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→Embedded systems get increasingly complex 
– Increasingly complex applications (more functionality) 

– Growing number of applications integrated in a device 

– More applications execute concurrently 

– Requires increased system performance without increasing power 

 

→The resulting complex contemporary platforms 
– are heterogeneous multi-processor systems with distributed memory 

hierarchy to improve performance/power ratio 

– use a shared single off-chip SDRAM to reduce cost 

 

 

2 

Trends in Embedded Systems 



→Applications have different time-criticality 
 

→Firm real-time requirements (FRT) 
– E.g. software-defined radio application 
– Failure to satisfy requirement may violate correctness 
– No deadline misses tolerable 

 

→Soft real-time requirements (SRT) 
– E.g. media decoder application 
– Failure to satisfy requirement reduces quality of output 
– Occassional deadline misses tolerable 

 

→No real-time requirements (NRT) 
– E.g. graphical user interface 
– No actual requirements, but must be perceived as responsive 
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Time-Criticality 



→Complex systems have mixed time-criticality 
– Firm, soft, and no real-time requirements in one system 
– We refer to this as mixed real-time (MRT) requirements 

 

→There are suitable memory controllers for either FRT and SRT/NRT 
– No good solutions for mixes between these types 

 

→The contributions of this presentation are 
– a survey of FRT and SRT/NRT memory controllers, respectively 
– an overview of MRT requirements and why existing controllers fail to 

satisfy them 
– a trajectory to evolve current controllers to fit with MRT requirements 
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Problem Statement 
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→An SDRAM is organized in banks, rows and columns 
– A row buffer in each bank stores a currently active (open) row 

 

→SDRAM cells suffer from leakage 
– Needs to be refreshed regularly to retain data 
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SDRAM Architecture 



→Memory map decodes address to bank, row, and column 
 

→Row is activated and copied into the row buffer of the bank 
 

→Read bursts and/or write bursts are issued to the active row 
– Programmed burst length (BL) of 4 or 8 words 

 

→Row is precharged and stored back into the memory array 
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Basic SDRAM Operation 



→Execution times of requests are variable and traffic dependent 
– Can vary by an order of magnitude 
– Three reasons for overhead cycles: 

• Activating and precharging (opening and closing) rows 
• Switching direction of data bus from read to write 
• Refreshing the memory 

 

→Memory efficiency 
– The fraction of clock cycles when requested data is transferred 

– Determines the provided net bandwidth 

– High efficiency is required since bandwidth is a scarce resource 

 
 

Memory Efficiency 
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Soft/no real-time controllers 



→FRT requirements must be satisfied even in worst-case scenario 
 

→Typical goals of firm real-time controllers: 
– Maximize the worst-case net bandwidth 

– Minimize the worst-case response time 

– A trade-off between the two, since they are contradictory 
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Firm Real-Time Controllers 



→SDRAM performance is highly dependent on locality 
– Request served quickly if it targets an open row 

– No overhead of opening and closing rows 

 

→FRT controllers are typically unable to exploit locality 
– Locality has to be guaranteed also in worst case 

– Difficult for a single executing application 
• Requires intimate knowledge of memory accesses 

– More or less impossible for multiple concurrent applications 
• Memory accesses mixed by memory arbiter 

– Makes average and worst-case performance very different 
• One reason why it is expensive to provide firm performance guarantees 
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Locality in FRT Controllers 



→As a result, FRT controllers use close-page policies [Akesson, 

Paolieri, Reineke] 
– Precharge banks immediately after each request 

– Assumes that every request targets closed rows 

 

→Benefits of policy 
– Reduces worst-case overhead of opening/closing rows 

– Increases guaranteed net bandwidth 

 

→Drawbacks of policy 
– Sacrifices best and average-case performance and power 

– Limits max efficiency of 16-bit DDR3-800 with 64B requests to 80% 
• Results from the Predator SDRAM controller [Akesson] 
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Close-Page Policy 



→Controllers are classified as statically or dynamically scheduled 
– Depends on SDRAM command scheduling mechanism 

 

→Statically scheduled controllers 
– Pre-compute SDRAM schedule at design time 

– Bandwidth and execution time bounded by inspecting schedule 
• Suitable for FRT requirements 

– Restricted to applications with well-specified memory behavior 

 

– Suitable for single applications without input dependence [Bayliss] 
• Application-specific memory controller 

• Possible to derive optimal page policy if full memory trace is known 
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Statically Scheduled Controllers 



→Dynamically scheduled FRT controllers 
– Schedule commands at run-time based on incoming requests 

– Challenge is to analyze command scheduler 
• Required to bound net bandwidth and execution times 

