
Journal of Systems Architecture xxx (2015) xxx–xxx
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
T-CREST: Time-predictable multi-core architecture for embedded
systems
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
1383-7621/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: masca@dtu.dk (M. Schoeberl).

Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictable multi-core architecture for embedded systems, J. Syst. Architect.
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
Martin Schoeberl a,⇑, Sahar Abbaspour a, Benny Akesson b, Neil Audsley c, Raffaele Capasso d,
Jamie Garside c, Kees Goossens e, Sven Goossens e, Scott Hansen f, Reinhold Heckmann g, Stefan Hepp h,
Benedikt Huber h, Alexander Jordan a, Evangelia Kasapaki a, Jens Knoop h, Yonghui Li e, Daniel Prokesch h,
Wolfgang Puffitsch a, Peter Puschner h, André Rocha i, Cláudio Silva i, Jens Sparsø a, Alessandro Tocchi d

a Technical University of Denmark, Denmark
b Czech Technical University in Prague, Czech Republic
c University of York, United Kingdom
d Intecs S.p.A., Italy
e Eindhoven University of Technology, The Netherlands
f The Open Group, Belgium
g AbsInt Angewandte Informatik GmbH, Germany
h Vienna University of Technology, Austria
i GMV, Portugal

a r t i c l e i n f o
Article history:
Received 14 July 2014
Received in revised form 19 January 2015
Accepted 2 April 2015
Available online xxxx

Keywords:
Real-time systems
Time-predictable computer architecture
a b s t r a c t

Real-time systems need time-predictable platforms to allow static analysis of the worst-case execution
time (WCET). Standard multi-core processors are optimized for the average case and are hardly analyz-
able. Within the T-CREST project we propose novel solutions for time-predictable multi-core architec-
tures that are optimized for the WCET instead of the average-case execution time. The resulting time-
predictable resources (processors, interconnect, memory arbiter, and memory controller) and tools (com-
piler, WCET analysis) are designed to ease WCET analysis and to optimize WCET performance. Compared
to other processors the WCET performance is outstanding.

The T-CREST platform is evaluated with two industrial use cases. An application from the avionic
domain demonstrates that tasks executing on different cores do not interfere with respect to their
WCET. A signal processing application from the railway domain shows that the WCET can be reduced
for computation-intensive tasks when distributing the tasks on several cores and using the network-
on-chip for communication. With three cores the WCET is improved by a factor of 1.8 and with 15 cores
by a factor of 5.7.

The T-CREST project is the result of a collaborative research and development project executed by eight
partners from academia and industry. The European Commission funded T-CREST.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction solution for time predictability. Even with high performance pro-
Safety-critical systems are important parts of our daily life. They
have to be reliable, as our lives can depend on them. Examples are
controllers in airplanes, braking controllers in cars, or train control
systems. Those safety-critical systems need to be certified and the
maximum execution time needs to be bounded and known so that
response times can be assured when critical situations require a
timely reaction. Note that just using a faster processor is not a
cessors in our desktop PCs we notice once in a while that the PC
is ‘‘frozen’’ for a few seconds. For word processing we accept this
minor inconvenience, but for a safety-critical system such a
‘‘pause’’ can result in a catastrophic failure.

The mission of T-CREST was to develop tools and build a plat-
form that avoids such unexpected pauses. The T-CREST time-pre-
dictable platform simplifies the safety argument with respect to
maximum execution time and leverages the possible performance
improvement of multi-core systems for real-time systems. Thus
the T-CREST platform results in lower costs for safety-relevant
applications, in reduced system complexity, and at the same time
in faster time-predictable code execution.
(2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002
mailto:masca@dtu.dk
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc
http://dx.doi.org/10.1016/j.sysarc.2015.04.002


Fig. 1. The T-CREST platform consisting of Patmos processor nodes that are connected via an on-chip network for message passing communication and a memory tree to a
memory controller for shared memory access.

2 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
Standard computer architecture is driven by the following
paradigm: make the common case fast and the uncommon case cor-
rect. This design approach leads to architectures where computer
architects optimize the average-case execution time at the
expense of the worst-case execution time (WCET). Modeling the
dynamic features of current processors, memories, and intercon-
nects for WCET analysis often results in computationally infeasi-
ble problems. The bounds calculated by the analysis are thus
overly conservative.

We need a sea change and we shall take the constructive
approach by designing computer architectures where predictable
timing is a first-order design factor. For real-time systems we
thus propose to design architectures with a new paradigm: make
the worst-case fast and the whole system easy to analyze. Despite
the advantages of analyzable system resources, only a few
research projects exist in the field of hardware optimized for
the WCET.

Within T-CREST we propose novel solutions for time-pre-
dictable multi-core architectures. The resulting time-predictable
resources (processors, interconnect, memories, etc.) are an easy
target for WCET analysis and the WCET performance is outstanding
compared to current processors. Time-predictable caching and
time-predictable chip-multiprocessing (CMP) provides a solution
for the need of increased processing power in the real-time
domain.

Besides the hardware, we developed a compiler infrastructure
in the project. We developed WCET-aware optimization methods
using the known behavior of the hardware. We adapted the
WCET analysis tool aiT to support the developed hardware and
guide the compilation.
1 see https://github.com/t-crest.
1.1. The T-CREST platform and supported programming models

T-CREST covers technologies from the chip level (processor,
memory, asynchronous network-on-chip), via compiler, single-
path code generation, and WCET analysis tools, up to system eval-
uation with two industry use cases. New languages or new operat-
ing system concepts for time-predictable real-time systems are not
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
in the scope of this project. Most of the T-CREST hardware is open-
source under the industry friendly, simplified BSD license.1

The overall architecture of the T-CREST platform is shown in
Fig. 1. The platform consist of a number of processor nodes and
two networks-on-chip; one that supports message passing
between processor nodes and one that provides access to a shared
external memory. A processor node includes a Patmos processor
[1], special instruction and data cache memories (a method cache
[2] and a stack cache [3]) and local private scratchpad memories
(SPMs) for instructions and data. Message passing is implemented
using DMA driven writes from the local SPM in a processor node to
the SPM in a remote processor node. The message passing NoC [4–
6] supports this by offering virtual end-to-end channels. The mem-
ory NoC [7] provides access to a shared external SDRAM memory
that is controlled by a real-time memory controller [8–10].

The memory NoC and the memory controller do not include any
hardware support for cache coherency. The main means of proces-
sor-to-processor communication is the message passing NoC. The
shared memory is primarily intended for initialization and to
extend the memory resources beyond what can fit onto a single
chip. Processor-to-processor communication via shared memory
is permitted, but coherency mechanisms are implemented in soft-
ware. This allows for sharing of large data structures protected by
locks that implement cache coherency in software.

The decisions not to use hardware based cache coherency and
the inclusion of hardware support for message passing is in line
with many current CMPs and multi-processor systems on chip
[11–13]. The main reason behind this trend is that the cost of
implementing cache coherency in hardware in a multi-processor
platform using a packet switched NoC is becoming prohibitive,
both in terms of area and in terms of network load.

We have adopted these fundamental architectural decisions
and the scope of this paper is to study how message passing and
shared memory access can be implemented in a time-predictable
manner and optimized with an aim of minimizing the WCET. The
platform is further supported by a compiler also developed with
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 3
a focus on WCET, and the aiT WCET-tool has been extended to sup-
port the Patmos processor.

1.2. Project contributions

The main contributions of the T-CREST project are:

� The T-CREST platform provides a time-predictable multi-core
platform so that we can perform reliable WCET analysis and
tighter WCET bounds enable higher processor utilization.
� The T-CREST platform supports a globally-asynchronous

locally-synchronous timing organization to enable the imple-
mentation of large scale multi-core platforms. An asynchronous
network-on-chip connects synchronous processors.
� The T-CREST memory network-on-chip and the memory con-

troller support time-predictable accesses to the shared main
memory to allow WCET analysis of such accesses.
� The T-CREST compiler and the WCET analysis tool aiT are tightly

integrated to support the T-CREST processor Patmos and to
enable WCET driven compiler optimization.
� The T-CREST platform improves the worst-case performance

logarithmically in the number of processing cores, under the
assumption that the application is a good candidate for paral-
lelization, to provide more processing power for future, more
complex embedded real-time systems. For a digital-signal pro-
cessing application we showed that three cores improve the
WCET by a factor of 1.8 and 15 cores by a factor of 5.7.
� Most technology of T-CREST is available in open source and we

consider this as a main contribution to the real-time architec-
ture research community. The Patmos reference handbook
[14] contains download and detailed build instructions.

1.3. Paper organization

The paper is organized into 8 sections. The following Section 2
compares the T-CREST approach with related work. We organized
the rest of the paper according to the different research and devel-
opment areas of the T-CREST project. Section 3 introduces the
time-predictable processor Patmos developed within T-CREST.
Section 4 describes T-CREST’s core-to-core message passing net-
work-on-chip that supports asynchronous message passing across
point-to-point virtual circuits. Section 5 presents the memory hier-
archy of the T-CREST platform and explains how to provide time-
predictable access to off-chip DRAM memory. Section 6 describes
the compilation tool chain for the Patmos architecture and its inte-
gration with WCET analysis. Section 7 presents the evaluation of
the capability of the T-CREST platform to host real industrial appli-
cations with delicate predictability requirements, using domain-
specific use case applications from the avionics and railway
domains. Finally, Section 8 concludes.
2. Related work

Research on time-predictable architectures is a steadily grow-
ing field that is gaining momentum. This section presents related
research papers and discusses the relation between T-CREST and
other projects.

2.1. Related projects

The projects MERASA, parMERASA, JEOPARD, PREDATOR, ALL-
TIMES, and Scalopes are related to the T-CREST project in some
regards.

The FP-7 project MERASA (Multi-Core Execution of Hard Real-
Time Applications Supporting Analysability) [15] investigated
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
time-predictable execution on a bus-based CMP with multi-
threaded version of the TriCore processor. In contrast to MERASA,
we developed a network-on-chip based multi-core architecture.
Furthermore, we tackled the time predictability challenge by
developing a new processor architecture, with a WCET optimized
instruction set, and the supporting compiler.

The FP-7 project parMERASA is a followup project of MERASA
and tackles the parallelization of applications [16]. Unlike
MERASA, parMERASA targets a network-on-chip based multi-core
architecture. The parMERASA project focuses on tools and sys-
tem-level software to support parallelization, WCET analysis and
verification. In contrast to T-CREST, parMERASA uses a simulator
for their target platform rather than implementing a time-pre-
dictable architecture.

The FP-7 project JEOPARD (Java Environment for Parallel
Realtime Development) investigated architectures and tools for
real-time Java on CMP systems. JEOPARD considered all levels of
the architecture: the hardware, the operating system, the JVM, sta-
tic analysis tools, and evaluation of the architecture with three use
cases. While JEOPARD targeted real-time Java, the Java processor
JOP [17] provided an inspiration for Patmos, in particular with
regard to the cache design. Furthermore, TDMA based memory
access arbitration and its WCET analysis was explored within
JEOPARD [18].

The FP-7 project PREDATOR studied the interplay between effi-
ciency requirements and critical constraints in embedded system
design, aiming at a design for predictability and efficiency.
Results on the notion of predictability in general and on the pre-
dictability of hardware and software features lead to advice what
to avoid when developing a predictable system [19]. This work
provided one of the foundations for the work in T-CREST. The pro-
cessor design in T-CREST follows the design principles of pre-
dictable architectures elaborated in the PREDATOR project.

The main goal of the FP-7 project ALL-TIMES [20] was to
enhance the timing analysis technology for safety-critical embed-
ded systems. The project aimed at combining available timing tools
from SMEs and universities into an integrated tool chain using
open tool frameworks and interfaces, and at developing new tim-
ing analysis methods and tools where appropriate.

Wolfgang: contrast with/relate to T-CREST. . .like ALL-TIMES, we
are also (mostly) open source, but I’m not sure how to put this
nicely.

In the context of the Scalopes project, the CompSOC platform
[21] and tool flow [22] were developed. The NoC used in the con-
text of Scalopes (Aethereal/aelite) provided an inspiration for the
asynchronous NoC developed in T-CREST. However, the T-CREST
NoC uses an architecture that reduces system-level cost
significantly.

2.2. Time-predictable processors

Within T-CREST we used the results from the memory access
arbitration and adapted the cache solutions [23] from the Java pro-
cessor JOP. JOP is a time-predictable processor that uses Java byte-
code as its instruction set. In contrast, the T-CREST processor
Patmos uses a RISC instruction set to enable the execution of more
traditional languages like C. A key feature of JOP is its cache archi-
tecture, with an instruction cache that caches whole methods [24]
and separate caches for stack and heap data. Patmos keeps this
general cache architecture, but adapts it to fit a RISC instruction
set [2,3]. Within the T-CREST project, we also adapted the analysis
methodology developed for the object cache of JOP [25] in the anal-
ysis tool platin [26,27].

The focus of the precision timed (PRET) machine [28] is primar-
ily on repeatable timing and less on predictable timing. A deadline
instruction can be used to enforce repeatable timing of a task. A
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


4 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
first simulation of their PRET architecture is presented in [29]. The
first hardware implementation of PRET implements the ARM
instruction set [30,31]. PRET implements a RISC pipeline and per-
forms chip-level multithreading for four threads to eliminate data
forwarding and branch prediction [32]. Scratchpad memories are
used instead of instruction and data caches.

A recent version of PRET, FlexPRET [33], extends PRET to sup-
port mixed-criticality systems. FlexPRET supports two different
thread types, hard and soft real-time threads, directly in the hard-
ware. Both thread types have fixed slots assigned in the fine-grain
thread scheduling. However, soft real-time threads can use slots
that are not used by a hard real-time thread (e.g., because of stal-
ling or a thread has finished its current release). FlexPRET switched
the instruction set to RISC V [34].

The main difference between our proposal and PRET is that we
focus on time predictability [35,36] and PRET on repeatable timing.
Our approach therefore allows run-time dynamism in scheduling
and execution, whereas PRET is essentially static, resulting in a
higher implementation cost. In our opinion a time-predictable
architecture does not need to provide repeatable timing as long
as WCET analysis can deliver tight WCET bounds. Furthermore,
PRET implements the standard instruction set, whereas we explore
an instruction set that supports WCET based optimization and
WCET analysis. In contrast to the PRET we use a dual-issue pipeline
for maximum single thread performance. For multi-threaded
applications we provide a multi-core version of Patmos.

Fernandez et al. [37] present a detailed study of task interfer-
ence in a Leon4 based quad-core processor developed by Aeroflex
Gaisler and used by the European Space Agency. The processor is a
conventional multiprocessor that has been developed with critical
real-time systems in mind. The study shows that interference may
cause the execution time of a task to increase by a factor of 2–9
times. The results are a strong argument in support of time-pre-
dictable multi-core architectures.

2.3. Core-to-core network-on-chip

To achieve time-predictability of the on-chip communication,
the NoC needs to provide end-to-end connections that can be ana-
lyzed individually. Ways to implement end-to-end connections are
circuit-switching (physical or virtual) or by controlling the rate of
traffic flows.

SoCBUS [38] and the NoC used in the 4S-platform [39] imple-
ment pure circuit switching. In this approach it is straightforward
to analyze the circuits provided. However, the 4S platform NoC
uses static circuits. This limits flexibility and may potentially waste
resources and the approach is best suited for relatively static
streaming applications. In this respect SoCBUS is more flexible
but its dynamic dial-up mechanism does not in itself guarantee
the establishment of a circuit in bounded time. To establish a
bound some form of system level analysis is needed. TDM as used
in Argo always guarantees the connections established in the
schedule and offers more flexibility on the sharing of resources.

Virtual circuit switching is an alternative approach and TDM is a
way to implement virtual circuit in a time-multiplexing way. NoCs
that follow the TDM approach are Æthereal [40], aelite [41],
Nostrum [42] and TTNoC [43,44], and Argo. Argo differs in its novel
timing organization. Argo employs an asynchronous implementa-
tion of routers and a novel network interface design for a reduced
system-level cost.

