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Abstract Hard real- time multiprocessor scheduling has seen, in recent years, the
flourishing of semi-partitioned scheduling algorithms. This category of scheduling
schemes combines elements of partitioned and global scheduling for the purposes
of achieving efficient utilization of the system’s processing resources with strong
schedulability guarantees and with low dispatching overheads. The sub-class of slot-
based “task-splitting” scheduling algorithms, in particular, offers very good trade-
offs between schedulability guarantees (in the form of high utilization bounds) and
the number of preemptions/migrations involved. However, so far there did not exist
unified scheduling theory for such algorithms; each one was formulated in its own
accompanying analysis. This article changes this fragmented landscape by formulat-
ing a more unified schedulability theory covering the two state-of-the-art slot-based
semi-partitioned algorithms, S-EKG and NPS-F (both fixed job-priority based). This
new theory is based on exact schedulability tests, thus also overcoming many sources
of pessimism in existing analysis. In turn, since schedulability testing guides the task
assignment under the schemes in consideration, we also formulate an improved task
assignment procedure. As the other main contribution of this article, and as a response
to the fact that many unrealistic assumptions, present in the original theory, tend to
undermine the theoretical potential of such scheduling schemes, we identified and
modelled into the new analysis all overheads incurred by the algorithms in consid-
eration. The outcome is a new overhead-aware schedulability analysis that permits
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increased efficiency and reliability. The merits of this new theory are evaluated by an
extensive set of experiments.

Keywords Multiprocessor systems - Slot-based task-splitting algorithms -
Schedulability analysis - System overheads

1 Introduction

The advent of multicore chips has drawn the interest of the research community to real-
time scheduling on multiprocessors! in order to allow efficient use of the processing
capacity offered by such systems. However, many challenges exist, because, unlike
real-time scheduling theory for uniprocessor systems, which is considered mature,
real-time scheduling theory for multiprocessor systems is still a rapidly developing
research field. One of the reasons behind many research challenges is that multiproces-
sor systems introduce an additional dimension to the scheduling problem, which is that
of task migration. According to the degree of migration, multiprocessor scheduling
algorithms have traditionally been categorized as global or partitioned.

Global scheduling algorithms store all tasks in one global queue, shared by all
processors. At any time instant, the m highest-priority tasks among those are selected
for execution on the m processors. Tasks can migrate from one processor to another
during the execution; that is, an execution of a task can be stopped (preempted) in one
processor and resumed on another processor. Some scheduling algorithms (Baruah
et al. 1994; Anderson and Srinivasan 2004) of this class present a utilization bound
(a metric for evaluating scheduling algorithms, defined as a threshold for the task set
workload such that all tasks meet their deadlines when the task set workload does
not exceed that threshold) of 100 %, at the cost of many preemptions and migrations.
However, the global shared queue imposes the use of some locking mechanism to
serialize the access to that queue, which may become a bottleneck. Additionally, the
high number of preemptions and migrations can cause numerous cache misses.

In contrast, partitioned scheduling algorithms partition the task set such that all tasks
in a partition are assigned to the same processor. Tasks are not allowed to migrate from
one processor to another. This class of scheduling algorithms presents a utilization
bound of at most 50 %. However, it transforms a multiprocessor system, composed by
m processors, into m uniprocessor systems, thus simplifying the scheduling problem.

The partitioned scheduling schemes require two algorithms: an off-line task-to-
processor assignment algorithm and a run-time task-dispatching algorithm. The first
one assigns tasks to processors and the second one schedules tasks at run-time to
execute on the processor(s). Assigning tasks to processors is a bin-packing problem,
which is known to be NP-hard. The main goal of a bin-packing algorithm (Coffman et
al. 1997) is to pack a collection of items with different sizes into the minimum number
of fixed-size bins such that the total weight (or volume) in each bin does not exceed
some maximum value. In the context of real-time scheduling algorithms, each item

1 We use the term multiprocessor rather than multicore, because a lot of that work applies not only to
multicore but also to other multiprocessor systems.

@ Springer



Real-Time Syst

is a task from the task set, the size of each item is the utilization of the task (defined
as the ratio between the execution requirement and the period or the minimal inter-
arrival time of a task), each bin is a processor and the size of each bin is the processing
capacity of one processor, usually assumed as 100 %. There exist several heuristics
for these types of problems; examples include Next-Fit (NF) and First-Fit (FF). NF
assigns tasks one by one to the current processor and if one task does not fit on the
current processor it leaves the current processor behind and continues packing on the
next processor. FF assigns a task to the first (lowest indexed) processor that can accept
the task. The task-dispatching algorithm schedules the statically assigned tasks using
a uniprocessor scheduling algorithm, such as the Earliest-Deadline-First (EDF) (Liu
and Layland 1973), which assigns the highest priority to the ready task with earliest
absolute deadline.

Recently, real-time researchers have developed semi-partitioned or task-splitting
scheduling algorithms for multiprocessor systems to solve or reduce the drawbacks and
limitations presented by global and partitioned scheduling algorithms. Typically, under
task-splitting scheduling algorithms, most tasks (called non-split tasks) execute on only
one processor (as in partitioning) while a few tasks (called split tasks) use multiple
processors (as in global scheduling). Contrary to what the name may suggest, the code
of such tasks is not split; what is split is the execution requirement of such tasks. This
approach produces a better workload balance among processors than partitioning (and
makes it possible to construct algorithms with a higher utilization bound). Additionally,
semi-partitioning may be used to reduce (or remove Sousa et al. 2011b) the need for
a locking mechanism (e.g. by avoiding global shared queues) and it has the potential
to reduce the number of migrations, compared to global scheduling (by reducing the
number of migrating tasks).

This article focuses on slot-based task-splitting scheduling algorithms. These
scheduling algorithms present the highest utilization bound among scheduling algo-
rithms that do not share a global queue. Such algorithms subdivide the time into
(typically) equal-duration time slots. Each time slot on every processor is composed
by one or more time reserves, which are time windows (of a fixed respective length)
used to execute one or more tasks. Reserves for split tasks, which execute on two
or more processors, must be carefully positioned within the time slots in order to
avoid their overlapping in time. The three main contributions of the article are: (i) the
formulation of a unified, processor demand-based and overhead-aware, schedulabil-
ity analysis applicable to slot-based task-splitting algorithms S-EKG and NPS-F;
(i1) an improved task-assignment algorithm, taking advantage of the new analysis;
and (iii) the identification of the overheads associated with slot-based task-splitting
scheduling schemes. Apart from the theoretical value of the aforementioned contri-
butions, they are also important because of the following real-world considerations.
First, the higher processor utilization, resulting from the improved schedulability test-
ing and task assignment, allows cost savings by enabling fewer (or slower) processors
to schedule a given task set. Second, the overhead-aware nature of the analysis per-
mits greater reliability, because it takes into account the overheads incurred by tasks

2 Specifically, we only cover the main variant of NPS-F, which splits tasks between no more than two
processors.
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when running in a real system. By contrast, analysis that ignore overheads may deem
schedulable a task set, whose tasks may miss their deadlines when running in a real
system because of the system overheads. This is an important step towards the use of
task-splitting-based scheduling for higher-criticality applications (for which, a missed
deadline may have serious real-world consequences).

1.1 Historical perspective and related work

Semi-partitioning was born out of the desire to avert the occurrence of pathological
cases when partitioned scheduling performed particularly inefficiently, such as in the
following example.

Example: Consider m processors and n = m + 1 tasks, each of which arrives every
2 time units and needs to execute for 1.0 4 € time units until its next arrival. With
partitioning, there is no way to assign tasks without one processor being assigned two
(or more) tasks. In turn, this means that on that processor, under whichever schedul-
ing algorithm, it is impossible for more than one task to meet all its deadlines. The
implication is that (for m — oo and € — 07T) deadlines can be missed even though
the system is utilized barely above 50 %.

Yet, researchers observed (Anderson et al. 2005; Andersson and Tovar 2006) that,
in many cases, if the execution time of a task could be “split” into two pieces (assigned
to different processors), then it would be possible to meet deadlines. In the context of
the above example, all tasks except the last one could be assigned to one respective
processor but the last task could use two processors (any two) in the following manner:
after each arrival, execute for (1.0 4 €)/2 time units on its first processor and the
remaining (1.0 4 €)/2 time units on its second processor. Provided that the intervals
for execution of this task on the two processors do not overlap in time, this would
allow all deadlines to be met.

Many recent algorithms are based on this idea and they differ in: (i) how tasks
are assigned to processors and split at design time; and (ii) how tasks (in particular,
split tasks) are dispatched at run-time. In just a few years, the landscape of semi-
partitioning already comprises many diverse approaches to scheduling. For example,
see (Anderson et al. 2005; Andersson and Tovar 2006; Kato and Yamasaki 2007, 2008,
2009; Andersson and Bletsas 2008; Andersson et al. 2008; Lakshmanan et al. 2009;
Bletsas and Andersson 2009, 2009, 2011; Burns et al. 2012) and also the survey by
Davis and Burns (2009). However, as mentioned before, this article focuses solely on
the subset of slot-based task-splitting scheduling algorithms:

In 2006, Andersson and Tovar (2006) introduced the first slot-based task-splitting
scheduling algorithm called EKG (nowadays often retroactively referred to as “Peri-
odic EKG” or “the original EKG”). EKG was limited to the scheduling of periodic
tasks only. Under this scheme, time is divided into time slots of unequal (in the gen-
eral case) duration, with the time boundaries of a given time slot corresponding to
the time instants of two consecutive job arrivals (possibly by different tasks) in the
system. Most tasks are partitioned but at most m — 1 tasks (with m being the number
of processors) are split—each between a corresponding pair of successively indexed
processors. Within each time slot, the first piece of a split task is executed at the end of
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the time slot on the first processor utilized by that task, and the second piece is executed
at the start of the time slot on the other processor. All other tasks are executed under
EDF on their respective processors. The basic form of the algorithm has a utilization
bound of 100 %. Clustered variants of EKG divide the system into m/k clusters of
k processors each—hence the name EKG, stands for “EDF with task splitting and k
processors in a group”. Such clustering may be used to trade-off utilization bound for
fewer preemptions and migrations.

However, the original EKG suffered from the limitation that, by design, it could not
handle sporadically arriving tasks. This was because split task budgets in each time
slot were proportional to the task utilization and the time slot length. However, given
that time slots were formed between successive job arrivals, it was necessary to know
the time of next job arrival in order to compute these budgets. With periodic tasks,
this is not a problem, since arrival times are deterministic and may be computed in
advance. However, with sporadic arrivals, this information is neither known in advance
nor predictable.

This is why, in 2008, Andersson and Bletsas came up with an adapted design that
came to be known as Sporadic EKG (S-EKG). In order to accommodate sporadic
tasks, this algorithm “decouples” the time slot boundaries from the time instants of
job arrivals. Rather, all time slots are of equal length. However, given that tasks can now
arrive at “unfavorable” offsets relative to the time slot boundary, there is a penalty to
be paid in terms of utilization bound: in order to ensure schedulability, processors can
no longer be filled up to their entire processing capacity. Via a designer-set parameter,
which controls the time slot length, S-EKG can be configured for a utilization bound
from 65 % to arbitrarily close to 100 %, at the cost of more preemptions and migrations.
Later in the same year, Andersson et al. came up with a version of S-EKG, named
EDF-SS (Andersson et al. 2008). EDF-SS can handle arbitrary-deadline tasks (whereas
its predecessor was formulated in the context of implicit-deadline tasks). However,
due to different task assignment heuristics, one version does not dominate the other.
Moreover, in part due to this “break” from the previous variant, no utilization bound
above 50 % has been proven for EDF-SS.

The three EKG variants discussed share a basic design: at most m — 1 tasks are
split, each between two successively indexed processors—the first piece of a split task
executes at the end of the time slot on the first processor used by that task and the
second piece is executed at the start of the time slot on the other processor. However, a
less prescriptive approach to splitting the execution time of tasks between processors,
while at the same time maintaining a slot-based dispatching, was soon devised:

In 2009, Bletsas and Andersson presented NPS (Bletsas and Andersson 2009),
rapidly superseded entirely by NPS-F (Bletsas and Andersson 2009, 2011). This
algorithm (and its short-lived predecessor) employ a server-based approach. Each
server (termed notional processor in the context of that work) serves one or more
tasks employing an EDF scheduling policy. Under NPS-F (that stands for Notional
Processor Scheduling—Fractional capacity), it is the execution time of these servers
which is split—not directly that of the underlying tasks served. In principle, this
allows improved efficiency in the utilization of a multiprocessor system. NPS-F has
a utilization bound of 75 % configurable up to 100 % at cost of more preemptions
and migrations. Compared to S-EKG, for corresponding configurations characterized
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by roughly the same number of preemptions, NPS-F has a higher utilization bound.
However, a downside to splitting servers instead of tasks is that the number of migrating
tasks is not bounded a priori and typically exceeds m — 1.

1.2 Contribution of this article

As a general pattern, not specific to semi-partitioned scheduling, scheduling theory
tends to be originally formulated together with a set of simplifying assumptions that
have little correspondence with areal system. In the context of slot-based task-splitting
scheduling algorithms, although some practical works (Sousa et al. 2010, 2011a,
2011b, 2012; Bastoni et al. 2011) have clearly demonstrated that these scheduling
schemes are practical to implement in a real system, the practice also shows some
performance degradation compared to what is theoretically achievable, due to various
sources of overheads often unaccounted for by the theory. For instance, most theo-
retical works assume that task switching is instantaneous, but, in practice, it is time
consuming because the operating system has to save the state of one task and restore
that of another task. In this work, we bridge the gap between theory and practice by
adapting the schedulability theory so that it accounts for the overheads that these algo-
rithms incur in a real system. However, the contributions of the article are wider, and
are outlined as follows:

1. We formulate a new and comprehensive scheduling theory for slot-based semi-
partitioning. Although this theory is not specific to any particular scheme, we
show how it can be applied to the specific algorithm under consideration (S-EKG
or NPS-F). The fact that this new theory employs exact, processor demand-based,
schedulability tests makes it inherently more efficient than the original analysis for
the respective algorithms, which employed utilization-based tests. In the absence
of overheads, the new analysis dominates its predecessors.

