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Abstract—Manufacturing companies of complex distributed
cyber-physical systems (dCPS) are encountering challenges with
respect to designing their next-generation machines. They need
efficient Design Space Exploration (DSE) techniques to evalu-
ate possible design decisions and their consequences on non-
functional aspects of the systems. To enable scalable and efficient
DSE of complex dCPS, it is essential to have abstract and coarse-
grained models that are both accurate and capable of capturing
dynamic application workloads.

This paper addresses the scientific challenge of defining and
automatically deriving an application workload model for DSE
of complex dCPS. Our approach leverages trace analysis to
derive a dynamic workload model that accurately represents
computation and communication actions within an application
in a timing agnostic manner. We demonstrate the effectiveness of
our approach by applying it to the ASML Twinscan lithography
machine, which is a real-world complex dCPS. The results of our
study demonstrate an accuracy of over 90% in capturing the real
application workloads.

Index Terms—Distributed Cyber-Physical systems, Application
Workload Model, Design Space Exploration

I. INTRODUCTION

Cyber-Physical Systems (CPS) comprise one of the largest
information-technology sectors worldwide, which is a crucial
driver for innovation in various industries, including health,
industrial automation, robotics, avionics, and space. Nowadays,
the embedded compute infrastructure of industrial CPS is
based on heterogeneous multi-core or many-core subsystems
that are distributed and connected via complex networks. The
distributed subsystems contain hardware and software compo-
nents that perform different tasks, including data processing,
control, monitoring, and logging/reporting. The interconnec-
tion between the subsystems allows for the integration of
different functionalities and features, making such distributed
CPS (dCPS) very complex machines.

Manufacturing companies of complex dCPS are encounter-
ing challenges in evaluating the impact of design decisions on
non-functional aspects at the early stages of designing their
next-generation machines. As a result, designers of industrial
complex dCPS need quick answers to so-called “what-if” ques-
tions with respect to possible design decisions and their con-
sequences on system performance, cost, energy consumption,
etc. This necessitates efficient and scalable system-level design

space exploration (DSE) methods for dCPS [1]. These methods
should integrate appropriate models of dCPS, simulation and
optimization techniques, as well as supporting tools to facilitate
the exploration of a wide range of design decisions.

Although many DSE methods have been developed for
embedded Systems-on-Chip (SoCs), they are not (directly)
applicable to complex dCPS due to several obstacles [2].
One of these obstacles is that these methods do not have an
appropriate global system model that allows the behavior of
complex dCPS to be captured. It is also very hard, or rather
infeasible, to construct such a global system model manually
for industrial-scale dCPS.

To overcome this obstacle, a global system model should
be derived automatically at a high level of abstraction [2].
To create a separation of concerns, this abstract model should
be based on the Y-chart approach [3], i.e., it should incorpo-
rate a hardware platform architecture model, an application
workload model, including the software processes running
on the platform, and an application-to-architecture mapping
model. However, significant scientific challenges remain in the
development of these models, such as defining highly abstract
models that are also sufficiently accurate to enable efficient
DSE of complex dCPS, as well as devising methods and tools
for automated derivation of such models.

In this paper, we address the scientific challenge concerning
the definition and automated derivation of an application
workload model needed for DSE in the next generation of
industrial complex dCPS. The development of such a model
is challenging because it should possess several essential
characteristics. Specifically, the model should be:

• Abstract and coarse-grained: This potentially allows
the whole software infrastructure behavior of a complex
dCPS to be effectively captured at a high-level of abstrac-
tion into a single model;

• Timing and architecture agnostic: Avoiding timing and
architecture artifacts in the model, attributed to a specific
hardware platform, ensures high flexibility to efficiently
explore alternative mappings of the application workload
onto a wide variety of hardware platforms;

• Dependency-aware: Explicitly capturing dependencies
between software processes in the model allows efficient



exploration and exploitation of different degrees of par-
allelism when the application workload is mapped onto a
hardware platform;

• Mode-aware: Capturing different modes that arise due to
different dCPS software/hardware configurations, allows
different application workload scenarios to be modeled.