An alternative approach for time predictability is to apply rate
control in the traffic flows. MANGO [45] and the Kalray NoC [46]
follow this approach. MANGO implements an arbitration mecha-
nism for virtual channels on links and Kalray NoC enforces a
throughput limit on traffic flows. Schedulability analysis [47,48]
and network calculus [49,50] are analytical approaches that aim
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
at solving the contention problem and offering time-guarantees.
However, the above techniques lead to high cost in the router
implementation. Argo avoids this implementation complexity.

2.4. External memory access

External memory access in the T-CREST platform is provided by
connecting the cores via a tree-shaped memory interconnect to a
memory controller back-end. Using a tree-shaped interconnect is
motivated by two criteria: (1) a task’s memory communication
and inter-task communications requirements are not necessarily
the same and (2) conventional arbiters do not scale to today’s mul-
ti-core requirements [51].

Separating the requirements of memory access and task com-
munication is nothing new, for example the MEDEA architecture
[52] provides separate arbitration for both communication and
memory requests. The Tilera Tile processor [53] incorporates
entirely separate networks for tile-to-tile accesses, I/O accesses,
and shared memory accesses. While these works separate the
inter-core and memory communication into distinct networks,
no work currently separates them into entirely different network
topologies.

Tree-based interconnects have been used in other work to con-
nect processors to memory. Balkan and Uzi [54] and Rahimi et al.
[55] use a ‘‘mesh-of-trees’’ approach in order to connect multiple
processors to multiple memory banks. The approach presented
here uses a similar, but simpler interconnect, since only one mem-
ory ‘‘bank’’ is used.

The tree approach also allows for scalable arbitration within
interconnects, which are distributed across the tree, rather than
being realized as a single large arbiter. Small TDM arbiters at the
leaves of the tree can control the access to the memory tree in a
scalable distributed way [56].

Another tree-based approach is presented by Gomony et al.
[51], but encodes a priority within each packet and uses a generic
arbitration framework. Each multiplexer then admits the packet
with the highest priority. This has the advantage of being able to
issue requests in work-conserving mode by adding a fixed offset
to the static priority if the requestor is exceeding its given bounds.
Both show that using a distributed approach allows the memory
interconnect to run at a much higher frequency, although both
approaches require global clock synchronization.

The T-CREST memory controller back-end differentiates from
related memory controller back-ends by considering the following
two challenges: (1) memory clients in complex systems compris-
ing multiple types of processing elements that may have different
request sizes and (2) different systems require different trade-offs
between (worst-case) execution time, bandwidth, and power
consumption.

Existing memory controller back-ends do not fully satisfy these
diverse requirements as most current controllers are not designed
with real-time applications in mind and do not provide bounds on
WCET of transactions [57–59]. On the other hand, existing real-
time memory controllers are using either (semi-)static command
scheduling and cannot provide low average execution time to
memory traffic [60–62] or dynamic scheduling, but are limited in
architecture or analysis to a single transaction size and memory
map configuration [63–65].

Looking more specifically at work from related projects, the
PRET memory controller [62] aims at achieving repeatable and pre-
dictable timing by mapping memory clients to privatized memory
banks that are then accessed using time-division multiplexing. The
command scheduling of each memory request is done statically
and takes a fixed amount of time. The benefit of this scheme is that
memory clients cannot interfere with each other’s bank state by
e.g., closing rows opened by another thread. The drawback of this
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


2 http://www.absint.com/ait/.
3 http://www.irisa.fr/alf/index.php?view = article&id = 29.
4 http://www.otawa.fr/.

M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 5
approach is that the number of threads is limited by the number of
available memory banks, making this solution unsuitable for the T-
CREST project.

The MERASA memory controller [66] is more similar to the T-
CREST memory controller in the sense that it does not privatize
memory banks and uses dynamic command scheduling. The com-
mand-scheduling algorithm is a modified version of the DRAMSim
memory simulator [67], although the modifications to the original
scheduling algorithm are not specified and there is no hardware
implementation. In addition, the analysis is limited to a fixed trans-
action size and a single memory map configuration.

2.5. Compiler

The WCET-aware C compiler (WCC) [68,69] is a custom devel-
oped C compiler that focuses on WCET optimization, targeting
Infineon TriCore microcontrollers. The AbsInt aiT tool performs
WCET analysis. Analysis results such as basic block execution
times, encountered instruction cache misses, or the found worst-
case path are back-annotated to the intermediate representation
of WCC to be used by high-level optimizations. For this, all opti-
mization and transformation passes in WCC need to maintain a
mapping between the blocks of the intermediate and low-level
representations. The work on the WCC compiler done in the
PREDATOR project represents an important first step towards
developing WCET-aware compilation techniques for single-core
architectures by selecting between alternative code sequences.

In contrast to the WCC compiler, the T-CREST compiler is based
upon an existing open-source, industrial-strength compiler, the
LLVM [70] framework. General and target-independent compiler
passes and tools such as the platin toolkit are complemented
by dedicated support for architecture-specific features of Patmos,
which has been co-designed together with the hardware platform
itself.

Kirner et al. transform flow information in parallel to high-level
optimizations [71]. Their transformation technique requires the
compiler to generate control flow update rules for optimizations
that modify the control-flow graph or change loop bounds or other
flow constraints. These update rules specify the relation between
edge-execution frequencies before and after the optimization,
and are used to consistently transform all flow constraints affected
by the optimization.

In contrast to this work and the WCC compiler, in the T-CREST
compiler framework existing compiler passes are not modified to
maintain any mappings or to record all performed transformations.
Instead, the compiler uses novel techniques to transform metain-
formation among different levels of program representation. A
combination of source code markers, compiler analyses, and rela-
tion graphs is used to transform flow facts and to back-annotate
analysis results. This approach enables a simple integration of
WCET analyses and the LLVM framework, and allows existing
high-level compiler analyses to improve the precision of the
WCET-analysis result.

Few code transformation techniques other than the single-path
approach have been proposed that target the time-predictability of
programs. Negi et al. [72] presented a transformation to reduce the
number of paths required to be analyzed by making infeasible
paths explicit or by factoring out code blocks with constant execu-
tion time. Both transformations seem hard to be performed auto-
matically in a compiler and no general solution has been
supplied so far.

The implementation of single-path code generation in a com-
piler backend has been proposed long ago [73] but has never been
actually implemented before. Yan and Zhang [74] study the appli-
cation of the single-path approach at the assembly level by a com-
piler in the context of a compilation framework for VLIW
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
processors. They limit their investigation of the single-path
approach to basic blocks of innermost loop regions, omitting loop
transformation and interprocedural support.

2.6. WCET analysis

A comprehensive survey of methods and tools for determining
the WCET is given in [75]. The most successful formal method
for WCET computation is static program analysis based on abstract
interpretation. Static program analyzers compute information
about the software under analysis without actually executing it.
Most interesting program properties—including the WCET—are
undecidable in the concrete semantics. The theory of abstract
interpretation [76] provides a formal methodology for semantics-
based static analysis of dynamic program properties where the
concrete semantics is mapped to a simpler abstract semantics.
The static analysis is computed with respect to that abstract
semantics, enabling a trade-off between efficiency and precision.
A static analyzer is called sound if the computed results hold for
any possible program execution. Applied to WCET analysis, sound-
ness means that the WCET bounds will never be exceeded by any
possible program execution. Abstract interpretation supports for-
mal soundness proofs for the specified program analysis.

In addition to soundness, further essential requirements for sta-
tic WCET analyzers are efficiency and precision. These properties
are related to the predictability of the hardware [77,78] and soft-
ware [79] that is being analyzed.

Over the last few years, a more or less standard architecture for
timing analysis tools has emerged [80,81] which is composed of
three major building blocks: (1) control flow reconstruction and
static analyses for control and data flow, (2) micro-architectural
analysis, computing upper bounds on execution times of basic
blocks, and (3) path analysis, computing the longest execution
paths through the whole program.

The commercially available tool aiT2 [82,83] implements the
architecture outlined above. The tool has been successfully
employed in the avionics [84,85] and automotive [86] industries to
determine precise bounds on execution times of safety-critical
software.

Heptane3 is an open-source static WCET analysis tool developed
at IRISA. While it initially used a tree-based WCET computation
approach [87], more recent versions use—like most other WCET
analysis tools—an integer linear programming approach.

OTAWA4 is an open-source static WCET analysis framework
developed at the University of Toulouse [88]. It is designed to enable
the combination of analysis algorithms and to simplify the imple-
mentation of new approaches.

WCA is the WCET analysis tool for the Java processor JOP [89].
While the former presented WCET analysis tools target several
general-purpose embedded processors, WCA was specifically
designed for the time-predictable processor JOP. This tight cou-
pling of the hardware design and WCET analysis enabled co-design
of architectural features and their analysis, e.g., an object cache and
its analysis [25]. Within T-CREST we approached the design of the
architecture in a similar way by getting feedback from the WCET
analysis tool aiT on Patmos features.

An alternative to static WCET analysis is measurement-based
WCET analysis. On the one hand, measurement-based WCET anal-
ysis does not require a formal model of the processor and therefore
promises easy adaption to new architectures. On the other hand, it
faces the challenge that it is difficult to provoke a worst-case sce-
nario during the measurements and guarantee the soundness of
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


6 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
the WCET bound. An example for a commercial measurement-
based WCET analysis tool is RapiTime5 by Rapita Systems [90].
The MERASA project used both OTAWA and RapiTime to evaluate
their hardware design.
3. The processor

The basis of a time-predictable system is a time-predictable
processor. Within T-CREST we developed the time-predictable pro-
cessor Patmos [1]. Patmos is a 32-bit, RISC-style microprocessor
optimized for time-predictable execution. The user can configure
Patmos to include a two-way pipeline for high performance or a
single-way pipeline to save hardware resources.

Patmos is statically scheduled, in the sense that all instruction
delays are explicitly visible at the instruction set architectural
(ISA) level and the programmer or compiler need to respect the
pipeline delays to guarantee correct execution. This approach sim-
plifies the processor model for WCET analysis and helps to improve
the latter’s accuracy.

The modeling of the memory hierarchy is critical for WCET
analysis. Patmos simplifies this task by offering caches that are
especially designed for WCET analysis. Accesses to different data
areas are different with respect to WCET analysis. Static program
analysis can easily track addresses of static data, constants, and
stack allocated data. Heap allocated data on the other hand
demands for different caching techniques to be analyzable [91].
Therefore, Patmos contains two data caches, one for the stack
and one for other data. Access to non-analyzable addresses (e.g.,
heap allocated structures) bypass the data cache with the non-
cached load and store instructions.

3.1. Fully predicated instruction set

The Patmos instruction set is similar to a RISC style load/store
instruction set. Instructions take at most three register operands.
Only the first pipeline executes control-flow instructions and
instructions that access memory, while both pipelines can execute
arithmetic and logic instructions.

To reduce the number of conditional branches and to support
the single-path programming paradigm [92,93], the compiler can
predicate all instructions. Compare instructions, which the com-
piler can predicate as well, set predicates. Patmos has 8 predicate
registers; logic operations like AND and OR operate directly on
these predicate registers.

Apart from the usual encoding of constants in the 32-bit
instruction words, Patmos also supports operations with 32-bit
constants, where the second slot of the instruction bundle contains
the constant. This feature is also present if Patmos contains only a
single pipeline.

The type of the accessed data area is explicitly encoded with the
load and store instructions. This feature helps the WCET analysis to
distinguish between the different data caches. Furthermore, an
earlier stage in the pipeline can detect which cache a load or store
instruction will access.

3.2. Dual-issue pipeline

Patmos contains 5 pipeline stages: (1) instruction fetch, (2)
decode and register read, (3) execute, (4) memory access, and (5)
register write back. Fig. 2 shows an overview of Patmos’ pipeline.

The two pipelines share the register file with 32 registers.
Patmos supports full forwarding between the two pipelines. The
basic features are similar to a standard RISC pipeline. Patmos splits
5 http://www.rapitasystems.com/products/rapitime.

Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
the data cache for different cache areas. Typed load and store
instructions distinguish between the different caches.

To simplify the diagram in Fig. 2, we omitted forwarding and
external memory access data paths. We implemented the method
cache (M$), the register file (RF), the stack cache (S$), the data
cache (D$), and the scratchpad memories (SP) in on-chip memories
of an FPGA. All on-chip memories of Patmos use registered input
ports. As we cannot access the memory-internal input registers,
we duplicate the program counter (PC) with an explicit register.
The instruction register (IR) stores the instruction fetched from
the method cache. The register file is using that instruction also
to fetch the two (four in a dual issue configuration) register values
during the decode stage.

As Patmos provides full forwarding from both pipelines, this
forwarding network consumes a lot of resources. If the full power
of dual issue is not needed, the user can configure Patmos as sin-
gle-issue pipeline.

3.3. Local memories

Patmos contains three caches (method, data, and stack cache).
The size of all caches can be configured before the hardware gen-
eration. Patmos also contains (optional) scratchpad memories
(SPMs) for instructions and data. A program can use these SPMs
in addition to caches or instead of caches, when code and/or data
caching shall be under program control.

To distinguish between the different caches and SPMs, Patmos
implements typed load and store instructions. The compiler (for
the stack cache) or the programmer (for the data SPM and IO
devices) assigns the type information.

3.3.1. Method cache
Patmos contains a method cache [2] that stores whole func-

tions. We use the term method cache as this form of caching has
been originally introduced for a Java processor [24]. Caching whole
functions means that the processor may load full functions on a
call or a return. All other instructions of Patmos hit in the method
cache. Our assumption is that those possible miss points allow for
an easier and more precise WCET analysis. We developed a scope
based WCET analysis for this method cache [27].

The assumption of a method cache is that the cache is larger
than all individual functions in a program. However, not all pro-
grams guarantee this assumption. Furthermore, an optimizing
compiler inlines functions to avoid the call and return overhead,
leading to even bigger functions. To mitigate this issue we have
implemented a function splitter that splits too large functions into
smaller (sub) functions that fit into the cache (see Section 6).

3.3.2. Stack cache
The latency bounds of memory accesses are crucial for time-

predictability. For the calculation of the WCET bound, cache anal-
ysis tries to statically predict hits and misses [94]. With a known
address of a load or store instruction we can classify the operation
as a hit or miss. Addresses of heap-allocated data are only known
at runtime and therefore not statically predictable. Since accessing
an unknown address can destroy the cache state during analysis,
we use a separate cache for stack allocated data, which improves
the time-predictability of the design. This design separates pre-
dictable and unpredictable load and store operations to different
caches (or uncached accesses).

Without dynamically sized stack objects, we can statically
determine the addresses of data allocated on the stack.
Moreover, a dedicated stack cache reduces the number of loads
from the data cache and decreases the number of slow main mem-
ory accesses. Furthermore, it eliminates some long latency stores
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


Fig. 2. Pipeline of Patmos with fetch, decode, execute, memory, and write back stages.

M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 7
to the write-through data cache, thereby reducing the WCET of the
design.

The stack area in a program contains the return address, regis-
ters saved by the current function, and local variables and data
structures. Particular uses of the stack in C-like languages (e.g.,
dynamic allocation, passing pointers to addresses on the stack,
stack objects exceeding the stack cache size) are not directly sup-
ported by the predictable stack cache design. For this reason, the
compiler manages a shadow stack outside the stack cache, where
objects not appropriate for the stack cache are allocated.

The Patmos stack cache [3] provides a window into the main
memory, implemented using only two processor-internal registers.
Three instructions manipulate the stack cache: (1) reserve reserves
space in the stack cache, (2) free frees space on the stack cache, and
(3) ensure forces data to be available in the stack cache. Only the
reserve and ensure instructions may trigger a possible exchange
with the main memory (spill and fill). All stack cache load and
store instructions hit in the stack cache and thus we model them
as single cycle operation for the WCET analysis. The extent to
which stack manipulation instructions actually cause memory
transactions can be statically predicted [95]. A specialized analysis
bounds the stack cache utilization throughout the program and
remains scalable by only introducing context-sensitivity when
needed.