2. We identify and model into the new analysis all types of scheduling overheads
manifested under the scheduling algorithms in consideration. This renders the
new, unified schedulability analysis overhead-aware.

3. We develop a sophisticated off-line task assignment algorithm, which is guided by
the new overhead-aware analysis. This brings increased efficiency and reliability
to slot-based task-splitting scheduling algorithms.

4. We experimentally derive estimates of the various respective overheads using a
real Linux-based multiprocessor system. Using these estimates we validate the
efficiency and reliability of the new theory, by applying it to different scenarios.

Note however that, in this paper, we had to balance expressive completeness with
presentation. Hence, strictly speaking, we only cover one of the two variants (“flat-
mapped”) of NPS-F, which, like S-EKG, the other algorithm covered, splits tasks
between no more than two processors. Covering the general case (splitting over any
number of processors) would add little practical value, since both NPS-F variants
have the same theoretical properties, at the cost of considerable complexity. Another
limitation of this work is that it does not consider the need for task synchronization
(i.e. to access shared resources).
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1.3 Organization of this article

The remainder of this article is structured as follows. Section 2 discusses basic assump-
tions and the system model considered. A generic description of slot-based task-
splitting algorithms is presented in Sect. 3 that ends with a summary of most of the
notation used in this article. The purpose of this section is to provide the reader with
the necessary background to understand the new demand-based and overhead-aware
schedulability analysis presented in Sect. 4. This analysis is then used to develop a new
task to processor assignment algorithm in Sect. 5. In Sect. 6, the new schedulability
analysis is evaluated and compared to the original schedulability analysis of slot-based
task-splitting scheduling algorithms. Additionally, extensive experimental results are
provided and discussed. Finally, in Sect. 7 conclusions are drawn.

2 Assumptions and system Model
2.1 Assumptions about the architecture

We assume a multiprocessor system consisting of identical processors, all of which
always execute at the same frequency. This means that the execution speed of a proces-
sor does not depend on activities on another processor (e.g. whether the other proces-
sor is busy or idle or which task it is busy executing) nor does it change at run-time.
This work is therefore only applicable to systems with Simultaneous MultiThreading
(SMT) and Dynamic Voltage and Frequency Scaling (DVFES) features disabled. In
state-of-the-art hardware it is possible to disable both these hardware features via the
BIOS and/or software.

We assume that each processor has a local timer that keeps track of real-time (not
calendar time) and provides a function for reading its value. Furthermore, we assume
that it is able to generate an interrupt at x time units in the future (x being configurable).
These facilities are rather common. For example, on Linux they are provided by the
high-resolution timers framework.

2.2 System model

We consider preemptive real-time systems composed by m physical processors. Each
physical processor is uniquely indexed in the range P; . . . P,,. The system also includes
atask set T composed by n independent tasks, each of which is uniquely indexed in the
range 71 ... T,. Each task t; is characterized by its worst-case execution time C;, by
its minimum inter-arrival time 7; and by the time span that can elapse since its arrival
until its execution is completed, the relative deadline D;. We assume 0 < C; < D;.
Note that we also assume arbitrary deadlines, i.e. it may be that D; < T;, D; = T; or
D,‘ > T,
The utilization of task 7;, denoted u;, is defined as:

Ui = — ey
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Fig. 1 Job timing parameters

and the (normalized) system utilization, U, is defined as:

=%-Zui @)

i=1

Each task 7; generates a potentially infinite number of jobs and each job 7; ; (that
is the j job of task 7; with j < 1) becomes ready to be executed at arrival time
(a;, ;) and continues until finishing (or completion) time ( f; ;). The absolute deadline
(d;, ;) of job 7; j is computed as d; ; = a; j + D; and a deadline miss occurs when
fi,j > d;,j. By definition of T;, the time difference between any two consecutive job
arrivals must be at least equal to 7;. Figure 1 illustrates the relation among the timing
parameters of job 7; ;. The execution of job 7; ; is represented by a gray rectangle and
the sum of all execution chunks (c ) must be less or equal than C;.

We also consider a set of k serverv which are equivalent to physical processors in
terms of processing capacity, indexed in the range Py ... P,. The set of tasks that can
be assigned to a server P (denoted by r[P ] is 11I1’11ted by 1ts processing capacity
that is equal to 1.0 (100 %). The utilization of a server P (U[P,]) is given by:

UlP = > ui 3)

3 Slot-based task-splitting

This section provides background on slot-based semi-partitioning that is essential to
understand the demand-based and overhead-aware schedulability analysis presented
in the next section. We start by describing the basic concepts and a generic scheduling
algorithm. We then show that both S-EKG? and NPS-F can be formulated as instances
of this generic algorithm.

From this point onwards, we will not consider the (original) EKG scheduling algo-
rithm (Andersson and Tovar 2006), whose applicability is limited to periodic task sets
with implicit deadlines, and whenever we refer to slot-based task-splitting algorithms
we mean S-EKG and NPS-F.

3 We focus on S-EKG and not in EDF-SS, because latter is a version of the former that explores different
bin-packing heuristics for assigning task-to-processors.
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Fig. 2 Task-to-server mapping

3.1 Generic scheduling algorithm

A key concept of the generic scheduling algorithm is that of a server. A server is a
logical entity that provides computation services to tasks and has a maximum capacity
equal to that of the underlying physical processors. Thus, in the generic algorithm,
a task is first mapped to a server, which is then allocated one or two processors. A
processor may be allocated to at most three servers, but at any time a processor is
allocated to only one server and one server is served by at most one processor. A
time reserve is a time window during which a processor is exclusively reserved to a
server, i.e. executes tasks of only that server. Therefore, time reserves on a processor
are non-overlapping. Furthermore, given the sporadic nature of the tasks in a server,
time reserves are periodic and we call their period, which is the same for all reserves,
the time slot. In the generic scheduling algorithm, in any time slot, a processor has
one time reserve per server it is allocated to.

The scheduling of a set of tasks in the generic algorithm comprises two procedures,
one that is performed off-line and another that is executed at run-time. The off-line
procedure maps tasks to servers, determines the computation capacity of each server
and allocates reserves on the processors in order to ensure that each server has the
required capacity. The run-time procedure should be a scheduling algorithm that runs
on each processor and that uses EDF to choose the task of the server associated to the
currently active time reserve.

We now describe the off-line procedure. The generic algorithm specifies a procedure
composed of four steps and what is performed in each step, but it does not prescribe
any algorithm for any of the steps. This is up to the specific scheduling algorithms.

To illustrate the generic algorithm, we use an example. The figures illustrating
its application were obtained by using the algorithms specified for the NPS-F, later
described in Sect. 3.3. The task set () in our example is comprised of seven tasks, 7]
to 77. Inset (a) of Fig. 2 represents each task in that set by a rectangle whose height
represents that task’s utilization.

The first step of the off-line procedure is mapping tasks to servers, which we denote
Isq. The generic algorithm does not prescribe how tasks are mapped to servers. Each
specific scheduling algorithm can use its own mapping. Inset (b) of Fig. 2 shows the
task-to-server mapping obtained by applying NPS-F’s first step algorithm.

The second step of the off-line procedure is to determine the (computation) capacity
of each server. This is obtained by inflating the sum of the utilization’s of the server’s
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Fig. 4 Processor reserves and time slot

tasks. Capacity inflation is required to compensate for time intervals during which a
server may have ready tasks, but none of them can be executed. Such a scenario may
arise because none of the server’s time reserves are active, and a processor executes
tasks of only the server associated to its current time reserve. Several methods can be
used to determine by how much to inflate a server capacity. In Sect. 4, we present one
method in the context of the new schedulability analysis. At this point, we assume that
such a method exists, and illustrate its application in Inset (c) of Fig. 2.

The third step of the off-line procedure is to allocate processors to servers. Again,
the generic algorithm does not prescribe how this allocation is done. Each specific
algorithm can specify its own. Figure 3 illustrates the server-to-processor assignment
obtained by applying the algorithm used in NPS-F to our running example. Servers P
and P4 are assigned to only one processor each, and are, hence, classified as non-split
servers; whereas servers 132, f’3, and f’5 are split servers because they are assigned to
two processors each.

The fourth and last step of the off-line procedure is to define the reserves for each
processor. Again, the generic algorithm does not prescribe how this is done. Figure 4
illustrates the reserves determined by the application of an algorithm used by NPS-F to
our running example. In this case, all processors synchronize at the beginning of each
time slot. However, other schemes are possible, as shown in Sect. 4. On each processor
Py, the time slot can be divided into three reserves, at most: x[ P, 1, y[P,], and N[P)].
The x[ P,] reserve occurs at the beginning of the time slot and it is reserved for the split
server shared by processor P, and processor P,_1, if any. The y[P,] reserve occurs
at the end of the time slot and it is reserved for the split server shared by processor P,
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and processor Py 1, if any. The remaining part, N[P,], is reserved for the non-split
server assigned to processor Pp.

At run-time, the dispatching inside each reserve is performed according to an
Earliest-Deadline First (EDF) policy: the active job with the earliest deadline, among
those served by the reserve is executed.

3.2 S-EKG

The S-EKG algorithm shares many features with the generic algorithm. Both are
slot-based; both use an off-line procedure to map tasks to processors and a run-time
algorithm that uses EDF to choose the running task. A major difference between the two
is that S-EKG, as described in its original publication (Andersson and Bletsas 2008),
does not use the concept of server, instead it assigns tasks to processors directly,
employing a procedure similar to the NF bin-packing heuristic that we describe next.

In S-EKG, the task-to-processor mapping procedure strives to ensure that the uti-
lization of each processor is equal to UBs.gkg (a theoretical utilization bound of the
algorithm). It iterates over the set of tasks. If a task has a utilization that exceeds
UBs.gkaG, it assigns the task to a dedicated processor. Otherwise, it assigns the task to
the next available processor whose utilization is lower than UBg.gkg. In this case, if
task 7; cannot be integrally assigned to the current processor, P, without exceeding
that bound, it is split between that processor and the next one, P41, so that P, ends
up utilized exactly by UBs_gxG and Pp receives the remaining share of z;. Conse-
quently, the number of split tasks is at most m — 1 and there is at most one task split
between each pair of successively indexed processors P, and P, 1. Furthermore, in a
schedulable system, the utilization of every non-dedicated processor (except possibly
the last one) is exactly UBg_gkg-

S-EKG uses a designer-set integer parameter 8, which determines the length of the
time slot according to Eq. 4.

s = L min(r) @)

8 T ET

This parameter also affects the utilization bound (UBs.gkg) and the inflation factor
(a), which is used to inflate the utilization, as follows:

UBspkg =4- (V8- 8+1)—8 —1 ©)
a=%_¢r613+5 ©)

Depending on the chosen value for §, UBs.gkg varies from 65 % (with § equal to
one) to arbitrarily close to 100 % (for § — 00). Therefore, the value of § can be used
to trade-off the target utilization bound against preemptions and migrations.

Although, the original description of S-EKG (Andersson and Bletsas 2008) does
not use the concept of server, it is straightforward to map tasks to servers, which are
then allocated time reserves as done in the generic algorithm, in such a way that each
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task is allocated the same set of processors as in S-EKG. The rules to apply are as
follows: (i) each task assigned to a dedicated processor is mapped to a server, which is
then allocated exclusively the same dedicated processor as in S-EKG; (ii) all non-split
tasks that are assigned to one processor are mapped to a non-split server, which is then
allocated the same processor as in S-EKG; (iii) each split task is mapped to a server
that is split between the same processors that split task is assigned to in S-EKG.
With respect to the inflation of servers, under the original approach (Andersson and
Bletsas 2008), each server is (safely, but inefficiently) inflated by the same amount
2 - a—in other words:
UL B = ULB] 42 - « %

with « calculated according to Eq. 6.

3.3 NPS-F

It is rather straightforward to formulate NPS-F as an instance of the generic algorithm.
Indeed, NPS-F is based on the same concepts as the generic algorithm, and these
concepts even have the same name, except for the servers, which were called “notional
processors”, and gave the name to NPS-F. Furthermore, NPS-F’s off-line procedure
comprises exactly the same four steps.

Next, we summarize the algorithms used by NPS-F for each step of the off-line
procedure. These are the algorithms that were used in the running example in Sect. 3.1
to illustrate the generic algorithm.

In the first step, the mapping of tasks to servers, NPS-F uses any bin-packing
heuristic so that the utilization of each server is smaller or equal to that of a processor.
Inset (b) of Fig. 2, in Sect. 3.1, shows the task-to-server mapping obtained with NPS-F
by employing the FF bin-packing heuristic.

In the second step, the original paper on NPS-F used the following expression to
inflate the capacity of each of the servers obtained in the first step:

mfl orig G+1)- U[ﬁq]

- = 8
Uyps—r [ q] ULP,) + 5 ()

where § is an integer designer-set parameter, which is also used to set the length of
the time slot like in S-EKG (see Eq. 4).

The algorithm used by NPS-F to allocate processors to servers, the third step, just
iterates over the set of servers and assigns each server to the next processor that has yet
some available capacity. If the processor’s available capacity cannot accommodate the
processing requirements of a server, the server is split. That is, the current processor’s
available capacity is allocated to partially fulfil the server’s requirements, whereas the
server remaining requirements are fulfilled by the next processor.

