (N, A, ),
where IV is the set of its nodes, A the set of arcs and r its root. A path p in
G is said to lead from n; to ny if a sequence of nodes in (n1,...,n;,nj,...,nk)
exists in N such that V(i,j),3n;, — n; € A. Therefore, for each procedure
there exists an isomorphism between the dependency graph G and the labeled
relational semantics (X[P], 7), where the set of all nodes, {r} UN, corresponds
to the labels of program states Y.[P] and the arcs A = (N x N) correspond to
the pairs of label identifiers present in the set of relations 7.

The data-flow analysis framework is defined to be a pair (X[P], F'), where
F is a space of functions acting in X[P]. To each arc (i,j) of G, a data-flow
function f(; jy € F' is associated to represent the effect only at the component
of X[P] at label j (for simplicity simply referred to as X[j]), that is, a change
of relevant data inside the invariants map, Invs[P], as control passes from the
start 4, through i, to the start of j. The set of data-flow equations, where for
each n; € N, z; denotes the data instance available at the start of n;, and (Lc¢)
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denotes the absence of information at the program entry, is defined as:

zi= || fap@)n; €N—{r} )

(4,9)€E

The solution to these equations is the merge-over-all-paths solution (MOP):

yi = | [{fo(L) : p € pathg(r,j)},j €N

where we define f, = f,.50) © fin_1,js_1) © "= © fiy,5,) for each path p =
(niy, gy -y M4y, ). Since the MOP solution is undecidable in general, an ap-
proximating iterative algorithm is required to yield the least fixpoint solution.
This accomplished by computing joins at those program points that have mul-
tiple incoming arcs. The denotational meta-language presented in Section 3.4
defines specific functions for this purpose, namely “split” and “merge”.

The finer grain of observation of program execution, i.e. the most precise
program semantics, is that of a trace semantics [17]. Starting from an initial
state, the trace semantics models the execution of a program as a sequence of
states, observed at discrete intervals of time, moving from one state to the next
by executing an atomic program step. However, since program states %[P]
differ from one another in their labels [18], the number of abstract invariants
computed across fixpoint iterations is kept equal to the number of program
labels. Therefore, the relational semantics of Fig. 2(b) abstracts from all the
intermediate states computed during program execution. Further, the iteration
strategy allows us to derive a more compact program semantics that we named
meta-trace semantics [57], exemplified in Fig. 2(c).

The meta-trace semantics is convenient because different aspects of fixpoint
semantics are accommodated in a simple way. The advantages are enumerated
as: 1) the ordering in Ex. (1) is in direct correspondence with the order of
evaluation of program states in Fig. 2(c); 2) weak topological orders have a
graph-based representation, whose interpretation by means of functional appli-
cation and joins computes approximations to the MOP fixpoint solution; and
3) the application of Gauss-Seidel’s successive approximations [20] provide a
constructive method to compute the least fixpoint of Kleene ascending chains.

At each step, the weak topological order determines which are the indices
j of Equation (9) that are updated with the effect produced by what data-
flow functions and in what order. In order to solve fixpoint equations like
Y[P] = F(Z[P]), the data-flow equations defined in (9) are redefined in terms
of an iteration k, where the invariant o; = 3[i] and the invariant o; = X[j] are
two invariants such that either ¢ < j or j <

of = oF U fu (o)
Fixpoint computations apply the recursive strategy to the iterations k over
F. This strategy recursively stabilizes subcomponents of every component in
the topological order every time the component is stabilized. For every node
{ni,nj,...} € N of depth 0, i.e. nodes that do not belong to any nested com-
ponent, we know that for every arc ¢ — j, i is necessarily listed before j, i.e.
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i < j. Hence, the value of i used in the computation of j already has its final
value, which implies that the interpretation of sequential statements is made
only once and in the right order, yielding a flow-sensitive data-flow analysis.

In the case of loops, including nested loops with increasing depth [15, Def-
inition 1], the stabilization of the corresponding component is detected by the
stabilization on its head. If the value associated with the head of the component
remains unchanged after the subsequent iteration, then the argument used to
prove the fact that no iteration is necessary over the nodes of depth 0 also proves
that the values assigned within the component will not change hereafter [15].

Given the function space F' = (f(1,n),---sf(ij)>--+» f(kn)) and the invari-
ants vector (01,03,...,0,),, where n is the number of assembler instructions,
Kleene first recursion theorem [44] is applied to devise a constructive method to
compute the least fixpoint of F', Ifp F'. The least fixpoint condition is achieved
when, V(i,j) € E, the following equality test holds:

]‘7’6(<O'17 o3 05-1,035,... 7U'n>) = <0’1, e ,O’j_l,f(i’ﬂ(o'i),. .o ,O'n>

Then, starting with the bottom element in iteration 0 by defining L[P]° = Ly,
the prJE_EF =] 50 F9 is computed by the upward abstract iteration sequence:

s[P]* if ©[P]* = F(S[P]*)
SIPIF = { ot =0 U fuj)(0f)  depthof j #0
cr;-ﬁ'l = fuj(0F) otherwise

3.4. Meta-Language

We develop a constructive fixpoint semantics based on expressions of a two-
level denotational meta-language [60, 59] aiming at compositionality in both
value and temporal domains. The main advantage is the possibility to gen-
erate type-safe fixpoint interpreters automatically, and in a flexible way, for
a variety of control-flow patterns, including the architectural flows originated
from accesses to shared resources by application running on multicore architec-
tures [58].

Denotational definitions are factored in two stages, which is equivalent to the
definition of a core semantics at compile-time (ct) and an abstract interpretation
at run-time (rt). Supported by the compositionality assumption of Stoy [68],
the core semantics expresses control and architectural flows by means of higher-
order relational combinators of the run-time entities. The advantage of this
approach is that new programs can be obtained throughout the composition of
smaller programs, in analogy to graph-based languages.

Implemented combinators are the sequential composition (x), the pseudo-
parallel composition (||), the intra-procedural recursive composition (&), and
the inter-procedural recursive composition (@). At the lower level, semantic
transformers of type rt; — rto provide the desired denotational effects.

ct m=B | ct1 * cta | ety || cta | ct1 D cta | ct1 @ cta | split | merge | rt (10)
rt o= X | (8 X X) | vty — rto (11)
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The two-level meta-language unifies data and control flow in a pure functional
language. Control flow is expressed at relational level by the upper level of the
meta-language using the point-free notation [32]. Using this notation, the input
state of a composition of data-flow functions, of type rt, is associated directly
with the output state using left-associative parenthesis. In this way, references
to the input argument can be removed from the compositional layer (point-free),
allowing the compositional combinators to become binary relational operators
by taking two relations as arguments and producing a new relation. For each
combinator, there is only one bound variable that corresponds either to an input
state with the type X or the product (X xX). We let B denote the logical boolean
values (True and False), such that B £ {tt, ff}.

Example 2. Derivation of a meta-program using combinators.

Fig. 2(c) illustrates how a meta-program is derived for the assembler compiled
from the source code in Fig. 2(a) and the corresponding iteration strategy (8).
Starting with the first input-output relation defined for a syntactical expression,
the first state-propagation function is instantiated for the arc given by the pair
of label identifiers (0,1) that has the instruction ‘mov ip, sp’ as the partially
applied syntactic object. Then, the meta-program is automatically compiled by
interpreting the syntax terms of the dependency graph that encodes the meta-
trace in Fig. 2(c). The benefit of our approach is that only the control-flow
combinators in the upper level of the denotational meta-language are used.

(mov ip, sp) * --- * (mov r0, #5) * (bl 24) * ... * (str r0, [fp, #-16]) * (b 16) *
-+ % (ldr r3, [fp, #-161) * (cmp r3, #0) * ((bgt -20) @ (ldr r3, [fp, #-16]) * ... 3k
(sub r3, r3, #1) * ... * (ldr r3, [fp, #-16]1) * (cmp r3, #0)) * (bgt -20) * ... 3*

(mov r0, r3) * (1ldmfd sp, r3,fp,sp,pc) * (mov r3, r0) * (str r3, [fp, #-16]) * ... *

(1dmfd sp, r3,fp,sp,pc)

Figure 3: Meta-program derived from the meta-trace in Fig. 2(c)

For the ‘while’ loop contained in the source code of Fig. 2(a), the inspection
of the iteration strategy (8) detects a feedback arc between the label identifiers
22 and 17, expressed by the total order 22 < 17. This explicitly states that a
recursive pattern was found in the control flow. Accordingly, the ‘while’ meta-
program uses the recursive operator (- @ -) to compose the state-propagation
function for the branch instruction ‘bgt -20’, which is at the head of the loop,
with a second meta-program containing the body of the loop. This meta-
subprogram is the sequential composition (*) of state-propagation functions
for the set of instructions inside the loop, starting with ‘1dr r3, [fp, #-16]1’
and ending with ‘cmp r3, #0’. A

Data flow is defined at the lower level of the meta-language by means of state-
propagation functions, which are extensions to program states of the data-flow
functions of Def. (9). Next, we detail how instances of these state-propagation
functions are obtained as abstractions of the relational semantics. As mentioned
in Section 3.1, transition relations 7 C (X[P] x Instrs[P]] x X[P]) are ternary
relations which, given a syntactic object ¢ € Instrs[P], establish an input-output
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relation between a state and its possible successors in the context of some pro-
gram P. Assuming the abstract state vector X[P] = (01,0h,...,0:,0j,...,0n),
where n is a label identifier, we use the relational abstraction defined in [17],
where the right-image isomorphism f is applied to every transition relation 7:

Fapnlrl € Xai« (o [3Z[P], 2[PY : 00 = pli] Aoy = 5[4,
3 € Instrs[P] : (X, 0, 5%) € 7) (12)

Each function f(; ;) is partially applied to the syntactic object + € Instr, so
that, at denotational level, we exclusively reason about functions with the type
(C — C), only by using the abstract values located at the labels i and j. When
computing the least fixpoint solution, the least upper bound of the multiple
states arriving at the program label j is computed. The type of a data-flow
function f is lifted to the global state functional type (X — X) in order to obtain
the space of state-propagation functions F' = (f(1,n), - - -, f(i,j)> - - - f(k,n)), Where
each f(; ;) is defined by (12) and n is the number of syntactic objects.