Call stacks are usually shallow and standard optimizations
available in modern compilers (e.g., LLVM) are effective at reducing
stack frame sizes; therefore, even a small stack cache provides
good hit rates.
3.3.3. Data cache
We have two implementations of the data cache: (1) a direct-

mapped cache and (2) a two-way set-associative cache with a least
recently used (LRU) replacement policy. Set-associative caches, as
long as they use the LRU replacement strategy, are very predictable
and fully supported by the aiT WCET analysis tool. The data caches
use write-through and no allocation on a write. We chose write-
through as it is hard to predict statically when a write-back oper-
ation happens, and thus many state-of-the-art WCET analysis tools
do not support write-back caches. The design decision to use a
write-through policy is an excellent example how WCET analyz-
ability influences the hardware design for a time-predictable pro-
cessor—we optimize for the WCET. A write-back cache would
actually increase the WCET bound, as each cache miss penalty
includes a possible cache write-back. To mitigate the performance
effects of the write-through policy, we implemented a small buffer
that combines writes into bursts.
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
For statically unknown load and store addresses, Patmos has
load and store instructions that bypass all caches.

3.3.4. Miss detection and pipeline stalling
The cache configuration of Patmos is special with respect to

miss detection: for all three caches, the memory stage detects all
misses and stalls the pipeline. This is normal for a data cache,
but a standard instruction cache misses in the fetch stage.
However, the method cache performs miss detection only on call
and return. Therefore, these instructions can stall as well in the
memory stage.

The consequence of a single stalling pipeline stage is twofold:
(1) the hardware implementation of stalling is simpler and (2)
cache analysis becomes simpler. No two instructions can trigger
a cache miss in the same clock cycle for two caches. We consider
this feature to contribute to a timing-composable architecture, as
we can analyze different caches independently.
4. The core-to-core message passing network-on-chip

The core-to-core communication NoC is packet switched and it
uses source routing. The topology is a bi-torus. The NoC supports
asynchronous message passing across point-to-point virtual cir-
cuits, and it implements these using DMA-driven block-transfers
from the local SPM in one processor node into an SPM in a remote
node. We named the T-CREST NoC Argo.

We can implement virtual circuits using (statically scheduled)
time division multiplexing (TDM) of the resources (routers and
links) in the NoC or by using non-blocking routers in combination
with a rate-controlled service discipline [96]. We decided for a
TDM-based NoC for two reasons: (i) A TDM router avoids dynamic
arbitration and virtual channel buffers and its hardware imple-
mentation is correspondingly simple. (ii) TDM avoids interference
of traffic and timing analysis is straightforward. In a TDM-based
NoC, the network interface (NI) injects packets into the network
of routers and links according to a predetermined periodic and sta-
tic schedule.

The schedule determines when the NI injects a packet for a
given destination into the packet-switched NoC, and once injected
the packet travels along a pipelined path from source to destina-
tion. The schedule guarantees absence of deadlocks, and the fact
that it avoids arbitration, buffering, and flow control results in
small and efficient circuit implementations. For symmetric net-
works and an all-to-all communication pattern we found a simple
heuristics to generate the TDM schedule [97]. For application
specific schedules we use a metaheuristic scheduler [98].
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


Fig. 3. Data transfer on a traditional TDM-based NoC.

8 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
The functionality of the T-CREST core-to-core NoC is similar to
the aelite NoC [99]. The key contribution of the T-CREST project
is the novel hardware architecture that results in a more efficient
and smaller circuit implementation that we present below.

A traditional implementation, illustrated in Fig. 3, implements a
transmit/receive buffer and a DMA controller in both ends of every
single virtual circuit. The DMA controllers transmit and receive
packets to/from buffers in the NI. Data moves across the NoC from
the NI in the source to the NI in the destination using a static TDM
schedule. The result is that data moves from the sending processor
node to the receiving processor node in three steps: (i) from the
sending processor into the NI, (ii) from this NI across the network
of routers and links and into the destination NI, and (iii) from this
NI into the receiving processor node. And because these steps are
independent/autonomous, flow control has to be introduced to
avoid overflow and underflow of buffers in the NIs. In this way
the NoC as a whole does not enjoy the benefits of TDM—that it
eliminates the need for arbitration, buffering, and flow control.

By rethinking the architecture and keeping the essence of TDM
in mind we have developed a new architecture [100] where we
have moved the DMA controllers into the NIs and integrated them
with the TDM scheduling, see Fig. 4. As the TDM schedule inter-
leaves the DMA transfers out of a processor node, only one DMA
controller can be active at a time. This allows a single table-based
implementation of all the pointers and counters of all the DMA
controllers. In combination with a single shared SPM in every pro-
cessor this allows TDM driven data transfer from the source SPM to
the destination SPM without any buffering or flow control, as illus-
trated in [100]. The DMA moves data out of a processor node in an
interleaved fashion across a sequence of TDM schedule periods.
Therefore, the size of a TDM slot (and the resulting packet size)
can be small, which helps to keep the latency short. This new archi-
tecture results in substantial area reductions in the NIs.

Another key feature of the architecture is its efficient support of
a globally-asynchronous locally-synchronous (GALS) timing
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
organization of the entire platform. The new architecture avoids
all clock domain crossings (and all the associated synchronization
and metastability issues) except for the interface used by the pro-
cessor to set up the DMA controller. Here a clock domain crossing
module (CDC) must be used as illustrated in Fig. 4. The individual
processors may be independently clocked possibly exploiting volt-
age-frequency scaling. The dual ported SPM supports clock-domain
crossing between the processor node and the NI. The NIs are driven
from a single clock source. However, skew in the reset and clock
nets on the chip between the NIs do not guarantee in phase oper-
ation. More precisely, the TDM slot counters in the NIs that control
the scheduling can be off by one or more clock ticks. The term
mesochronous denotes this mode of operation characterized by
the use of a single oscillator and bounded skew [101, Ch.10].

To cope with the skew between the NIs the network of routers
and links that connect the NIs must offer some timing elasticity.
This is traditionally provided by adding dual-clock FIFOs in every
input port of every router as illustrated in Fig. 3. The addition of
these FIFOs roughly doubles the area and power consumption of
a clocked synchronous router [5]. Our NoC uses asynchronous rou-
ters instead and as asynchronous pipelines inherently behave as
self-timed ripple FIFOs we avoid these explicit synchronizer
FIFOs. The asynchronous router uses the same three stage pipe-
lined design as the synchronous router, the only difference is the
use of asynchronous handshake latches instead of clocked regis-
ters, as Fig. 5 shows. The three pipeline stages of the router are:
(i) link traversal, (ii) header-parsing unit (HPU), and (iii) the cross-
bar switch (Xbar). The handshake latch used in our design consists
of a normal enable latch and a handshake controller that imple-
ments a two-phase (NRZ) bundled-data protocol [102]. We present
the asynchronous router design in more detail in [5].

Fig. 6 shows the packet format used in our architecture. A
packet consists of three phits, a header phit and two payload phits.
A phit is the smallest atom that is transmitted in a (clock) cycle.
Each phit contains a 32-bit word and three additional control bits
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


Fig. 4. Data transfer in the T-CREST core-to-core message passing NoC.

Fig. 5. Block diagram showing the micro-architecture of the asynchronous router.

M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 9
that define whether the phit is a header phit (start) of a packet
(sop) or the end phit of a packet (eop) and whether it is a valid phit
or not (vld). The header phit contains the route and the destination
write address (wp). The HPU stage in the router decodes the route
field of the header phit and provides control signals to the crossbar
to direct the packet to the correct output port.

The fact that the NoC allow some skew between the NIs does
not affect the WCET analysis of the time it takes to transmit a mes-
sage across the NoC. As all the NIs operate using a single clock
source, analyzing the WCET is basically a matter of counting cycles,
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
and in a statically scheduled TDM-based NoC this is straightfor-
ward: The time to transmit a packet is the worst case wait for
the first slot reserved, plus the time it takes to transmit the data
in a sequence of reserved slots, plus finally the time it takes the last
package of the message to traverse the NoC. This is all a matter of
counting NI clock cycles. The skew between the source and desti-
nation NI adds just a few clock cycles of uncertainty/variation
and this is negligible.

Instances of Argo were implemented in ASIC and FPGA tech-
nologies. The implementation technology for the ASIC flow is a
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


Fig. 6. Packet format of the Argo NoC.

Table 1
ASIC and FPGA area results for a router and an NI of Argo NoC.

ASIC FPGA

#LUT #FF BRAM bits

Router 7965 lm2 538 580 –
NI 33587 lm2 457 250 1024

10 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
65nm CMOS standard cell STMicroelectronics library and the tar-
get FPGA board is a Xilinx ML605 board. Table 1 shows area results
for the components of the NoC; a router and a NI. Detailed results
of the implementation of the components appear in [5,100].

The asynchronous design of the routers provides time elasticity.
In [6] we analyze a network of such routers and show that it can
tolerate several cycles of skew between the NIs. In conclusion the
use of asynchronous routers offers more timing elasticity than
clocked mesochronous routers and at the same time the hardware
area of an asynchronous router is approximately half of the area of
a mesochronous clocked router [5,6].

Overall, the entire NoC was implemented in 2x2 and 4x4
instances, which were verified to operate under skew. A 4x4
instance of Argo, with all-to-all communication (240 uni-direc-
tional channels) and schedule period of 23 time-slots, imple-
mented in ASIC technology consumes an area of 0.72mm2. A
similar instance of aelite with 11 NIs, 6 routers and 45 bi-direc-
tional channels consumes an area of 2.5mm2 [41]. The two
instances are not directly comparable but the numbers indicate
that Argo is at least 3.5 times smaller than alternative TDM NoCs,
since aelite is already a very small NoC.
5. The memory hierarchy

This section presents the memory hierarchy of the T-CREST
platform and explains how to provide time-predictable access to
Fig. 7. The Bluetree mem

Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
off-chip DRAM. The two key requirements for the DRAM sub-sys-
tem are: (1) it must be a time-predictable architecture and have
an analysis that is able to tightly bound the response time of a
memory transaction, and (2) it has to scale to a large number of
processing elements to fit in a multi-core environment.

The DRAM sub-system comprises three components, the
Bluetree memory tree, a prefetcher, and a dynamically scheduled
SDRAM back-end, as shown in Fig. 7a. These components are
described in the following sections, starting with Bluetree in
Section 5.1, followed by the prefetcher in Section 5.2 and the
back-end in Section 5.3. Section 5.4 then presents the WCET of a
memory request accessing the DRAM through the memory tree
for different numbers of contending processors and compares to
the case of a TDM-based memory tree.
5.1. The bluetree memory tree

The Bluetree memory tree [103] is a memory interconnect
motivated by the growing bandwidth requirements of modern
embedded systems, along with the need to decouple the memory
requirements of a task from its communication requirements; a
mapping on a Manhattan grid NoC, which allows a set of tasks to
meet their communication deadlines, may not allow all high-band-
width memory clients to meet their requirements, and vice versa.

In addition, conventional monolithic arbiters cannot scale to the
requirements of modern systems. Typical arbiters demultiplex the
input stream into a number of virtual channels, perform account-
ing on these channels, and then multiplex those virtual channels
back onto the output stream. As the number of virtual channels
increases, the complexity and size of the multiplexer/demulti-
plexer increase, which in turn results in a slower maximum clock
speed [104].

We designed the Bluetree memory interconnect to support the
memory requirements of modern systems, leaving the TDM-based
ory network-on-chip.

le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


Table 2
WCET (cycles @ 300 MHz) of a 32-byte transaction for multiple processors.

Cores TDM L6 L5 L4 L3 L2 L1 No blocking

2 108 – – – – – 90 62
4 164 – – – – 183 99 71
8 276 – – – 388 192 108 80
16 500 – – 817 397 201 117 89
32 948 – 1694 826 406 210 126 98
64 1844 3467 1703 835 415 219 135 107

M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 11
NoC for core-to-core communication only. This tree does not allow
for communication between processing nodes, only from process-
ing nodes to main memory. The design distributes memory arbitra-
tion across the routers, rather than using a large monolithic arbiter
next to memory. This allows the tree to fulfill the scalability
requirements of the system, enabling a larger number of requesters
at a higher clock frequency than would be available with a single
monolithic arbiter.

This tree consists of a set of 2-into-1 full-duplex multiplexers,
each with a small arbiter. Fig. 7b shows a block diagram of the
internals of one of these multiplexers. Each of these multiplexers
contains two input FIFOs, which are then multiplexed onto an out-
put FIFO through a simple arbiter. The downward path contains a
single register and is, per definition, non-blocking. The content of
this register moves each cycle towards the correct client. We com-
bine these multiplexers into a system such as the one shown in
Fig. 7a.

In order to prevent a single core dominating the tree, and to be
able to satisfy the requirement that the memory subsystem can be
time-predictable, each multiplexer contains a blocking counter. This
encodes the number of times that a high-priority packet (i.e., a
packet from the left) has blocked a low-priority packet (i.e., a
packet from the right). When this counter becomes equal to a fixed
value m, the counter is reset and a single low-priority packet is
given service. This then allows providing an upper bound of the
WCET for a memory transaction.

5.2. Prefetcher

Another issue with shared memory is the potentially large
worst-case response time for memory transactions (as Table 2
shows). The prefetcher can, to some extent, hide this latency.
This is a hardware unit that attempts to speculatively issue mem-
ory requests for data, which the processor may require in the near
future.

Such a technique is typically not employed within real-time
systems due to the unpredictability that such a unit can introduce;
a useless prefetch will tie up the memory controller for a period of
time and introduce additional blocking for other tasks. If the pre-
fetcher dispatches useless prefetches, and does so without any
consideration for any other tasks, it is possible that the prefetcher
may actually harm the worst-case response time of the system.
This is undesirable since the worst-case analysis of the system is
then invalidated by the inclusion of the prefetcher.

Instead, we propose a prefetching approach that we can use
alongside standard worst-case analysis, to improve the average
case while we maintain the required time predictability of the sys-
tem [7,105]. We make the observation that bandwidth provision-
ing is typically static, and may not be fully utilized by a task
during its whole life-cycle. Typically in these cases, arbiters allow
other tasks that have fully utilized their bandwidth bound to
request in work-conserving mode. In the context of Bluetree, if a
low-priority packet is given service without being blocked by a
high-priority packet, or m high-priority packets are given service
without any being blocked by a low-priority packet, the arbiter is
operating in work-conserving mode.

In these cases, rather than relaying a request in work-conserv-
ing mode, the prefetcher can use this slot. The prefetcher fills an
empty packet and transmits it to memory. Since, in the context
of system analysis, this slot would have been a memory request
normally, this approach requires no modification to the system
analysis, and allows for prefetching without harming the worst-
case execution time.

Another inherent problem with prefetching is that the pre-
fetcher inserts the data into a processor’s cache that may displace
useful information, thus effectively invalidating any cache analysis
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
that has already taken place to ascertain a worst-case execution
time. In order to alleviate this issue, we add a small ‘‘prefetch
cache’’ in-between the processor and the first multiplexer. This is
a small direct-mapped cache that stores incoming prefetches,
and then relays them to the processor when requested. This has
the same line size as a Bluetree request (i.e., 16 bytes), and logically
requires as many indices as the number of possible prefetch
streams, which is eight in this case, thus needs to be of size 128
bytes. In reality, this is slightly larger (i.e., 512 bytes) in order to
alleviate any cache locality issues.

After a prefetch has taken place and it was useful to the proces-
sor, the prefetch cache relays a ‘‘prefetch hit’’ message back to the
prefetcher on the same cycle that the processor accesses the data.
This is then used to generate another prefetch on behalf of that
processor. Since this packet would have been a memory request
for the aforementioned data, a prefetch can also be safely transmit-
ted in this case, since the prefetch replaces the memory request
that would have taken place had the prefetcher not been operating,
and hence the ‘‘prefetch hit’’ packet can also use the slot.