Our main novel contributions can be summarized as follows:
1) We propose a highly abstract application model that

is timing agnostic, as well as dependency- and mode-
aware. It mimics the computational and communication
behavior of the complex software infrastructure of dCPS
and, more specifically, it represents the workload that
this software infrastructure imposes on the underlying
hardware platform architecture;

2) We propose a method to automatically derive our model
from data collected during runtime of the software in-
frastructure of a complex dCPS. Such an approach is
particularly valuable in cases where the analysis of the
intricate source code to identify process dependencies
across different application workload scenarios is excep-
tionally challenging, especially when multiple program-
ming languages are involved. Moreover, our method is
adaptable to various complex industrial dCPS, which typ-
ically incorporate runtime monitoring and data collection
facilities for testing and diagnostics.

3) We implement our model and method in a software tool
that generates an executable model for a discrete event
simulator. We apply our approach to automatically derive
an application workload model of a real-world industrial
dCPS that is part of many lithography scanner machines
manufactured by ASML.

The remainder of the paper is organized as follows: In
Section II, we discuss related work. Section III presents our
model and the data that need to be collected for automated
model derivation. In Section IV, we present our method for
deriving the model from the collected data. In Section V,
we present the model evaluation setup and validation results.
Finally, we conclude the paper in Section VI.

II. RELATED WORK

Several research works have been conducted in the field of
software application modeling to explore design possibilities
in CPS. These works can be classified into the following two
groups based on the complexity of the CPS applications.

Simple CPS Applications: The works in this group focus
on relatively simple CPS use cases, such as a line follower
robot [4], or a specific subsystem within a larger system.
These works often use well-known models of computation
(MoCs) to model the software application behaviour. For
instance, some works utilize directed acyclic graphs (DAGs)
to capture software task dependencies [5]–[9], while others
use actor-oriented [10] or discrete-event models to describe
interactions among tasks. Functional models are also employed
to represent CPS application behavior, usually in a time-
continuous manner, with differential equations [11]–[15].

Additionally, various tools have been developed based on
these MoCs, such as Ptolemy [16], which is an actor-based
simulator, or PTIDES [17], which allows modelling appli-
cations based on different MoCs or combination of them.
Furthermore, frameworks like Octopus [18] and Daedalus [19]
facilitate modeling techniques and co-simulation of models
specifically for DSE. However, the aforementioned works often
include a lot of specific details when modeling the behavioral
aspects of applications. Therefore, they lack the necessary
abstraction and coarse-grained representation required to ef-
fectively capture and model complex CPS applications for
DSE and also cannot model dynamic workloads. In addition,
they usually have scalability restrictions, limiting their ability
to create a comprehensive application model of distributed
systems for industry-relevant cases [2].

Complex CPS Applications: In the case of complex CPS ap-
plications, there are frameworks, such as PtolemyII [16], Open-
META [20], BPMN4CPS [21], SysML2 [22], Maestro [23],
and OpenModelica [24] that enable designers to model the
behavior of industry-relevant systems for DSE purposes. How-
ever, the modeling process when utilizing these frameworks is
mostly done manually due to a lack of tools that could help
designers derive models in an automated way. Such manual
modeling is a very time consuming and difficult process. In
contrast, we propose a model derivation method implemented
in a software tool that allows designers to avoid manual
application modeling for an industry-relevant complex dCPS
in case the designers need to perform DSE to design the next
generation of dCPS. This is possible because initial models
can be automatically derived using our method and tool from
data collected during runtime of the software infrastructure of
the current generation of the dCPS.

Finally, automated model inference is a well-established ap-
proach where inference is done by analyzing the source codes
of an application or utilizing logs and traces of a system run-
ning the source code [25], [26]. These inference techniques are
used for various purposes. Some studies utilize them for soft-
ware testing and verification [27], [28], assisting engineers in
identifying underlying issues, such as timing bottlenecks [29]
or performance anomalies [30]. However, the aforementioned
techniques primarily concentrate on the inference of behavioral
models. Such models are not sufficiently abstract and coarse-
grained for efficient DSE of complex dCPS. Moreover, many
of these inference techniques are not applicable to complex
dCPS because analyzing complex application source code is
challenging.

Other studies leverage automated model inference to es-
timate the performance of Multiprocessor SoCs [31], [32],
and parallel distributed systems [33] during their early design
stages or in scenarios where real-time systems are assem-
bled from black-box components [34]. However, the inferred
models include timing and hardware architecture dependent
information that does not allow the exploration of different
application mappings on different hardware platforms.