Finally, the algorithm used by NPS-F in the fourth and last step is also straightfor-
ward. For each processor, it allocates one reserve per server. Furthermore, the duration
of each reserve is proportional to the processor capacity used by the corresponding
server and is such that each server is periodic with a period equal to the time slot, S.
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We end this subsection with the utilization bound determined by the original schedu-
lability analysis:
2-64+1

UBNpS—F = ———— 9
NPS—F = 5 9)

which ranges from 75% (for § equal to one, which is the most preemption- and
migration-light setting) to arbitrarily close to 100 % (for 6 — 00). Because § controls
the length of the time slot, S, (see Eq. 4), its value can be used to trade-off the target
utilization bound against preemptions and migrations like in S-EKG.

3.4 Notation

For ease of reference, Table 1 provides a summary of most of the notation used in this
article.

4 New demand-based and overhead-aware schedulability analysis

The original schedulability analysis for slot-based task-splitting scheduling algorithms
was based on utilization. While this simplifies the derivation of utilization bounds,
it also entails pessimism. In Andersson et al. (2008), the move towards processor-
demand based analysis was not carried out in a way that would preserve the most
useful theoretical properties (namely, the utilization bound) of previous work (S-EKG).
Therefore, in Sousa et al. (2011b), the authors present a schedulability analysis based
on processor demand specific for the S-EKG scheduling algorithm.

In this article, a new schedulability analysis, based on processor demand, is intro-
duced that can be applied to both S-EKG and NPS-F. This new schedulability analysis
supersedes all previous utilization-based analyses. Further, it defines new schedula-
bility tests that incorporate all real-world overheads incurred by implementations of
the S-EKG and NPS-F algorithms (Sousa et al. 2011b, 2012).

The schedulability analysis that we develop in this section has two stages, which cor-
respond to the two main stages of the task-to-processor mapping algorithm presented
in the previous section. In the first stage, the analysis focuses on the schedulability
of the tasks assigned to each server, assuming that each server is executed in isola-
tion on a processor. The second stage examines whether there is enough capacity to
accommodate all servers in the system.

We present each stage of the new demand-based overhead-aware schedulability
analysis in its own subsection, but before that we provide an overview of the overheads
that may be incurred by this class of scheduling algorithms.

4.1 Overheads

In order to carry out an overhead-aware schedulability analysis, we first need to identify
the overheads that may be incurred at run-time because of the mechanisms used in
the implementation of the scheduling algorithms. In this subsection, we provide an
overview of the overheads that may arise in an implementation of a slot-based task-
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Table 1 Notation

Symbol Interpretation Constraint/ Definition
T A task set
T The i task
C; The worst-case execution requirement of task t;
T; The minimum inter-arrival time of task t; T; > C;
D; The relative deadline of task t; D; > C;
u; The utilization of task ; u; =Ci/T;
n The number of tasks of ©
T ] The j*” job of task 7;
aj j The arrival time of job 7; ;
d;, The absolute deadline of job 7; ; di,j =a;j+ D
Pp The p'" processor
x[Pp] The processor Pp’s x reserve length See Eq. 39
N[Pp] The processor Pp’s N reserve length See Eq. 39
y[Ppl The processor Pp’s y reserve length See Eq. 39
UlPy] The utilization of processor P
m The number of processors
Py The ¢'* server
r[ﬁq] The set of tasks assigned to the server 134
U [ﬁq] The utilization of server ISq See Eq. 3
Ui"fl[f’q] The inflated utilization of server f’q See Algorithm 2
U f;"f ! [15qj The x part of the inflated utilization of server 134 See Eq. 39
U )i,nf ! [f’q] The y part of the inflated utilization of server 134 See Eq. 39
k The number of servers
S The time slot length See Eq. 4
) A designer-set integer parameter controlling the migration

frequency of split tasks
o The inflation factor of S-EKG See Eq. 4
Q The time interval between the two split server reserves See Eq. 38
RelJ An upper bound for the release jitter See Fig. 5
RelO An upper bound for the release overhead See Fig. 5
ResL An upper bound for the reserve latency See Fig. 7
CtswO An upper bound for the context switch overhead
IpiL An upper bound for inter-processor interrupt latency See Fig. 8
CpmdO An upper bound of the cache-related preemption/migration

delay overhead
Cfake Execution time of the fake task modelling a reserve See Eqs. 27 and 40
p/Jake Deadline of the fake task See Eqgs. 27 and 40
T fake Minimal inter-arrival time of the fake task See Egs. 27 and 40
Uy Utilization of the system See Eq. 2
UBs.EkG Utilization bound of S-EKG See Eq. 5
UBNPS—F Utilization bound of NPS-F See Eq. 9
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splitting scheduling algorithm. This overview is based on implementations (Sousa et
al. 2011b, 2012) of S-EKG and NPS-F in the Linux kernel for the x 64 architecture.

The overheads that a system may incur because of a scheduling algorithm are related
to the following five mechanisms: (i) interrupts; (ii) timers; (iii) ready queues; (iv) con-
text switching; and (v) caches. We examine the overheads of each mechanism in turn.

Most real-time systems interact with their environment and use interrupts whenever
they need to react to external events. We assume that the interrupt handlers, or interrupt
service routines, are implemented as tasks, as supported in the PREEMPT-RT Linux
kernel (PREEMPT 2012). Nevertheless, the occurrence of an interrupt suspends the
execution of the currently running task to release a task that will service this interrupt.
Furthermore, depending on the deadline of the released task, it may preempt the
currently running task. A special kind of interrupt is the inter-processor interrupt (IPI).
As its name suggests, these interrupts are generated by one processor and handled on
another, and may be used by a processor to notify another of the occurrence of events.
The processing of an IPI by the target processor is similar to that of an interrupt
generated by the environment. Our algorithms use the IPI in the implementation of
split servers, more specifically when a job, whose priority is higher than that of all
ready jobs of its server, arrives on a processor at a time instant that falls within the
reserve of that server in the other processor. In this case, the newly arrived job should
immediately start execution in the server’s reserve on the other processor. We denote
the delay incurred by the use of IPI in the dispatching of a task the IPI Latency, Ipi L.

Timers are a per-processor mechanism of the Linux kernel designed to schedule
computations some time in the future. Our algorithms use timers to release tasks and
also to trigger “server-switches” at the end of each time reserve. Timers are imple-
mented using a priority queue and interrupts generated by some timer/counter device,
therefore they incur overheads related to the handling of these interrupts as well. Timer
interrupts are different from other interrupts in that they are not handled by separate
tasks, but immediately upon occurrence of the interrupt. Thus, the expiration of a
timer suspends the execution of the current task on that processor. Another “imper-
fection” associated with timers is that they cannot be used to measure time intervals
precisely. We denote the delay incurred in the release of periodic tasks because of
these imperfections the Release Jitter, Rel J.

The kernel keeps the released tasks that are ready to run in queues, known as ready
queues. Therefore, when a task is released, the scheduler moves the task to a ready
queue, and the dispatcher is invoked to select the next task to run, which may be
either the task that was running before the release of the task, the released task or any
other task that is ready to run. In the case of the slot-based task-splitting algorithms
considered, all these data structures are either private to some processor or shared by
two processors. Nevertheless, the release of a task requires some processing, which
we call the Release Overhead, Rel O.

A context switch occurs whenever the dispatcher decides to change the running
task on a processor. This entails saving the state of the processor to some operating
system data structure associated with the task being evicted, and restoring the state of
the processor to the contents of the corresponding data structure associated with the
task that was allocated the processor. We use the Context switch Overhead, CtswO,
to account for this overhead.
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The worst-case execution time of a task is very hard to estimate for processors with
caches. For this reason, if any memory caching mechanism is used at all, locked caches
or scratchpads are often used instead in the embedded domain, for better predictability
(Banakar et al. 2002; Puaut and Pais 2007). Still, in this work we assume the use of
conventional caches, as in general-purpose processors. For such architectures, the
worst-case execution time of a task is typically computed assuming that the task is
executed without being preempted. However, when a task is preempted, it may incur
additional costs when it is resumed because the cache lines with its data may have been
evicted by other tasks and need to be fetched again from main memory, or from higher
cache levels. Likewise, migrating one task from one processor to another requires the
destination processor to fetch anew the cache footprint of the task. These costs are
known as cache-related preemption and migration delays (CPMD). To incorporate the
CPMD, we pessimistically assume that every preemption incurs the worst-case CPMD
cost, Cpmd O. Furthermore, we do not distinguish between job preemption and job
migration events. This simplification is not as pessimistic as it may seem because there
is evidence (Bastoni et al. 2011, 2010) to suggest that, in a heavily loaded system, the
CPMD costs of preemptions and migrations can be similar. Another simplification is
that we do not differentiate between tasks when applying CPMD costs; we use the
same cost Cpmd O irrespective of the preempted or the preempting task. Although
some works (Ju et al. 2007, 2013) allow for estimating CPMD more precisely, they
rely on detailed knowledge of the program code of each task and the memory layout.

Although in this subsection we have identified the different sources of overheads
associated with slot-based task-splitting scheduling algorithms, in the analysis devised
in the subsequent subsections, we sometimes lump together overheads of different
sources that occur in sequence. The reasons for this are two-fold. First, this leads
to shorter expressions. Second, it simplifies the experimental measurement of the
overheads and often leads to more precise experimental estimates of these overheads.

4.2 New demand-based schedulability test for mapping tasks to servers

In this section, we derive a schedulability test for the tasks mapped to a server based
on demand-bound functions that takes into account the overheads described in the
previous subsection. This leads to a new task-to-server mapping algorithm. For the
purpose of the mapping of tasks to servers, we consider that a server is allocated a
processor exclusively, i.e. it runs on a single processor that it does not share with any
other server. Hence, we treat each server as a uniprocessor system.

Our analysis is based on the concept of demand-bound function (dbf) (Baruah et
al. 1990), which specifies an upper bound on the aggregate execution requirements of
all jobs (of © [13q]) over any possible interval of length 7. Therefore the demand-based
schedulability test for a server ﬁq is given by:

dbfP* (P, 1) < t,Vt > 0 (10)

We use the word “part”, which stems from “partitioned”, as a superscript of all the
dbfs of this stage to distinguish them from functions of the second stage.

@ Springer



Real-Time Syst

RelJi’j RelOi,j
| |
j —_—
P;D Tx,y 1 By
1 1 t
I I 1
@i, j Timer Ti,j is d;
interrupt inserted
for waking into the
up T; ; ready queue

Fig. 5 Tllustration of the release jitter and release overhead. In this example, 7y y is the currently executing
job that incurs an execution penalty due to the release overhead Rel O; ; of job Ty y

Ignoring all overheads and assuming sporadic task sets with arbitrary deadlines,
the dbfP*"(P,, 1) can be computed as:

dbfP*™ (P, 1) = dbfP™ (¢[P,], 1) = Z max (0, LIT—D’J + 1) -C; (11)
Ti er[ﬁq] !

Next, we proceed by incorporating each source of overhead into the new overhead-
aware schedulability analysis, one at a time. First, we consider the overheads caused
by the release of tasks. We assume that all tasks are periodic, because it corresponds
to the worst case. For periodic tasks we need to take into account not only the release
overhead, but also the release jitter caused by timers. Therefore, the effects of timers
and task release will be considered together. Next, we consider the effects of context
switching and CPMD. Finally, we incorporate the effect of interrupts other than those
caused by timers.

Scheduling algorithms use timers to trigger the release of periodic tasks. Therefore,
the release of periodic tasks is affected by two of the overheads discussed in the
previous section: the release overhead, and the release jitter. Figure 5 graphically shows
these two overheads for job 7; ;. (In all figures, the execution of a job is graphically
represented by a rectangle labelled with the job identifier.) As illustrated, the effects
of these two overheads are different. Whereas both overheads, the release jitter of job
7;,j, Rel J; j, and the release overhead of job 7; ;, Rel O; ;, reduce the amount of time
that job 7; ; has to complete its execution, only the release overhead actually requires
processing time. Thus, we model the effect of these two overheads differently.

Let RelJ and Rel O be the upper bounds on the release latency and on the release
overhead, respectively. As shown in Fig. 5, the release latency decreases the amount
of time available to complete a task, i.e., in the worst case, t; has D; — RelJ time
units to complete. Therefore, we modify the dbfpa”(t[f’q], t) to:

dbfP™ (1[Py]. 1) = Z max (0, {F%—_RMJ + 1) G (42

- i
G ET[Py]

Concerning the release overhead, one way of modelling it could be by increasing
the execution demand of a task accordingly. However, that approach does not work
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properly when multiple tasks are released too close together in time. The reason is that
the release overhead contributes “immediately” to the processor demand—meaning
that to model the processor demand correctly, it should be increased by RelO time
units at the time of the release, not at the deadline of the task released. Therefore, we
instead model the release overhead as higher-priority interfering workload (as it is in
reality). This way, we may compute the execution demand for releasing all jobs of
r[]sq] in a time interval [1, ¢) as:

~ t+ RelJ
dbffio(tlPl. = > | ———
riet[Py] !

W - RelO (13)

Modifying accordingly dbfP ([P, ], 1), we get:
dbfP* ([ P,], 1) =

~ t — D; + RelJ
dbfﬁaerlto(r[Pq], 1)+ Z max (0, {%J + 1) .G (14)
l

rier[ﬁq]

We now consider the context switching overhead, which is common to all sched-
ulers. Every job causes at most two context switches: when it is released and when it
completes—but not every job release causes a context switch. Therefore the number of
context switches over a time interval of length ¢ is upper bounded by twice the number
of job releases during that interval. Let Ctsw O be an upper bound on the context
switch overhead. We amend the derivation of the dbfpar‘(r[ﬁq], t), by increasing the
execution demand of each job by twice Ctsw O, to:

dbfP* (z[P,], 1) =
dbfRuo (TP, 1) +

t — D;i + RelJ
Z max (0, | —————— [+ 1) - (Ci +2- Crsw0) (15)
rier[ﬁq] '
In order to incorporate the cache-related overheads, i.e. the CPMD, we assume
that every preemption incurs the worst-case CPMD cost, Cpmd O. Furthermore, we
compute an upper bound on the number of preemptions for server P, in a time interval
of length 7 as:
part , ~ t 4+ RelJ
nr Py, t) = _— 16
bree (P, 1) Z [ T (16)
T ET[Py]
That is, we assume that every task that may be released by a timer in a time interval of
length ¢, causes a preemption. Thus, the cumulative cost of CPMD over one interval
of length 7 is:
dbfgr;do(P 1) = nrhyee (Py, 1) - Cpmd O (17)
Because t~his increases the server execution demand, we amend the expression of
the dbfP*" (P, , 1) (Eq. 15) to:

@ Springer



Real-Time Syst

dbfP" (P, 1) = dbfP" ([ P], 1) + dbf a0 Py, 1) (18)

In contrast with the other overheads, the cache related overheads cannot be assigned
to a particular task. Indeed, the jobs of some tasks may never be preempted, whereas
the jobs of other tasks may be preempted several times. This is the reason why we do
not incorporate the CPMD overheads in dbfpa“(r[ﬁq], t).