Given this analysis, we use a simple stream prefetcher within
this framework. Stream prefetching [106] makes the assumption
that if the data at addresses A;Aþ 1, and Aþ 2 has been requested,
it is likely that the data at address Aþ 3 will be required in the near
future. We can also use other approaches such as stride prefetching
[107], Markov prefetching [108], or global history buffer based
approaches [109] with this framework without harming the
WCET of the system.
5.3. Time-predictable SDRAM back-end

This section presents our time-predictable dynamically sched-
uled memory controller back-end. The two main contributions of
the T-CREST memory controller back-end are: (1) the architecture
and the dynamic command scheduling algorithm are time-pre-
dictable, (2) the analysis supports different request sizes and mem-
ory map configurations, enabling the designer to choose the
number of parallel banks to serve a transaction. This allows
trade-offs between bandwidth, (worst-case) execution time, and
power consumption [110].

The off-chip memory on the Xilinx ML-605 development board,
used in the T-CREST project, is a 64-bit DDR3–1066 SDRAM,
although the Xilinx PHY only offers a 32-bit interface. The
SDRAM back-end interfaces with this memory and is responsible
for generating and scheduling commands to access the memory
according to the incoming requests in a time-predictable manner,
while satisfying the minimum timing constraints between the
commands.

We implemented the back-end architecture in VHDL and it has
five pipeline stages, as shown in Fig. 8. After a transaction arrives at
the interface of the back-end, Stage 1 obtains the relevant informa-
tion, including the transaction type (read or write), logical address,
and the required number of bursts for the given transaction size.
Stage 2 splits the transaction into the required number of bursts,
and translates the target address to the corresponding physical
address (bank, row and column) in the memory. Thereafter, the
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


Fig. 8. Control path of the dynamically scheduled back-end.

12 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
command generator in Stage 3 produces the required activate, read,
write, and precharge commands for each burst. To prevent the
memory from losing data, refresh commands are also generated
periodically every 7.8 ls. The generated commands are then
inserted into the command FIFO. In Stage 4, the timing selector is
responsible for checking the associated timing constraints for
scheduling the command at the head of the command FIFO. The
command scheduler issues the command in Stage 5 if the timing
constraints are satisfied. The action in each stage consumes one
clock cycle, except burst splitting in Stage 2, which requires one
cycle per burst, and command generation in Stage 3, which takes
one cycle per command.

The back-end runs at a frequency of 150 MHz, while the mem-
ory itself runs at 300 MHz. This means that the data path of the
memory controller works with 128 bit words provided by the
memory tree internally, but reads or writes 4 � 32-bit words per
clock cycle to the memory to compensate for the double frequency
(150–300 MHz) and the double data rate (two data transfers per
300 MHz clock cycle).
5.4. WCET of a memory transaction

Having presented the concepts and architectures of the memory
tree and the memory controller back-end, we now consider the
WCET of a single outstanding memory request in the T-CREST plat-
form for a varying number of processors, and hence for different
tree depths, and compare to the case of a TDM-based system.
Note that it is assumed that application software has been mapped
to cores within the architecture prior to WCET calculation.

We report the WCET of a memory transaction in clock cycles at
300 MHz, the frequency of the memory. The results assume a fully
balanced tree and a scaling factor of 3 for Bluetree to account for it
running at a lower frequency of 100 MHz.

The analysis of the memory controller back-end uses the ana-
lytical framework, presented in [111], developed as a part of T-
CREST, and adjusted slightly to account for pipeline delays in the
FPGA implementation. This analysis framework is general and
explicitly models all dependencies between DRAM commands.
This enables it to derive the WCET for memory transactions of dif-
ferent sizes in a parameterized way depending on the number of
banks used in parallel to serve each transaction, which is deter-
mined at design time. Note that refresh is not included in the
WCET of memory transactions, but modeled as a high-priority
periodic task during schedulability analysis of the system. DDR3
specification gives the period of the refresh as 7.8 ls and our anal-
ysis of the timing selector and command scheduler bounds the
refresh time.

Given a fixed request size of 32 bytes, the memory controller
can accept a new request every 28 cycles. However, the first
request in a sequence incurs a pipeline delay of 25 cycles in the
worst case, making the WCET of an isolated memory transaction
53 cycles at 300 MHz. Given a blocking factor, we can calculate
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
and bound the number of times the multiplexer can block a
request while transiting up the tree. For a fully congested tree
(i.e., one in which every client issues a request in every cycle which
it can), we can use Eqs. (1) and (2) to calculate the number of times
multiplexers may block a packet for a given blocking factor m,
when transmitted from a multiplexer at level i. Here, the high pri-
ority side is the left-hand side of the multiplexer, and the low pri-
ority side is the right-hand side. Additionally, the multiplexer at
the root of the tree is level 1, and level n at the leaves of the tree.

Bi ¼
Xi

n¼1

ðB0i � 1Þ ð1Þ

B0i ¼

2 i ¼ 1 ^High Priority
m i ¼ 1 ^ Low Priority
2� B0i�1 i–1 ^High Priority
m� B0i�1 i–1 ^ Low Priority

8>>><
>>>:

ð2Þ

B0i calculates the periodicity, in the worst case, that an input to the
multiplexer at level i gains service, and is slightly pessimistic in
order to cater to the case where m ¼ 2. In this case, the multiplexer
at level 1 will gain service once in every two requests to the multi-
plexer (as there is contention with only one other requestor). This is
multiplicative as the blocking also depends on the multiplexers fur-
ther up the tree (towards memory). When an up-stream multi-
plexer blocks, it will block an entire subtree. In this case, any
multiplexers in this subtree will not be able to relay any packets,
hence blocking counters will not be updated, and the entire subtree
will be stalled. Because of this stalling, the periodicity of lower mul-
tiplexers also depends on those further up the tree. We can calcu-
late the blocking occurring at each level of the tree by subtracting
one from this periodicity.

Bi then sums the amount of blocking experienced at each level
of the tree to ascertain the final blocking figure. We multiply this
figure by the worst-case memory delay in order to ascertain the
number of cycles that a request can be blocked.

Given these equations, we can use Eq. (3) to calculate the total
round trip time for a memory request from the multiplexer at level
i. Here, tup is the number of cycles required to transit a multiplexer
when traveling to memory, and is six cycles (one to transit the
arbiter and be enqueued into the output FIFO, one to leave the out-
put FIFO, then multiplied by the scaling factor). tdown is the time
taken to transit a multiplexer when traveling downwards, and is
three cycles (one cycle to cross each multiplexer, then scaled).
tmem is the worst case time for a memory transaction (28 cycles);
25 cycles are the pipeline fill delay; and finally tmem is the execution
time of the requested memory transaction.

ti
mux ¼ ðtup � iÞ þ ðtdown � iÞ þ ðBi � tmemÞ þ 25þ tmem ð3Þ

With this equation we calculate the worst-case execution time of a
tree with a varying number of clients (from 2 to 64), and a blocking
factor of m ¼ 2 and show the result in Table 2. These figures also
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 13
detail the worst-case timings given when only varying levels of the
tree are fully congested. As an example, the tree for two clients has
a single multiplexer. In this case, the figure for L1 shows the WCET
when the multiplexer at level 1 is congested, whereas No blocking
shows the case where the multiplexer is not congested and thus a
request can be immediately transmitted. Similarly, for four proces-
sors (with two levels of multiplexers), the figure for L1 shows the
case where only the root level is congested, and the figure for L2
shows the case where the multiplexer at level 2 and the root mul-
tiplexer are fully congested.

The TDM case concerns itself with the worst-case response time
for a TDM-based arbiter, assuming each TDM slot equals the WCET
of a 32 byte request in the back-end (28 clock cycles). This also
assumes that each processor has an identical time slice and identi-
cal periodicity. This worst case will occur when the client in ques-
tion issues a request just after its slot has become available. In this
case, it will have to wait until its current slot has expired and all
other slots have been serviced. It will then have to wait for its
own memory request to be serviced. The pipeline delay (25 clock
cycles) is factored in also. This implies a total delay therefore of
ð28� nProcsÞ � 1þ 28þ 25 clock cycles.

We can see that, while the worst-case delay is worse than the
TDM case for a fully backlogged tree, the tree will typically perform
better when it is not fully loaded. This is due to the inherent work-
conserving nature of the tree, since the tree operates on blocking
factors rather than a static slot table. The timing performance of
the tree will therefore depend upon the tasks running within it,
and thus there will be a distribution of execution times between
the case with no contention and the case where the tree is maxi-
mally loaded. In standard TDM, however, the worst-case and the
actual case are identical; a task will still need to wait its turn, even
if the other turns are unfulfilled.

This worst-case is also not indicative of the actual system. Since
Patmos can only have a single outstanding memory request at
once, there can only be 64 outstanding memory requests at a time.
Since a tree with six levels will have 126 buffers distributed across
the inputs to the multiplexers, the tree cannot be maximally
loaded (the maximum 64 outstanding requests can only partially
fill the 126 buffers). In reality, the worst-case performance will
be closer to the performance if all but the last levels of the tree
are fully loaded—less pessimistic analysis incorporating this intu-
ition remains an open issue. Finally, we note that in reality systems
rarely at run-time experience their worst-case, particularly in
terms of WCET [75]. Hence in terms of memory accesses, a con-
stituent part of WCET, actual memory latencies times will be an
application dependent distribution between the worst-case in
Table 2 and the best (i.e., no blocking).
6. The compiler and WCET analysis

An integral part of the T-CREST design philosophy is to use sta-
tic (compile-time) alternatives for commonly used performance
enhancing features at runtime. This reduces the dynamic behavior
and processor states outside the control (and visibility) of the code
at the ISA level. In conformance with this philosophy, the compiler
must generate code that specifically targets the Patmos ISA and has
control over its components.

Besides the hardware architectural means to obtain tight WCET
bounds, we pursue a tight integration of the compilation process
and timing analysis [26]. On one hand, the compiler preserves
information available during the compilation process that usually
is discarded, although it would be valuable for automated and pre-
cise timing analysis. This includes preserving information about
the control-flow structure, but also flow annotations provided by
the user that constrain the possible flow of control, e.g., bounds
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
on the maximum number of loop iterations (loop bounds). The
compiler provides this information as additional input to the
WCET tool. On the other hand, results from the timing analysis
are fed back to the compiler, to guide optimizations that aim at
reducing the guaranteed worst-case performance.

6.1. Support for the Patmos ISA

The architectural design for time predictability (see Section 3)
requires dedicated support from the compiler. The absence of
dynamic instruction reordering and assignment to the available
functional units requires the compiler to create a feasible instruc-
tion schedule, which respects instruction latencies, bundles
instructions for dual-issue, and fills delay slots of control-flow
instructions.

For method cache support, the compiler splits functions that
otherwise are too large to fit in the method cache as a whole
[112]. For optimization purposes, the compiler also splits large
functions with many divergent control-flow paths to avoid loading
unused code into the cache. The Patmos ISA allows splitting func-
tions with low overhead.

The explicitly managed stack cache requires the compiler to
insert special control instructions, typically at function entries,
calls, and returns. The compiler can allocate data objects of fixed
size to the stack cache for which it can guarantee the persistence
of their stack frame during their lifetime (e.g., register spill slots,
local variables with fixed size). At the same time, the compiler
manages the shadow stack for objects that cannot be allocated in
the stack cache. Using the stack cache results in an average run-
time speedup of 1.57 for the MiBench benchmarks [3]. Most stack
frames allocated on the stack cache never need to be spilled to
memory. Furthermore, allocating data on the stack cache reduces
the cache pressure on the data cache, leading to a lower data cache
miss rates, as shown in [113].

The Patmos ISA exposes the type of memory accessed in typed
memory instructions. Hence, the compiler generates different
instructions for accessing the main memory through the data
cache, the data on the local stack cache, the scratchpad memory,
or to bypass the data cache for memory accesses to unpredictable
memory locations.

6.2. Single-path code generation

The fully predicated instruction set of Patmos eases single-path
code with minimal control-flow complexity and stable execution-
time behavior. The compiler can generate single-path code in an
automated way, by using a transformation that extends if-conver-
sion techniques. Martin: Ref for if-conversion is missing. The fol-
lowing sentence then starts with fixed loop iterations, which is
not if-conversion. Loops are transformed to employ a fixed itera-
tion count and predicates are maintained across function calls
[93,114].

Regions of single-path code are specified by entry functions.
These functions and the functions called from within are generated
to exhibit a singleton execution path. The respective application
code is limited to reducible control flow without indirect function
calls and recursion. Structured loops are required to specify local
loop bounds in the source code, which results in constant loop trip
counts.

In single-path code, some control-flow paths are executed
sequentially rather than alternatively based on input data. This
increases the number of executed instructions and may increase
the WCET. Since the method cache fetches whole functions or sub-
functions in any case, the total number of instructions fetched does
not necessarily increase though. Instead, the amount of code
fetched but not executed is typically reduced to zero for single-
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


14 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
path code for most cached code blocks. However, in cases where
loops contain code that is not executed in all iterations, the cache
may not reach a stable cache state that contains only frequently
executed paths if the whole body does not fit into the cache.
Fig. 9. Compilation tool chain overview.
6.3. Compilation tool chain

Fig. 9 gives an overview of the compiler tool chain. The Patmos
compiler extends the LLVM compiler construction framework [70].
At the beginning of the compilation process, the C frontend clang

translates each C source code file to LLVM’s language- and target-
independent intermediate representation called bitcode. Bitcode is
a control-flow graph oriented representation of the program using
static single assignment form. The llvm-link tool links the appli-
cation code with standard and support libraries at bitcode level.
This linked application presents subsequent analysis and optimiza-
tion passes, as well as the code generation backend, with a com-
plete view of the whole program, thus enabling WCET-oriented
optimizations.

The opt optimizer performs generic, target independent opti-
mizations, such as common sub-expression elimination, constant
propagation, etc. The llc tool constitutes the backend, translating
LLVM bitcode into machine code for the Patmos ISA, and handling
the target-specific features for time predictability. The backend
produces a relocatable ELF binary containing symbolic address
information, which gold processes,6 defining the final data and
memory layout, and resolving symbol relocations.

In addition to the machine code, the backend exports supple-
mentary information for WCET analysis and optimization purposes
in form of a Program Metainfo File. This information contains,
among others, flow information (in form of loop bounds provided
by symbolic analysis on bitcode level), structural information (tar-
gets of indirect branches), information on memory accesses (mem-
ory areas accessed by individual load/store instructions), as well as
information to relate bitcode and machine code program represen-
tations, as detailed in Section 6.5. The platin toolkit enhances
(e.g., by a hardware model), processes, and translates this informa-
tion to the input format for annotations of AbsInt’s timing analysis
tool aiT [82], which uses this information in addition to the ELF
binary to compute tight WCET bounds.
6.4. The WCET analyzer aiT

The aiT tool [82,83] determines safe and precise upper bounds
for the worst-case execution times of non-interrupted tasks in
real-time systems. Separate versions of aiT offer support for differ-
ent processor architectures. Within T-CREST, we extended aiT to
support the Patmos architecture, which allows us to analyze the
WCET of tasks from Patmos executables.

aiT takes as input a binary executable and an AIS file, i.e., an
annotation file in the proprietary AIS format that provides further
information about the program. After reconstructing the control
flow from the executable, aiT performs a loop analysis to automat-
ically compute upper bounds of loop iterations, and a value analy-
sis to determine safe approximations of the values of processor
registers and memory cells for every program point and execution
context. The user can extend and refine the results of these auto-
matic analyses in the AIS file.

An architectural analysis simulates the execution behavior of
the input program through an abstract hardware model. The anal-
ysis determines lower and upper bounds for the execution times of
basic blocks by performing an abstract interpretation of the pro-
gram execution on the particular architecture, taking into account
6 gold is part of the GNU binutils, see http://sourceware.org/binutils/.

Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
its pipeline, caches, memory buses, and attached peripheral
devices. Using the results of these analyses, the path analysis phase
searches for the longest execution path and from it, derives a safe
estimate for the WCET.

6.5. Compiler and WCET analysis integration

Due to the considerable changes that backend code generation
involves in LLVM, bitcode is not a suitable target for WCET analysis.
On the other hand, when the compiler lowers bitcode to machine
code it loses a large amount of the compiler’s analysis information.

Support for WCET analysis integration requires that the com-
piler maintains semantic information between program represen-
tation levels, passes information about machine code to the
WCET analysis tool, and has control over the performed optimiza-
tions and machine code generation [115].