In practice, using the semantic projection mechanism defined in [17], the
fixpoint algorithm evaluates meta-programs at trace level by expanding the meta-
trace according to the iteration strategy, but using the program’s structural con-
structs defined at relational level and the program’s functional behavior defined
at denotational level. Assuming that multiple incoming nodes ny arriving to
the node n; may exist, but that only one outgoing node n; leaves from n;, the
denotational fixpoint is defined as an abstraction of the relational semantics:

Mgy s ASb s (S5[5] = fag (i) | Yk : o = S[E],
i ov=| | feiy(on) : SpTER ASETEL)  (13)

If fact, the previous definition provides an approximation to the MOP fixed-
point solution by providing a compositional and constructive iteration method
based in functional application and least upper bound operators. Compared to
the natural nondeterministic fixpoint semantics given in [17], two observations
should be made: the first is that Def. (13) gives an abstract (approximate) fix-
point semantics of a nondeterministic system of input-output relations, whereas
[17, Theorem 33] gives the collecting semantics of such a system; the second is
that both definitions must be different because the state transformer used in
the collection semantics is additive, i.e. a complete join morphism, where the
abstract state transformer used in Def. (13) is continuous but not additive.

Let b == (-x-)|(- || )|(-®-)]|(-@-) be the syntactical meta-variable for the binary
combinators in the upper level of the meta-language. Let also the interface
adapters ‘split’ and ‘merge’ (least upper-bound operator) be represented by
input-output relations. Then, the reflexive transitive closure T* of the program’s
initial input-output relation T', where R is a bound relation, is defined in point-
free style as a relational generalization of the Kleene fixpoint theorem:

"= | |T"=| |AR-(TbR))"(Lx) (14)

n=0 n=0

def

F(fig) =

where Ly is the undefined abstract state. In this way, type-safe fixpoint algo-
rithms can be efficiently obtained for free [59] by using program-specific chaotic
iteration strategies, specified by the type expressions in the meta-language.
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Example 3. Fragment of fixpoint iterations for the loop in Example 1.
In order to better illustrate the semantics of our chaotic fixpoint algorithm, first
consider the set of relations presented in Fig. 2(b). As previously mentioned,
each state transformer f; ;) is partially applied to the instruction in the corre-
spondent input-output relation, whose delimits are precisely labels 7 and j. Now
consider the iteration strategy given in (8). Since loops are transformed into
recursion, the interesting labels are the head of the loop, 22, and entry point of
the loop body identified by label 17. The meta-program in Fig. 3 shows that
register R3 is allocated to the variable ”x” in program 2(a). As expected for this
loop, the least fixpoint solution is [0, 3] and the computed loop bound is 3.

Table 1 presents a summary of the fixpoint iterations for label 17, showing
the result of value analysis and the resulting program flow analysis. For label
22, we need to consider that instruction ‘b 16’ is inside a relation that points to
label 20, which is inside the scope of the recursive combinator (- @ -). For this
reason, we consider a previous fixpoint iteration when presenting the summary
of fixpoint iterations for label 22 in Table 2. Note that value analysis requires 4
fixpoint iterations. This fact results from the fact that instruction ‘cmp r3, #0’
has to be interpreted in the abstract domain within an ”extra” fixpoint iteration
in order to compute sufficient pre-conditions to continue loop iteration (detected
by instruction ‘bgt -207).

Table 1: Program flow analysis for label 17 (3 fixpoint iterations)

Loop Iteration 1 Loop Iteration 2 Loop Iteration 3
Label| Value Flow Value Flow Value Flow
Analysis Analysis Analysis Analysis Analysis Analysis
_ (22,17) = 1 — (22,17) = 2 — (22,17) = 3
171 B3 =[33] 7y =1 B =023 (my=2] B¥=03 (=3

Table 2: Program flow analysis for label 22 (4 fixpoint iterations)

Prev. Fixpoint Iteration Loop Iteration 3 Loop Iteration 4
Label | Value Flow Value Flow Value Flow
Analysis Analysis Analysis Analysis Analysis Analysis
_ (21,22) = 1 _ (21,22) = 3 _ (21,22) = 4
12| B3 = [3.3] =gy =1 B =3 =51 B =003 <mim=1

In fact, the execution counter at label 22 is 4, but the analysis shows that the
execution counter at label 17 is 3. Furthermore, the chaotic strategy determines
that the execution counter at label 23 is 1. This satisfies the flow-conservation
constraints on the execution counts: the sum of execution counts for input arcs
must equal the corresponding sum of the output arcs: 4 = 3 + 1. Therefore,
the loop bound assigned to the head of the loop is 3. According to Fig 2(b),
this is the value assigned to the arc identifier ‘d22’ . A
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4. The WCET Analyzer

Having defined our combinatory and program-specific fixpoint semantics,
we now proceed to the definition of a particular abstract interpreter used for
WCET estimation. The run-time type ¥ is instantiated by the CPU hardware
domain C and the corresponding semantic operator, Fr € C — C, preserves
the functional type in Def. (11). Fixpoint algorithms correspond to a particular
order of application of the higher-order combinators in Def. (10), which combine
instances of F¢ according to the topology of the program. The abstract domain
C is a composite domain composed by an abstract register domain, R, an
abstract data memory domain D?, an abstract instruction memory domain, M?*,
and an abstract pipeline domain, P¥. The abstract pipeline domain, Pf £ 2P,
is defined as a collection of “hybrid” pipeline states defined by P. As part of
our ARM-based processor model, we next describe the 5-stage Harvard pipeline
architecture used by the ARM9 processor in shown Fig. 4.

\

Time (in clock cycles)
CC1 CcC2

CC 3 CcC4
™ Regfile }# ‘ DM Regfile

Figure 4: Graphical representation of a Harvard pipeline architecture

CC 5

The first stage (Instruction Fetch) depends exclusively on the instruction
memory (“IM”) because this stage is when the memory address given by the
program counter is “fetched” from the instruction memory. In the second stage
(Instruction Decode), the values of the operands of the fetched instruction are
loaded from the register file (“Regfile”). At this point, store buffers must be
created to carry out the processing of the “decoded” instruction. In the third
stage (Fzecution), the “ALU” functional unit computes the hardware state after
“executing” the instruction using the buffered operands. In the fourth stage
(Memory), the data memory (“DM”) is accessed, if that is required to execute
the instruction. Finally, the last stage (WriteBack) is where the store buffers
are loaded back into the globally shared register file (“Regfile”). The number of
elapsed clock cycles in each stage is shown as “CC 1”7, “CC 2", etc., and indicate
the clock cycles required to process a single instruction.

The register domain R* denotes the register file, referred to as Regfile in
Fig. 4. We design the “abstract” environment of the register file as a map,
R, & Ny — V(W), from register identifiers Ny to abstract values v € V(W),
where the domain W defines a 32-bit value and V(W) defines intervals of 32-bit
values. However, in order to perform data-flow analysis as simulation in the
abstract domain, the registers holding control information, such as the stack
pointer or the program counter, must not be abstracted into the interval domain.
Hence, R? is defined for the entire set of register names N in the following way.
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Let Ny = N\ Ny be the set of registers storing “concrete” control information
and let R, £ Ny — W. Then, the abstract domain Rf is a coalesced domain
of both abstract and “concrete” values and is formally defined by the disjoint
union of the corresponding maps, Rf, and R,: R* = R! |t} R,,.

Automatic determination of loop bounds is achieved by instrumenting the
abstract domain V(W) with the concrete domain of naturals N. An exam-
ple of such instrumented value analysis is given in [57, Section 6.4]. To this
end, we invoke the relationship between the constructive method of the Kleene
first-recursion theorem [40], used to compute least fixpoints, with Church nu-
merals [61, Chapter 11]. Intuitively, given a continuous function ¢, loop bounds
are natural numbers that are mapped to the n-fold composition of ¢. In this
context, a loop bound is a natural number called the fized-point value of .

When compared to a real ARM9 processor, the design of abstract memory
domains is relatively simpler because the data cache is not included in the anal-
ysis. Our approach to cache analysis is pragmatic in the sense that our objective
is not to propose new abstract domains for cache analysis, but reuse existent
designs [31]. Moreover, we assume that even though RR or FIFO replacement
policies are typically used by ARM9 processors, the used cache replacement
policy is Least Recently Used (LRU) [56]. Technically, there are also relevant
simplifications, since only a must analysis [56] needs to be implemented.

Our memory model consists of two different main memory domains: the data
memory, D, and the instruction memory, M*. A cache is included only inside
the instruction memory hierarchy, whereas all data memory accesses are directly
made to the main memory. Accesses to the instruction cache are requested by
the pipeline during the “Fetch” stage. If the requested program counter memory
address is contained in the cache, corresponding to a cache hit, then the opcode
is returned with low latency. Conversely, upon a cache miss, the opcode needs
to be transferred from the main memory to the cache, replacing existent cached
data. For LRU, a must analysis is sufficient to obtain precise results about
cache hits. Hence, we are able to deterministically infer the penalty associated
to cache misses. This is an essential feature of our design because we are able to
integrate the analytical model of LR servers to predict access time to a shared
main memory. Section 6 explains how the LR is soundly integrated into our
data-flow analysis by abstract interpretation using a proper Galois connection.

By design, the value analysis depends on the domains Rf and D! and the
cache analysis depends on the domain M?*. Therefore, fixpoint iterations of
the pipeline analysis are defined in terms of a sequence of “hybrid” pipeline
states, P, each containing three corresponding store buffers, R, D’* and M.
Pipeline analysis by abstract interpretation is not a typical analysis because it
requires both state traversal, as determined by a control-flow graph, and the
computation of least upper bounds on abstract domains [73]. In this sense,
the pipeline analysis can rather be seen as a “history-sensitive” analysis that
requires the collection of all states encountered during fixpoint computation.

Since there is no abstraction known to the WCET community for concrete
timing properties [62], the abstract pipeline domain must be defined as a set
of “hybrid” pipeline states. Therefore, and according to the pipeline model of
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Fig. 4, the domain P includes the concrete timing properties, measured in cycles
per instruction (CPI), in its definition. In this way, the fixpoint algorithm is able
to compute, for each instruction, an invariant on the hardware states that can
occur whenever execution reaches that instruction. After fixpoint stabilization,
these execution times are the values of the cost variables of the linear program.