Finally, we consider the interrupt overheads. We assume that interrupt service tasks
have higher priority than “normal” tasks. Thus, we model each sporadic interrupt
as a task with worst-case execution time equal to CiI " minimum inter-arrival time
equal to Til " and zero laxity (CiI no— DiI "y Periodic interrupts are also modelled
as zero-laxity tasks, but Til "I represents their period and they are also characterized
by a release latency LiI " which accounts for deviations from strict periodicity. For
sporadic interrupts, we let LiI " equal to zero, since any variability in their arrival
pattern is already accounted for by Til "t Thus the interrupt execution demand for n/"
interrupts is then given by:

nint Int Int
~ t—D" +L;
part _ Int
dbffric (Pg, 1) = > max (0, — |t 1) ok (19)
i=1 i
Because the interrupt overhead increases the execution demand of a server, the
dbfPa (P, 1), incorporating all the overheads, becomes:

dbfPr (P, 1) = dbfP" (x[ Py], 1) + dbfyy a0 (Py. 1) + dbfiic (Py, 1) (20)

Equation 20 can be used in a new schedulability test by the algorithm that maps
tasks to servers. Algorithm 1 shows the pseudo-code of this algorithm. The algorithm
iterates over the set of all tasks and, for each task t;, it checks whether it fits in one of
the opened servers (subject to the constraints of the bin-packing heuristics used, e.g.,
NF or FF). For each server 15q checked (g being the server index), it provisionally
adds task t; to it, then it computes the length of the testing time interval ¢ (computed
as twice the least-common multiple of the 7; of tasks in 1[13(1])4, and finally, it applies
the new schedulability test, by invoking the dbf_part_check function.

If the test succeeds for some server ﬁq, then task 7; is permanently mapped to it,
otherwise, a new server is opened and task t; is added to it. The task set is considered
unschedulable whenever the schedulability test fails for a server with only one task.

This new algorithm is not applicable to S-EKG. In that case, for reasons that will
be explained later, the task to server mapping and the server to processor assignment
are performed in a single step using the algorithm that is outlined in Sect. 5.2.1.

To summarize, in this subsection we have developed a new overhead-aware analysis
for schedulability testing in the task-to-server mapping stage. However, this test con-
siders each server in isolation and it does not encompass all the scheduling overheads

4 Approaches exist for considerably reducing the length of the testing interval # (George et al. 1996; Spuri
1996; Ripoll et al. 1996; Hoang et al. 2006) in order to speed up the schedulability test, but would have
required some amendments, in the presence of the scheduling overheads considered.
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Algorithm 1 Pseudo-code of the new task-to-server mapping algorithm.

Input: set of n tasks 7;, with 1 <i <n
Output: set of k servers, with k > 0 (k = 0 means failure)

k<0
fori < 1tondo
scheduled < 0
for g < 1tok do
add_task_to_server(z;, ﬁq)
t < 2-lem_T(Py)
if dbf_part_check(Py, 1) then
scheduled < 1
break
else
remove_task_from_server(z;, 13q)
end if
end for
if scheduled = 0 then
k < k + 1 {add a new server}
add_task_to_server(z;, f’k)
t < 2-lem_T(Py)
if not dbf_part_check(Py, 1) then
k<0
break {failure}
end if
end if
end for

that may be incurred by servers when they share a processor with other servers. In the
next subsection, we develop a new schedulability analysis for the processor-to-server
assignment step.

4.3 New demand-based schedulability test for assigning servers to processors

To fully model all the overheads incurred by the use of periodic reserves, it is necessary
to assign each server to one or more processors. Precisely modelling the impact of these
overheads allows us to determine the exact processing capacity requirements of each
server. In turn, this allows us to test whether or not all servers can be accommodated
on the m physical processors.

With the server-to-processor assignment described in Sect. 3, non-split servers
are allocated just one processor reserve whereas split-servers must be allocated two
reserves. Because, each type of server incurs different overheads, we deal with each
type of server separately.

4.3.1 Non-split servers
The approach we follow to check the schedulability of a server is to verify that the

execution demand by all jobs assigned to a server (computed using the dbf) does not
exceed the amount of time (computed using the supply-bound function (sbf)) that the
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system can provide for their execution, for every time interval of length ¢. Formally,
we can express this schedulability test as:

dbfsb:non»split(ﬁq’ 1) < Sbfsb:non—split(ﬁq’ 1), Vt >0 21

where we use the superscript “sb” (an abbreviation for “slot based”) to distinguish
the functions/variables used in this subsection from similar functions/variables used
in the previous subsection. This superscript may be suffixed with either “:non-split”
or “:split”, depending on whether the function/variable applies to non-split servers or
to split servers, respectively.

We develop an analysis that allows us to apply the schedulability test in Eq. 21
to non-split servers in two steps. First, we revisit the analysis developed in Sect. 4.2
to take into account the effect of the reserve mechanism on the computing demand
of a non-split server. Second, we factor into our analysis the effect of the reserve
mechanism on the computing supply of a non-split server.

In Eq. 20, we decomposed the demand of a server, dbfpa”(ﬁq, t), into three com-
ponents. The first, dbfPa" (¢ [ﬁq], 1), comprises the execution requirements induced by
each task mapped to server P, including not only its execution time, but also over-
heads that may arise because of mechanisms used by the scheduling algorithm, i.e.
timers, task releases and context switches. Clearly, these requirements are not affected
by the use of reserves. prever, now we also need to take into account the Release
Interference, dbfﬁgﬁon_smn(ﬁq, t), i.e. the overhead incurred by the release of tasks
mapped to other servers that share the processor with Isq. Furthermore, as we explain
below, the other two components are also affected by the use of reserves. Hence, in a
first approximation, we have:

dbfsb:non—split(ﬁ 1) =
g 1) =
dbfP (2 [ Py], 1) + dbfgrmie P (P, 1)
+dbfePI By 4 dbt P (B, 1) (22)

We now proceed with the development of the analytical expressions for the
dbfsbnon-split parameters on the right-hand side of Eq. 22.

The CPMD overheads now comprise not only the preemptions caused by tasks in
the server, but also the preemptions incurred due to the reserve mechanism. In the
worst case, the reserve mechanism preempts the last job that executes in the server’s
reserve. Thus, during an interval of duration S, a non-split server incurs at most one
additional preemption due to the use of reserves:

snon-solit . = t 4+ ResL ~
nr;?éléon spht(P 1) = ’7%—‘ + nrg?éé(P 1) (23)

where ResL, the reserve latency, is an overhead akin to the release overheads that
occurs at the beginning of a reserve and is explained later in this subsection.
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Fig. 6 Tllustration of the release interference for non- %pht servers. In this example, server Pq may suffer
the interference from the release of tasks mapped to P,_; and P, q+1- if these releases occur within Pq
reserve

Accordingly, the worst-case overall CPMD cost for that server in a time interval of
length ¢ is given by:

sb:non-split

dbt o™ (Py. 1) = nepee ™ PN (B, 1) - Cpmd O (24)

Taking into account interrupts with reserves is somewhat harder than in the case
of a uniprocessor. Indeed, whereas on a uniprocessor a sporadic interrupt can be
modelled as a sporadic interfering task, this is not the case with reserves. This is
because reserve boundaries behave like temporal firewalls, and therefore an interrupt
affects only the reserve that was active at the time the interrupt task is executed. Hence,

each interrupt has to be modelled as a bursty periodic task. Given the complexity of

such a formulation, we deal with it in Appendix. Let dbf;:tgon Spllt( ~q, t) denote the

amount of time required for executing all fired interrupts inside the reserves of f’q in
a time interval of length 7, as determined in Appendix.

Finally, we consider the release overhead, i.e. the processor time required to handle
the release of jobs. On slot-based task-splitting algorithms, a server’s tasks share the
processor with other tasks whose servers are assigned to the same processor. Consistent
with implementation (Sousa et al. 2011b, 2012) we assume that all jobs of a task are
released on the processor(s) to which the task is assigned. As shown in Fig. 6, non-split
server I3q can incur not only the release overheads of its own jobs, but also the release
overheads of the jobs of both its immediate neighbor servers (I5q_1 and ﬁq+1).

Recall that the release overhead cost of all jobs of © [I3q] in a time interval of length

t is already accounted for in the derivation of dbfP" (¢ [I3 ], 1) (see Eq. 14). Therefore,

b: lit, =
what remains is to incorporate the release interference, dbf;{ ﬁon PP, 4> 1), therelease

overhead cost from neighboring servers, i.e. servers sharing the same processor:
b:non-split , 5 ~
b PPy, 1) = dbfhe (Py—1, 1) + dbfhe (Pyti1, 1) (25)

where dbfﬁderlto( , 1) (see Eq. 13) denotes the amount of time required to release all

jobs of server P in a time interval of length 7.

We now consider the effect of the reserve mechanism on the amount of time supplied
to the execution of the tasks of a non-split server. In comparison with the analysis in
Sect. 4.2, the amount of time supplied to the execution of a non-split server is reduced

@ Springer



Real-Time Syst

because of two factors. The first is the sharing of the processor with other servers. The
second is the imprecision of the timers used to measure the duration of the reserves.
We analyze the effect of each of these factors in turn.

In slot-based task-splitting algorithms, a non-split server f’q is confined to execute
within a single periodic reserve of length Res'" [ﬁq], which is available every S time
units:

Res'"[P,1 = U™![B,]- 5§ (26)

where U/ l[f’q] represents the inflated processing capacity of server ﬁq, which is
computed by Algorithm 2 presented at the end of this subsection. Thus, for any time
interval of length #, only a fraction of such interval is supplied for the execution of
a server. We model the unavailability of the reserve as an interfering fake task with
attributes:

/e = § — Res'"[P,]
Tfake =5
Dfake — Cfake (27)

Hence, the supply-bound function for non-split servers can be expressed, in a first
approximation, as follows:

‘ I t — D/Jake
sbfsPmon-split(p 1) =t — max (0, {—T e J + 1) . ¢ fake (28)

The second source of the reduction in the amount of time supplied to the execution
of a non-split server is the processing time required to switch from one reserve to
the next, which also includes the execution of the scheduler. Furthermore, the switch
of reserves is also associated with a delay between the time at which the current
reserve should end and the time at which it actually ends, for example because the
processor is executing a non-preemptible code segment. To facilitate the experimental
measurement of this overhead, we decide to group these three parameters in a single
one that we call reserve latency. This is illustrated in Fig. 7, which also shows that
this parameter includes the time required to switch to the first job of the new reserve.

We model this reduction in the supply of processing time to the reserve as an
increase in the execution demand of the fake task. Let ResL be an upper bound for
the reserve latency. The expression for sbf Sb:no“’Split(ﬁq, t) then becomes:

t — Dfake 4 ResL
T fake

Sbfsb:non—split(ﬁq’ ) =t — max (0’ \\ J + 1) . (Cfake + ResL)

(29)

By replacing this expression in Inequality 21 and moving some terms from the

right-hand side to the left-hand side, we obtain the following schedulability test for
non-split servers:

dbfsb:non-split(ﬁq’ 1)+ dbfls:lzl?:n—split(f, ) <t,Vi>0 (30)
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Fig. 7 Illustration of the reserve overhead. The execution of job 7; ; of server mapped to reserve A, is
delayed by ResL with respect to the instant the reserve should start

where dbfsPmOnSPit( B 1) is given by Eq. 22 and dbfior ™" (B, | 1) is given by:

non-split , = t — DJek¢ 4 ResL
dbfSnOmP (5 4y — max (o[ Tf“:e_ “ J+l)~(Cf”ke+ResL) 31)

To complete the analysis of non-split servers, we provide an algorithm to compute
the inflated utilization of server P, ,uintl [ﬁq]. Indeed, evaluating dbf;‘;ﬁ: H'Spm(ﬁ 1)
depends on U"/! [f’q], via Res'e" [ﬁq] and C/%e (see Eqs. 26 and 27). Furthermore,
dbf;:égon—Sp m(ﬁ , 1) also depends on U infl [f’q], as shown in Appendix.

In order to achieve the highest possible schedulability, we are interested in determin-
ing the minimum inflated utilization required for server 154. We use the schedulability
test developed in this section to determine an interval that is guaranteed to include the
inflated utilization. This interval can be arbitrarily small. We start with the interval
(U [13q ], 1.0]. Then, like in the bisection method, we successively halve this interval in
such a way that the inflated utilization is guaranteed to be in every generated interval.
Algorithm 2 shows the pseudo-code for the inflate_sb_non_split function.
In each iteration, it computes the current interval’s midpoint and then applies the
schedulability test, implemented in the dbf_sb_non_split_check function, to
that utilization value. If the outcome of the test is positive, i.e. the server is schedulable
with that utilization, the midpoint value computed becomes the upper bound of the
interval in the next iteration, otherwise it becomes the lower bound. The algorithm con-
verges rather rapidly, and in ten iterations, it generates an interval that is less than 0.1 %
wide that contains the minimum inflated capacity of the server required for the server
to be schedulable, according to the schedulability test in Inequality 30. In Sect. 6, we
provide some details on the implementation of the dbf_sb_non_split_check
function.
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Algorithm 2 Pseudo-code algorithm of the inflate_sb_non_split function.