6.5.1. Preservation of meta-information
Due to the complexity of modern compilers and their optimiza-

tions, transforming information from the source level to the
machine-code level is not trivial to retrofit into an existing indus-
trial-quality framework. The compilation flow described in
Section 6.3 permits to use different strategies for the preservation
of meta-information in different stages of compilation:

� The translation from source code to the platform-independent
intermediate representation by clang includes translation of
information available only at the source-level (e.g., annotations
in form of pragmas) to bitcode meta-information. In order to
separate concerns, clang performs no optimizations at this
stage.
� The compiler performs high-level optimizations on bitcode.

Some of the available optimizations perform major structural
changes to the program (e.g., loop unswitching or loop unrol-
ling). Consequently, we extended these optimizations to pre-
serve meta-information relevant for timing analysis. In
particular, techniques for maintaining loop bounds, which are
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 15
crucial for WCET analysis, require considerable additional effort
for each optimization [71]. However, as these optimizations are
implemented in a platform-independent way, it is likely that
the investments on preserving meta-information pay off.
� In order to preserve meta-information in the compiler backend,

the compiler maintains relations between basic blocks (and
memory accesses) at the bitcode and the machine code level.
Based on this information, we derive control flow relation graphs
that model regular relations between execution paths at both
levels. The compiler uses these control flow relation graphs to
transforms flow facts from bitcode to machine code [116].
Thus it is not necessary to add dedicated support for flow-fact
updates in the backend.
� The compiler and linker generate and store in the binary all

symbolic names necessary to specify information for the timing
analysis tool. This permits to specify all information about
machine code by referring to symbolic addresses.

6.5.2. Exchange of program and timing information
Compiler passes and our integration toolkit platin integrate

the LLVM compiler and AbsInt’s WCET analysis tool aiT [82]. We
adapted the compiler to export information on both bitcode and
machine code, and on the relation between these representations.
This compiler pass is largely platform independent. The compiler
exports the program information after it performed all optimiza-
tions. This way, a particular target backend only has to provide tar-
get-specific information. Our platin (Portable LLVM-based
Annotation and Timing Analysis Integration) tool uses this infor-
mation. The main responsibility of platin is to consolidate and
transform information about the program, its control flow and its
timing behavior. platin collects this information from the com-
piler, development and analysis tools.

At the core of the information exchange strategy is the Program
Metainfo Language (PML) file format that stores information rele-
vant for WCET analysis and compiler optimizations. We designed
PML to allow information exchange with different tools at both
the bitcode and machine code level. Fundamental concepts such
as control-flow graphs, loop nest trees, or linear flow constraints
are thus defined in a way that is applicable to both bitcode and
machine code. The relation between optimized bitcode and
machine code is also stored, which allows transforming informa-
tion obtained from auxiliary analysis tools that operate at the bit-
code level to machine code level for use by aiT. An example for a
particularly useful analysis on bitcode level is loop trip count anal-
ysis, already available in the LLVM framework. At the machine
code level, the PML format is largely platform independent. To
achieve platform independence, platin specifies machine code
related concepts like jump tables in a uniform way.

For timing analysis with the aiT tool, which carries out its anal-
ysis on binary code, an AIS annotation file is exported from the PML
file, which in conjunction with the executable, serves as input to
the analyzer. The automatically generated annotations provide
information on jump tables and indirect calls, potential targets of
memory accesses as well as loop bounds and flow frequency con-
straints. As the annotation language may only refer to instructions
at the binary level, flow constraints that refer to control-flow edges
or empty basic blocks (for example) are not directly expressible in
the AIS format. Therefore, we reuse the technique developed for
flow-fact transformations between bitcode and machine code
level, and reformulate those program entities that are not sup-
ported by the AIS format.

When the WCET analysis is complete, platin merges back the
analysis results into the PML database. This information is avail-
able for the compiler to guide further optimizations for improving
time predictability and worst-case performance. For example, the
compiler might bypass the cache for those memory accesses that
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
the timing analysis tool classifies as unpredictable. Evaluation of
this WCET analysis based optimization is future work.

To obtain a profile regarding a program’s statically analyzed
worst-case behavior, platin makes use of the criticality metric
[117]. It assigns to each basic block a value in the range ½0; 1� that
signifies its importance relative to the WCET bound. E.g., all blocks
on the worst-case execution path have criticality of 1, while infea-
sible code has criticality 0. The resulting profile information gives a
complete view of the program instead of the singular worst-case
path result that static WCET analysis tools usually yield. Similar
to an execution profile obtained for improving average-case perfor-
mance, the programmer and compiler can base their optimization
decisions on the criticality of a piece of code.
7. Evaluation

To evaluate the T-CREST platform prototype, we use industrial
use cases derived from real-world applications. We build these
use cases upon domain-specific applications from the avionics
and railway domains. Their purpose is to evaluate and validate
the T-CREST platform as a whole, complementing the validation
and verification activities realized, individually, over the techno-
logical elements of the platform. Therefore, in this section we dis-
cuss the evaluation from a platform point-of-view where the
subject of the evaluation is the complete T-CREST platform.

All use cases were adapted to exploit the specific features pro-
vided by the platform. To provide better coverage of these features
and to address the different industrial usage models, the avionics
use cases explored achieving a higher degree of system integration
than currently available in commercial platforms, whereas the rail-
way use case focused on parallelization. Accordingly, the most
complex avionics use case deploys three independent and unre-
lated applications over the platform, validating that their temporal
behavior is unaffected. The most complex railway use case exploits
the multi-core characteristics of the T-CREST platform to improve
the performance of a Fast Fourier Transformation based application
by parallelizing it.

Once the applications were ported, the first validation of the
platform was to verify if they could comply with their original
requirements and execute according with the expected behavior.
This was the case for all the use cases from avionics and railway.
Next, the behavior of the platform with regard to the WCET was
assessed. The WCET for selected tasks was estimated using
AbsInt’s WCET analysis tool aiT.

aiT enables us to obtain WCET estimations for each individual
application in a single or multi-core configuration. Multi-core
WCET bounds are obtained by configuring the settings for latencies
for reads and writes to memory. Apart from the memory latency,
the application executable, an AIS annotations file, and the analysis
entry point are the sole inputs required for the WCET analysis.
7.1. Avionics use case

The avionics use cases consist of a set of avionics applications
that are typically hosted on one single computing platform as it
is common practice in on-board systems integrated according to
the principles of Integrated Modular Avionics (IMA). IMA is an
architectural concept, originated in aeronautical systems, that
enables multiple unrelated applications, with different criticalities,
to share the same computing platform without interference by
applying robust partitioning. The application of IMA concepts
resulted in a reduction of hardware used in aircrafts by enabling
resource sharing among different applications. In consequence,
IMA reduced the main drivers of aircraft operational costs, in par-
ticular weight, volume, and energy consumption. Any hardware
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


16 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
platform applicable to avionics systems shall support the key ele-
ments of the IMA concept. More specifically, it shall support appli-
cation independence.

The avionics evaluation uses three distinct applications: AOC,
CAS, and IOP. The AOC (Airlines Operational Centre) is the on-board
part of an Air Traffic Management (ATM) system that enables dig-
ital text communication between the aircrew and ground ATM
units. Skysoft (today GMV Portugal) in cooperation with BAE
Systems developed the application according to DO-178B Design
Assurance Level (DAL) C. The AOC can be described as a communi-
cation router and message database. It stores reports sent from
ground stations or created by aircraft subsystems, such as weather
reports, trajectories and route planning information. The AOC
schedules these reports for delivery or sends them to the destina-
tion on demand.

In addition, the Crew Alert System (CAS) system receives signals
from on- board subsystems, such as doors, engines, or the environ-
ment control system and displays relevant aircraft information
such as engine parameters (e.g., temperature values, fuel flow,
and quantity). The CAS improves situational awareness by allowing
the aircrew to view complex information in a graphical format and
also by alerting the crew to unusual or hazardous situations. CAS is
an ARINC 653 prototype application whose development followed
DO-178B guidance for DAL A.

The last application, the I/O Partition (IOP), is an IMA applica-
tion that acts as a router mediating the access from other applica-
tion partitions to data buses and avionics networks in a robust and
safe manner. The IOP interfaces other partitions through ARINC
653 queuing and sampling ports. The user associates each port
with a set of routing configurations that enable data traversing
via this port to be forwarded to a given physical I/O interface and
an address in that interface. In consequence, access to a network
becomes transparent to application partitions. The application only
sends and receives data from a typical queuing or sampling port.
The IOP handles all routing configurations.

All applications, originally, communicated with other applica-
tions and external systems through queuing and sampling ports.
These communication interfaces are usually based on buffers in
main memory and, hence, are subject to heavy contention in a
multi-core processor. As part of the optimization to the T-CREST
platform, we mapped the port interfaces, used by the demonstra-
tors, to the inter-core communication that the configurable NoC
provides.

To provide a run-time environment to the avionics applications,
we ported the RTEMS real-time operating system (RTOS) to the T-
CREST platform. RTEMS is a free and open source RTOS, used as a
baseline for dozens of space missions, that is compatible with open
standards such as POSIX or iTRON [118]. RTEMS was ported in a
single-core configuration. When supported by a second stage boot-
loader, also developed as part of the evaluation process, it enables
the deployment of Asymmetric Multiprocessing (AMP) configura-
tions over the T-CREST platform where an operating system
instance is present in each one of the platform cores.

7.2. Railway use case

The T-CREST methodology is also evaluated with a use case
from the railway domain. In current railway systems, especially
in urban areas, analog technologies that limit performance, require
constant maintenance, and infer high management costs are still
widespread. It is therefore required to shift towards optimized
innovative solutions in terms of hardware and software. The goal
is to enhance safety and efficiency, and at the same time allow a
reduction of the installation costs.

The railway use case is an adaptation of the GSM-R Integrity
Detection System (GRIDES) to the T-CREST platform. GSM-R is an
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
extension of the commercial GSM standard with additional railway
specific services. Acquiring and analyzing the GSM-R radio signal,
within the allocated bandwidth (for both, the uplink and downlink
channels) and in proximity of one or more railway lines, enables
the assessment of the link’s health. The GRIDES system consists
of a network of intelligent diagnostic units that measure the qual-
ity of the GSM-R radio link along railway tracks. It is necessary to
monitor the radio link status continuously. Therefore, we need to
know the WCET of the tasks to guarantee the continuous opera-
tion. The number of radio channels and the complexity of the radio
interference detection algorithm require the use of high-perfor-
mance systems. To be able to extend the area that GRIDES can
monitor, cost-effective architectures are desirable. In this context
the T-CREST project is well suited. The railway domain specific
use case evaluates the T-CREST platform with the goal to verify
its adaptability to this domain’s rules, and to gain a better under-
standing of its possibilities. The complexity of the process requires
timing/performance optimization and the research of new strate-
gies and tools for automation. The automatic derivation of execu-
tion time bounds is a promising strategy. Therefore, the
verification of the WCET-oriented T-CREST platform tools is inter-
esting for industry.
7.3. Evaluation results of the avionics use case

The main objective of the avionics evaluation was to demon-
strate that, given a configuration of the T-CREST platform, it is pos-
sible to independently obtain the WCET of any application,
regardless of other software executing on the platform. This tem-
poral independence between applications is a cornerstone in the
IMA concept, being difficult to obtain in current multi-core sys-
tems. The lack of analyzable multi-core platforms hampers their
adoption in the aerospace market, preventing the potential bene-
fits in terms of higher system integration that could lead to
improved and cost-efficient avionics systems.

In order to validate application independence, a demonstrator
was setup where each core hosts a different application (AOC,
IOP, CAS) that would, in a typical IMA system, be a standalone par-
tition. Fig. 10 shows this situation, representing a potential deploy-
ment where several distinct avionics systems are integrated over
the same multi-core platform. This distribution of applications on
cores in an asymmetric fashion was used to validate that the tim-
ing of each application depends solely on its own execution and
the hardware configuration.

To provide further insight over the behavior of the T-CREST
platform, several test cases were setup by varying the number,
configuration, and distribution of the avionics applications. For
the different test cases, we estimated the WCET of selected tasks
and, in some cases, compared against a measurement of the aver-
age case execution time of those same tasks. The measured execu-
tion time is obtained by reading the cycle accurate timer of Patmos
at specific points in the source code.

The following set of tables shows the WCET results of the avion-
ics use cases. Each table belongs to a single use case application
and a corresponding function that was selected as the target of
the WCET analysis. The results are shown per test case, and were
obtained using the latency values for 75 MHz, as this is the proces-
sor frequency of our evaluation platform.

As presented in the Tables 3 and 4, we were able to obtain
WCET estimations for every avionics application. Table 3 shows
that the main factor influencing the WCET estimation is the num-
ber of cores available in the platform. Whereas variations in con-
currently executing applications, here appearing as different test
cases, have no noticeable impact on the WCET estimation. The
worst-case execution time estimation for the cas_loop entry
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


Fig. 10. Mapping of ARINC 653 partitions to cores onto the T-CREST platform.

Table 3
WCET results for selected tasks of avionics use cases.

Analysis entry Test case Cores WCET estimation
(in ms)

cas_loop CAS + IOP 4 284
AOC + CAS + IOP 9 619

AGPAOCReceiveMainLoop AOC + IOP 9 5.41
AOC + CAS + IOP 9 5.45

AirplanePAOCMainTask AOC + IOP 9 1.92
AOC + CAS + IOP 9 1.94

decoderLoop AOC + IOP 9 210
AOC + CAS + IOP 9 210

AOCAlertMainLoop AOC + IOP 9 2.72
AOC + CAS + IOP 9 2.74

Table 4
WCET estimations and average-case execution time measurements for IOP: pre_dis-
patcher and pos_router entry points.

Analysis entry Test case Cores WCET
estimation
(in ms)

Timing
measurement
(in ms)

pre_dispatcher CAS + IOP 4 6.24 0.952
AOC + IOP 9 14.64 0.239
AOC + CAS + IOP 9 23.57 1.110

pre_router CAS + IOP 4 6.42 0.121
AOC + IOP 9 15.35 0.120
AOC + CAS + IOP 9 27.07 0.151

Table 5
Comparison of WCET results between Patmos and LEON for the IOP application.

Analysis entry Cores Target CPU WCET estimation (in ms)

pre_dispatcher 1 Patmos 2.20
LEON 2.32

4 Patmos 5.75
LEON 45.28

pre_router 1 Patmos 2.21
LEON 2.15

4 Patmos 6.06
LEON 41.81

M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 17
point displays a twofold increase when changed to a nine-core
platform from a quad-core platform.

Some applications, listed on Table 3, exhibit a very small vari-
ance in the WCET estimation for different test cases while using
the same number of cores. This small variation is due to different
configurations being used in different test cases. Some of these
configurations (e.g., number of ARINC 653 ports) have a small
impact over loop bounds and, hence, over the estimated worst-case
execution time. This effect is also present on the WCET estimation
results from the IOP application presented in Table 4. All WCET
estimations are, as expected, higher than the average case mea-
surements. However, the rather big difference between WCET esti-
mates and measurements has no real meaning, as average case
measurements probably do not trigger the worst-case execution
path. Martin: This overestimation is high. Why? I hope the review-
ers will not kill us for it.

To further improve the T-CREST evaluation process we decided
to setup a simple comparison between the T-CREST platform and a
SPARC/LEON processor. LEON processors are very common in real-
time systems, especially in the space domain. We selected the IOP
application to compare the T-CREST platform against a LEON 3 pro-
cessor, as it was originally a LEON application.

Alongside the compiled IOP executable for LEON 3, a manually
composed AIS annotations file is used as input to AbsInt’s WCET
analysis tool in order to obtain the estimated WCET values for
the LEON processor. These values are then compared with the val-
ues obtained using the same source code compiled for the T-CREST
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
platform. However, this comparison is solely feasible for single
core as it is not possible to determine WCET for multi-core config-
urations of the LEON processor (the problem is unbounded).