4.1. Pipeline Analysis

We consider a tiled multicore architecture with several ARM9-based cores,
shared memories and 10, as shown in Fig. 5(a). Each processor core has an
instruction pipeline and an instruction cache memory. By definition, pipelining
allows overlapped execution of instructions by dividing the execution of instruc-
tions into a sequence of k pipeline stages and by simultaneously processing N
instructions. The considered pipeline is an “in-order” pipeline with five pipeline
stages (PS): fetch (FI), decode (DI), execute (EX), memory access (MEM), and
write back (WB). Figure 5(b) illustrates a functional view on pipelining.

cycle 1 cycle 2 ' cycle s ' cycle s+1 '
t

Tile Bipelne) ! t t

Processor 0 Processor p f, f, f3 fy f,
S I e Tt 1
fi f

10 <—>< Interconnect (bus)

¢ ¢ ¢
SRAM DRAM Flash N, Ny N, f IE 25N,

(a) Generic multicore architecture (b) Functional overview of pipeline steps

Figure 5: Functional model of a pipeline in a multicore architecture

The functions fi, fa,..., fx,..., specify the effect of pipeline state trans-
formations across a variable number of pipeline steps, which is greater than 5
CPU cycles in the presence of pipeline bubbles caused by stalls due to pipeline
hazards [62]. Examples of pipeline hazards in our analysis are described in [57,
Example 10]. In these cases, we witness either a cache miss or a backward data
dependency between the instructions or the impossibility to predict the program
counter of the next instruction to fetch. For example, instruction B in Fig. 5(b)
requires [ pipeline steps to complete, where [ > k. Each pipeline state includes
an instruction vector of size IV, adjoined with a timing property, 1,2,...,s,s+1.
This property expresses the relation between the elapsed cycles per instruction
(CPI) and the current stage of an instruction inside the pipeline.

The pipeline analysis by abstract interpretation presented in [62] introduces
the notion of resource association as a pair (k,{r;j,,...,r;,}), where k € PS
is a pipeline stage and 7;,,...,7;, € R is a set of generic resources, such as
functional units or cache memories. These resources can be either static, such as
the resource demand of an instruction according to its type, or dynamic, when
the resource carries its own state. The particularity of our approach is that
the state of the dynamically allocated sequences is updated after each pipeline
stage. Hence, concrete timing information is combined with the abstract state
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of resources in a single hybrid pipeline state P. When compared to [62], our
approach detects infeasible paths more precisely, because the path-sensitivity of
the value analysis reduces the number of possible pipeline states.

The extra set of store buffers R’#, D'* and M'* are domains containing the
resource states that are to be allocated across the internal stages of the pipelining
of every instruction. This means that before and after analyzing an instruction,
it is required to compute the least upper bound between the top-level domains
R D' and M!, contained in the CPU domain C, and the store buffers R'#, D'
and M'%. Formally, the hybrid pipeline state is defined as:

P € (Time x Pc x Demand x R* x D"* x M* x Coord)

where Time is the global number of CPU cycles, Pc is the program counter of
the next instruction to fetch, Demand is a 32-bit sized word used to model the
dependencies between data registers in such a way that each register is either
a blocked or unblocked resource, and Coord is a N-sized vector, N being the
number of instructions allowed inside the pipeline at a given time.

Coord & [Timed Task] n

A TimedTask is defined for one instruction and consists of the elapsed CPI
Cycles and the current Stage of a given Task. A Task is associated with an
instruction and also holds local copies of the “context” of a hybrid state:

TimedTask € (Cycles x Stage x Task)
Task € (Instr x Pc x Demand x R"* x D'* x M)

The semantic transformers required by our functional approach to pipeline anal-
ysis are described by the following. The analysis is performed at three levels: at
the lower level, we define the transformer Fr as a morphism on the composite
domain TimedTask (for example, the instances fi, fa,..., fn in Fig. 5(b)); at
the middle level, we define the transformer Fp as a morphism on the composite
domain P, which uses Fr to compute the new elements inside the N-sized vector
Coord; finally, at the higher level, we define the transformer Flﬁg as a morphism
on sets of hybrid states Pt which uses Fp to transform each element in the
input set. The semantic transformers Fp and F f—, are concisely defined as:

Fp € Instr— P— P

Fp(i)(p) £ toContext(i) o [Fr o fromContext(p)]n
Fg € Instr — P* — P*

FE(O () E{FE (D)) | p € 9}

where F' 153+ corresponds to the recursive functional application of F'p at least five
times. Note that F5" does not correspond to the transitive closure of Fp by
the fact that local execution times are always associated with the final pipeline
stage of a given task. This is possible because the value and cache analysis are
performed simultaneously with the pipeline analysis, thus making the timing
analysis a deterministic process for each given input timing property. In this
way, the intermediate hybrid pipeline states can be discarded after completion.
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Nonetheless, even in fully timing compositional architectures [24], such as
ARMY, the nondeterminism introduced by the control flow must be taken into
account. Therefore, the soundness can only guaranteed if all hybrid pipeline
states arriving at a join point are collected into a set of type PF. The definition
of Fﬁ, naturally supports the nondeterminism intrinsic to sets of hybrid states
in the sense that FIE;Jr is applied to every pipeline state p € P Let {s}C |
k € PS,k > 5} be the set of ordered pipeline stages (including stalled stages)
required to complete the instruction ¢. Then, Ff;r is defined by:

FI10)(0) & Fo() (F2E () ()
Fite F;iWB

The purpose of Fr is to compute the effect of pipelining a single instruction.
However, since all the N instructions inside the coordinate vector (Coord) share
the common context defined in P, it is necessary to read/write the state of the
resources in P. In particular, the value of the program counter Pc must be
known to fetch the next instruction from memory when one instruction inside
the pipeline finishes, and the value of Demand must be kept updated depending
on the blocked /unblocked state of register ports.

Consider, for example, that the current stage is FI and there is free space
inside the pipeline to fetch a new instruction from memory. Depending on the
context of the actual pipeline state, structural hazards, such as a cache miss
may delay memory access and, therefore, create a pipeline bubble. In the case
of a cache hit, the TimedTask enters the DI stage. In both cases, the timing
property Cycles is calculated according to the timing model of the processor [58].
This concrete timing model is parametrizable and is not specific to ARMO.

Example 4. Examples of sets of pipeline states in presence of hazards.
To better describe all aspects involved in our timing static analysis, examples
of pipeline hazards are given for the assembler program described in Fig. 2(b).
Three types of pipeline hazard can be the cause of pipeline bubbles: 1) struc-
tural hazards that are caused by resource conflicts arising when the pipeline
does not have enough resources to execute all the possible combinations of in-
structions without stalling; 2) the data hazards that are a natural cause of the
predetermined order of instructions and, consequently, of the logical dependency
between the operands of these instructions; and 3) the control hazards that arise
when the destination address of branch instructions is not resolved early enough
to decide which instruction should enter the pipeline next.

An example of structural hazards is when the next fetched instruction is not
found inside the instruction cache. For instance, when the fixpoint algorithm
reaches the program label 20, after computing the pipeline states for instruction
‘b 16’, the next instruction entering the pipeline is ‘ldr r3, [fp, #-161" (see
Fig. 6(a)). At this program point, the fetched instruction cannot be found
in the abstract cache state. Hence, a cache miss penalty relative for a main
memory access request is computed according to the processor’s timing model,
leaving instruction ‘l1dr r3, [fp, #-16] in the fetch (FI) stage and causing the
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pipeline to stall. The corresponding timing penalty is 3 CPU cycles and it is
computed using the LR-server timing model, presented later in Section 6.1.

cycles |N [Next|{State cycles| N | Next [State
0 0| FI |Ready: nop 1 0 | DI |Fetched: sub r3, r3, #1]
3 1| FI |Stalled: 1dr r3, [fp,#-16] 2 1 | EX |Decoded: 1dr r3, [fp,#-16]
0 2| FI |Ready: nop 0 2 | FI |Ready: nop
cycles |N [Next|{State cycles N[ Next |State
3 0| FI |Stalled: cmp r3, #0 2 0 DI |Stalled: sub r3, r3, #1
4 1| DI |Feched: 1dr r3, [fp,#-16] 3 1 [MEM|Ezecuted: 1dr r3, [fp,#-16]
0 2 | FI |Ready: nop 1 2 | DI |Fetched: str r3, [fp,#-16]
(a) Structural hazard (b) Data hazard
Cycles|N [Next| PC [State Cycles|N [Next| PC [State
0 0| FI 0 |Ready: nop 0 0| FI 0 |Ready: nop
9 1 |WB| 68 |Stalled: bgt -20 9 1 |WB| 92 |[Stalled: bgt -20
0 2| FI 0 |Ready: nop 0 2| FI 0 |Ready: nop

(¢) Control hazard

Figure 6: Examples of pipeline states sets in presence of hazards

Data hazards happen whenever the private data of an instruction is currently
being processed (blocked) inside the pipeline by other instruction. In these cases,
the blocked instruction can proceed only after the instruction holding the data
has completed the write back phase (WB). One example of data stalling is given
in Fig. 6(b) for the instruction ‘sub r3, r3, #11’, at program label 18 during
the second fixpoint iteration for the loop. Although there are no cache misses
to be accounted for, the instruction ‘ldr r3, [fp, #-16]’ is in its decode stage
(DI), meaning that accesses to register ‘r3’ are blocked to other instructions.
Therefore, the instruction ‘sub r3, r3, #1]’ causes a bubble in the pipeline and
the number of CPU cycles is incremented until the value for ‘r3’ has been sent
to the ”context” of the pipeline.