Inputs: 13q {server to analyse}
A {desired precision}
t {time interval for computing the demand-bound function}
Outupt: U infl [ﬁq] {minimum inflated utilization that ensures schedulability of f’q }

Unin <= U[Pg]
Upax < 1.0
while Upgx — Upin > A do
Umfl[Pq] < (Unmin + Unax)/2
if dbf_sb_non_split_check(Py, t) then
Unax = (Umin + Umax)/z

else
Unin = (Umin + Unax)/2
end if
Uinfl[ﬁq] < Umax
end while

4.3.2 Split servers

In this subsection, we develop a schedulability analysis for split-servers similar to the
one developed in the previous subsection. Again, we use a schedulability test based
on the demand-bound and the supply-bound functions:

dbeb:Split(ﬁq, 1) < Sbeb:Split(ﬁq, 1),Vt >0 (32)

and we derive the expression for dbf**Plit(P, 1), by revisiting the analysis developed
in Sect. 4.2 to take into account the increase in the demand of processing time because
of the reserve mechanism, and the expression for sbf Sb:SPlit(ﬁq, t), by accounting for
the reduction in the amount of time supplied to the server because of the reserve
mechanism.

Based on the arguments used in the previous subsection, we can express
dbfsosPlit(p, 1) as follows:

dbfsb:split(ﬁq 1) =
dbf§b§p11I (f[ﬁq], t)
+ dbfscl’;g(li‘(t)(ﬁq, 1) + dbf P B 1) 4 dbf P (B, 1) (33)

That is, like with non-split servers, the preemptions and migrations of tasks, the inter-
rupts and the release of tasks of servers that share processors with the split server
also need to be taken into account, and amended specifically to split servers. How-
ever, unlike with non-split servers, we also need to amend dbfpa”(r[f’q], t), i.e. the
processor demand of the server’s tasks, assuming that they are executed in their own
processor and accounting for the overheads incurred by the timers, the release of the
server’s tasks and the context switches between server’s tasks. This is because the
release of tasks of a split server may use IPI, which, as we show below, affects the
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Fig. 8 Illustration of the IPI latency at the release of a split job. It does not include the time for context
switching

components of the demand accounted for in dbfpan(r[ﬁq], t). We now develop an
expression for each term in Eq. 33.

Asdescribed in Sect. 4.1, slot-based task-splitting algorithms may use IPIs to notify
the dispatcher in another processor of the release of a task. As a result, the dispatching
of a task may incur an IPI Latency. (Note that this parameter does not include the time
required for context switching, this is already accounted for, as it will occur whether
or not the release is via an IPI). Figure 8 illustrates such a case. The arrival of a job of
task 7; assigned to a split server shared between processors P, and P,_, for instance,
occurs at a time instant ¢ and is handled on processor P, but this time instant ¢ falls
inside the reserve of that server on the other processor, P,_1. If this job is the highest
priority job of its server, P, notifies P, of the new arrival via an IPL. Clearly, the
overhead caused by the IPI, IpiL; ;, only delays the dispatch of job z; ; (and only if
job 7; ; is the highest priority job of its server).

Thus, the IPI latency has an effect similar to the release jitter and we take it into
account by adding it to the release jitter in dbfpa“(r[f’q], t), see Eq. 15:

dbebZSplit (T[ﬁq]’ t) —
dbfRs ([ Py, 1)

t — D;j+ RelJ + IpiL
0, 1
+ 3 mar( { 7 J+)

rl-er[};q]

(C; + RelO +2-CtswJ) (34)

where I pi L is an upper bound for the IPI latency.

The cost of the CPMD is more of a concern for split servers than for non-split
servers, because tasks may actually migrate between two processors. Nevertheless, in
our analysis, we assume a worst-case CPMD overhead, Cpmd O, which accounts for
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Fig. 9 Illustration of the potential release interference exerted by neighboring servers. In this example,
server Pz may suffer the release interference not only from the tasks in P, and P;_», if these tasks are

released during f’q ’s reserve on processor Pp, but also from tasks in ﬁq+ 1 and f’q+2, if these tasks are
released during 13q ’s reserve on processor Py )

both. Hence, compared with modelling CPMD overheads for non-split servers, the
only difference is that other than EDF preemptions, split servers incur two additional
preemptions per time slot (vs. one for non-split servers), one for each reserve they use.

Accordingly, nrf,?esepht(f’ , 1) is calculated as follows:

t + ResL
e (B, 1) =2 {TW npree (Py, 1) (35)

and the cost of the CPMD over a time interval of length 7 is:
dbfsb:split (13 1) = sb spht(ﬁ £)- CpmdO 36
Cpmdo (£g- T) = Dlpree 1) - Cpm (36)

The interrupt overhead for split servers is modelled as for non-split servers; that
is, each interrupt is modelled as bursty periodic task. Given the complexity of such a
formulation we deal with that in Appendix 7. Let dbf;l:;g’ ht(I3 , ) be an upper bound
on the amount of time required for executing all fired interrupts inside the reserves of
I3q in a time interval of length 7.

Finally, we consider the release interference by servers that execute on the same
processor. As illustrated in Fig. 9, a split server, P,, can incur the release interference
of, at most, the previous two (Pq_l and Pq_z) and also, at most, the next two servers
(Pg+1 and Pyy2).

Thus, the release interference on f’q by its neighbor servers is computed as:

dbf;bef{"“(ﬁ 1) =
R 10(P 1,1+ dbeelO(ﬁqu’ 1)
+ dbeelo(Pq+1 ) t) + dbeelo(PquZ, t) (37)

This concludes the analysis of the effect of the reserve mechanism on the processing
demand by a split-server. Before we analyze the effect of the reserve mechanism on
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Fig. 11 The instantaneous migration problem can be prevented by shifting the time slot. This does not
affect the processing time supplied to non-split servers, because their reserves are shifted as well

the amount of time supplied to the server, sbeb:Split(Isq, 1), we need to provide an
implementation detail that we omitted in our short description of the assignment of
reserves to processors in Sect. 3. In that description, the reserves of a split server f’q on
different processors P, and P, are temporally adjacent, as illustrated in Fig. 10. In
practice, because of the limitations in the measurement of the duration of a reserve, this
layout requires explicit synchronization between the dispatchers on both processors to
prevent simultaneous execution of the same task by both processors at the beginning
of a time slot. This synchronization would lead to an additional overhead, which can
be avoided by shifting the beginning of the time slot on processor P,y in time, i.e.
by staggering the time slots in consecutive processors.
In Bletsas and Andersson (2011), the authors have shown that the time shift 2 given
by
Q= (S = x[Ppr1] = Y[Pp])/2 (38)

is optimal® with respect to utilization for a split server ﬁq whose reserves are x[ Ppy1]
and y[Pp]. With this value, the end of x[P,41] is also separated from the start of
y[P,] by the same €2 time units, as illustrated in Fig. 11. Therefore, €2 is also optimal
with respect to the reserve overhead tolerated, i.e., it is the time shift that provides the
maximum protection against race conditions caused by the reserve jitter that may arise
among schedulers of processors with reserves that are mapped to the same server.

Although this result was formulated in the context of NPS-F, it applies to any slot-
based task-splitting scheduling algorithm. Therefore in our analysis, we assume that
the two reserves of a split-server 13q are €2 apart of each other.

We now proceed with the development of the reduction in the time supplied to
execute the tasks of a split server because of the reserve mechanism.

5 That proof assumed implicit-deadline tasks; proof for arbitrary deadlines has not yet been published. In
any case, in this work, we set €2 accordingly.
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Let U/ l[f’q] and U ;,"f 1[13(,] be the fractions of U"/![ P,] assigned to processors

P11 and Py, respectively. Then the duration of the 154 reserves are given by:

Uinfl[ISq] _ U;nfl[lgq] i U;'nfl[f,q]

X Pp] = UM P8
WP = U S (39)
As in the analysis for non-split servers, we model the unavailability of the processor

outside the reserves with fake tasks, now two per time slot, each with the following
parameters:

Cfake — Q
Tfake — S
Dfake — Cf(lk(f (40)

Although the two fake tasks have the same arrival rate, they arrive at a relative
offset. To account for the worst case, we assume that the first fake task arrives at ¢
equal to zero and the second task arrives at an offset of:

o/ = @ 4+ minU'1B,1, USR] - S (41)

Thus we can express the amount of time supplied to the execution of tasks of the
split server, sbf;l;{:é) ht(Pq, 1), as:

Sbfsb:split(p’q 1) =
t

t— Dfake
— max (0, le + l) . Cf(lke

t— Dfake _ Ofake
— max (0, { T Fake J + 1) . ¢ fake (42)

Like the reserve of a non-split server, each of the two reserves of a split server incurs
the reserve overhead. Let ResL be an upper bound for the reserve latency. Thus, to
take into account this overhead, we do just as in the case of non-split servers, i.e. we
add Res L to the execution demand of each of the two fake tasks, and sbf Sb:Spht(lﬁq, 1)
becomes:

Sbeb:Split(T[I;q], t) —
t

t — Dfake 4 Res
_ . (CTak
max (0, { T Fake J + 1) (C/%e 4 ResL)

0 t — Dfake _ gJake 4 Res]
— max ’ T fake

J+1)4Cﬂ“+RaL) (43)

@ Springer



Real-Time Syst

Replacing this expression in Inequality 32 and moving some terms from the right-
hand side to the left-hand side, we obtain the following schedulability test for split
servers: _

dbf*PPit (B, 1) 4 dbfSo P (B, 1) < 1,V1 > 0 (44)

where dbf*™Plit (B, 1) is given by Eq. 33 and dbfio=P" (B, 1) is given by:
sb:split , 5
dbf gt (P, 1) =

t — Dfke 4 ResI
e (O’ L Tfal:le_ = J " 1) (€T 4 ResL)

t_Dfake_Ofuke ResL
+ max (0, { T Fake + Res J + l) -(CT%e 4 ResL)  (45)

To complete the analysis of split servers, we provide an algorithm to compute
the inflated utilization of server I3q, U "”fl[ﬁq]. Indeed, evaluating dbf;‘;ﬁgm(ﬁ 1)
depends on Ui"fl[lsq], via x[Ppi1], y[Ppy1l, 2, Cfake and O fke(see Eqs. 38, 39,
40, and 41). Furthermore, dbf;:t:g) ht(ﬁ , 1) also depends on U ""ﬂ[ﬁq], as shown in
Appendix 7.

In order to achieve the highest possible schedulability, we are interested in deter-
mining the minimum inflated utilization required for server ﬁq. The algorithm we use
for split servers is similar to that used for non-split servers, presented in Algorithm 2,
except that it uses the function dbf_sb_split_check, which implements the
schedulability test in Eq. 44, rather than function dbf_sb_non_split_check.In
Sect. 6, we provide some details on the implementation of these functions.

5 New server-to-processor assignment procedure

The application of the schedulability tests developed in the previous section raises two
main issues. First, computing the inflation of the utilization of each server requires
knowledge of whether or not the server is split, and of which servers it shares the
processor with. However, this depends on the inflated utilization of the server. In other
words, there is a circular dependency between server inflation and the assignment
of servers to processors. Second, when a server is split between two processors, the
length of the reserves may be either too short or too long, for example larger than S.
To prevent this undesirable outcome, we specify two assignment rules, which further
exacerbate the first issue. Thus, in this section, we start by describing the assignment
rules. After that, we address how to resolve the circularity associated with the first
issue.

5.1 Assignment rules

To prevent reserves too short to be useful, we add the following rule to the assignment
algorithms that are presented below:
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Fig. 12 Tllustration of assignment rule A1l

Al: Whenever a server would be split between two processors P, and Pp41 in
such a way that the length of the second reserve (i.e. on P,.1) would be larger
than the length of its only reserve had it been assigned to a single reserve on P 1,
then the server should not be split, but rather assigned as non-split to Py .

Figure 12 illustrates rule Al using aligned time slots for reasons of clarity.

Clearly, if the size of the non-split reserve is smaller than that of the second reserve,
not splitting the server will lead to a lower computation demand by the server in both
the first and the second processor. This means that there will be more computation
resources for the remaining servers in the second processor. Although the computation
resources not used on the first processor will not be used to satisfy the demand of the
task set to schedule, they can be used by other (non-real time) tasks.

On the other hand, if the second reserve of the split server is shorter than the single
reserve required if the server were not split, it must be the case that the first reserve
is used for satisfying the demand of the server’s tasks, and therefore, for the sake of
improving the schedulability, the server should be split.

Another issue concerns the case when the two reserves of a split server (possibly
after application of rules Al) add up to almost S, or even surpass it. As a result, the
schedulers on two processors might attempt to run the same task simultaneously. To
prevent such a scenario, we specify the following rule:

A2: In cases where a server would be split such that (U ;"f ! [I;q] +U ;"f ! [13(1]) -S >
S — ResL, the server should instead become a single server.

A single server is assigned to a processor, utilizing its entire processing capacity,
without being confined in a time reserve. This arrangement amounts to partitioning.
Figure 13 illustrates rule A2.

5.2 Assignment procedure

Section 3 suggests that server-to-processor assignment is straightforward once the
servers have been inflated. However, with the schedulability tests developed in the
previous section, this is not so. The challenge is that server inflation depends on
the assignment of servers to processors, because the release interference overhead
depends on which servers are allocated the same processor. Therefore, we have a
circularity issue: inflation depends on the assignment, and the assignment depends on
the inflation. For example, when we first inflate a server 134_ 1, we do not yet know
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Fig. 14 New S-EKG task-to-processor mapping algorithm

the servers that it will share a processor with. We can assume that the next server, P s
will share the processor with the server currently being analyzed, but later, because of
the application of rule A2, server f’q may be allocated its own processor (as a single
server), and therefore server I;q,l will share the processor not with that server but
with the one that follows it, i.e. server f’q+1, and it will have to be re-inflated.