Nonetheless, an approximate value of the expectable WCET, for
multi-core LEON, is estimated by factoring single-core WCET val-
ues with a maximum interference multiplier representative of a
LEON multi-core processor. This maximum interference multiplier
is extracted from the literature [119], namely an European Space
Agency funded study aimed at characterizing the NGMP processor
(quad-core LEON 4). In this study, it was found that inter-core
interference could increase the execution time of a given code seg-
ment up to twenty times compared to its single-core value.

Table 5 presents the comparison between LEON 3 and T-CREST/
Patmos. From the comparison in Table 5 we can conclude that, in
single-core configurations, Patmos and LEON have similar results
with one alternately exhibiting a marginal reduction (<5 %) in
the WCET bound over the other depending on the specific analysis
entry point being used.
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


Table 6
WCET of tasks from the avionics use case (in clock cycles).

Task Stack cache size (bytes) D-Cache only

128 256 512

AGP_ClientMainLoop 8747009 8747009 8747009 8817249
Airplane_PAOCMainTask 3710092 3710092 3710092 4539013
AOC_decoderLoop 2677263042 2677202454 2677202454 2233634812
AOC_feederLoop 1403864 1403864 1403864 1411845
AOC_replierLoop 6242675 6242675 6242675 6753912
Pilot_MDCUMainLoop 6082657125 6082657125 6082657125 5986097713
CAS_loop 6225437 6225437 6225437 6670233
IOP_grbc_manager 1041521886 1041521886 1041521886 851933301
dry2_1 553319 553319 553319 577039

Table 7
Worst-case execution time from aiT analysis for Bluetree and TDM in GRIDES.

Cores Bluetree WCET (in s) TDM WCET (in s)

1 322 322
3 225 180
15 102 56

18 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
In multi-core configurations, the difference is more significant;
Patmos, as part of the T-CREST platform, can be directly targeted by
static WCET analysis techniques. Such analysis is unfeasible in
multi-core versions of the LEON processor, like the NGMP. Being
analyzable in terms of WCET behavior offers the T-CREST platform
a key advantage over the LEON multi-core processor. When com-
paring the WCET values obtained in multi-core T-CREST with those
empirically estimated for the LEON, we can see the T-CREST plat-
form yielding a seven times lower WCET bound. Nonetheless, the
LEON values presented cannot be used to build a safety case
around the software because they are rough estimates derived
from empirically obtained interference patterns.

Another element assessed early on the avionics evaluation pro-
cess was the stack cache, since it is a T-CREST innovation that
directly impacts our applications. We compared the WCET estima-
tions from selected tasks of the Avionics applications while varying
the size of the stack cache and its presence. Table 6 presents these
WCET estimations. The T-CREST system was configured with a
burst length of 32 words and a cache line size of 128 bytes.

From Table 6 we can conclude that the avionics tasks analyzed
make a shallow use of the stack, since the increase of the stack
cache size results in a very small improvement in terms of WCET
estimations. The presence of the stack cache resulted in an
improvement in terms of worst-case performance for two-thirds
of the analyzed tasks over the configuration with data cache only.
The remaining tasks do not benefit from the stack cache due to
their cache access patterns.

7.4. Evaluation results of the railway use case

Program parallelization was investigated to increase the perfor-
mance of an application executing on the T-CREST platform. Three
railway use cases are used to evaluate the platform.

The first use case provides the preliminary porting of the
GRIDES project to the T-CREST platform with changes related to
the platform to, but without multi-core adaptations. Only one
Patmos core was used. In the second scenario three Patmos cores
were used. A true parallel management of the Uplink and
Downlink channel groups was used. The aim of the third test
was to evaluate the improvements provided by the Patmos mul-
ti-core architecture. To perform this test, the GRIDES architecture
has been redesigned to use the multi-core architecture and to
group Uplink and Downlink channels to use 15 cores.
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
Table 7 shows WCET estimations for the GRIDES application
executing on different numbers of cores. The table shows WCET
numbers for the Bluetree memory arbiter and a TDM based mem-
ory arbiter. The table shows better performance for the application
running on the multi-core architecture compared to the single core
version. The achieved improvement of the tri-core version over the
single-core version is 1.78 times, while the improvement achieved
with the 15-core version over the single-core version is 5.67.
7.5. Access to open-source components

Many of the components developed within T-CREST are avail-
able in open source, most of them in the industry friendly BSD
license. The sources are hosted at GitHub and the reader can find
the sources of T-CREST at:

� https://github.com/t-crest

Further information on the project is available at:

� Official project web site http://www.t-crest.org
� Processor and compiler web site: http://patmos.compute.

dtu.dk/
� For questions and discussions join the Patmos mailing list:

https://groups.yahoo.com/group/patmos-processor/

8. Conclusion

The T-CREST project provides a time-predictable multi-core
architecture for future hard real-time systems. Within T-CREST
we provide time-predictable hardware: the Patmos processor, the
Argo network-on-chip, the Bluetree memory tree, and an SDRAM
memory controller. A WCET optimizing compiler built from the
LLVM compiler framework supports the processor. We integrated
the compiler and the WCET analysis tool aiT that supports Patmos.

We evaluated the T-CREST platform with real-time applications
from the avionics and railway domains. An application from the
avionic domain demonstrates that tasks executing on different
cores do not interfere with respect to their WCET. A signal process-
ing application from the railway domain shows that the WCET can
be reduced for computation-intensive tasks when distributing the
tasks on several cores.

Most of the technology of T-CREST is available in open source
and we consider it as a platform for further research on time-pre-
dictable architectures.
Acknowledgment

This work was partially funded by the European Union’s 7th
Framework Programme under grant agreement No. 288008:
Time-predictable Multi-Core Architecture for Embedded Systems
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 19
(T-CREST) and the EU COST Action IC1202: Timing Analysis on
Code Level (TACLe).

References

[1] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C.W. Probst, S.
Karlsson, T. Thorn, Towards a time-predictable dual-issue microprocessor:
The Patmos approach, in: First Workshop on Bringing Theory to Practice:
Predictability and Performance in Embedded Systems (PPES 2011), Grenoble,
France, 2011, pp. 11–20.

[2] P. Degasperi, S. Hepp, W. Puffitsch, M. Schoeberl, A method cache for Patmos,
in: Proceedings of the 17th IEEE Symposium on Object/Component/Service-
oriented Real-time Distributed Computing (ISORC 2014), IEEE, Reno, Nevada,
USA, 2014.

[3] S. Abbaspour, F. Brandner, M. Schoeberl, A time-predictable stack cache, in:
Proceedings of the 9th Workshop on Software Technologies for Embedded
and Ubiquitous Systems, 2013.

[4] M. Schoeberl, F. Brandner, J. Spars, E. Kasapaki, A statically scheduled time-
division-multiplexed network-on-chip for real-time systems, in: Proceedings
of the 6th International Symposium on Networks-on-Chip (NOCS), IEEE,
Lyngby, Denmark, 2012, pp. 152–160.

[5] E. Kasapaki, J. Sparso, R.B. Sorensen, K. Goossens, Router designs for an
asynchronous time-division-multiplexed network-on-chip, in: Digital System
Design (DSD), 2013 Euromicro Conference on, IEEE, 2013, pp. 319–326.

[6] E. Kasapaki, J. Spars, Argo: a time-elastic time-division-multiplexed NOC
using asynchronous routers, in: Proc. IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), IEEE Computer Society Press,
2014, pp. 45–52.

[7] J. Garside, N.C. Audsley, Investigating shared memory tree prefetching within
multimedia NOC architectures, in: Memory Architecture and Organisation
Workshop, 2013.

[8] B. Akesson, K. Goossens, M. Ringhofer, Predator: a predictable sdram memory
controller, in: CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, ACM, New
York, NY, USA, 2007, pp. 251–256.

[9] E. Lakis, M. Schoeberl, An SDRAM controller for real-time systems, in:
Proceedings of the 9th Workshop on Software Technologies for Embedded
and Ubiquitous Systems, 2013.

[10] M.D. Gomony, B. Akesson, K. Goossens, Architecture and optimal
configuration of a real-time multi-channel memory controller, in: Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, pp. 1307–
1312.

[11] S. Dighe, S. Vangal, N. Borkar, S. Borkar, Lessons learned from the 80-core
tera-scale research processor, Intel Technol. J. 13 (4) (2009) 119–130.

[12] T.G. Mattson, R.F. Van der Wijngaart, M. Riepen, T. Lehnig, P. Brett, W. Haas, P.
Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, The 48-core SCC
processor: the programmer’s view, in: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2010, pp. 1–
11.

[13] R. Kumar, T.G. Mattson, G. Pokam, R. Van Der Wijngaart, The case for message
passing on many-core chips, in: M. Hübner, J. Becker (Eds.), Multiprocessor
System-on-chip: Hardware Design and Tool Integration, Springer, 2011, pp.
115–123. Ch. 5.

[14] M. Schoeberl, F. Brandner, S. Hepp, W. Puffitsch, D. Prokesch, Patmos
Reference Handbook, Technical Report, 2014.

[15] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E.
Quiñones, M. Gerdes, M. Paolieri, J. Wolf, Merasa: Multi-core execution of
hard real-time applications supporting analysability, Micro IEEE 30 (5) (2010)
66–75.

[16] T. Ungerer, C. Bradatsch, M. Gerdes, F. Kluge, R. Jahr, J. Mische, J. Fernandes, P.
Zaykov, Z. Petrov, B. Boddeker, S. Kehr, H. Regler, A. Hugl, C. Rochange, H.
Ozaktas, H. Casse, A. Bonenfant, P. Sainrat, I. Broster, N. Lay, D. George, E.
Quinones, M. Panic, J. Abella, F. Cazorla, S. Uhrig, M. Rohde, A. Pyka,
parMERASA – multi-core execution of parallelised hard real-time
applications supporting analysability, in: 2013 Euromicro Conference on
Digital System Design (DSD), 2013, pp. 363–370.

[17] M. Schoeberl, A Java processor architecture for embedded real-time systems,
J. Syst. Archit. 54 (1–2) (2008) 265–286.

[18] C. Pitter, M. Schoeberl, A real-time Java chip-multiprocessor, ACM Trans.
Embedded Comput. Syst. 10 (1) (2010). 9:1–34.

[19] L. Thiele, R. Wilhelm, Design for timing predictability, Real-Time Syst. 28 (2–
3) (2004) 157–177.

[20] J. Gustafsson, B. Lisper, M. Schordan, C. Ferdinand, M. Jersak, G. Bernat, ALL-
TIMES – a European project on integrating timing technology, in: T. Margaria,
B. Steffen (Eds.), Proc. Third International Symposium on Leveraging
Applications of Formal Methods (ISOLA’08), Springer, 2008, pp. 445–459.

[21] K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M.
Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. Beyranvand Nejad, A. Nelson, S.
Sinha, Virtual execution platforms for mixed-time-criticality systems: the
CompSOC architecture and design flow, ACM SIGBED Rev. 10 (3) (2013) 23–
34.

[22] S. Goossens, B. Akesson, M. Koedam, A. Beyranvand Nejad, A. Nelson, K.
Goossens, The CompSOC design flow for virtual execution platforms, in:
Proceedings of the 10th FPGAworld Conference, ACM, New York, NY, USA,
2013, pp. 7:1–7:6.
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
[23] M. Schoeberl, Time-predictable cache organization, in: Proceedings of the
First International Workshop on Software Technologies for Future
Dependable Distributed Systems (STFSSD 2009), IEEE Computer Society,
Tokyo, Japan, 2009, pp. 11–16.

[24] M. Schoeberl, A time predictable instruction cache for a Java processor, in: On
the Move to Meaningful Internet Systems 2004: Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES 2004), Vol. 3292
of LNCS, Springer, Agia Napa, Cyprus, 2004, pp. 371–382.

[25] B. Huber, W. Puffitsch, M. Schoeberl, Worst-case execution time analysis
driven object cache design, Concurrency Comput.: Pract. Exp. 24 (8) (2012)
753–771.

[26] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, G. Gebhard, The T-CREST
approach of compiler and WCET-analysis integration, in: 9th Workshop on
Software Technologies for Future Embedded and Ubiquitous Systems (SEUS
2013), 2013, pp. 33–40.

[27] B. Huber, S. Hepp, M. Schoeberl, Scope-based instruction cache analysis, in:
Proceedings of the 14th International Workshop on Worst-Case Execution
Time Analysis (WCET 2014), 2014.

[28] S.A. Edwards, E.A. Lee, The case for the precision timed (PRET) machine, in:
Proceedings of the 44th Annual Conference on Design Automation, ACM, New
York, NY, USA, 2007, pp. 264–265.

[29] B. Lickly, I. Liu, S. Kim, H.D. Patel, S.A. Edwards, E.A. Lee, Predictable
programming on a precision timed architecture, in: E.R. Altman (Ed.),
Proceedings of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES 2008), ACM, Atlanta, GA, USA, 2008,
pp. 137–146.

[30] I. Liu, J. Reineke, D. Broman, M. Zimmer, E.A. Lee, A PRET microarchitecture
implementation with repeatable timing and competitive performance, in:
Proceedings of IEEE International Conference on Computer Design (ICCD
2012), 2012.

[31] I. Liu, Precision Timed Machines, Ph.D. Thesis, EECS Department, University of
California, Berkeley, 2012.

[32] I. Liu, J. Reineke, E.A. Lee, A PRET architecture supporting concurrent
programs with composable timing properties, in: Signals, Systems and
Computers, 2010 Conference Record of the Forty-Four Asilomar Conference
on, 2010.

[33] M. Zimmer, D. Broman, C. Shaver, E.A. Lee, FlexPRET: A processor platform for
mixed-criticality systems, in: Proceedings of the 20th IEEE Real-Time and
Embedded Technology and Application Symposium (RTAS), Berlin, Germany,
2014.

[34] A. Waterman, Y. Lee, D.A. Patterson, K. Asanovic, The Risc-v Instruction Set
Manual, Volume I: Base User-level isa, Technical Report, UCB/EECS-2011-62,
EECS Department, University of California, Berkeley, 2011.

[35] M. Schoeberl, Time-predictable computer architecture, EURASIP J. Embedded
Syst. 2009 (2009) 17 (Article ID 758480).

[36] M. Schoeberl, Is time predictability quantifiable? in: International
Conference on Embedded Computer Systems (SAMOS 2012), IEEE, Samos,
Greece, 2012.

[37] M. Fernández, R. Gioiosa, E. Quiñones, L. Fossati, M. Zulianello, F.J. Cazorla,
Assessing the suitability of the ngmp multi-core processor in the space
domain, in: Embedded Software (EMSOFT), ACM, Tampere, Finland, 2012, pp.
175–184.

[38] D. Wiklund, D. Liu, SoCBUS: Switched network on chip for hard real time
embedded systems, in: Proc. IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2003, IEEE Computer Society, 2003. p. 798a.

[39] P.T. Wolkotte, G. Smit, G. Rauwerda, L. Smit, An energy-efficient
reconfigurable circuit-switched network-on-chip, in: Proc. 19th IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2005,
2005, p. 155a.

[40] K. Goossens, J. Dielissen, A. Rădulescu, The thereal network on chip: concepts,
architectures, and implementations, IEEE Design Test Comput. 22 (5) (2005)
414–421.

[41] A. Hansson, K. Goossens, On-chip Interconnect with Aelite/Composable and
Predictable Systems, Springer, 2011.

[42] M. Millberg, E. Nilsson, R. Thid, A. Jantsch, Guaranteed bandwidth using
looped containers in temporally disjoint networks within the nostrum
network on chip, in: Proc. Design, Automation and Test in Europe (DATE),
IEEE Computer Society Press, 2004, pp. 890–895.

[43] M. Schoeberl, A time-triggered network-on-chip, in: International Conference
on Field-Programmable Logic and its Applications (FPL 2007), IEEE,
Amsterdam, Netherlands, 2007, pp. 377–382.

[44] C. Paukovits, H. Kopetz, Concepts of switching in the time-triggered network-
on-chip, in: Proc. IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2008, pp. 120–129.

[45] T. Bjerregaard, J. Spars, A scheduling discipline for latency and bandwidth
guarantees in asynchronous network-on-chip, in: Proc. IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), IEEE Computer
Society Press, 2005, pp. 34–43.