In contrast, our method shifts the focus to automated
derivation of application workload models that are sufficiently



abstract and coarse-grained, thereby enabling efficient DSE
of complex dCPS. In addition, our method eliminates timing
information from the derived models by considering only
the order of computation and communication workloads and
representing these workloads as abstract events.

III. APPLICATION WORKLOAD MODEL AND TRACES

In this section, we begin with presenting our application
workload model in a semi-formal manner. Then, we provide
a detailed explanation of the data that needs to be collected
at runtime for automated derivation of the model. This data is
represented as traces and we describe the process and required
tools for collecting these traces.

A. Application Workload Model

Based on our observations of real-world dCPS, such as
lithography scanner machines, industrial printers, and interven-
tional X-ray machines, a complex dCPS software infrastructure
can be seen, at a high level, as hundreds of software processes
that are triggered by events and exchange messages with each
other. When a process is triggered, it performs computation and
data communication actions, referred to as “firing”, and upon
completion of the firing, it enters an “exit” state, waiting to
be triggered and fire again. This fire-and-exit behavior repeats
throughout the entire life cycle of a process.

Therefore, we model the workload behavior of the dCPS
software infrastructure as a graph W represented as the tuple
W = (P,C), where P = {p1, ..., p|P |} denotes a set of
processes that model the corresponding processes in the dCPS
software infrastructure. Additionally, C = {ch1, ..., ch|C|}
represents a set of communication channels that model the
exchange of control or data messages between the processes.
We denote each channel chj as a tuple chj = (ps, pd), where
chj is exclusively dedicated to communicating messages from
source process ps to destination process pd. Figure 1 illustrates
an example of a workload model W with a set of five processes
P = {A,B,C,D,E}, depicted as squares, and a set of nine
communication channels C = {chAB , ..., chDE} represented
by arrows. The direction of an arrow indicates the flow of
messages communicated within the channel.

In our workload model, each process pi is defined as a set
of modes, i.e., pi = {M1, ...,M|pi|} where every mode Mq =
⟨e1, e2, ..., e|Mq|⟩ is a finite sequence of coarse-grained abstract
events that models the types of actions performed during a
single process firing, arranged in chronological order. Every
event e ∈ Mq falls into one of the following three categories.

Computation events: A computation event is denoted as
eC = (sig) and models computation actions with an abstract
workload described by signature sig. The specific content of
the signature depends on the use case. For instance, sig could
indicate the number of multiply-accumulate or floating-point
operations performed by the computational action, or it could
be a histogram showing the distribution of the number of ex-
ecutions of assembly instructions from an abstract instruction
set. In our model, we defined sig as the number of cycles a
process has been actively running on a CPU.

AB
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D

chAB

chBA

chBC

chCB chAD
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chDC

chEA
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Fig. 1: Example of an application workload model W

Communication events: These events are crucial for model-
ing message exchange and synchronization between processes
through channels. A communication event is classified as either
a write event, denoted as eW , or a read event denoted as
eR. A write event occurs when a process sends a message
to another process, and a read event occurs when a process
receives a message. Each eW or eR event is defined as a tuple
(ch, size, sig), where ch specifies the channel used for the
communication, size denotes the size of the communicated
message in bytes, reflecting the communication workload of
the event on the communication channel, and sig represents
an abstract computation workload associated with the event’s
execution in the source/destination process, measured in cycles
similar to a computation event and it contributes to computing
the actual time required for sending or receiving a message.

Timer events: These events are internal triggers that originate
within a process and initiate a computation or communication
event after a specific amount of time has elapsed. These events
allow processes to schedule actions that need to be performed
after a certain period. A timer event is classified as either timer
setter, denoted as eTS , or timer handler denoted as eTH . Event
eTS sets a timer with an absolute time value, and once that
time has elapsed, a corresponding eTH event is triggered to
initiate other events. Each eTS or eTH event is defined as a
tuple (τ, t), where τ is the timer identifier and t denotes the
duration time, in seconds, set for timer τ .