The approach we use to overcome this issue is backtracking. To limit the amount
of backtracking, we merge several steps of the generic algorithm in a single step. In
the next two subsubsections, we illustrate the application of this approach to S-EKG
and to NPS-F, respectively.

5.2.1 Task-to-processor assignment procedure in S-EKG

The distinctive feature of S-EKG is that the split servers, if any, have only one task. To
ensure this, we merge the four steps of the generic algorithm in a single one. The full
algorithm is somewhat complex, therefore, we just provide an overview of its main
steps, which are illustrated in Fig. 14.

The algorithm starts by assigning empty servers to the processors. All processors
are assigned a non-split server, one split server per predecessor processor and one split
Server per successor processor, so that the first and the last processors are assigned only
two servers, whereas the other processors are assigned three servers. Then, it iterates
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over the set of tasks, two tasks at time, if available, and it assigns the tasks to the servers
in an attempt to maximize the utilization of each server, subject to the constraint that
each split server has at most one task. In the first step (Step 1), it provisionally assigns
tasks 7; and 7, to P,, the non-split server, and Pq+ 1, the split-server shared with
the next processor, respectively, by invoking the add_task_to_server func-
tion. Then, it checks (Step 2) the schedulability of each server by invoking the
dbf_part_check function. If some server with only one task is not schedula-
ble, then the task set is also not schedulable. Otherwise, if the non-split server is not
schedulable, the algorithm backtracks and assigns t; to Pq_H, and moves to the next
iteration (where it will map tasks 7,41 and ;4> to servers Pq+2 and Pq+3, respec-
tively, and check their schedulability). If both servers are schedulable, it proceeds by
inflating (Step 3) the capacity of the previous, 154_1, and the current, ﬁq, servers by
invoking the inflate_sb_split() and inflate_sb_non_split () func-
tions, respectively. It then checks (Step 4), if U[P,](= UL ! [Py—1]+ UM™IP,])is
larger than 1.0. If yes, then it proceeds as in Step 2, when the non-split server is not
schedulable. Otherwise, (Step 5) it assigns 7; permanently to P,, removes 7;| from
Pq+ 1 server, and moves to the next iteration (Step 6), in which 1t will attempt to map
task tj41 to server P and task 7,47 to server Pq+1

For sake of 31mphc1ty, in this description we omitted many details, including those
related to the application of rules Al and A2.

5.2.2 New server-to-processor assignment for NPS-F

In the case of NPS-F, to limit the amount of backtracking, we keep the first step of
the generic algorithm, i.e. the mapping of tasks to servers, separated and merge the
remaining steps in a single one. The mapping of tasks to servers is performed in a
first step, as described in Algorithm 1, and is never undone. The backtracking can
affect only the assignment of servers to processors, and therefore their inflation and
the definition of the reserves.

Algorithm 3 shows the pseudo-code of the new merged step. It assigns servers
to processors (employing a NF bin-packing heuristic) and maps processor reserves to
servers. The algorithm iterates over the set of servers created by the task mapping algo-
rithm. First, it tries to assign each server as a non-split server. For that purpose, it inflates
the current server by invoking the inflate_sb_non_split function, which con-
siders the interference of the previous and the next server. If U[ P, ] (the utilization of
the current processor already assigned to other servers) plus U i”f'l[ﬁq] (the inflated
utilization of the current server) is smaller than or equal to 1.0 (100 %), the current
server ﬁq is assigned (non-split) to the current processor P, and the algorithm moves
to the next server. Otherwise, it will try to assign the current server, 15q , as asplit server.
Thus, it computes the inflation of the server by invoking the inflate_sb_split
function, which considers the interference of the previous two and also the next two
servers. If rule A1l applies, then the server is assigned as a non-split server to the next
processor, and the algorithm moves to the next server. If rule A2 does not apply, then
the current server 13,1 becomes a split server and is assigned to both the current and
the next processor, and the algorithm moves to the next server. Otherwise, i.e. if rule
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A2 applies, the server is classified as a single server, moved to the end of the server
list (and the servers renumbered, for ease of description of the algorithm), so that it is
later allocated a dedicated processor. Furthermore, the algorithm is restarted, because
servers that have already been assigned to a processor may have to be re-inflated. For
example, server f’q_l, which was inflated assuming that 15q would share the processor
with it, will now share the processor with I5q+1. However, this then entails the pos-
sibility that ﬁq was not sufficiently inflated (since the release interference from tasks
on 13,]+1 might be greater than what the schedulability test assumed).

Thus backtracking is performed only when rule A2 is applied. Furthermore, the
number of times the algorithm backtracks is bounded by the number of servers. This
is because application of rule A2 determines that the server will become a single server,
and therefore will no more be subject to application of rule A2.

For the sake of ease of understanding, Algorithm 3 does not include some improve-
ments that could make it more efficient or that could reduce the pessimism in the
server inflation for some task sets. For example, when the algorithm applies rule A2 to
a server, it moves it to the end of the servers list and restarts the assignment from the
beginning. However, there is no need to backtrack all the way back to the beginning: it
would be enough to backtrack until the highest numbered processor whose y-reserve
mapping is not affected. Therefore, the amount of work that has to be redone can be
limited by slightly changing the algorithm. Yet another improvement on the speed
of the algorithm is to prevent attempting assignments that will surely fail. For exam-
ple, if the current processor has already been assigned a non-split server, the current
server cannot be assigned as non-split in that processor. Therefore, in this case, the
algorithm should try immediately to assign the server as a split server. Yet another
example is the case where the sum of the size of the x-reserve, in terms of utilization,
and the uninflated utilization of the server under analysis is larger than 1.0. Clearly,
that server cannot be assigned to the N-reserve, and therefore the algorithm should
try immediately to assign the server as a split server.

Algorithm 3 takes a pessimistic stance and considers that a non-split server always
shares the processor with two other servers, and that a split server always shares
the processors with four other servers, but this is the worst case. In the best-case
scenario, a non-split server may share the processor with only one more server, and a
split server with two other servers. Thus, by assuming the best-case, it is possible to
eliminate any pessimism from the algorithm (all pessimism is included in the functions
that inflate the servers). However, this comes at the cost of additional backtracking,
whenever an assumption is proved wrong. Still, it is possible to reduce the pessimism
without adding backtracking by taking into account previous assignment decisions. For
example, when inflating a non-split server and the x-reserve of the current processor is
empty, the algorithm need not consider the interference of the previous server, because
they do not share processors.

5.2.3 Effect of assignment rules on the schedulability analysis

As shown in Algorithm 3, the introduction of assignment rule A2 may lead to back-
tracking. Although, as we have argued, backtracking is limited, it can nevertheless be
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Algorithm 3 Pseudo-code of the new server-to-processor assignment algorithm.

Input: set of k servers
Output: reserves for the m processors, allocating them to the input servers

restart < true
while restart do
restart < false
p < 1 {processor index }
g < 1 {server index}
UlPp]l <0
while ¢ < k and Type[l;q] # SINGLE do
Type[P4] < NON-SPLIT
t<2-lem T(Py_1. Pg. Pyyy)
Ui”fl[lsq] «— inﬂateisbinonisplil(laq )
if U[Pp] + UM/1[Py] < 1.0 then
{server need not be split — we need not check rule Al, at this point}
ULPp] < ULPp) + U1 By)
add_server_to_processor_N( Pp, ﬁq. U infl [ﬁq D
else
{Server cannot be NON-SPLIT on Pp: try to split it}

Uf,r:lj;l < yinfl [f’q] {Note that we are considering the interference by ﬁq—l , but that is not needed }

1< 2-lem_T(Py_o, Py_1. Pq. Pyy1. Pyin)
Uinfl{By] « inflate_sb_split(Py . 1)
U;”ﬂ[ﬁq] < 10— U[Pp]
U;ﬂf[“sq] - Uirlflusq] _ U;nf/“_:,q]
if U)’("f ’[ﬁq] > U,’,’;lf ! then
{Rule A1 —note that inflate_sb_non_split() always considers 3 servers, but in this case we need only consider 2}
adjust_reserves(Pp) {the y reserve becomes empty }
p<p+1
vinflpy1 < U™ fhon-split s inflated utilizati computed}
q lmp Split server mfiated utiization, prev. compute
addiserveritoipmceSsoriN(Pp, f’q, Ui"f[[l;qj)
ULPp] < U1 1Py)
else . .
it @ By1+ U By ) = 1.0 ResL/S then
{Rule A2} :
TypelPy] < SINGLE
move_to_last(Pg) {so that split servers are assigned “neighbor” processors }
restart < true
break {start all over: inflation of other servers may have been affected }
else
Type[Pq] < SPLIT
add_server_to_processor_Y (Pp, Pq LU ;}1_)‘[ [Pq D
ULPp1 < UIPp1 + U 1By
p<p+l1 ’ .
add_server_lo_processor_X(Pp. ﬁq, U'Ix”f I[ﬁq])
UlPp] < U,’C"f’[ﬁq]
end if
end if
end if
g <—q+1
end while
if restart then
continue
end if
p<p+l
while ¢ < k do
{handle SINGLE servers, if any}
addfserverfloﬁpmcessor(Pp, ﬁq )
UlPp] < 1.0
p<p+l
q<q+1
end while
end while
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undesirable for some task sets, because the increase in execution time may be deemed
excessive. In such cases, one can avoid backtracking at the cost of some pessimism,
by amending Egs. 25 and 37 (employed by the schedulability test), respectively, to:

sb:non-split , 75
dbf e (Pg, 1) =

dbfRso (prev(Py), 1) + dbfRec (Py.ns ) (46)

and

dbfs™ (B 1) =
dbfRuo (prev(Py), 1) + dbfhes (prev(prev(Py)), 1)
+dbf§aer1to(ﬁq/x(q,t)7 1)+ dbpraerlto(ﬁqs(q,t)’ 1) 47)

wherein prev( ) denotes the previous server (not assigned a dedicated processor) and
the server indexes g4 and gp are computed as:

galg,t)y ef{g+1, ..., k}:
dbfRe o (Paag.ns 1) = dbfRa o (Pp. ) Vp e (g + 1, ..., k) (48)
and
q(q,t) €{g+1, ..., k}\{ga}:
bt (Pap(gny» 1) = dbfRa (P, ) Vplg + 1, ..., kN\(ga(g. D} (49)

That is, when inflating a server, rather than considering the release interference
from the next server, we consider the maximum release interference that any of the
servers not yet assigned may cause, thus taking a worst-case approach. Similarly for
split servers, but in this case we need to consider the two largest values of the release
interference that any of the servers not yet assigned may cause.

Note that the values of indexes ga(gq,t) and gp(q,t) may change with the

values of t. However, since both dbfﬁirlto(lsq A(g,n)» 1) and dbprzrltO(I;q g, 1) +

dbprfltO(ISqB(q,,), t) are non-decreasing functions of 7, Quick-Processor Demand
(QPA) EDF analysis, which is discussed in the next section, is still applicable.

6 Applying the new schedulability theory

In this section, we apply the schedulability theory developed so far to two studies.
In both studies we compare the new theory with the utilization-based schedulability
theory proposed originally. In the first study, we consider the efficiency of processor
utilization. In the second study, we analyze the reliability of the schedules generated.
Before presenting these studies, we address two issues related to the application of the
new schedulability theory. First, we discuss implementation issues of the schedulabil-
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ity tests. Second, we discuss the experimental evaluation of the different parameters
used by the new theory.

6.1 Implementation issues of the schedulability test functions

As discussed earlier, in slot-based task-splitting algorithms, overhead-aware schedula-
bility testing has to be done at two stages: (i) during the task-to-server mapping and (ii)
during the server-to-processor assignment. In our code, this testing is, respectively,
performed by the C functions (i) dbf_part_check (implementing Eq. 10) and
(i) dbf_sb_non_split_check or dbf_sb_split _check (implementing
Egs. 30 and 44, respectively).

All these functions check whether, at every instant within a time interval [1, ), where
t is an argument of the functions, the supply of processor time satisfies the demand.
Unlike in conventional uniprocessor EDF scheduling, where certain techniques allow
the safe use of much shorter intervals (George et al. 1996; Spuri 1996; Ripoll et al. 1996;
Hoang et al. 2006), in our case, it is necessary to set ¢ to twice the least common
multiple of all ;s of the tasks of the server under consideration (which can be a very
big number), and therefore the length ¢ of this testing interval can be exceptionally
long. This raises two difficulties. First, the value for  may exceed the range of a 64-bit
integer. To overcome this limitation, we used the GNU Multiple Precision Arithmetic
C-Library.® Second, a longer testing interval means many more iterations, in order to
test for all integer values in the range [1, ¢). To speed up the analysis, we implemented
the schedulability testing using Quick Processor-demand Analysis (QPA) (Zhang and
Burns 2009), which overcomes the need to test for all values in the interval [1, ). This
technique works by identifying large sub-intervals within which no deadline misses
may occur, and skipping them during testing. This way, for most cases, the analysis is
significantly sped up. Algorithm 4 shows, in pseudo-code, how the QPA technique can
be used with each of the schedulability tests we defined earlier (where dbf*** stands
for any of them).

Algorithm 4 Pseudo-code algorithm of the schedulability test functions.