Control hazards happen in circumstances like the one described in Fig. 6(c).
We known for a fact that the instruction ‘bgt -20’ may change control flow if
the branch condition is verified. For this reason, and in the absence of a branch
prediction mechanism, the pipeline is flushed so that the next program counter
to fetch is available, right after the instruction ‘bgt -20" writes back. Fig. 6(c)
illustrates the context and flow sensitivity of the pipeline analysis by showing
two of the pipelines states computed for the branch instruction (an extra column
shows the computed program counter). On the left side, we show the pipeline
state after reaching the least fixpoint condition for the loop. The program
counter 68 is computed 4 times and, under the assumption of compositionally,
the abstract pipeline state (a set of concrete pipeline states) allows us to compute
the local execution time (in CPI) at program point 17 as the maximum value
in {11,9,9,9}. On the right side, we show that the same instruction computes
the value 92 for the program counter. Therefore, the abstract pipeline state at
program label 23 is a singleton set, whose timing property is 9 CPI. A
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5. Semantics-based WCET Verification

As the previous section demonstrates, the WCET analysis depends on hard-
ware components, such as cache memories and pipelines, and the cost and com-
plexity of the analysis is expected to increase as the internal design of such com-
ponents becomes more sophisticated. The same applies when reasoning about
WCET verification. Therefore, the methods used to compute the WCET must
have good certifying properties, so that they can be applied to efficiently verify
the correctness of the WCET upon reception. Indeed, the theory of fixpoints
used in ACC [9] effectively performs the verification of the existence of least
fixpoints. Hence, existing solutions based of fixpoint theory can be reused as is
to compute/verify the invariants on execution times at every program point.

However, due to the limited computational resources of embedded systems,
the design of a verification mechanism to check WCET estimates cannot inte-
grate the simplex solver as part of the checking algorithm. This article proposes
an extension of the existing ACC framework with an additional efficient mecha-
nism to check the solutions of the linear program. However, the main goal of the
verification framework remains unchanged: the software update is guaranteed
to be safe if the received certificate, packed along with the “untrusted” program,
can be proven correct with respect to some safety policy. The particular case of
WCET verification implies that, in order to prove the optimality of the linear
solutions, certificates must be proven to be least fixpoints, as computed by the
pipeline analysis on the supplier side.

This section is organized as follows. We start with the description of a trans-
formation algebra on the intermediate graph language, whose main objective is
to reduce the size and minimize the checking time of ACC certificates. Then,
we present and highlight the main contributions of the LP checker design in
Section 5.2, in particular, the possibility to apply the certifying properties of
duality theory in linear programming in order to minimize the checking time
of the optimality of linear solutions. In Section 5.3, we present the experimen-
tal results for the certificate size reduction and checking time for a subset of
the Mélardalen WCET benchmark programs [33]. Although the design of our
approach differs in terms of style with [7], the experimental results of both
approaches are compared and examined.

5.1. Transformation Algebra on Dependency Graphs

Algebraic transformations are performed on an induction definition that we
named intermediate graph language. Terms of this language encode dependency
graphs, whose building blocks are relations, and expresses control-flow patterns
in accordance with the higher-order combinators of the two-level denotational
meta-language introduced in Section 3. Two transformations are defined: the
first is named sequential and the second is named recursive. The former signif-
icantly reduces the size of certificates and the latter is used to extract highly
efficient fixpoint algorithms in terms of verification time.

The sequential transformation benefits from the compositional design of the
fixpoint semantics to compute the global effect of a sequence of instructions.
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However, the length increase on the syntactical term must preserve loop bounds
to ensure the tightness and soundness of the WCET. A sequence of adjacent
relations is reduced into a single relation by using the algebraic rules of the
intermediate graph language. The main advantage is the reduction of the num-
ber of connected subgraphs and, consequently, the reduction of the number of
program points considered during static analysis. However, the sequential trans-
formation must be proven sound in relation to the results of the program flow
analysis. Hence, a given set of adjacent relations is transformed into a single
relation if and only if the loop bounds at the entry/exit labels of the latter are
preserved in relation to the former set.

As mentioned in Section 3, the sequential composition (- *-) of two relations
T and R is defined by a(T * R)c iff there exists b such that aTb and bRe. The
usefulness of the point-free notation is that the input value a is associated to
the right with the output value ¢, allowing the sequential composition to be re-
defined simply as (T * R) with type (¢ — ¢). In terms of fixpoint computation,
the interpretation of the relational composition (- * ) in A-calculus is the func-
tional composition operator (- o -). Thus, the interpretation of a relation with
multiple syntactical elements performs multiple functional applications in order
to obtain a value with the same type, but within the same fixpoint iteration,
i.e. considering only one pair of input/output labels.

The recursive transformation removes the loops from the dependency graphs
so that the generated fixpoint checking algorithm uses a single state traversal
across purely sequential programs. The soundness of this transformation is
based on the two following facts. Firstly, according to the weak topological
order of an inter-procedural loop, e.g. the one given in Ex. (1), the meta-
program has part of the loop body expression as the prefix of the combinator
(+® ), as described in Ex. (2). Nevertheless, as provided by the path-sensitive
analysis, the loop condition is analyzed even when the precondition for entering
the loop is not satisfied, forwarding the analysis on the fall-through path.

Secondly, by stating that the recursive chaotic strategy proceeds by stabi-
lizing every subcomponent before the outer-component is stabilized [15], the
stabilization of any loop can be detected by checking the invariant at the head
of the loop. Hence, the inductive definition of dependency graphs can easily be
used to remove all recursive subgraphs. Therefore, all meta-programs that are
automatically generated by an interpretation of their dependency graphs on the
consumer side are pure sequential fixpoint algorithms.

Example 5. Transformation of Dependency Graphs
This example describes how terms of our intermediate graph language can be
transformed into reduced dependency graphs that, by design, have adequate
characteristics for efficient fixpoint checking. The sequential transformation in
Fig. 7(a) is relative to the procedure ‘loop’ and is performed on top of the set
of the input-output relations presented in Fig. 2(b). The dependency graph
obtained with recursive transformation is given in Fig. 7(b).

The instructions ‘bl 24’ and ‘b 16’ are excluded from the process because
they are “branch” instructions. The same applies for the path-sensitive instruc-
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Group: proc_loop_1

Group: proc_loop_1

Group:|rec_22

(b) Purely sequential
graph of ‘loop’

(a) Reduction of program points inside ‘loop’

Figure 7: Examples of transformations of intermediate graph representations

tion ‘bgt -20°. Finally, the instruction ‘str r3, [fp, #-16]1" cannot be reduced
because according to the program-flow information computed for the original
dependency graph, multiple nodes with the “sink” label ‘20’ have different loop
iteration counts. All the remaining instructions are sequentially reduced by
connecting the corresponding relations and preserving the program-flow infor-
mation. The main advantage is the reduction of program points included in the
certification and the fact that only pipeline states that have reached the WB
stage need to be included in the certificate. A

5.2. WCET Verification

In this section, we propose the inclusion of the WCET checking phase inside
the ACC framework using the duality theory applied to linear programming.
Additionally, Section 5.2.3 presents a proof sketch that the coefficient matrix of
the LP problem is totally unimodular [37]. In this way, the LP checker is able
to execute in linear time, by checking LP solutions using simple linear-algebra
computations, without the need to re-run the simplex method.

Given the assembler program P, the structure of ACC certificates correspond
to the map X[ P] of Def. (3), consisting of the abstract contexts computed during
program-flow analysis, plus the solutions computed by the primal/dual simplex
method on the supplier side. On the consumer side, along the lines of ACC [9],
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the verification of abstract contexts of Def. (2), Invs[P], is performed by a single-
pass fixpoint iteration over the assembly program P, while the LP checking of
the Primal, Dual and WCET solutions is based on the duality theory [51].
The idea behind duality theory applied to linear programming is that for any
solution of the simplex algorithm there is another associated solution called the
dual. The relationships between the dual problem and the original problem
(called the primal) is useful to determine if the received LP solutions on the
consumer side are in fact the optimal ones, that is, the solutions that maximize
the objective function (WCET) on the supplier side.

5.2.1. The ILP Verification Problem

The optimization problem is defined as the maximization of the objective
function WCET, subject to a set of linear constraints. The variables of the
problem are the node iteration variables, xj, which are defined in terms of
the arc iteration variables, d}jf and d%-UT. Arc iteration variables correspond
to the incoming (7) and outgoing (j) arcs to/from a particular program label
identifier k£ contained in the weak topological order (inp, <), where inp denotes
the set of labels of a program P. These linear constraints are called flow-
conservation constraints. Additionally, a set of capacity constraints establish
the upper bounds, by; and by, for the arc iterations.

we= di =) di" (15)
i=1 j=1
diy < b and dgp’ " < by, (16)

The objective function is a linear function corresponding to the number of node
iterations on each label identifier k, weighted by the set ¢, which specifies the
corresponding execution costs, measured in cycles per instruction (CPI).

WCET = Z Ck * Tk

k€inp

When compared to the AI+ILP approach to WCET analysis [72], the structure
of our optimization problem is particular in the sense it is guaranteed that
integer values are always assigned to each variable. Indeed, the proof of total
unimodularity not only allows the use of the simplex method based on floating
point arithmetic, but also guarantees the integral (algebraic integer) semantics
on the linear program, hence preserving precision. This is the main advantage
of our approach to WCET verification because it allows us to omit integrality
constraints, thereby enabling the use of the certifying duality properties, which
only apply to linear programming in general and not to ILP.

Next, we describe how the set of linear constraints can be formally obtained
using the theory of abstract interpretation. To this end, we state the fact that
program states differ on their labels [18] in order to index a program state in
Y[P] by some corresponding label in inp, according to Def. (3). Let d[P] de-
note a set of identifiers for input-output relations in P. Examples of relation
identifiers are “d1”, “d5”, etc. in Fig. 2(b). Then, the flow-conservation con-
straints of Def. (15) are a set of equations of type p(inp — p(d[P])), where
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inp is the set of labels in P. Therefore, we apply the right-image isomorphism
(o, ) [17, Section 8] to the relational semantics, R, in order to obtain a set of
flow conservation constraints, C', in a correct way:
CM(R) :{mk = Z?:ld}’vl\z | dxy, € inp : dﬁf = {dz | dx; € inp : (mk,di,ml> S R}}U
{xk = Z;”Zldgfw Elazk € inp : ngT = {dj | 3&,’1 € inp : (xl,dj,mk> € R}} (17)

v(C) = {{z,di,z1) | Ts1 € C,3d; € rhs(s1) : zk € Lhs(s1) A
dsg € C7 Ed]‘ S ThS(SQ) X € th(Sg) A d;i = d]} (18)

5.2.2. Verification Mechanism

Both the objective function and the set of linear constraints can be repre-
sented in matrix form. For this purpose, we need to abstract from the node
(z) and arc (d) iteration variables previously defined and consider a single set
of variables (x), indexed by non-negative values. In particular, the cost val-
ues associated with arc variables are zero in the objective function and the arc
iteration bounds (b) are zero for all linear constraints including a node variable.