Our application workload model, described above, possesses
the essential characteristics needed for system-level DSE of
complex dCPS, discussed in Section I. First, the model is rather
abstract and coarse-grained because it captures the computa-
tion and communication actions within software processes as
sequences of course-grained events with abstract workloads.
Second, the model is timing agnostic because the sequences of
events and the abstract workloads associated with the events
do not include any timing. Next, the model is dependency-
aware because it explicitly captures inter-process dependencies
through the set of communication channels. Finally, the model
is mode-aware because a process is defined as a set of modes
where every mode captures different application workload
scenarios.

B. Traces

As mentioned earlier, in order to derive our workload model,
we need specific system data collected at runtime using tracing.
We categorize and explain the traces into two groups based on
their level of generality. The first group (Execution traces) is
useful for all models, and the second group (System status



traces) varies based on the particular sig parameter chosen in
different models.

1) Execution trace: We define the needed data D ={R1,
..., R|D|} as a set of execution traces. Every execution trace
Ri ∈ D is collected individually for every system soft-
ware/hardware configuration, thus Ri represents the workload
scenario associated with the configuration. We define every
execution trace Ri = ⟨r1, ..., r|Ri|⟩ as a sequence of records rk
that are collected over time at specific locations in the software
code where trace points have been inserted. To capture a
comprehensive view of the software execution, we strategically
insert trace points at the start and end of every function call.
Each individual record rk is represented as a tuple rk= (ts,
pn, fn, l, A), where ts is the timestamp of the record, pn
is the name of the process running at the time, fn is the
name of the function call executed in the process at the time,
l ∈ {start, end} denotes the location within the function code
where the record is collected, and A = (c, id, λ, θ) is a tuple
of attributes related to function call fn.

The function attribute c ∈ {send,receive,trigger,handler}
classifies function calls into four distinct categories. Function
calls classified as send or receive are primarily used for data
communication between software processes and allow tracking
of message exchanges, thereby providing valuable insights into
dependencies between processes. Function calls classified as
trigger or handler provide insights into the utilization of
internal timers within the processes. Attribute id is the message
identifier of send and receive function calls, or the timer
identifier of trigger and handler function calls. Furthermore,
λ denotes the size of the exchanged message (in bytes), and θ
indicates the duration (time in seconds) set for the timer.

As an example, an excerpt of an execution trace Ri is shown
in Figure 2 and represented in a tabular format. Rows represent
the sequence of collected records rk and columns display the
various data items of each record described above.

In addition, the example excerpt of the execution trace in
Figure 2 is visualized in Figure 3, clearly showing the nested
function calls within and the interactions between software
processes A and B over time. Functions categorized under
attribute c are visually highlighted with colors.

This particular scenario starts with process A which executes
function f0, and subsequently calls function f01 within f0
to send a message i0 with a size of 40 bytes to process B.
The destination process of the message is distinguished by
matching its id. Process B receives the message with identifier
i0 by executing function call g0. After that, process B invokes
function g11, within g1, to set a timer for a duration of 4
seconds. As depicted by an arrow, the timer is handled by
function call g3 later. Following the timer event, process B
proceeds to send a message with a size of 100 bytes to process
A, and process A calls function f03 within f0 to receive the
message. Additionally, there is another timer with identifier j1
that is set and subsequently handled in process B.

To collect the execution traces Ri ∈ D and monitor software
processes in practice, various tools are available. One such
tool is LTTng [35], an open-source tracing framework that

ts pn fn l c id λ θ
0 A f0 start
0.5 A f01 start send i0 40
1.4 B g0 start receive i0 40
2.0 A f01 end send i0 40
2.15 A f02 start
2.85 B g0 end receive i0 40
3.0 B g1 start
3.1 B g11 start trigger j0 4
4.3 B g11 end trigger j0 4
4.9 B g1 end

...
...

...
...

16.25 B g3 end handler j1 4
Fig. 2: Excerpt of an example Execution Trace
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Fig. 3: Timing chart visualizing the traces in Figure 2

is compatible with most Linux distributions. LTTng provides
predefined trace points at the kernel space of the operating
system (OS), offering details about the running processes.
Additionally, it allows for code instrumentation, enabling the
collection of customized data from the OS user space.