Input: 15q {server to analyse}
Returns: true if 13q is schedulable, false otherwise

t < 2-lem_T(Py)
dmin < minTiET[ﬁq](Di)
while dbf*** (P, 1) < t and dbf***(Py, 1) > dyy;y, do
if dbf™X(Py, 1) <t then
t < dbf**X(Py, 1)
else
t<t—1
end if
end while
return dbfxx"(f’q, t) < dyip {trueif f’q is schedulable, false otherwise }

6 Available online at http://gmplib.org/
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6.2 Quantification of overheads

In order to account for the effect of scheduling overheads using the new theory, worst-
case estimates for the various overheads themselves are required as input to the analy-
sis. However, upper bounds on the worst-case values of the previously identified over-
heads cannot be determined via a purely analytical approach, because they depend
in complex ways on the characteristics of both the hardware and software, including
the operating system, that are rarely documented with sufficient detail. Therefore, our
approach was to experimentally measure (and log) the overheads of 100 randomly
generated task sets, scheduled during 1000s each, first under S-EKG and then under
NPS-F. The corresponding maximum recorded values were then rounded up and the
values thus obtained were treated as safe upper bounds for the respective overheads.
Although, arguably, there is always the possibility that worse values might be observed
if the experiment ran for more time, we deem this level of accuracy sufficient for our
purposes in this study. For a more detailed study, or in practice, the number of required
measured values will likely vary and depend on such factors as the variability of the
measured parameters or the level of safety required. For instance, in Calandrino et
al. (2006) a comparative study of global and partitioned algorithms is presented, using
empirical data obtained using the LITMUSRT framework. In that work, some of the
overhead costs collected vary a lot from our measurements.

The 24-core platform used in our experiments is built from 1.9 GHz AMD Opteron
6168 chips (Inc. http://products.amd.com/en-us/OpteronCPUDetail.aspx?id=645)
running at a frequency of 1.9 GHz. Each Opteron 6168 module has 12 cores and
occupies one socket on the motherboard. The operating system was the modified
2.6.31 Linux kernel (Sousa et al. 2011b).

All parameters were determined in a way consistent to their definition in Sect. 4.
The context switch overhead is measured from the time instant the scheduler starts
executing until the time instant when it calls the assembly routine that switches from
the current executing job to the new one. To determine the release jitter, we measured
the time interval between the (theoretical) job arrival time and the time instant when the
timer actually expires, i.e., when the timer callback is invoked. The release overhead
was determined by measuring the time interval between the time instant when the
timer callback is invoked and a task removed from the release queue is inserted into
the ready queue. The reserve latency was estimated by measuring the time interval
from the time at which a reserve should (theoretically) start until the time instant when
a ready job (if one exists) starts to execute within the reserve. Finally, we measured
the IPI latency as the time interval between the generation of the interrupt (by the
emitting processor) and the time instant the corresponding handler starts executing
(on the other processor).

Table 2 presents the values of these parameters determined experimentally and
the estimates derived from those values that were used as input to our experimental
evaluation of the overhead-aware analysis. Essentially, we took a pessimistic stance
and derived the estimates by rounding up the maximum values measured for each of
the parameters.

Other than the various overheads identified earlier, we also collected measurements
for the tick interrupt, which occurs on every processor. This is a periodic interrupt used
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Table 2 Experimentally-
derived estimates for the various
scheduling overheads (in us)

RelJ RelO ResL CtswO IpiL

Measured 17.45 8.56 30.24 35.21 19.30
Estimates 20.00 10.00 40.00 40.00 20.00

by the operating system kernel for triggering various operations such as the invocation
of the scheduler. The worst-case execution time measured for this interrupt was 8.06
us. Although its periodicity (approximately 1 ms in our setup) can be configured via
the Linux kernel macro HZ, in practice this interrupt suffers from jitter. We estimated
this jitter, by comparing the recorded inter-arrival times with the reference period,
as 177 us. These values were obtained with a Linux kernel compiled with both the
tickless option (for suppressing the tick interrupts during idle intervals) and the CPU
frequency scaling features disabled.

We did not derive estimates for overheads from any interrupts other than the tick
interrupt because all other interrupts can be configured to be managed by one specific
processor (preferably, the least utilized one). Hence, we deemed that, even if we
would have gone through that effort, their inclusion would not meaningfully change
the overall picture. However, our analysis still allows the overheads related to any
interrupt to be specified as input and factored in.

Determining CPMD is a challenging research problem that exceeds the scope of this
work. For the state-of-the-art, see (Bastoni 2011; Altmeyer et al. 2012). Nevertheless,
our new schedulability theory allows the incorporation of their effects. In the study
with overheads we report below, we performed a sensitivity analysis with respect to
the CPMD overhead, by assuming a few values for its maximum value.

Although, in a strict sense, the measurement-based estimates characterize only
the system in which the measurements were made, we believe that this particular
contribution is important for the following reasons. First, it shows the feasibility of
the new analysis, which in turn further validates the slot-based task-splitting approach
for multiprocessor scheduling as practical and efficient. Second, by documenting how
we derived the measurement-based estimates in a manner consistent with the earlier
definitions of the respective overheads, it is possible to re-use the same approach in
order to derive estimates for the overheads in different systems.

6.3 Task set generation

In our studies, we consider different types of task sets. We characterize each task set
by its normalized utilization and by the characteristics of its tasks. Because, we use
a synthetic load, generated randomly using an unbiased random number generator,
rather than specifying a single value for the task set normalized utilization, we use
an interval with minimum value Us.,,;, and width inc, [Ugnin, Us:min + inc). With
respect to the characteristics of the tasks, the period of each task T, is uniformly
distributed over [T;.nin, Ti:max ). All tasks generated are implicit-deadline (D; = T;) in
order to allow comparisons with the original analysis. The worst-case execution time
of a task, Cj, is derived from 7; and the task’s utilization, u;, which is also uniformly
distributed over [1;min Ui-max)-
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Algorithm 5 Pseudo-code algorithm of the task set generator.

Input: Us.,,;;,, minimum normalized system utilization
inc, granularity of the normalized system utilization of the task sets
n" number of task sets to generate
[ -min-Ui-max] range of the utilization of each task to generate
[Ti-min>Ti-max] range of the period of each task to generate
m number of processors/cores

Output: I'[n7] set of generated task sets

Us:max <= Ugumin +inc
for j < 1ton® do
Lljl1 <9
i<0
T <0
Us <0
in_range < false
while U < Us.j0x do
{generate a task}
uj < uniform(u;min, Uizmax)
T; < uniform(T;.min, Timax)
Ci < T; u;
t; < create_task(7;, C;)
{add task to task set}
add_task_to_taskset(t;, )
Us < Us +u;/m
i<«—i+1
if Ug.pin < Us < Ug:pax then
{Done with this task set: it has the target utilization }
add_taskset_to_set(z, I'[j])
in_range < true
break
end if
end while
if —in_range then
{ Abort current task set generation: utilization is above target}
j < j — 1 {Try again}
else
{Generated task set successfully. Update target range utilization for next task set}
Usimin < Us:max
Us:max < Uginin + inc
end if
end for

Algorithm 5 shows the task generation procedure. It takes as inputs the minimum
normalized system utilization, Us.;in, the granularity of the normalized system uti-
lization of each task set, inc, the number of task sets, n”, the minimum and maximum
values of the utilization of each task in all task sets, u;.nin and u;.mqx, respectively,
the minimum and maximum values of the period of each task in all task sets, 7;.in
and T;.pqx, respectively, and the number of processors in the system, m. The output
of this procedure are n® task sets which are put in array I'. The normalized system
utilization of task set I'[i] (for i between 1 and n") is in the range [Uy.jin + (i — 1) -inc,
Ug.min+i-inc), and the parameters of each task in these sets satisfy the values specified
in the inputs of the procedure.
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In all experiments, we used Us.p,i,, equatl to 0.75, inc equal to 0.001 and n* equal
to 250, allowing us to evaluate the algorithms for a fairly loaded system, i.e. whose
load has normalized utilization between 75 and 100 %. Indeed, for systems with a
lighter load, we would expect no major differences, as all task sets would most likely
be schedulable. To evaluate the effect of different types of tasks, we consider four
classes of task sets according to the utilization of their tasks:

— Heavy: Tasks whose u; is in the range [0.65, 0.95).
— Medium: Tasks whose u; is in the range [0.35, 0.65).
— Light: Tasks whose u; is in the range [0.05, 0.35).

— Mixed: Tasks whose u; is in the range [0.05, 0.95).

Independently of their utilization, the periods of all tasks of all task sets are uniformly
distributed in the range [5 ms, 50 ms], with a resolution of 1 ms.

Finally, in all experiments we set m to 24, the number of processors in the system
we used to measure the overheads.

6.4 Evaluation of the new analysis in the absence of overheads

As a first step in the evaluation of the new analysis, we compare it to the original
analysis published for both algorithms, so as to evaluate the improvements in processor
utilization that stem from less pessimism in the new analysis.

Given the goals of this study, we have chosen as metric the normalized inflated
system utilization, which is defined as follows:

k
”lfl 1 mfl D
= 2 [P,] (50)

where m is the number of processors in the system, k is the number of servers, and
yinf! [Isq] is the inflated utilization of server 15q. A schedulability analysis is more
efficient than another, if its normalized system inflated utilization is lower.

Because the original, utilization-based, analysis assumes no scheduling overheads,
the results presented in this subsection were obtained considering all overheads equal
to 0.

6.4.1 Experiments for the S-EKG scheduling algorithm

In order to apply the new analysis to S-EKG, we employed the task-to-processor
mapping algorithm outlined in Sect. 5.2.1. A major difference between this algorithm
and the original S-EKG algorithm is that it does not cap the utilization of each processor
to the theoretical utilization bound (UBs_ gk ), but rather uses the new schedulability
tests presented in Sect. 4.

In our study, we considered the effect of the S-EKG design parameter §, in addition
to the workload itself, because in the original analysis this parameter has a major
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Fig.15 Comparison between the original S-EKG and the new schedulability analysis for task sets composed
by mixed (u; € [0.05, 0.95)) tasks

influence on the system utilization. Thus, for each workload, i.e. task set, we computed
the normalized utilization for each of the following § values: 1, 2, 4, and 8.

Figure 15 provides a comparison between the original (utilization-based) and the
new (processor demand-based) theory, for task sets generated under the “mixed” setup
(Uimin = 0.05, uj-max = 0.95) for different values of § and with the time slot length S
selected in each case according to Eq. 4. Each point in the plots shown in this section
represents an average of the normalized utilization for 100 randomly generated task
sets, satisfying the corresponding parameter values.

As shown in Inset (a), many task sets of relatively low utilization are not schedu-
lable according to the original analysis even with higher values for §. The results are
completely different when we apply the new schedulability test (see Inset (b)), with
almost all task sets being schedulable even with § equal to one (the most preemption-
light setting). Furthermore, the effect of 6 on the schedulability of the task sets is much
lower than in the original analysis. Indeed, the original S-EKG schedulability test fails
for all task sets with § equal to one. The explanation is that the original S-EKG task-to-
processor assignment algorithm caps the utilization of each processor to the theoretical
utilization bound (UBs_gkg), and for § equal to one, UBs_ggg = 0.65, which is less
than the lowest Uy (0.75) of any task set used in the experiments. In fact, the only task
sets with Ug; > UBg.pkg deemed schedulable by the original schedulability test are
some task sets with one or more tasks with u; > UBgs.pkg (Which then get assigned
to dedicated processors).

Figure 16 further highlights the benefits of the new schedulability analysis. It com-
pares the results of the new analysis with those of the original analysis for task sets
generated according to the “heavy”, “medium” and “light” parameter setup. The same
conclusions as before apply. The new analysis clearly improves the inflation efficiency,
in all cases. The improvement is so large that the inflated utilization is, at all points in
the graph, very close to the uninflated utilization even for § equal to one.
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Fig. 16 Comparison between the original S-EKG and the new schedulability analysis considering task sets
composed by light (1; € [0.05,0.35)), medium (u; € [0.35,0.65)), and heavy tasks (u; € [0.65,0.95))
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Fig. 17 Comparison between the original NPS-F and the new schedulability analysis considering task sets
composed by mixed (u; € [0.05, 0.95)) tasks

6.4.2 Experiments for the NPS-F scheduling algorithm

We performed the same set of experiments using NPS-F rather than S-EKG. Figure 17
compares the original (Inset(a)) and the new (Inset(b)) schedulability analysis for
task sets generated under the “mixed” setup (4;.min = 0.05, tjmar = 0.95), which
demonstrates a considerable improvement in mapping efficiency. In fact, using the
new analysis, the points for the inflated and uninflated utilization almost coincide in
the graph (even for § equal to one). These observations also apply to the experiments
with the “light”, “medium” and “heavy” task utilization setup, shown in Fig. 18.

6.5 Reliability of the task assignment

The lower efficiency of the utilization-based analysis provides a safety margin to
compensate for overheads that occur in real systems, which are not accounted for in
the analysis. However, there is no guarantee that this over-provisioning is sufficient. It
may well be the case that the utilization-based test considers a task set as schedulable,
when it really is not because of the overheads incurred in real systems.

To better evaluate this possibility, we carried out a study in which we assessed
whether the task sets deemed schedulable using the utilization-based analysis were
unschedulable according to the new demand-based and overhead-aware schedulability
analysis. Therefore the metric we used in this study was:

util oa_dblutil
Nsched — Nsched (51)
util
chhed
where ;‘Lf;lle 4 is the number of task sets deemed schedulable according to the
utilization-based schedulability analysis and N :fh;‘ilbl'ml is the number of these task

@ Springer



Real-Time Syst

(a) Utilization-based test (b) Time demand-based test
1.15 1.15
1.10 1.10
1.05
1.00
5
5n 0.95
53 0.90
-~
0.85
0.80
0.75
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Classes of task sets composed by light tasks Classes of task sets composed by light tasks
(C) Utilization-based test (d) Time demand-based test
1.15 1.15
1.10 1.10
1.05 1.05
1.00 1.00
@L'F [x‘_
5w 0.95 @wn 0.95
=5 =3
$# 0.90 $40.90
~
0.85 0.85
0.80 0.80
0.75 0.75
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Classes of task sets composed by medium tasks Classes of task sets composed by medium tasks
(e) Utilization-based test (f) Time demand-based test
1.15 1.15
1.10 1.10
1.05 1.05
1.00 1.00
@L'F [x‘_
5w 0.95 w 0.95
=5 =3
$# 0.90 $20.90
~
0.85 0.85
0.80 0.80
0.75 0.75
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Classes of task sets composed by heavy tasks Classes of task sets composed by heavy tasks

——5=1-—0-6=2—0—6=4;——6=38

Fig. 18 Comparison between the original NPS-F and the new schedulability analysis considering task sets
composed by light (u; € [0.05,0.35)), medium (#; € [0.35,0.65)), and heavy tasks (u; € [0.65,0.95))
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sets that are also schedulable according to the overhead-aware demand-based analysis.
Because of space limitations, we consider only NPS-F.