The equation system of the primal problem is defined in terms of the matrix
A, with the coefficients of constraints (15) and (16), the column vector x of
variables and the column vector b of capacity constraints. Then, given the row
vector ¢ of cost coefficients, the objective of the primal problem is to maximize
the WCET = cx, subject to Ax < b. Conversely, the dual problem is also
defined in terms of the vectors ¢ and b plus the matrix A, but the set of dual
variables are organized in a complementary row vector y. Then, the objective
of the dual problem is to minimize WCET PUAL = yb_ subject to yA > c.

Using the simplex method, it is possible to compute a feasible solution x for
the primal problem and a paired feasible solution y for the dual problem. The
strong duality property of the relationship between this pair of solutions for the
purpose of LP checking is: the vector x is the optimal solution for the primal
problem if and only if:

WCET = cx = yb = WCET PUAL

In the ACC setting, this property allows us to use simple linear-algebra algo-
rithms to verify the LP solutions that were computed using the simplex method.
The verification mechanism is composed by three steps:

1. Use the static analyzer to verify the local execution times present in the
fixpoint. If valid, execution times are organized in the cost row vector
c’. Then, take the received primal solutions x’ and solve the equation
WCET’ = ¢’x’ to check if it is equal to the received WCET.

2. Use the static analyzer to verify the loop bounds abstract context. If
valid, loop bounds are organized in the row capacities vector b’. Then,
take the received dual solutions y’ and verify the strong duality property
by testing the equality of the equation ¢’x’ = y’b’.
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3. Extract the coefficient matrix A’ from the received code and check if the
received primal and dual solutions satisfy the equations A’x’ < b’ and
y’A’ > ¢’. In conjunction with the two previous steps, this allows us to
conclude that x* and y’ are the optimal solutions of the primal and dual
problem and, therefore, conclude that the LP verification is successful.

Example 6. Numerical example of a LP program.

Next, we give a numeric example of the LP problem associated with the source
program in Example 1. A subset of the relational semantics of the corresponding
assembler program is shown in Fig. 2(b). For each transition relation, Fig. 2(b)
includes the name of the arc, indexed to the variable name d, that would corre-
spond to the graph view of the relational semantics. For example, the feedback
arc between the nodes “n17” and “head_22” is called “d22”.

Vars [ Primal Costs in Coefficients of ‘ ‘ Constants Dual
(x) | (x*) |CPU cycles (c) variables (matrix A) (b) (y*)
T16 1.0 8 _S T17 — T1g = 0 10.0
z17 | 3.0 11 g T17 — T2z = 0 -21.0
z18 | 3.0 4 5 T20 — T21 = 0 39.0
Z19 3.0 8 g § im — im — ilﬁ — 8 '3?8
T20 4.0 10 E O 22 17 23 = .
To1 1.0 9 T22 — T21 = 0 -30.0
. . < — —
X
Troo 4.0 9 d22 < 3 0.0
w25 | 1.0 9 8 o1 ! 0.0
- - el a0 < 1 0.0
d>1 | 4.0 0 § d1o < 3 0.0
doo 3.0 0 = dis < 3 0.0
daz | 1.0 0 o vz < 3 51.0
e - — - < = =
(a) Costs and primal values (b) Linear equation system and dual values

Figure 8: Numeric example of the LP problem in matrix form

Table 8(a) shows the primal values and execution costs associated with the
LP variables (columns in the matrix A). For sake of readability, the column
x displays the node variables (x) plus the un-renamed arc variables (d). As
already mentioned, the execution cost associated with arc variables in vector
c is equal to zero. The column x* contains the optimal (primal) solutions for
the variable names x, where k € N, and for the arc variable names d}g and
d%UT, where i, j € E. Table 8(b) shows the linear equation system from which
the coefficient matrix A is inferred. The vector b contains the arc iteration
upper bounds that are obtained directly from the program flow certificate and
the optimal (dual) solutions are given by the vector y*.

Although no integral constraints are necessary, the observation of both pri-
mal (x*) and dual (y*) solutions of the LP program shows that they are con-
vertible to integers with no loss of precision. Next, we formally demonstrate
that the relaxation of the ILP problem is safe under the conjecture of total
unimodularity of the matrix A. A
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5.2.3. Total Unimodularity by Construction

This section presents a proof sketch that the coefficient matrix is totally
unimodular based on the fact that the determinant | A | of a square matrix A
can be expanded from the “pivot” determinant of a 2 X 2 matrix to any matrix
size by using minors and cofactors [37]. We conclude that the variables z; are
irrelevant by rewriting the WCET objective function as ), ... k- (Z?Zl d}g),
which fits inside the category of minimum cost network flow problems.

Proposition 1. The coefficient matrix A is called totally unimodular iff each
of its sub-determinants equals 0, 1, or —1. In particular, each entry of A is
either 0, 1, or —1. Then, the solutions x in Ax < b are integral.

Proof sketch. A proof by construction can be deduced from the abstraction
function (17). In essence, it specifies that if we take the label of each program
state X[P] and build a relational semantics R containing only program labels
(zx) and arc identifiers (dlY and dngT), then the set of input-output relations
in R, ordered the by the input label k, can be abstracted using the function «
into a set of linear equations, C, in the form of Def. (15).

By the fact that input-output relations with the same label at the input and
output positions are not allowed, we conclude that, for each label k, there are
exactly two linear equations for each program label zj, according to the flow-
conservation constraints. The first is given by Z?:l d}g, where n is the size of
the set of incoming arcs to xp. The second is given by Z;”:l dejUT, where m is
the size of the set of outgoing arcs from x. Therefore, given one program label
T, the arcs di¥ and dngT are necessarily different from each other.

Moreover, since each linear constraint is stored in a different row in matrix
A, and since each constraint can be transformed into an equation that is equal
to 0, the arc variables all have coefficients equal to —1. Conversely, the program
label variables all have coefficients equal to 1. These properties allow us to
exclude the possible cases where a sub-determinant could be different from O,
1, or —1. First, we identify the cases where the determinant of a matrix does
not satisfy Prop. (1). Any matrix A of the form:

SO(H1) (1) -
A= . =
SO(H1) (=) -

is not totally unimodular because it has a square submatrix of determinant -
2. We proceed by reduction ad absurdum to identify the base cases where the
determinant of a square matrix 2 x 2 is —2 and then preclude it by using the
properties of abstraction function «(R). In these cases, only one coefficient is
—1 and the others are 1: a) [ﬁ ﬂ], b) [ﬂ iﬂ, c) [ﬁ ;H and d) [ﬁ ﬁ]
Since each of the variables zy, d}g and dngT correspond to a separate column
of A (they constitute the column vector x), we can deduce the following.
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On one hand, the sub-matrices containing only arc variables, d}s:I or d%UT7 all
have coefficients 0 or —1. Similarly, sub-matrices containing only node variables,
zk, all have coefficients 0 or 1. Therefore, such sub-matrices satisfy the premises
of the “pivot” determinant operation. On the other hand, in the cases where
a sub-matrix contains node variables on the left column and arc variables on
the right column, we cannot construct any of the counter-example 2 x 2 square
matrices because:

e The coefficients on the left are either both 1 or 1 and 0 (or vice-versa)
because there are at most two equations for each node variable x;. There-
fore, cases b) and d) above are precluded.

e The remaining cases, a) and c), are also precluded because the abstraction
function (R) guarantees that the variables diY and d%UT do not overlap
inside a 2 x 2 sub-matrix for a given xj. In other words, the same arc
cannot enter and leave one node at the same time.

The generalization of the definition of determinant for all sizes can be given
by the following. For each element of a n X n matrix, there is a minor value that
isa (n—1)x(n—1) determinant. Then, each of those elements is expanded until
the “pivot” 2 x 2 determinants are reached. Then, a cofactor value is calculated
for every element as either the minor or its opposite in sign. Finally, we require
the definition of a sign chart with size n x n, where every entry is either 4+ or —.
The first element (row 1, column 1) is always + and it alternates from there.

The method to calculate the determinant is the following. Pick any row or
column and multiply every element in that row or column by its cofactor and add
the results. To prove that the variables x; are irrelevant, let us pick a column for
some k € inp. For any sub-matrix with size bigger than 2, there are at moust
two values different from zero. Hence, according to the definition of a(R), these
values are in adjacent positions. Moreover, the sign chart assigns alternate signs
to adjacent positions. Therefore, after eliminating the counter-examples of the
“pivot” determinants, we conclude that the two lines for which x; is 1 will
cancel each other out, because the corresponding cofactors have different signs.
Hence, we prove our assumptions that WCET = 37, .. ¢ - (312, d}y ) and
that the coefficient matrix is totally unimodular, because the linear problem is
equivalent to a minimum cost network flow problem. O

5.8. Analysis of Experimental Results

This section presents the experimental results of the checking mechanism for
a subset of the Mélardalen WCET benchmark [33]. For the purpose of certificate
reduction, the sequential transformation is particularly relevant. The reduction
of the certificate sizes, including the example in Fig. 2(a), is shown in Table 3.
The number of program points resulting from the reduction is also observed.
However, the reduction of the certificate size is not lineally proportional to the
reduction of program points because the number of “hybrid” pipeline states in
each program point also depends on which program paths are actually feasible.
For example, the benchmark cover has a large number of ‘case’ patterns, each
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followed by a ‘break’ statement. Hence, although the reduction of program
points is not the highest, the certificate size reduction is about 3.317 times the
size of the original certificate. Similarly, there is only pass per loop in the ud
benchmark, which makes the gain in certificate size reduction very significant.