2) System status trace: In addition to execution traces, to
calculate the customized sig in our model, we also require
traces that show the status of the system. These traces provide
valuable information that is accessible to the operating system,
including the status of processes (idle, interrupt, etc.) and the
system frequency over time. To obtain and analyze the system
status trace, many existing tools can be used. In our case, we
utilize Trace Compass (TC) [36], an open-source tracing and
analysis framework. TC allows users to obtain, visualize, and
analyze traces generated by different tracing systems, including
LTTng mentioned earlier.

IV. MODEL DERIVATION METHOD

In this section, we first present our method for deriving an
application workload model from traces as a formal procedure
and then briefly describe how the model is transformed into
an executable format.

Formal procedure: The formal procedure of deriving an ap-
plication workload model from trace is shown in Algorithm 1.
It takes a set of execution traces D and system status trace TC
as inputs, and generates a workload model W, as a graph of
processes communicating via channels.

Algorithm 1 begins with deriving the topology of the graph,
as shown in Lines 2-10. All trace records rk are examined
and based on the process name rk.pn, stored in a record, a
corresponding process is created if the process has not been
created yet (Lines 4-5). Furthermore, if the record rk has a



Algorithm 1: Workload Model Derivation from Traces
Input : D = {R1, ..., R|D|}, TC
Output: W = (P,C)

1 P,C ← ∅;
2 foreach Ri ∈ D do
3 foreach rk ∈ Ri do
4 if ∄ prk.pn ∈ P then
5 prk.pn ← ∅; P ← P + prk.pn;

6 if rk.A.c = receive then
7 rj = findREC(Ri, send, start, rk.A.id);
8 if ∄ ch(rj .pn,rk.pn) ∈ C then
9 ch(rj .pn,rk.pn) = (prj .pn, prk.pn);

10 C ← C + ch(rj .pn,rk.pn);

11 foreach px ∈ P do
12 Hi

x ← ∅; /* set of tuples (ev, Ts, Te) */

13 Hi
x ← Hi

x + (∅, 0, 0);
14 for k = 1 to |Ri| do
15 if rk.A.c = send ∧ rk.l = start then
16 rk′ = findREC(Ri, send, end, rk.A.id);
17 sig = getSIG(TCRi

rk.pn, rk.ts, rk′ .ts);
18 rj = findREC(Ri, receive, start, rk.A.id);
19 eWk = (ch(rk.pn,rj .pn), rk.A.λ, sig);
20 Hi

rk.pn ← Hi
rk.pn + (eWk , rk.ts, rk′ .ts);

21 if rk.A.c = receive ∧ rk.l = start then
22 rk′ = findREC(Ri, receive, end, rk.A.id);
23 sig = getSIG(TCRi

rk.pn, rk.ts, rk′ .ts);
24 rj = findREC(Ri, send, start, rk.A.id);
25 eRk = (ch(rj .pn,rk.pn,), rk.A.λ, sig);
26 Hi

rk.pn ← Hi
rk.pn + (eRk , rk.ts, rk′ .ts);

27 if rk.A.c = trigger ∧ rk.l = start then
28 eTS

k = (rk.A.id,rk.A.θ);
29 Hi

rk.pn ← Hi
rk.pn + (eTS

k , rk.ts, rk.ts);

30 if rk.A.c = handler ∧ rk.l = start then
31 eTH

k = (rk.A.id, rk.A.θ);
32 Hi

rk.pn ← Hi
rk.pn + (eTH

k , rk.ts, rk.ts);

33 foreach px ∈ P do
34 for i = 1 to |D| do
35 Mi ← ∅;
36 if ∃ Hi

x then
37 ts = rk.ts : rk ∈ Ri ∧ k = |Ri|;
38 Hi

x = Hi
x + (∅, ts, ts);

39 for y = 1 to |Hi
x| − 1 do

40 if Hi
x[y].ev ̸= ∅ then

41 Mi ←Mi +Hi
x[y].ev;

42 ts = Hi
x[y].Te; te = Hi

x[y + 1].Ts;
43 sig = getSIG(TCRi

x , ts, te);
44 eCy = (sig); Mi ←Mi + eCy ;

45 px ← px +Mi;

46 return (P,C)

function call of class receive then a communication channel
is created if the channel has not been created yet (Lines 6-10).
To create the channel, Algorithm 1 finds the corresponding
record rj with a function call of class send, where this send
function call and the aforementioned receive function call

Algorithm 2: findREC
Input : R, c, l, id
Output: r

1 foreach ri ∈ R do
2 if ri.A.c = c ∧ ri.l = l ∧ ri.A.id = id then
3 return (r ← ri)

have exchanged a message with the same identifier. Record
rj is found in Line 7 by using the procedure findREC.
It is shown in Algorithm 2 and used at multiple places in
Algorithm 1 to find a specific record in a given trace. It takes
as inputs trace R, function call class c, trace point location l,
and message identifier id. By examining all records in input
trace R, findREC returns the record with function call class,
location, and message identifier that match the inputs c, l, and
id, respectively.