In all experiments of this study, we kept all overheads constant using the values
presented in Table 2, that are based on measurements on implementations of the NPS-F
and the S-EKG algorithms. For the Cpmd O, given the dependence of this parameter
on the load, we chose to perform a sensitivity analysis and used three values for this
parameter 0, 100 and 500 ws. The zero value represents a best case for the utilization-
based analysis; the lower the overheads the more likely the inflated utilization to be
enough to make up for them. The 500 us value corresponds to a rather high value for
the CPMD, taking into account that the minimum task period, and consequently the
slot duration, in any task set is not much higher than 5 ms. For some light tasks, 500 us
may be larger than the task computation time, itself, therefore we used a third value of
100 ps, which should not penalize as much lighter tasks. As in the previous study, for
each task set generated according to Algorithm 5, we used all the values of the design
parameter § considered. Furthermore, we ignored all the interrupts except the local
timer interrupts. (This is tantamount to assume that interrupt handling is performed
by a dedicated processor.)

Figure 19 summarizes the results of this study. Each inset shows the results for a
different value of the Cpmd O parameter. The value of this parameter has a major
effect, although it may not be that apparent at first sight, because the ranges in the
y axis are different. As expected, the higher the value of the Cpmd O the higher the
fraction of tasks deemed schedulable according to the utilization-based analysis, but
not schedulable by the new overhead-aware and demand-based analysis, for the para-
meter values considered. Also clear is the effect of the design parameter §. The higher
the value of this parameter, the higher the fraction of tasks that are not schedulable.

Figure 19 shows the fraction of non schedulable task sets ignoring the utilization
of the task set, to make the dependence on the factors considered more clear. Inset
(a) of Fig. 20 shows the dependence on the utilization of the task sets, for the mixed
task sets with Cpmd O equal to zero. As shown, for utilizations lower than a certain
value, which depends on the value of §, all task sets are schedulable according to both
analyses. However, at a given point the fraction of non-schedulable task sets rises
sharply to 1, and remains around 1 until a point, which also depend on §, when it
then drops more or less sharply to 0. As shown, the value of § determines the width
of the plateau where the fraction is equal to 1: the higher the value of § the earlier
the fraction rises to 1, and the later it drops back to 0. For this parameter settings,
for § equal to one, the fraction of unschedulable task sets never reaches 1, rather
increases up to around 0.60 and then drops back to zero. In any case, the pattern is
clear and applies also to other types of task sets and different values of Cpmd O, and
can be easily explained with the help of Inset (a) of Fig. 17 and Inset (b) of Fig. 20,
which show the average inflated utilization respectively for mixed tasks task sets for
the utilization-based analysis and for the overhead-aware and demand-based analysis
with Cpmd O equal to zero. Consider a given value of §, say 4. For task sets whose
utilization is below 0.91, the overheads are small enough that virtually all task sets
are considered schedulable by both analyses. As the task set utilization increases from
0.91 to 0.95, the average inflated utilization according to the new analysis increases
and becomes higher than 1, see Inset (b) of Fig. 20, so that virtually all task sets are
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Fig. 19 Fraction of task sets schedulable according to the utilization-based analysis, but not schedulable
according to the new overhead-aware and demand-based analysis, as a function of the type of tasks of the
task set and of the design parameter &

deemed unschedulable. On the other hand in that range, for § equal to four, the inflated
utilization according to the utilization-based analysis, see Inset (a) of Fig. 17, is still
below about 0.97, and many task sets are still deemed schedulable. Therefore, in that
interval the fraction of non-schedulable task sets raises from O to 1, and remains 1
until it drops sharply for task sets whose utilization is in the range [0.99, 1.0), which
are all deemed unschedulable also by the utilization-based analysis.
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Fig. 20 Fraction of mixed task task sets that are considered schedulable by the original schedulability
analysis but are not by the schedulability with overheads (Cpmd O equal to zero)

Inset (b) of Fig. 20 also shows that, contrary to what is predicted by the utiliza-
tion based analysis, when we take into account overheads, increasing the value of §
decreases the schedulability rather than increasing it. This pattern also holds for higher
values of Cpmd O, as we would expect, and for other types of task sets, and confirms
an observation already made in Bastoni et al. (2011).

Even though the new overhead-aware demand-based analysis is conservative, i.e.
is based on worst-case assumptions, and therefore it may be that a task set it considers
non-schedulable is actually schedulable, the parameter values we used are all values
we measured in a real system, except the values for the CPMD overheads. For the
latter we assumed several values including zero, and even in this case, which is rather
optimistic, the utilization-based analysis may consider a given task set schedulable,
when some tasks may miss their deadline. This is unacceptable in safety-critical hard-
real time systems, where the consequences of missing a deadline may be catastrophic.
The overhead-aware and demand-based analysis we developed allows to account for all
overheads incurred by an implementation, does so in a conservative way, and therefore
ensures that its results are reliable, as long as the values of its parameters are valid.

7 Conclusions

In this article, as a main contribution, we formulated a new demand-based and
overhead-aware schedulability analysis for slot-based task-splitting algorithms. This
new scheduling analysis, which guides the task assignment and splitting process, pro-
duces a better schedule than the previous analyses in terms of both efficiency and
reliability. The new theory, applicable to both S-EKG and NPS-F (the two slot-based
semi-partitioned algorithms with high utilization bounds), allow both algorithms to tar-
get arbitrary-deadline tasks and, importantly, takes the real-world overheads incurred
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by these kinds of scheduling algorithms into account. Interestingly, the experimental
results (obtained for estimates of the various overheads derived via testing on a real
system) show that, in practice, the configurations (in terms of time slot length) that
afford the best schedulability are not the ones deemed as such by the analysis ignoring
overheads available so far.

In the near future, we plan to use this new theory to carry out an exhaustive evalu-
ation of slot-based task-splitting algorithms, of the most appropriate values for their
parameters, e.g. the design parameter § or the time slot size, S, best suited for different
classes of tasks, as well as of heuristics for assigning tasks to processors. Yet another
research direction that we plan to pursue is to evolve the new theory to reduce the
pessimism with respect to CPMD costs. This is motivated by our experimental mea-
surements that suggest that the CPMD overheads used in other works may be more
than one order of magnitude larger than the other overheads.

Appendix
Interrupts

Interrupts in an operating system are raised by any hardware or software component
when it wants the processor’s attention. Basically, when a processor receives an inter-
rupt, it stops the execution of the current task to execute the interrupt service routine
(ISR) associated with the received interrupt. We model each sporadic interrupt Int;
as a sporadic interfering task with minimum inter-arrival time of Tl.’ " and an exe-
cution time equal to Ci’ " which runs at a higher priority than normal tasks. Some
periodic interrupts (for example, the periodic tick) are also characterised by an arrival
jitter Jl.I "' We assume that Cl.l "t is much smaller than S (Cil "« S) and the number
of distinct types of interrupts is limited to n!”’. Modelling interrupts in this manner
allows safely upper-bounding the cumulative execution demand by interrupts using
conventional analysis for sporadic tasks (which we next formulate in detail). However,
specifically for interrupts with Tl.I " < S, modelling such interrupts as bursty periodic
tasks’ is sometimes less pessimistic. Intuitively, this is because under slot-based task-
splitting scheduling algorithms, interrupts only exert overhead when present inside
the reserve(s) of the server under consideration. Outside its reserve(s), an interrupt
contributes to the processor-demand of some other server instead. Therefore, for each
interrupt with Til " < S, we consider both models and pick the least pessimistic value.

Next, we present in detail how the processor demand of interrupts is bounded under
our analysis. Note that depending on the server type (split or non-split), we model the
execution demand of interrupts in a slightly different way. First, let us consider non-
split servers:

A non-split server executes in a single reserve of length Res'*" [I3q] (see Eq. 26).
The cumulative execution demand by all interrupts on the server can be upper-bounded
as

7 The bursty periodic arrival model was introduced in Audsley et al. 1993.

@ Springer



Real-Time Syst

Inr

dbf}e P By = Zdbfiﬁt“"“‘spﬁ‘(lmi, B, 1) (52)
i=1

where dbf ;Etnon Split (Int;, 13q , 1) is the respective upper bound on the processor demand
by interrupt Int;.

For every interrupt /nt; (irrespective of whether Tl.l " < S or Til " > §), an upper

bound for dbf;l:t:non—Sp lit(I nt;, ISq, t) can be (pessimistically) computed as:

(cont t+J jnt

dbf{e™O) (g 1) = { 3 —‘ ¢l (53)
l

The pessimism in this derivation lies in that even interrupts raised outside the reserves

of the server in consideration are treated as interfering. However, for interrupts with

T] " < S, an alternative derivation of an upper bound for dbf}, Sb non- Spllt(I nt;, Isq, t)is

p0551ble using the bursty periodic model, as explained earher Namely:

dbfgton split: burvty)(lnti’ I;q’ 1) =

nrS (1) - dbfN (Int;, Py) + dbf&N(Iny;, By Vi, T/ < S (54)

where nrS(¢) is an upper bound on the number of time slots fully contained in the time
interval under consideration (of length 7) and dbflm(l nt;, Py) is an upper bound on
the demand by /nt; inside the reserve (of length Resle”[ﬁq]) of server 13,] in a single
time slot (of length §). Similarly for dbf}?litl:N(I nt;, ﬁq), but over the remaining time

interval (i.e. the “tail”’) of length 1'%l These terms, in turn, are derived as:

{ + ResL
wh = | 5| (59)
S
il = — Sy - S (56)
dbfN, (Int;, By) = dbfS" ™" (Int;, Res'®"[ B,]) (57)
and
dbfIN (Ing;, By) = dbfer™™ " (Int;, min(r'“"!, Res""[B,]))  (58)

Often, though not always, dbfﬁﬁf" split:bursty)
(continuous)
Int
sb:non-split
Int

(Int;, 15q, t) provides a less pes-
simistic estimate than dbf (Int;, t), for interrupts with Til nt S Hence
in the general case dbf (Int;, t) is computed as:
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b:non-spli ~
dbfy P (Tng, Py 1) =

Int
dbfic]?ntinuous)(lnti’ 1) if Tl-lm >
min (dbe{se ™ (Ingy, 1), dbE P (I, By ) T <
(59)
Next, we deal with split servers. For convenience we define:
Res'"[P,] = x[Ppi1] = Uinﬂ[f’q] - S
enp infl . 5
Resi"[Py) = y[Pp] = Uy [Py] - 8 (60)

As mentioned before, a split server f’q executes on two reserves (of length
Res)lf"[ﬁq] and Resée”[ﬁq]) separated by €2 time units. That is, it is idle during 2
time units, next it executes during x[ P, 1] on processor P, 1, then it is idle again
during €2 time units, and finally it executes during y[ P, ] on processor P, (see Fig. 11).

The cumulative execution demand by all interrupts on the server reserves can be
upper-bounded as

Int

n
dbfje Py 1) = > dbf P (Inty, By, 1) 61)
i=l1

Int

where dbf ;I?;Spht(l nt;, f’q, t) is the respective upper bound on the processor demand
by interrupt Int;.
For every interrupt Int; (irrespective of whether Til "< S or Til o> 9),
sb:split

an upper bound for dbf; ™ (Int;, f’q, t) can be (pessimistically) computed by
dbf;;tommuous) (Int;, t). As for non-split servers, the pessimism in this derivation lies

in that even interrupts raised outside the reserves of the server in consideration are
treated as interfering. Then, for interrupts with TI.I "' < § it is possible to employ the
bursty periodic model that may reduce the pessimism:

dbf(split:bursty) (Int;, ﬁq 1) =

Int
nrS (1) - (dbfy, (Int;, Py) + dbfy (Int;, Py))
+ dbfRX (1ngy, By) + dbfSY (fng, Py Vi, TIM < S (62)

where dbfX (Int;, ﬁq) and dbfY (Int;, 154) are upper bounds on the demand by Int;

Int Int
len

inside the reserves (of length Res [f’q] and Res?" [ﬁq]) of server ﬁq in a single time
slot (of length ). Similarly for dbfil™X (7nt;, P,) and dbfidil™Y (Inz;, P,), but over the

Int 5 Int
remaining time interval (i.e. the “tail”’) of length !9l These terms, in turn, are derived
as:

dbff (Int;, By) = dbfS" ™" (Int;, Res!*"[ P, 1) (63)
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dbf Y (Int;, Py) = dbf{e™ ™ (Int;, Res'"[Py]) (64)
dbfiAlX (1ng;, By)
0 if 1191l < Q
= 1 dbFEMMO) (1 9l Q) if Q < 19 < Q 4 Res![P,] (65)
dbf{EOMMOS (. Reslen[B,]) if Q 4 Resl"[B,] < "4l < §
dbf{aY (Int;, Py)
0 if 1190 < 2. Q4 Resl"[P,]
dbf (MMM (1 f19il _D . Q4 Res!"[B,]) if 2 Q+Res!"[B,] <1 <§
(66)
As for non-split servers, often, though not always, dbf}ffht:bumy)(lnti, 13,], t)
provides a less pessimistic estimate than dbfﬁ?mmuous)(l nt;, t), for interrupts with
Ti’ " < §. Hence in the general case dbf?g;Spm(l nt;, t) is computed as:
dbfS> P (1, By, 1)
dbf (€M) (Fppe 1) if 7/ > §
= (67)
min (dbfﬁf““““"“”(]mi, 1), dbf PP (1 ,t)) if T/ < §
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