Table 3: Variation of the certificate size

Filename| Source | Assembler | Original Cert. | No. of | Transf. Cert. | No. of | Reduction
(KBytes) | (KBytes) (KBytes) P. Points (KBytes) P. Points | Factor
loop 0.12 9.2 14 27 12.0 10 1.167
bs 4.2 10.5 149 70 61 19 2.243
bsort 2.5 11.2 97 127 71 30 1.366
cnt 2.9 11.7 95 148 71 39 1.338
cover 6.3 14.9 136 56 41 23 3.317
crc 5.5 12.0 419 262 262 43 1.599
expint 3.9 12.3 163 185 113 42 1.442
fdct 8.7 13.5 2137 709 1708 15 1.251
fibcall 3.7 10.1 91 48 32 12 2.844
matmult 3.9 11.7 207 165 134 52 1.545
minmax 0.89 10.8 117 139 67 41 1.746
prime 0.88 12.1 159 127 102 41 1.559
ud 4.9 12.9 840 85 95 10 8.842

However, different results are obtained for structured programs with a high
number of loop iterations, for example fdct. Despite having the highest percent-
age in terms of reduction of program points, the fact that only pipeline states
that have reached the WB stage are stored has a small impact on certificate
reduction. The main reason is that full loop unrolling propagates intermediary
state at the head of the loops across fixpoint iterations and “branch” instruc-
tions cannot be sequentially reduced. Moreover, precision in detecting infeasible
paths compromises efficiency when the “history” of the pipeline analysis is rel-
evant for all the instructions inside loops. For the example of fdct, the gain in
certificate reduction is only 1.251 times the size of the original certificate and,
when compared to the size of the assembler file, the certificate size can be more
than one hundred times bigger.

Compared to the results presented in [7], the size of our certificates is not in
the same order of magnitude as the size of assembler files. In fact, the exper-
iments in [7] use the highly optimized sharing+freeness abstract domain [49],
while our abstract pipeline domain is a “hybrid” domain, where the value and
cache abstract domains are non-relational and need to be shared, and repli-
cated, with a set of concrete timing properties. Additionally, full loop unrolling
increases stored data due to the impossibility of using convergence accelera-
tors [18]. However, relatively to the original certificate, our certificate reduction
mechanism based on dependency-graph transformations falls behind the approach
of [7], whose reduction factor is about 3.35 on average, whereas our approach
achieves a reduction factor of 2.33 on average. However, as described in Section
5.2, the gain in verification time is significantly greater compared to [7].

Experimental results concerning the overall checking time are given in Ta-
ble 4 (obtained off-device using an Intel®Core2 Duo Processor at 2.8 GHz).
The first term of the sum is relative to the fixpoint algorithm and the second
is relative to the LP simplex method. The checking time of the solutions of the
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LP problem is close to zero in all cases because the verification mechanism uses
simple matrix operations to check that the received solution at consumer sites
is indeed the optimal one. The experiments show that the LP verification time
is almost constant for every benchmark. This demonstrates the high efficiency
of the certifying mechanism of dual theory.

Table 4: Verification Time Experimental Results

Benchmark | Generation Time (sec) | Verification Time (sec) | Ratio (%)
loop (3) 0.417 4+ 0.006 0.311 4 0.000 25.4
loop (9) 2.238 4 0.008 0.458 4 0.000 79.5
bs 2.209 + 0.412 0.260 + 0.001 88.23
bsort 0.751 + 0.506 0.219 + 0.002 70.8
cnt 0.673 4 0.161 0.343 4 0.003 49.0
cover 2.222 4 0.445 0.225 + 0.001 89.9
crc 14.28 + 0.066 2.031 4 0.011 85.8
expint 2.235 + 0.447 0.226 + 0.001 89.9
fdct 1.852 + 0.055 0.520 + 0.004 71.9
fibcall 260.0 4 1.839 22.66 + 0.003 91.3
matmult 2.969 + 0.042 0.398 + 0.005 86.6
minmax 1.263 + 0.029 0.306 + 0.002 75.8
prime 2.017 4 0.030 0.324 + 0.008 83.9
ud 42.51 4 0.288 0.596 + 0.000 98.60

As illustrated in Fig. 7(b), all nodes of the dependency graph after the re-
cursive transformation have depth “0”. In this way, and along the lines of [7],
the fixpoint algorithm is able to check the validity of certificates within a sin-
gle chaotic iteration. Although this algorithm is generated from a single-path
dependency graph, the input certificate contains all the history of computation
up to the least fixpoint solution. Therefore, the fixpoint condition is checked at
the head labels of loops, which are kept in the transformed graph. Nevertheless,
the execution times at the program points excluded from the single-path graph
must be used to check the LP objective function in order to validate the WCET.

Curiously, experiments also show that the verification time of certificates
is strongly reduced for the recursive parts of programs, but not for the purely
sequential parts. Consider Ex. (1), where the function ‘loop (x)’ executes ‘x’
times. The computation time increases with the number of iterations, e.g. when
the arguments are “3” and “9”. However, the same is not observed if the fixpoint
checking algorithm has no recursive combinators. The reason is the following:
knowing that before running the fixpoint algorithm the value at every program is
the absence of information, 1 ¢, the particularity of purely sequential programs
is the fact that data-flow functions are computed exactly once. In terms of
implementation, this affects results because the comparison operator between
abstract values takes longer to compute than the equality test with Lc.

As mentioned before, dependency graphs containing a substantial number
of recursive sub-graphs allow the verification time to be greatly reduced. This
is the case for all the benchmarks in Table 4 and it is most evident for those
whose loops bounds are higher. A closer inspection of the function calls ‘loop
(3)” and ‘loop (9)’ shows that by increasing the loop bounds by a factor of 3
makes the fixpoint checker run 3 times faster. For the benchmark that has the
highest loop bounds, ‘fdct’ benchmark, the gain in efficiency is above 70%. In
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the case of the benchmark ‘ud’, which has a single loop inside the ‘main’ function,
the gain is indeed extremely high (98%). In summary, we are able to gain 78%
in verification time on average, which demonstrates that our WCET checker is
overall highly efficient.

6. WCET on Multicores

Nowadays, WCET estimation on embedded systems with multicore chips
is one of the most challenging topics in timing analysis because of the intrinsic
computational complexity of the analysis of multiple and concurrently executing
processing units sharing resources. When compared to single-core architectures,
the complexity of the timing analysis in multicores depends not only on hard-
ware features, but also on the predictability of their timing behavior when some
resources are shared, e.g. instruction and/or data memories. This means that,
besides the control flows of a program, also the “architectural flows” or “inter-
leavings”, i.e. the number of ways in which a shared resource can be accessed,
must be accounted for. This fact causes the complexity of the analysis to ex-
plode. In this section, we explain this problem in more detail and we present an
approach for mitigating its nature while ensuring the scalability of the analysis.

To exemplify the complexity of analyzing architectural flows, suppose a pro-
gram that consists of two concurrent processes, P; and P,. The arising conflicts
when requesting access to the shared resource are resolved by “interleaving” the
execution sequences of the two processes in such a way that either P, or P,
executes by flipping a coin. Generalizing for a program with n processes, each
one executing a sequence of m instructions, the number of possible interleavings
is (n.m)!/(m!)™. This exponential growth of interleavings precludes any timing
analysis to run in feasible time.

Consider as an example a tiled multicore with several ARM-based processor
cores, sharing memories and 10, as shown previously in Fig. 5(a). Each processor
core has an instruction pipeline and an instruction cache memory and we assume
that applications do not share data. Compared to the single-core setting, the
extra source of potential unpredictability is due to shared resources, an SRAM
serving as the main instruction memory in this case. Shared accesses increase
the execution time of programs and must hence be accurately and efficiently
modeled, precluding the use of a constant penalty for every cache miss, as it
was previously described for single-core timing analysis.

As described in Section 4.1, the pipeline analysis computes upper bounds
on execution times, expressing the elapsed cycles per instruction (CPI) that are
associated with a particular stage of an instruction inside the pipeline. The
absence of an abstraction for the concrete CPI values in the abstract interpreta-
tion literature [62] implies that the abstract pipeline domain must be defined as
a set of all pipeline states statically allowed within the program. For single-core
architectures, this does not constitute a computational problem, because this
set consists of a manageable number of pipeline states.

Let P, and P> be two processes running on a homogeneous multicore system
comprising two processor tiles. The corresponding number of architectural flows
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is given in Fig. 9(a) and the original control flow is given in Fig. 9(b). Next,
we present a sound and computationally efficient abstraction used for timing
analysis of architectural flows. Assuming independence in the value domain, i.e.
no data is shared between processes, the timing analysis of architectural flows
depends only on the scheduling made by the arbiter of the shared resource.
For arbiters that statically partitions the resource to provide complete isolation
between applications in the temporal domain, analysis of interleavings is not
required. An example of such an arbiter is non-work-conserving time-division
multiplexing (TDM), which statically allocates time slots to each processor. The
benefit of this approach is that applications can be analyzed independently, even
in a multicore environment, as Fig. 9(b) illustrates.

LR server

abstraction

(a)  Non-compositional timing analysis (b) Compositional timing analysis
considering the architectural flows considering only the control flows

Figure 9: Architectural and control flows for two processes P; and P>, where instructions A
and B belong to P; and instruction X and Y belong to P»

However, a severe limitation is that the isolation approach is restricted to
more or less a single resource arbiter that cannot be found in all systems. If
the TDM arbiter is replaced by a more common work-conserving round-robin
arbiter (RR), the system no longer isolates applications, since the scheduling of
requests depends on the presence or absence of requests from other processor
cores. In this case, the analysis of every scheduled sequence in Fig. 9(a) must
be performed.

6.1. Latency-Rate Servers

Our proposed approach to a scalable WCET analysis of multicores with
shared resources is to apply the latency-rate (LR) server model [67], which
defines an abstraction of shared resources in terms of upper bounds on access
times. This implies that the interference between processor cores visible in
Fig. 9(a) is removed (abstracted), enabling the analysis to only consider control
flows. Moreover, it provides a compositional timing analysis that allows us to
reuse the higher-order combinators presented in Section 3.4, which are used to
estimate the WCET on single-cores. Additionally, as we will show in Section 6.2,
the use of the LR-server model can be formalized in the context of the abstract
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interpretation framework by a Galois connection, proving the soundness of its
use in our approach to timing analysis.