After deriving the topology of the graph containing all
processes and communication channels, Algorithm 1 proceeds
with the derivation of the modes of every process px by
creating the sequence of communication, computation, and
timer events associated with every mode.

First, in Lines 14-32, Algorithm 1 examines the records
in every trace Ri in-order. For every record rk ∈ Ri with
location start and function call class send, receive, trigger,
or handler, the algorithm creates a corresponding event and
appends the event together with its start and end time to an
ordered list of events Hi

x (all ordered lists are initialized in
Lines 11-13).

In Lines 15-20, a write event eWk = (ch, size, sig) is created
and appended to the corresponding ordered list if the currently
examined trace record rk has location start and a function
call of class send. The attribute λ in record rk provides the
size of the message. To determine the communication channel
ch, Algorithm 1 needs to identify the source and destination
processes. The process name pn in rk identifies the source
process. The identification of the destination process is done
in Line 18 by using procedure findREC to find the receiving
record rj and taking the process name pn in rj . The abstract
workload sig is calculated in Line 17 by using the procedure
getSIG, which will be explained later in this section.

Similarly, in Lines 21-26 of Algorithm 1, a Read event
eRk = (ch, size, sig) is created using procedure findREC
and getSIG, and appended to a corresponding ordered list.
In Lines 27-32, a timer setter event eTS

k = (τ, t) or a timer
handler event eTH

k = (τ, t) is created and appended to a
corresponding ordered list. The attributes id and θ in the
examined record rk provide the timer identifier τ and the
duration time t set for the timer, respectively.

For example, let us apply Algorithm 1 on the execution
trace in Figure 2 and consider process B in this trace. In
Lines 12-13, the ordered list H1

B associated with mode 1 of
process B is initialized. In Lines 14-32, communication and
timer events are created and appended to H1

B . The content
of H1

B is visualized in Figure 4(a) where the left/right side
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Fig. 4: Derivation of the first mode of process B

of a shaded box indicates the absolute start/end time of a
communication event. The height of the box represents the
abstract computation workload (signature) of the event, while
the vertical arrows pointing upwards and downwards represent
timer setter and timer handlers, respectively.

Second, in Lines 33-45 for every process px and trace Ri,
Algorithm 1 derives mode Mi ∈ px. It is important to note
that not every process is necessarily part of every trace, which
means that the ordered list Hi

x may not exist for every process-
trace combination. If Hi

x exists, all communication and timer
events are moved in-order from the corresponding ordered
list Hi

x to Mi (Lines 36-41). During this in-order movement
of events, since the workload model is timing agnostic, the
absolute start/end times of events are dropped (Line 41).

In addition, computation events are created by using the pro-
cedure getSIG and inserted in Mi after each communication
and timer event (Lines 42-44). For example, consider process
B, the trace in Figure 2, and the ordered list H1

B visualized
in Figure 4(a). In Lines 37-44, communication, timer, and
computation events are placed in M1 in the correct order as
explained above. These events and their order in the derived
mode M1 of process B are visualized in Figure 4(b). The height
of a shaded box represents the abstract computation workload
(signature) of a computation or communication event. It is
worth noting that the width of all shaded boxes is the same,
indicating that the notion of absolute start/end time of events is
not present in M1. Thus, M1 captures only the order of events
and their abstract workload.

Finally, Algorithm 1 returns the derived workload model
W = (P,C) in Line 46. As explained above, the algorithm
uses procedure getSIG to calculate the signature of commu-
nication and computation events (Lines 17, 23, and 43). The
procedure is shown in Algorithm 3. It takes as inputs system
status trace TCR

pn concerning process name pn and mode R,
start time Tstart, and end time Tend. It returns an abstract
computation workload sig imposed by process ppn ∈ R within
time frame [Tstart, Tend].