[46] M. Harrand, Y. Durand, Network on Chip with Quality of Service, US Patent
8,619,622, 2013.

[47] S. Zheng, A. Burns, L.S. Indrusiak, Schedulability analysis for real time on-chip
communication with wormhole switching, Int. J. Embedded Real-Time
Commun. Syst. (IJERTCS) (2010) 1–22.

[48] L.S. Indrusiak, End-to-end schedulability tests for multiprocessor embedded
systems based on networks-on-chip with priority-preemptive arbitration, J.
Syst. Archit. 60 (7) (2014) 553–561.
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://refhub.elsevier.com/S1383-7621(15)00019-3/h0030
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0030
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0030
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0030
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0030
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0040
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0040
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0040
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0040
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0040
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0055
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0055
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0065
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0065
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0065
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0065
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0065
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0065
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0065
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0075
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0075
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0075
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0075
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0085
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0085
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0090
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0090
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0095
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0095
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0100
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0100
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0100
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0100
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0100
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0100
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0105
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0105
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0105
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0105
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0105
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0110
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0110
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0110
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0110
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0110
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0115
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0115
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0115
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0115
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0115
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0120
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0120
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0120
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0120
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0120
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0125
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0125
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0125
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0140
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0140
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0140
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0140
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0145
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0145
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0145
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0145
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0145
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0145
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0145
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0175
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0175
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0185
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0185
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0185
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0185
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0185
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0190
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0190
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0190
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0190
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0200
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0200
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0200
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0205
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0205
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0205
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0210
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0210
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0210
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0210
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0210
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0225
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0225
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0225
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0225
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0225
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0235
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0235
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0235
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0240
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0240
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0240
http://dx.doi.org/10.1016/j.sysarc.2015.04.002


20 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
[49] J.-Y. Le Boudec, Application of network calculus to guaranteed service
networks, IEEE Trans. Inf. Theory 44 (3) (1998) 1087–1096.

[50] M. Bakhouya, S. Suboh, J. Gaber, T. El-Ghazawi, Analytical modeling and
evaluation of on-chip interconnects using network calculus, in: Proc. ACM/
IEEE International Symposium on Networks-on-Chip (NOCS), 2009, pp. 74–
79.

[51] M.D. Gomony, J. Garside, B. Akesson, N. Audsley, K. Goossens, A generic,
scalable and globally arbitrated memory tree for shared dram access in real-
time systems, in: Proceedings 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2014, p. To appear.

[52] S.V. Tota, M.R. Casu, M.R. Roch, L. Rostagno, M. Zamboni, MEDEA: a hybrid
shared-memory/message-passing multiprocessor NoC-based architecture, in:
2010 Design, Automation & Test in Europe Conference & Exhibition (DATE
2010), IEEE, 2010, pp. 45–50.

[53] A. Agarwal, The Tile Processor: A 64-core Multicore for Embedded Processing
Markets Demanding More Performance.

[54] A. Balkan, U. Vishkin, Mesh-of-trees and alternative interconnection
networks for single-chip parallelism, IEEE Trans. Very Large Scale
Integration (VLSI) Syst. 17 (10) (2009) 1419–1432.

[55] A. Rahimi, I. Loi, M.R. Kakoee, L. Benini, A Fully-synthesizable Single-cycle
Interconnection Network for Shared-L1 Processor Clusters, 2011 Design,
Automation & Test in Europe (2011) 1–6.

[56] M. Schoeberl, D.V. Chong, W. Puffitsch, J. Spars, A time-predictable memory
network-on-chip, in: Proceedings of the 14th International Workshop on
Worst-Case Execution Time Analysis (WCET 2014), 2014.

[57] E. Ipek, O. Mutlu, J.F. Martínez, R. Caruana, Self-optimizing memory
controllers: a reinforcement learning approach, in: Computer Architecture,
2008. ISCA’08. 35th International Symposium on, IEEE, 2008, pp. 39–50.

[58] Y. Kim, M. Papamichael, O. Mutlu, M. Harchol-Balter, Thread cluster memory
scheduling: Exploiting differences in memory access behavior, in:
Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International
Symposium on, IEEE, 2010, pp. 65–76.

[59] I. Hur, C. Lin, Memory scheduling for modern microprocessors, ACM Trans.
Comput. Syst. (TOCS) 25 (4) (2007) 10.

[60] S. Bayliss, G.A. Constantinides, Methodology for designing statically
scheduled application-specific SDRAM controllers using constrained local
search, in: Field-Programmable Technology, 2009. FPT 2009. International
Conference on, IEEE, 2009, pp. 304–307.

[61] B. Akesson, K. Goossens, Architectures and modeling of predictable memory
controllers for improved system integration, in: Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2011, IEEE, 2011, pp. 1–6.

[62] J. Reineke, I. Liu, H.D. Patel, S. Kim, E.A. Lee, Pret dram controller: Bank
privatization for predictability and temporal isolation, in: Proceedings of the
seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, ACM, 2011, pp. 99–108.

[63] H. Shah, A. Raabe, A. Knoll, Bounding wcet of applications using sdram with
priority based budget scheduling in mpsocs, in: Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2012, IEEE, 2012, pp. 665–670.

[64] Z.P. Wu, Y. Krish, R. Pellizzoni, Worst case analysis of dram latency in multi-
requestor systems, in: Real-Time Systems Symposium (RTSS), 2013 IEEE 34th,
IEEE, 2013, pp. 372–383.

[65] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, R.R. Rajkumar, Bounding
memory interference delay in cots-based multi-core systems, in: The 20th
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2014), 2014.

[66] M. Paolieri, E. Quiñones, F.J. Cazorla, Timing effects of ddr memory systems in
hard real-time multicore architectures: issues and solutions, ACM Trans.
Embedded Comput. Syst. (TECS) 12 (1s) (2013) 64.

[67] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, B. Jacob, DRAMsim: a
memory system simulator, SIGARCH Comput. Archit. News 33 (2005) 100–
107.

[68] H. Falk, P. Lokuciejewski, H. Theiling, Design of a wcet-aware c compiler, in: F.
Mueller (Ed.), 6th International Workshop on Worst-Case Execution Time
Analysis (WCET’06), Vol. 4 of OpenAccess Series in Informatics (OASIcs),
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2006.

[69] H. Falk, P. Lokuciejewski, A compiler framework for the reduction of worst-
case execution times, Real-Time Syst. (2010) 1–50.

[70] C. Lattner, V.S. Adve, LLVM: A compilation framework for lifelong program
analysis & transformation, in: International Symposium on Code Generation
and Optimization (CGO’04), IEEE Computer Society, 2004, pp. 75–88.

[71] R. Kirner, P. Puschner, A. Prantl, Transforming flow information during code
optimization for timing analysis, Real-Time Syst. 45 (1–2) (2010) 72–105.

[72] H.S. Negi, A. Roychoudhury, T. Mitra, Simplifying WCET analysis by code
transformations, in: Workshop on Worst-Case Execution-Time Analysis
(WCET), 2004.

[73] P. Puschner, The single-path approach towards WCET-analysable software,
in: 2003 IEEE International Conference on Industrial Technology, Vol. 2, 2003,
pp. 699–704.

[74] J. Yan, W. Zhang, A time-predictable VLIW processor and its compiler support,
Real-Time Syst. 38 (1) (2008) 67–84.

[75] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G.
Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J.
Staschulat, P. Stenström, The worst-case execution time problem – overview
of methods and survey of tools, Trans. Embedded Comput. Syst. 7 (3) (2008)
1–53.
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
[76] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints, in: POPL
’77: Proceedings of the 4th ACM Symposium on Principles of Programming
Languages, ACM Press, 1977, pp. 238–252.

[77] R. Heckmann, M. Langenbach, S. Thesing, R. Wilhelm, The influence of
processor architecture on the design and results of WCET tools, Proc. IEEE 91
(7) (2003) 1038–1054.

[78] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke, B.
Triquet, R. Wilhelm, Predictability considerations in the design of multi-core
embedded systems, in: Proceedings of Embedded Real Time Software and
Systems, 2010.

[79] G. Gebhard, C. Cullmann, R. Heckmann, Software structure and WCET
predictability, in: Bringing Theory to Practice: Predictability and
Performance in Embedded Systems, DATE Workshop PPES 2011, Vol. 18 of
OASICS, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Germany, 2011,
pp. 1–10.

[80] A. Ermedahl, A Modular Tool Architecture for Worst-case Execution Time
Analysis, Ph.D. Thesis, 2003.

[81] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, R. Wilhelm, Reliable and precise WCET determination for a real-
life processor, in: T.A. Henzinger, C.M. Kirsch (Eds.), EMSOFT, Vol. 2211 of
Lecture Notes in Computer Science, Springer, 2001, pp. 469–485.

[82] R. Heckmann, C. Ferdinand, Worst-case Execution Time Prediction by Static
Program Analysis, Technical Report, AbsInt Angewandte Informatik GmbH
(Online, last accessed November 2013).

[83] C. Ferdinand, R. Heckmann, Worst-case execution time – a tool provider’s
perspective, in: 11th IEEE International Symposium on Object/component/
service-oriented Real-time distributed Computing ISORC 2008, IEEE
Computer Society, 2008, pp. 340–345.

[84] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R.
Wilhelm, C. Ferdinand, An abstract interpretation-based timing validation of
hard real-time avionics software, in: Proceedings of the 2003 International
Conference on Dependable Systems and Networks (DSN 2003), IEEE
Computer Society, 2003, pp. 625–632.

[85] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, G. Borios, R. Heckmann, Computing
the worst case execution time of an avionics program by abstract
interpretation, in: Proceedings of the 5th Intl Workshop on Worst-case
Execution Time (WCET) Analysis, 2005, pp. 21–24.

[86] D. Kästner, R. Wilhelm, R. Heckmann, M. Schlickling, M. Pister, M. Jersak, K.
Richter, C. Ferdinand, Timing validation of automotive software, in: 3rd
International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISOLA) 2008, Vol. 17 of Communications in
Computer and Information Science (CCIS), Springer, 2008, pp. 93–107.

[87] A. Colin, I. Puaut, A modular and retargetable framework for tree-based wcet
analysis, in: Real-Time Systems, 13th Euromicro Conference on, 2001, pp. 37–
44.

[88] C. Ballabriga, H. Cassé, C. Rochange, P. Sainrat, OTAWA: an open toolbox for
adaptive WCET analysis (regular paper), in: IFIP Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems (SEUS),
Waidhofen/Ybbs, Austria, 13/10/2010-15/10/2010, Springer, 2010, pp. 35–46.

[89] M. Schoeberl, W. Puffitsch, R.U. Pedersen, B. Huber, Worst-case Execution
Time Analysis for a Java Processor, Software: Practice and Experience 40/6,
2010, 507–542.

[90] R. Systems, RapiTime Explained, Whitepaper, 2013. URL <http://www.
rapitasystems.com/system/files/RapiTime%20Explained.pdf>

[91] B. Huber, W. Puffitsch, M. Schoeberl, WCET driven design space exploration of
an object cache, in: Proceedings of the 8th International Workshop on Java
Technologies for Real-time and Embedded Systems (JTRES 2010), ACM, New
York, NY, USA, 2010, pp. 26–35.

[92] P. Puschner, Experiments with WCET-oriented programming and the single-
path architecture, in: Proc. 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, 2005.

[93] P. Puschner, R. Kirner, B. Huber, D. Prokesch, Compiling for time
predictability, in: F. Ortmeier, P. Daniel (Eds.), Computer Safety, Reliability,
and Security, Lecture Notes in Computer Science, Vol. 7613, Springer, Berlin/
Heidelberg, 2012, pp. 382–391.

[94] C. Ferdinand, R. Wilhelm, Efficient and precise cache behavior prediction for
real-time systems, Real-Time Syst. 17 (2–3) (1999) 131–181.

[95] A. Jordan, F. Brandner, M. Schoeberl, Static analysis of worst-case stack cache
behavior, in: Proceedings of the 21st International Conference on Real-Time
Networks and Systems (RTNS 2013), ACM, New York, NY, USA, 2013, pp. 55–
64.

[96] K. Goossens, A. Hansson, The AEthereal network on chip after ten years:
Goals, evolution, lessons, and future, in: Proceedings of the 47th ACM/IEEE
Design Automation Conference (DAC 2010), 2010, pp. 306–311.

[97] F. Brandner, M. Schoeberl, Static routing in symmetric real-time network-on-
chips, in: Proceedings of the 20th International Conference on Real-Time and
Network Systems (RTNS 2012), Pont a Mousson, France, 2012, pp. 61–70.

[98] R.B. Srensen, J. Spars, M. Ruvald Pedersen, J. Hjgaard, A metaheuristic
scheduler for time division multiplexed networks-on-chip, in: IEEE
Workshop on Software Technologies for Future Embedded and Ubiquitous
Systems (SEUS), IEEE, 2014.

[99] A. Hansson, M. Subburaman, K. Goossens, aelite: a flit-synchronous network
on chip with composable and predictable services, in: Proceedings of the
Conference on Design, Automation and Test in Europe (DATE 2009), Leuven,
Belgium, 2009, pp. 250–255.
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://refhub.elsevier.com/S1383-7621(15)00019-3/h0245
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0245
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0270
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0270
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0270
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0295
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0295
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0330
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0330
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0330
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0335
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0335
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0335
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0345
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0345
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0350
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0350
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0350
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0350
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0355
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0355
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0370
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0370
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0375
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0375
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0375
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0375
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0375
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0380
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0380
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0380
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0380
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0380
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0385
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0385
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0385
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0405
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0405
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0405
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0405
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0405
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0405
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0405
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0415
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0415
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0415
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0415
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0415
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0420
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0420
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0420
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0420
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0420
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0420
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0430
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0430
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0430
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0430
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0430
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0430
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0440
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0440
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0440
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0440
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0440
http://www.rapitasystems.com/system/files/RapiTime%20Explained.pdf
http://www.rapitasystems.com/system/files/RapiTime%20Explained.pdf
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0455
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0455
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0455
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0455
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0455
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0465
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0465
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0465
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0465
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0465
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0465
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0465
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0470
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0470
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0475
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0475
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0475
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0475
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0475
http://dx.doi.org/10.1016/j.sysarc.2015.04.002


M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 21
[100] J. Spars, E. Kasapaki, M. Schoeberl, An area-efficient network interface for a
TDM-based network-on-chip, in: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’13, EDA Consortium, San Jose, CA, USA,
2013, pp. 1044–1047.

[101] W.J. Dally, J.W. Poulton, Digital Systems Engineering, Cambridge University
Press, 1998.

[102] J. Spars, S. Furber (Eds.), Principles of Asynchronous Circuit Design – A
Systems Perspective, Kluwer Academic Publishers, 2001.

[103] G. Plumbridge, J. Whitham, N. Audsley, Blueshell: a platform for rapid
prototyping of multiprocessor NoCs and accelerators, in: Proceedings HEART
Workshop, University of York, 2013.

[104] K. Chapman, Multiplexer Design Techniques for Datapath Performance with
Minimized Routing Resources, Xilinx Application Note, 2012.

[105] J. Garside, N.C. Audsley, Prefetching across a shared memory tree within a
network-on-chip architecture, in: System on Chip (SoC), 2013 International
Symposium on, 2013, pp. 1–4.

[106] N.P. Jouppi, Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers, in: Proceedings of the 17th
Annual International Symposium on Computer Architecture, Seattle, WA,
1990, pp. 364–373.

[107] J.W.C. Fu, J.H. Patel, B.L. Janssens, Stride directed prefetching in scalar
processors, ACM SIGMICRO Newsletter 23 (1–2) (1992) 102–110.

[108] D. Joseph, D. Grunwald, Prefetching using Markov predictors, in: Proceedings
of the 24th Annual International Symposium on Computer Architecture –
ISCA ’97, ACM Press, New York, New York, USA, 1997, pp. 252–263.

[109] K. Nesbit, J. Smith, Data cache prefetching using a global history buffer, in:
10th International Symposium on High Performance Computer Architecture
(HPCA’04), IEEE, 2004, pp. 96–96.