We proceed by explaining the LR-server model in more detail. In essence,
LR servers guarantee a processor core a minimum allocated bandwidth, p, af-
ter a maximum service latency (interference), ©. This is illustrated in Fig. 10,
where a processor core requests service from a shared resource over time (red
line) and the resource providing service (blue line). The LR-service guarantee,
the dashed line indicated as service bound in Fig. 10, provides a lower bound on
the amount of data that can be transferred to a processor core during any inter-
val of time independently of the behavior of other processor cores. This makes a
LR server suitable for performance analysis of streaming applications concerned
with the time to serve sequences of requests rather than single requests.

The values of the two parameters © and p depend on the choice of arbiter in
the class of LR servers and its configuration. Examples of arbiters belonging to
the class of LR servers are TDM, several varieties of the Round-Robin and Fair-
Queuing algorithms [67], as well as priority-based arbiters like Credit-Controlled
Static-Priority [3] and Priority-Based Scheduling [66]. Of course, the abstraction
also relies on that the access time of a single resource access can be bounded, just
like in the single-core case. This is straight-forward for simple resources, such
as a SRAMs, but requires a more complex analysis for unpredictable resources
like many commercial-of-the-shelf DRAM controllers [39]. For this reason, both
software [75] and hardware solutions [2] have been presented to make DRAM
behave in a more predictable manner and produce tighter bounds.
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Figure 10: A LR server and its associated concepts.

Like most other service guarantees, the LR service guarantee is conditional
and only applies if the processor core produces enough requests to keep the
server busy. This is captured by the concept of busy periods, which are intuitively
understood as periods in which a processor core requests at least as much service
as it has been allocated (p) on average. As illustrated in Fig. 10, a processor
core is busy when the requested service curve is above the dash-dotted reference
line with slope p that we informally refer to as the busy line. The figure also
shows how the service bound is shifted when the processor core is not in a busy
period.

The intuitive benefit of the notion of busy periods is that if multiple requests
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are known to arrive close together, it is possible to show that they cannot all
experience worst-case interference from other processor cores, resulting in lower
WCET estimates. When integrated into a WCET analyzer, the information
about busy periods is derived based on the concrete arrival times of request
provided by the analyzer. Note that the result of the WCET analysis is always
conservative no matter if the processor core is frequently busy or not. Accurately
capturing busy periods is only a matter of tightness.

We proceed by showing how starting times and finishing times of requests in
the shared resource are bounded using the LR-server service bound illustrated
in Fig. 10. For simplicity, we assume that a request corresponds to an instruction
fetch that takes a single clock cycle to serve. From [71], the worst-case scheduling
time, t, of the k' request from a processor core is expressed according to
Def. (19), where t,(w") is the concrete arrival time of the request and #(w*~1)
is the worst-case finishing time of the previous request from the same processor
core. The worst-case finishing time, expressed in Def. (20), is then bounded
by adding the time it takes to finish a scheduled request of size s(w") at the
allocated rate, p, of the processor core, which is called the completion latency
and defined as [(w*) = s(w*)/p.

£a(w") = max(ta(w") + 0, {{w" 1)) (19)
f(w") = ta(w") + s(W")/p (20)

Next, we give the declarative definitions for the temporal behavior of a gen-
eral LR server. We then proceed by briefly explaining how the service latency
and rate parameters are derived for the abstraction of a TDM arbiter, which
later enables us to experimentally compare the accuracy and analysis time of
the LR abstraction to a specialized analysis of TDM in Section 6.3. Let the
datatype ExTime denote a timing property in terms CPI, cycles, and also the
concrete timing properties specific to the LR server, t,(w*) and ff(wk_l).

data ExTime = ExTime {cycles :: Int, ta(w") :: Int, L5(w*=1) :: Int}

The worst-case finishing time, s(wF~1), is used by the LR-server to model

the interference experienced by a single processor core. According to Def. (19),
the upper bound on the finishing time is dominated by the service latency of the
arbiter, or by the finishing time of the previous request from the processor core,
whichever is greater. Afterwards, according to Def. (20), the function missed
defines the timing behavior of a cache miss:

missed wQExTime {cycles = ¢, tq(wk),t5(w*=1)}
= let newBusy = t¢(w* 1) <to(WF) + ©
d = if newBusy then © + (1/p) else 1/p
in w {cycles = ¢+ d, L5 (w*~1) = d + (if newBusy then t,(w*) else {(wk~1))}

Having shown the declarative definitions of a general LR server, we proceed
by showing how to derive the service latency and rate parameters of a processor
core ¢ for the LR abstraction of a TDM arbiter. The considered TDM arbiter
is assumed to have a TDM table size (frame size) of f slots of which ¢, are
allocated to core c¢. The rate allocated to core, p., is determined purely by
the number of allocated slots in the schedule and is computed according to
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Equation (21). However, the service latency depends on how the allocated slots
are distributed in the schedule. A common way to distribute the slots is to
use a continuous allocation, where slots allocated to a processor core appear
consecutively in the schedule. Using this distribution, the service latency of
a core, O, can simply be computed according to Equation (22). The service
latency assumes that the busy period starts just after the last slot allocated
to the processor core to maximize the number of interfering slots. A service
latency analysis for arbitrary TDM slot distributions is presented in [4].

Oc=f—¢e=1(1—pc) (22)

6.2. The LR-Server Model as a Galois Connection

When compared to the pipeline analysis presented in [62], the main advan-
tage of our approach is that we eliminate the non-determinism introduced by a
separate cache analysis. In this way, concrete arrival times of shared requests
can be determined according to a program-specific iteration strategy. The novelty
of lifting the analytical model of LR servers into the semantic model of abstract
interpretation is the possibility to prove the soundness of the predicted tim-
ing penalties when accessing shared resources by means of a Galois connection.
The single-core pipeline analysis can be instrumented with an additional timing
property, which is denoted by the variable d in the function missed given in
Section 6.1, hence demonstrating the feasiblity and scalability of our approach.

The abstract semantic meaning of access times to shared resources is an
upper bound for possible concrete, i.e. actual, access times. Due to the limited
bandwidth of the shared bus, pipeline bubbles caused by structural hazards
can be introduced when additional CPU cycles are required during a shared
access, e.g. upon a cache miss. In such scenarios, the benefit of using the LR
abstraction is the possibility to predict upper bounds for the delay required
to complete an access to a shared resource. Sound approximations to these
additional delays are defined as elements of the totally ordered set UCycles:

TimedTask € (Cycles x UCycles x Stage x Task)

As mentioned in Section 4.1, the pipeline abstract domain is defined as a set of
hybrid pipeline states, each including a “concrete” timing property Cycles. The
new definition of TimedTask indicates that pipeline states include additional
abstract timing properties. The purpose of modeling the LR abstraction by
means of a Galois connection is to reduce the number of joins required by the
interleaving semantics and, therefore, reduce the number of pipeline states. The
soundness of the abstraction provided by the LR-server model relies on the fact
the all timing properties calculated throughout architectural flows are upper
bounded by the finishing times in UCycles, which are computed using the LR
model on control flows only.

From the observation of Figure 9(a), it is clear that the number of join opera-
tions is proportional to the number of architectural flows. However, Figure 9(b)
shows that when applying the LR abstraction to compute sound upper bounds
on the finishing times of shared requests, the number of joins is determined
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solely by the control flows of each process independently. Therefore, the analy-
sis time is strongly reduced in the latter case because the static analyzer is able
to predict a unique and sound timing property in each fixpoint iteration.

Let UCycles be an upper semilattice equipped with a total order < on nat-
urals N, denoting abstract timing properties, and let Cyclesﬁ be the powerset
of the set UCycles. A Galois connection Cycles®(C) %) Delay*(C) is defined
in terms of a LR-representation function B : Instr — UCycles, which com-
putes the timing penalty of shared accesses, in terms of CPI, when a particular
instruction enters the pipeline. Given a subset X C Cyclesh and an abstract
property pf € Cyclesﬁ, the abstraction and concretization maps are defined by:

a(X) = J{B(wE) | Vwe : tr(wE) € X} (23)
v(p*) = {ts(wk) € Cycles | Ywe : B(we) C p} (24)

where wF is the k" instruction to fetch from the shared memory after a cache
miss in processor core ¢. The actual (concrete) finishing time is denoted by
tr(wk) and the “best” abstraction p* is denoted by a set containing a single
element that is the finishing time given by Def. (20), where w* is an instruction.
The notion of “best” abstraction (more precise) is given by the comparison of
the elements of two singletons under the total order (). Hence, the LR-server
model can be formally defined in terms of the representation function g as:

Blws) = {max(ta(we) + Oc, fr(we ™)) + s(we)/pe} = {Er(wi)} (25)

Proof sketch. Assuming that the initial arrival times of shared accesses are
independent, the predictability of the LR server formally abstracts from ar-
chitectural flows by eliminating the variation of interference between processor
cores. Since the finishing time of a shared access is soundly predicted, we have,
by compositionality, that the maximum local timing property given by Def. (23),
after joining (|J) all abstract states across the architectural flows in Fig. 9(a),
is exactly equal to the maximum local timing property when only the control
flows are considered: a(X) = {t;(wk) | t;(wF) € X}.

Given that a and = are monotone functions on powersets of N, the proof
that the representation function S can be used to define the Galois connection
(ar,7) is obtained by satisfying the following closure properties [20]:

yoaDdAX.{p|pe X} (26)
aoy Cxphpt (27)

The closure operators (26) and (27) prove that soundness is not lost by going
back and forth between Cyclesh and Cyclesﬁ, although loss of precision may
occur. According to (19), the predicted upper bounds on finishing times (20)
are affected by the arrival time plus by the worst-case latency ©, or by the
finishing time of the previous request from the processor core, whichever is
greater. Hence, avoy C {\wF.B(w”)} always holds.

Conversely, by inspecting Fig. 10, we have that concrete finishing times are
given by the “provided service” curve and that the corresponding upper bounds
are given by the “service bound” curve. Put simply, after the elimination of
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variation in interference between processor cores, the starting times can be either
(ta(w®) +©) or (f(w*~1)). Let p be the maximal timing property, i.e. the most
precise upper bound, obtained by Def. (20). Hence, by the ordering (<) on the
singleton set, we have that p < p always holds, proving that v o o is an upper
closure. Therefore, t;(wk) is a safe approximation to the actual (concrete)
finishing time ¢ ;(w¥), that is, {t;(w*)} C v(a({t;(wk})) holds. O

6.3. Experimental Evaluation

This section experimentally evaluates our approach to WCET estimation
in multicores using the LR abstraction. Example 7 starts by evaluating the
results of WCET estimation for a multi-process toy example with a finite num-
ber of architectural flows using the specialized TDM analysis that relies on its
static temporal partitioning of the resource. We then compare these results
with those obtained when applying the corresponding LR abstraction for TDM
arbitration. After, using the same configuration for the TDM arbiter and for
the corresponding LR-server, we present and discuss the WCET results for a
range of the Malardalen benchmarks programs.