As explained in Section III-A, in our workload model the
signature sig is defined as the number of cycles a process has
been actively running on a CPU within a given time frame. To
calculate this number, Algorithm 3 utilizes the system status

Algorithm 3: getSIG
Input : TCR

pn, Tstart, Tend

Output: sig
1 cycles = 0;
2 foreach q ∈ TCR

pn do
3 if Tstart < q.OnCPU ≤ Tend then
4 cycles = cycles+ q.OnCPU ∗ q.freq

5 return (sig = cycles)

OnCPU Blocked Ready Interrupt

Process B

T1 T2

Cycles

Frequency:

= ∗f0 + ∗f0+ ∗f1 Time

f0 f1

Fig. 5: Calculation of the signature (cycles) of process B

trace TCR
pn in the time frame [Tstart,Tend] (Lines 2-3), and

considers the periods of time q when process ppn has status
OnCPU, indicating that the process is actively executed on a
CPU. These periods q.OnCPU are multiplied by the current
CPU frequency and accumulated to obtain the total number
of cycles (Line 4). As an example, Figure 5 illustrates the
behavior of Algorithm 3 on process B, where the system status
trace TCB of process B within the time frame [T1,T2] is
visualized. During time interval [T1,T2], process B has various
statuses (OnCPU, Blocked, Ready, Interrupted), but
Algorithm 3 uses only the OnCPU periods (depicted as green
boxes) and the corresponding frequencies (f0 and f1) to
calculate the total number of cycles.

Executable Model: To transform the derived application
workload model into an executable format and integrate it with
other system models (e.g., a hardware platform architecture
model), we could utilize any system modeling and discrete-
event simulation framework. In our case, we have chosen
OMNeT++ [37], a powerful framework known for its extensive
features and libraries, making it particularly well-suited for
modeling and simulation of complex systems, such as large
networks and distributed systems. To convert the models
into OMNeT++ executable code for co-simulation, we have
developed a custom code generator that produces multiple
files needed for the co-simulation including individual event
files for each mode of a process. Every event file contains the
abstract events (and their attributes) of a process in the partial
order that needs to be imposed during the simulation. Due
to space limitations, more details about our OMNeT++ exe-
cutable models implementation are omitted.

V. EXPERIMENTAL EVALUATION AND RESULTS

This section presents the experimental approach, we have
employed to evaluate the accuracy of our proposed workload
model applied on a real-world dCPS, namely the ASML
Twinscan lithography machine. First, we describe the setup
used for our experiments, and then we present the results from
the evaluation.



A. Experimental Setup

The ASML Twinscan machine utilizes advanced optics
and precise positioning of reticles (also known as masks) to
transfer circuit patterns onto silicon wafers. Various application
workloads, called operation modes, are imposed by recipes that
specify parameters and steps for efficient batch processing, i.e.,
performing multiple operations on a set of wafers simultane-
ously.

This machine consists of multiple hardware/software sub-
systems that run on different operating system (OS) platforms.
Gathering traces from these diverse OS platforms requires the
utilization of various specialized tools and facilities, a process
that demands significant time, resources, and effort. Therefore,
in our analysis and accuracy evaluation, we primarily focus on
the main subsystem Host, which operates on the Linux OS
platform. This approach allows us to dedicate our time and
effort to evaluating the accuracy of our workload model within
the scope of this subsystem, thereby obtaining valuable initial
feedback in a timely manner before expanding our effort and
investigation to other subsystems on other OS platforms.

However, to ensure a comprehensive and accurate evaluation
of the Host subsystem and corresponding workload model, we
also take into account its interaction with other subsystems. We
abstract all components and functionalities of those subsystems
into one model called Environmental module (ENV). This
module is responsible for sending messages exactly at the same
time Host receives these messages from other subsystems
within the real Twinscan machine. All messages sent to Host
and their timestamps are collected using the monitoring and
tracing facilities of Host accessible to us.