[110] S. Goossens, T. Kouters, B. Akesson, K. Goossens, Memory-map selection for
firm real-time SDRAM controllers, in: Proceedings of the Conference on
Design, Automation and Test in Europe, EDA Consortium, 2012, pp. 828–831.

[111] Y. Li, B. Akesson, K. Goossens, Dynamic command scheduling for real-time
memory controllers, in: Proc. Euromicro Conference on Real-Time Systems
(ECRTS), 2014, to appear.

[112] S. Hepp, F. Brandner, Splitting functions into single-entry regions, in:
Proceedings of the 2014 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, CASES ’14, ACM, New
York, NY, USA, 2014, pp. 17:1–17:10.

[113] S. Abbaspour, A. Jordan, F. Brandner, Lazy spilling for a time-predictable stack
cache: implementation and analysis, in: H. Falk (Ed.), 14th International
Workshop on Worst-Case Execution Time Analysis, OpenAccess Series in
Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Vol.
39, Dagstuhl, Germany, 2014, pp. 83–92.

[114] D. Prokesch, B. Huber, P. Puschner, Towards automated generation of time-
predictable code, in: H. Falk (Ed.), 14th International Workshop on Worst-
Case Execution Time Analysis, WCET 2014, July 8, 2014, Madrid, Spain, Vol.
39 of OASIcs, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014, pp.
103–112.

[115] G. Bernat, N. Holsti, Compiler support for WCET analysis: a wish list, in:
WCET, 2003, pp. 65–69.

[116] B. Huber, D. Prokesch, P. Puschner, Combined WCET analysis of bitcode and
machine code using control-flow relation graphs, in: Proceedings of the 14th
ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES 2013), The Association for Computing Machinery,
2013, pp. 163–172.

[117] F. Brandner, S. Hepp, A. Jordan, Criticality: static profiling for real-time
programs, Real-Time Syst. (2013) 1–34.

[118] C. Silva, Integrated Modular Avionics for Space Applications: Input/Output
Module, Master’s Thesis, Instituto Superior Técnico, Universidade Técnica de
Lisboa, 2012.

[119] F.J. Cazorla, R. Gioiosa, M. Fernandez, E. Quiñones, Multicore OS Benchmark,
Technical Report, RFQ- 3–13153/10/NL/JK, European Space Agency (ESA) and
Barcelona Supercomputing Center (BSC), 2012.

Martin Schoeberl received his PhD from the Vienna
University of Technology in 2005. From 2005 to 2010 he
has been Assistant Professor at the Institute of
Computer Engineering. He is now Associate Professor at
the Technical University of Denmark. His research
interest is on hard real-time systems, time-predictable
computer architecture, and real-time Java. Martin
Schoeberl has been involved in a number of national
and international research projects: JEOPARD, CJ4ES, T-
CREST, RTEMP, and the TACLe COST action. He is now
technical lead of the EC funded project T-CREST. He has
more then 100 publications in peer reviewed journals,
conferences, and books.
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
Sahar Abbaspour is a PhD student at the Technical
University of Denmark. She has received her Masters
degree in Computer Engineering in 2011 from
University of Tehran. Her research interest is on time-
predictable computer architecture and currently she is
working on time-predictable data caching.
Benny Akesson received his M.Sc. degree at Lund
Institute of Technology, Sweden in 2005 and a Ph.D.
from Eindhoven University of Technology, the
Netherlands in 2010. Since then, he has been employed
as a Postdoctoral Researcher at Eindhoven University of
Technology, CISTER-ISEP Research Unit, and Czech
Technical University in Prague. His research interests
include design and analysis of multi-core real-time
systems with shared resources.
Neil Audsley received a BSc (1984) and PhD (1993)
from the Department of Computer Science at the
University of York, UK. In 2013 he received a Personal
Chair from the University of York, where he leads a
substantial team researching Real-Time Embedded
Systems. Specific areas of research include high perfor-
mance real-time systems (including aspects of big
data); real-time operating systems and their accelera-
tion on FPGAs; real-time architectures, specifically
memory hierarchies, Network-on-Chip and heteroge-
neous systems; scheduling, timing analysis and worst-
case execution time; model-driven development.

Professor Audsley’s research has been funded by a number of national (EPSRC) and
european (EU) grants, including TEMPO, eMuCo, ToucHMore, MADES, JEOPARD,
JUNIPER, T-CREST and DreamCloud. He has published widely, having upwards of

150 publications in peer reviewed journals, conferences and books.

Raffaele Capasso is a Project Manager at Intecs since
2002. He has a computer science diploma. With expe-
rience in the railway domain technologies, in defense
domain technologies for combat managements systems
and naval systems, in air traffic control domain tech-
nologies and radar data processing. He has been
involved in several projects, including T-CREST (EC).
Currently, he is Project Manager and Technical Leader in
Intecs’s for R&D projects in railway domain for Naples
office.
Jamie Garside received his MEng degree at the
University of York, and is currently working towards his
PhD at the same university. His research interests
include networks-on-chip, memory interconnect and
prefetching.
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://refhub.elsevier.com/S1383-7621(15)00019-3/h0505
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0505
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0505
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0510
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0510
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0510
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0510
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0535
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0535
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0540
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0540
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0540
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0540
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0560
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0560
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0560
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0560
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0560
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0565
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0565
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0565
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0565
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0565
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0565
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0565
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0585
http://refhub.elsevier.com/S1383-7621(15)00019-3/h0585
http://dx.doi.org/10.1016/j.sysarc.2015.04.002


22 M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx
Kees Goossens received his PhD in Computer Science
from the University of Edinburgh in 1993 on hardware
verification using embeddings of formal semantics of
hardware description languages in proof systems. He
worked for Philips/NXP Research from 1995 to 2010 on
networks on chip for consumer electronics, where real-
time performance, predictability, and costs are major
constraints. He was part-time full professor at Delft
university from 2007 to 2010, and is now full professor
at the Eindhoven university of technology, where his
research focusses on composable (virtualised), pre-
dictable (real-time), low-power embedded systems. He
published 3 books, 150+ papers, and 16 patents
Sven Goossens was born in Wouw, The Netherlands in
1986. He received a MSc in embedded systems from the
Eindhoven University of Technology in 2010, and is
currently a PhD candidate at the same university. His
research interests include mixed time-criticality sys-
tems, composability and SDRAM controllers.
Scott Hansen is Director for European Projects at The
Open Group and has been the project leader for 16
previous European Commission funded projects
including large RTD STREP and IP projects, as well as
accompanying measures, and thematic networks. Based
in the Brussels, he co-ordinates the research efforts of
The Open Group in Europe amongst European members,
as well as with other European standards bodies, and
industry consortia, where he sits on the ICT Standards
Board, a European Commission funded grouping of
Standards Organisations and Industry consortia. He
holds degrees in computer science, business manage-

ment and industrial engineering, and has over 20 years experience working in both
large multi-national organisations and smaller start-ups managing technology
development, deployment, exploitation as well as the financial and administrative

disciplines associated with successful introduction of new technologies.

Reinhold Heckmann studied Computer Science at
Saarland University in Saarbruecken, Germany, where
he received the Dr. rer. nat. degree in 1991. After being
Lecturing Assistant at Saarland University and Research
Fellow at Imperial College, London, he became Senior
Researcher at AbsInt Angewandte Informatik GmbH in
2000. Within AbsInt, he is working on the foundations
of timing analysis for hard-real time systems. This work
has been pursued in the context of various European
research projects funded by the FP5, FP6, FP7, Artemis,
and ITEA programmes, including INTERESTED (FP7 IST-
214889), PREDATOR (FP7 IST-216008), ALL-TIMES (FP7
IST-215068), T-CREST (FP7 IST-288008), and CERTAINTY
(FP7 IST-288175).
Stefan Hepp received his MSc in computer engineering
from Vienna University of Technology in 2011, where he
is currently working toward his Ph.D. under the super-
vision of Professor Jens Knoop. His research interests
include worst-case execution time oriented code opti-
mizations, cache analysis techniques and time-pre-
dictable architectures.
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
Benedikt Huber received his MSc in computational
intelligence from Vienna University of Technology in
2009. Since then, he worked as a research and teaching
assistant at the same university’s real-time systems
group. His research focus is on WCET analysis in the
context of time-predictable system design.
Alexander Jordan received his PhD in Computer
Science from the Vienna University of Technology in
2014 and is currently employed as a postdoctoral
research assistant at DTU in Denmark. Working as an
Embedded Software engineer for several years, his
research interests nowadays include code generation
techniques, program analysis and optimization.
Evangelia Kasapaki has received her BSc and MSc from
Computer Science Department, University of Crete,
Greece in 2006 and 2008 respectively and is currently a
PhD student in Technical University of Denmark. She
has worked as a Electronic Design Automation software
engineer from 2008 to 2011, in Nanochronous Logic, Inc,
when she started her PhD. Her research interests
include asynchronous design, Networks-on-Chip and
SoC design, real-time systems and Electronic Design
Automation.
Jens Knoop is a full professor at the Vienna University
of Technology, where he leads the languages and com-
pilers group. His research interests include program
analysis, optimization, and verification, especially of
safety-critical real-time systems. Jens Knoop is a mem-
ber of the IEEE and the ACM.
Yonghui Li got his bachelor and master degrees both
from Xidian University in 2009 and 2012, respectively.
Since May 2012, he is working towards a PhD at
Eindhoven University of Technology. His research
interests include Networks-on-Chip, memory con-
trollers, and real-time systems.
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002


M. Schoeberl et al. / Journal of Systems Architecture xxx (2015) xxx–xxx 23
Daniel Prokesch received his MSc in computer engi-
neering from Vienna University of Technology in 2011.
Currently, he is a PhD candidate under supervision of
Professor Peter Puschner at the same university. His
research interests include time-predictable system
design, WCET analysis and code generation techniques.
Wolfgang Puffitsch is currently a postdoc researcher at
DTU Compute in Copenhagen, Denmark, working on
time-predictable computer architectures in the scope of
the RTEMP project. From May 2012 to May 2013, he was
a postdoc researcher at the DTIM group of ONERA in
Toulouse, France, in the scope of the TOAST project.
Before that, since January 2008, he worked as research
and teaching assistant at the Institute of Computer
Engineering at the Vienna University of Technology in
Vienna, Austria, where he defended his PhD thesis on
real-time garbage collection in March 2012.
Peter Puschner is a professor in computer science at the
Vienna University of Technology. His main research
interest is on hard real-time systems for safety-critical
applications, with a focus on the worst-case execution
time (WCET) analysis and software/hardware architec-
tures for time-predictable computing systems.
He has published more than 100 refereed conference
and journal papers, received one patent, and was a guest
editor of two special journal issues on WCET analysis. P.
Puschner chaired the PC of ISORC 2003 and ECRTS 2004,
was the general chair of ECRTS 2002, ISORC 2004, and
SEUS 2010, and was the local chair of the IEEE Real-Time

Systems Symposium in 2011. He is a member of the Editorial Board of the Springer
Real-Time Systems journal and is in charge of the steering committees of the
workshop series on worst-case execution-time analysis (WCET) and the

International Workshop on Software Technologies for Future Embedded and
Ubiquitous Computing Systems (SEUS).
Prof. Puschner received a Marie-Curie Category-30 fellowship and spent one year
(2000) as a visiting researcher at the University of York, England. He has been
involved in a number of national and international research projects, including the
following projects funded by the European Commission: SETTA, NextTTA, CaberNet,
Artist, Artist2, ArtistDesign, T-CREST, MultiPARTES, and the TACLe COST action. P.
Puschner is a member of the IEEE Computer Society, IFIP working group 10.2 on
Embedded Systems, Euromicro, the Austrian Computer Society (OCG), and the
Marie-Curie Fellowship Association.

André Rocha is a software engineer at GMV since 2012,
staffed to the Aerospace, Homeland Security and
Defense department. He finished his Integrated Master
of Science (MSc) degree in Aerospace Engineering, in the
field of Avionics, at Instituto Superior Técnico in
December 2011, and started working as a junior IT
consultant at Everis Portugal by that time. He took part
in several software development projects, targeting
different platforms and customers, with a special focus
on the energy sector and, in particular, the EDP group.
André enters GMV Portugal in 2012, taking on the
DORATHEA project where he acquires skills in Air Traffic

Management and Security Risk Assessment. In the scope of this project, he partic-
ipates in the SWIM Master Class 2013. Afterwards, André joins the T-CREST project
Please cite this article in press as: M. Schoeberl et al., T-CREST: Time-predictab
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
team, being responsible for not only porting the RTEMS OS to the new T-CREST
processor architecture, but also adapting various avionics use case applications to
the new platform.

Cláudio Silva is a technical manager and embedded
software developer at GMV since 2011. With a master’s
degree in Aerospace engineering, he has broad experi-
ence in the aeronautics and space domain technologies,
including experience in embedded software develop-
ment, real time systems, and driver development. He
has participated in projects focusing Integrated Modular
Avionics, time and space partitioning, real time systems
and on-board software development. Currently, he is
Technical Leader in GMV’s IMA Activities and product
manager of GMV’s real-time operating system AIR. Mr.
Cláudio has been involved in several European

Commission, European Space Agency and national projects, including T-CREST (EC),
IMA for Space (ESA) and MultIMA (ESA). Moreover, he is presently a recognizable
active member of the RTEMS open-source community.
Alessandro Tocchi is a software and firmware test/de-
velopment engineer at Intecs since 2011. He has a
masters degree in electronic engineering. With experi-
ence in the railway domain technologies, he has worked
as an embedded software technician, systems integra-
tion specialist, and real time system analyst. He has
been involved in several projects, including T-CREST
(EC).
Jens Sparsø is a professor at the Technical University of
Denmark (DTU). His research interests include archi-
tecture and design of VLSI systems, application specific
processors, low power design techniques, design of
asynchronous circuits, and networks-on-chip. J. Sparsø
has published more than 70 refereed conference and
journal papers and is coauthor of the book Principles of
Asynchronous Circuit Design - A Systems Perspective
(Kluwer, 2001). J. Sparsø received the Radio-Parts
Award and the Reinholdt W. Jorck Award in 1992 and
2003, in recognition of his research on integrated cir-
cuits and systems, and he received the best paper award

at ASYNC 2005. J. Sparsø is a member of the steering committees for the IEEE Intl.
Symposium on Asynchronous Circuits and Systems (ASYNC) and the ACM/IEEE Intl.
Symposium on Networks-on-Chip (NOCS).
le multi-core architecture for embedded systems, J. Syst. Architect. (2015),

http://dx.doi.org/10.1016/j.sysarc.2015.04.002

	T-CREST: Time-predictable multi-core architecture for embedded systems
	1 Introduction
	1.1 The T-CREST platform and supported programming models
	1.2 Project contributions
	1.3 Paper organization

	2 Related work
	2.1 Related projects
	2.2 Time-predictable processors
	2.3 Core-to-core network-on-chip
	2.4 External memory access
	2.5 Compiler
	2.6 WCET analysis

	3 The processor
	3.1 Fully predicated instruction set
	3.2 Dual-issue pipeline
	3.3 Local memories
	3.3.1 Method cache
	3.3.2 Stack cache
	3.3.3 Data cache
	3.3.4 Miss detection and pipeline stalling


	4 The core-to-core message passing network-on-chip
	5 The memory hierarchy
	5.1 The bluetree memory tree
	5.2 Prefetcher
	5.3 Time-predictable SDRAM back-end
	5.4 WCET of a memory transaction

	6 The compiler and WCET analysis
	6.1 Support for the Patmos ISA
	6.2 Single-path code generation
	6.3 Compilation tool chain
	6.4 The WCET analyzer aiT
	6.5 Compiler and WCET analysis integration
	6.5.1 Preservation of meta-information
	6.5.2 Exchange of program and timing information


	7 Evaluation
	7.1 Avionics use case
	7.2 Railway use case
	7.3 Evaluation results of the avionics use case
	7.4 Evaluation results of the railway use case
	7.5 Access to open-source components

	8 Conclusion
	Acknowledgment
	References