The objectives of these experiments are: 1) provide an example that supports
the proof given in Section 6.2 and shows that the proposed compositional LR
analysis is fast and scalable compared to analysis of all possible architectural
flows; 2) demonstrate that the LR abstraction is more flexible than relying on
the temporal isolation provided by TDM arbitration by supporting any arbiter
in the class of LR servers just by changing two parameter values; and 3) show
that the LR abstraction is efficient in terms of incurring limited overhead.

The implementation of the specialized TDM analysis used for comparison is
straight-forward since it statically partitions the resource to achieve isolation.
This means that the alignment between arriving requests and the TDM table
is statically determined by dividing ¢,(w¥) by f and that the waiting time (if
any) can be easily computed by knowing the number of consecutively allocated
slots, ¢, and their location in the TDM table. The request is considered to
be finished one slot after being scheduled, which limits this analysis to a single
outstanding request.

The experiments consider the simplified multicore system with two cores in
Fig. 11, where instructions are located in a partitioned SRAM memory shared
by a TDM arbiter. The TDM arbiter has a table size of 2 and the cores are
allocated one slot each. This arbiter and configuration results in a LR server
parametrized with © = 1 and p = 0.5 according to Equations (21) and (22),
respectively. Note that these are the same parameters as if a common Round
Robin arbiter was used. For the considered SRAM memory, a TDM slot corre-
sponds to a single clock cycle. The applications used in the experiment are the
well-known Milardalen WCET benchmark programs [33]. By compositionality
of the LR abstraction and assuming that each processor core has a sufficiently
large private data memory, each program is analyzed independently from the
program running on the other core.
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Example 7. Example of timing analysis of architectural flows

In order to support the soundness proof of the LR-abstraction, this example
shows the results of timing analysis for a very simple program containing one
single branch instruction. We consider that both the true and false program
paths of the conditional branch consist of straight-line assembler code, to which
we refer to as ‘application A” and “application X”, respectively. The purpose
of the experiment is to analyze these alternative paths in a multicore setting,
where the the branch instruction simulates the procedure fork. Accordingly, the
WCET is computed for all interleavings between instructions of ”application A”
and ”application X” [58].

From the observation of Table 5, we conclude that the analysis of interleav-
ings in undecidable. As expected, the number of interleavings grows exponen-
tially with the number of instructions, and the timing analysis of the two toy
applications only with a few instructions each take almost ten minutes to fin-
ish. Failure to analyze such toy examples in reasonable time clearly shows that
although the accuracy of the approach is excellent, the analysis of architectural
flows does not scale to realistic applications.

Alternatively, due to its natural composability, the analysis of control flows
with TDM arbitration is much faster than the analysis of architectural flows,
requiring only 1% of the time in order to compute safe WCET estimates. Also,
since the timing analysis using the LR-abstraction only considers control flows,
the analysis time when using the compositional LR-server model is approx-
imately equal to that of TDM. Concerning precision, the results show that
composable TDM bounds the WCET results computed by the timing analysis
of architectural flows. This fact is a consequence of the context-sensitivity of
the pipeline analysis that can significantly change the number of the compute
intermediate hardware states, thereby affecting precision. As expected, we also
observe that the WCET computed using the LR-server model are an upper
bound of the WCET computed when using TDM.

Table 5: Results for architectural flows, composable TDM and compositional LR-server

No. instrs. |No. instrs. No. of Results Arch. Flows|Composable | Compositional
in app. A’ | in app. X |interleavings| (CPI/sec.) (TDM) TDM LR-server
4 5 126 WC.ETV 179 185 197
Analysis Time 57.0 0.17 0.19
5 5 952 WC.ET. 188 188 205
Analysis Time 140.3 0.18 0.2
6 5 462 WC?ET. 195 195 216
Analysis Time 588.7 0.43 0.19

The results demonstrate that timing analysis for WCET estimation is scal-
able when considering the abstraction provided by the LR-server model. As
previously explained in Example 4, the reason for this is the fact that abstract
pipeline states for straight-line programs are singleton sets. Nevertheless, the
following evaluation of WCET analysis for a range of benchmark programs al-
lows us to conclude that timing analysis using the LR-server model is scalable
in general and to demonstrate that sound WCET estimates can be efficiently
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computed in a multicore setting by applying the LR abstraction to architectural
flows in order to efficiently analyze multi-process applications independently. A

Core 0 Core 1

\ TDM Arbiter /

¥

( Partitioned Memory (SRAM) )

Figure 11: Simplified multicore architecture

Next, we proceed by quantifying the overhead of the LR abstraction for the
considered system by comparing the results to the specialized TDM analysis.
The results of this experiment are shown in Table 6. Note that the results of
this experiment depend not only on the size of the instruction cache and on
the ability of the LR server to stay busy, but also on the program flow, e.g.
the number of loop iterations. Since we are considering a blocking multicore
architecture, where a request from a processor core cannot be issued before the
previous request has been served, every request starts a new busy period by def-
inition. This is the most unfavorable situation possible for the LR abstraction,
since every request requires © + 1/p cycles to complete. Hence, the delay over-
head of the LR abstraction is maximized compared to the specialized analysis
in this experiment.

The results in Table 6 show the overhead of the LR abstraction ranges
between 9.2% and 12.1% for the considered arbiter, configuration, and appli-
cations. This is partly because the use of a small TDM table size reduces the
penalty of starting a new busy period for every cache miss through the low © =1
value, but also because the case of an SRAM shared by a TDM arbiter is quite
predictable and captured well by the abstraction. A more complex case with
DRAM and Credit-Controlled Static-Priority arbitration is shown in [64] along
with an optimization to reduce the overhead of the abstraction for resources
with non-preemptive accesses. For that more dynamic and unpredictable case,
the LR abstraction incurs an overhead of 40% once the proposed optimizations
have been applied. In terms of analysis time, both the specialized TDM analysis
and the LR-server are approximately the same, both taking between a second
to a minute for the applications in the benchmark suite. This shows that our
approach is scalable to the abstraction of interleaving semantics at the expense
of loss of precision that depends on the predictability of the resource and its
arbitration.

More precise WCET estimates can be obtained with the LR abstraction for
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multicore architectures that support high levels of parallelism. For example,
architectures including super-scalar pipelines or caches allowing multiple out-
standing requests. This would reduce the number of busy periods in the LR
server and hence number of times a processor core suffers maximum interference
from other cores, ©, but it would also increase the complexity of the WCET
analyzer. However, the main benefit of the LR abstraction is the possibility
to perform compositional timing analysis using any arbiter belonging to the
class, as opposed to only TDM, by only replacing Equations (21) and (22) with
those of the chosen arbiter. For example, this enables the use of priority-based
arbitration mechanisms, such as Credit-Controlled Static-Priority, that reduce
the memory delay of latency-sensitive applications.

Table 6: WCET results for some of the Méalardalen benchmarks

Benchmark No. Source LR-server | No. Cache TDM Overhead | Analysis Time
Loop Iterations | (WCET) Misses (WCET) (%) in sec. (&)

bs 152 1162 111 1036 10.8 2.3
bsort 156 1459 152 1311 10.1 0.9
cnt 145 1291 175 1157 10.4 0.8
cover 111 787 105 699 11.2 3.9
crc 459 3153 304 2820 10.4 15.0
expint 251 2121 233 1906 10.1 1.9
fdct 1011 10890 720 9886 9.2 20.1
fibcall 111 985 59 877 10.7 2.3
matmult 287 2558 188 2322 9.2 5.2
minmax 221 983 263 864 12.1 2.6
prime 232 1055 196 937 11.1 5.2
ud 418 3943 97 3464 12.1 40.0

7. Conclusions

The main objective of this article is to provide a formal approach to worst-
case execution time (WCET) safety verification in the context of the Abstract
Carrying Code (ACC) framework. The static analysis by abstract interpretation
is supported in the automatic generation of combinatory fixpoint algorithms, by
means of an intermediate graph language, that are bound to a specific program
and to an iteration strategy. The definition of a relational/algebraic interme-
diate graph language allows topological transformations on dependency graphs
with the objective of making the generation of fixpoint checkers highly efficient
in terms of verification time and reduce the certificate size. Experimental results
show a gain in verification time of 78% on average and an overall certificate size
reduction of 2.33 times the size of the original certificate.

As opposed to state-of-the-art WCET analysis, we relax the integer linear
optimization problem (ILP) to rational arithmetic linear programming (LP) by
proving that the integer semantics of our ILP formalization is preserved and no
loss of precision is introduced. In this way, the complexity of the optimization
problem on the supplier side is reduced from NP-hard to P and the checking of
linear solutions on the consumer side is performed using the certifying properties
of duality theory in linear time. In combination with the computational effi-
ciency of specialized chaotic fixpoint algorithms, the verification of the WCET
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by means of simple algebra computations is significantly more efficient than the
computation of the WCET on supplier sites. This can enable the design of more
robust and safer embedded systems, mainly those that are distributed across
networks and have real-time safety requirements.

Additionally, we integrate the analytical model of latency-rate (LR) servers
into the semantic framework of abstract interpretation in order to design a
WCET analyzer capable to surpass the intrinsic computational complexity of
timing analysis of multiple processing cores sharing common resources. Al-
though the considered multicore architecture is rather simplified, the results
show that our solution for WCET analysis on multicores can be easily param-
eterized with an abstraction of the timing behavior of any arbiter for shared
resources belonging to the class of LR-servers and that the resulting analysis
and verification times preserve the feasibility and scalability of the single-core
timing analysis. Although the LR abstraction is proved sound by a Galois
connection, the prediction of accesses to shared resources introduces an over-
approximation that is about 10.6% on average in our experiments.
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