The ENV module implements a simple message generator
that “replays” the sending of the collected messages at their
designated timestamps in the timeline. Such a message replay
approach allows us to primarily focus on modeling and cap-
turing the timing of events within Host, while maintaining
accurate interaction with other subsystems. It is worth noting
that the above approach can be used in other different real-
world scenarios where complete tracing facilities may not be
feasible/available for some subsystems. However, we can still
capture and accurately model the application workload for the
rest of the subsystems.

To evaluate the accuracy of the workload model, we capture
the time of every message sent from Host to ENV during
the simulation in OMNeT++. We call this captured time the
simulated timestamp of an outgoing message. Then, we
compare the simulated timestamp of every outgoing message
with a reference timestamp called real timestamp of the
same message that is collected using tracing facilities on the
Twinscan machine.

By comparing the simulated and real timestamps of outgoing
messages, we check how close our model is to the real timing
behavior of Host in every time interval between receiving a
message from ENV and sending an outgoing message to ENV.
The smaller the difference ∆ between the simulated and real
timestamps, the more accurate our model is in terms of timing.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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HOST
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Fig. 6: Model evaluation: real and simulated timestamps

Figure 6 visualizes the aforementioned model evaluation
approach. The black arrows from ENV to Host indicate the
real times at which messages are received by Host. The
red arrows from Host to ENV indicate the real timestamps
of outgoing messages, and the dashed blue arrows show the
simulated timestamps of the same outgoing messages. The
differences between the simulated and real timestamps are
denoted as ∆1, ∆2, etc. We consider our model accurate
if these differences fall within an acceptable range, which
depends on the specific use case of the dCPS under modeling
and DSE.

B. Evaluation Results

We have automatically derived the workload model of
the software application that processes wafers on the ASML
Twinscan machines. The derived workload model includes
407 processes and 1408 channels in five different operation
modes, demonstrating the large scale and complexity of real
industrial application workloads. Table I reports the extensive
total number of exchanged messages for each mode and the
specific number of ∆ values associated with messages sent
from the HOST to ENV. These values have been obtained by
comparing simulated and real timestamps, as elaborated in
Section V-A.

According to ASML engineers, a significant portion of ∆
values should fall within the range of one millisecond for the
application use case of wafer processing on Twinscan in order
to consider the accuracy of our model sufficient to be useful
in practice.

TABLE I: Number of messages and ∆ samples for the five
operation modes of the wafer processing workload model

Modes M1 M2 M3 M4 M5

Num. of messages 152319 227482 231598 303497 254273

Num. of ∆s 18975 31839 32070 42745 37214

Figure 7 depicts the distribution of the ∆ values across
various time ranges in a stacked bar chart. The x-axis shows the
different modes (M1 to M5) and the y-axis shows the distribu-
tion in percentage. Every bar is segmented and each segment,
depicted in a different color, corresponds to a time range. For
example, the blue segment of a bar shows the percentage of ∆
values that fall in the range of [0..1) milliseconds. Analysing
Figure 7, we observe that the majority of ∆ values for every
mode, i.e., more than 90% of the values, are smaller than 1
millisecond.

In addition, Table II provides the average distribution of
∆ values across different time ranges for the five operation
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modes. Notably, our analysis reveals that over 92% of the ∆
values, on average, are concentrated within the microsecond
range. Such exceptional level of precision, achieved by our
model on the ASML machine, demonstrates the model ef-
fectiveness in accurately capturing the application workload,
thereby facilitating effective DSE of complex dCPS.

TABLE II: Average distribution of the differences ∆ between
real and simulated timestamp values

∆ (ms) [0..1) [1..10) [10..100) [100-1000) ≥ 1000

Average% 92.34 5.05 2.55 0.016 0.001

VI. CONCLUSION

In this paper, we have presented an innovative approach for
automated derivation of an application workload model for
system-level DSE of complex dCPS. Our approach leverages
runtime traces and transforms them into a timing-independent
workload model that is aware of application processes’ de-
pendencies and operational modes. The workload model is
abstract and coarse-grained as it does not contain the exact
behavior of the application processes, function calls within
the processes, and process communication protocols. Thus, it
enables scalable and efficient DSE while accurately capturing
dynamic application workloads. We have applied our approach
to the main subsystem of the ASML Twinscan lithography
machines, evaluating it across five distinct workload scenarios.
The experimental results demonstrate high accuracy of our
derived workload model, making it practically useful for DSE
of real-world dCPS.
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