 

– Analysis often assumes large fixed-size requests [Akesson, Paolieri] 
• Large enough to exploit maximum bank-level parallelism by interleaving 

• Requires 64-256 B requests depending on memory device 
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Dynamically Scheduled Controllers 



→A hybrid controller combines static and dynamic scheduling 
 

→Approach based on pre-computed memory patterns [Akesson] 
– Patterns are statically scheduled sequences of SDRAM commands 
– Dynamically scheduled at run time 

 

→There are five types of memory patterns 
– Read, write, r/w switch, w/r switch, and refresh patterns 

 

Hybrid Controllers 
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Read pattern for DDR2-400 



→Request to pattern mapping: 
– Read request  → read pattern (potentially first w/r switch) 
– Write request → write pattern (potentially first r/w switch) 
– Refresh pattern issued when required 

 

→Patterns result in scheduling at higher level 
– Less state and fewer constraints, making them easier to analyze 

 

→Memory patterns let us provide lower bound on bandwidth 
– E.g. 1008 MB/s (63%) from a 16-bit DDR3-800 with 64 B requests 

Memory Patterns 

16 



→All presented types of controllers have bounded execution time 
– Bounding response times requires predictable arbitration 

– Bounds number of interfering requests from other memory clients 

 

→Different controllers uses different arbiters 
– Statically scheduled controllers uses a static schedule 

– [Paolieri] employs Round-Robin arbitration 
• Targeting homogeneous chip multi-processors 

– [Akesson] supports a variety of predictable arbiters 
• E.g. (Weighted) Round-Robin, Credit-Controlled Static-Priority, and 

Frame-Based Static-Priority 

• Targets heterogeneous MPSoCs 

Predictable Arbitration 
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→Same controllers normally used for SRT/NRT requirements 
– Dynamically scheduled high-performance controllers 

 

→SRT applications are verified by simulation rather than formally 
– Firm transaction-level guarantees are not necessary 

– Sufficient to satisfy application-level deadlines with high probability 
• May correspond to thousands of memory requests 

 

→Typical goals of soft/no real-time controllers: 
– Maximize the average net bandwidth 

– Minimize the average response time 

– A trade-off between the two, since they are contradictory 

 

 

 

 19 

Soft/No Real-Time Controllers 



→SRT controllers do not have to guarantee locality 
– Requires locality to offset miss penalties with high probability 

 

→Open-page policies are common in SRT controllers 
– Rows are speculatively kept open to exploit locality 

– Average efficiency is hence typically higher than for FRT controllers 

– Best-case memory efficiency is hence around 98% 
• All requests are either reads or writes to the same row 

• Efficiency losses only due to mandatory refresh activities 
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Locality in SRT Controllers 



→SRT controllers are flexible and supports most memory traffic 
– SRT Controllers are dynamically scheduled 

– Does not require formal analysis of supported memory traffic 

– Enables supports of e.g. variable request sizes 

 

→Fine-grained scheduling at level of single SDRAM bursts 
– Reduces wasted data of memory patterns (data efficiency) 

– Reduces response times of sensitive clients 

– Low worst-case memory efficiency 
• Cannot guarantee locality or bank-level parallelism 

• Worst-case efficiency about 16% for DDR3-800 with BL=8 words 

• Bound determined by activate-to-activate delay within a bank 

• Bound derived from memory spec. and applies to most controllers 
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Flexibility 



→Memory efficiency is optimized using sophisticated mechanisms 
 

→Preference for requests that target open rows [Several] 
– Reduces overhead of opening and closing rows 

– Increases response times for clients targeting closed rows 

 

→Read/write grouping [Several] 
– Reduces read/write switching overhead 

– Increases response times for requests in wrong direction 
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Improving Memory Efficiency 



→Preference for reads over writes [Shao] 
– Reads are often blocking while writes are posted 

– Reduces stall cycles on processor 

– No problem unless other application waits for data 

 

→Preemption of low-priority requests in service [Lee] 
– Reduces response times of high-priority clients 

– Increases response times of low-priority clients 

– Reduces memory efficiency due to preemption overhead 
 

→Interactions between mechanisms are complex 
– Difficult to derive useful bounds on bandwidth and response times 

– May even be difficult to guarantee the default 16% net bandwidth 
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Reducing Response Times 
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→MRT controllers must efficiently support FRT, SRT and NRT 
 

→Current FRT controllers treat SRT/NRT clients like FRT clients 
– Expensive both in terms of bandwidth and power 

 

→Current SRT/NRT controllers treat FRT like SRT/NRT clients 
– Guarantees are either not formally proven or very pessimistic 

– Worst-case may be maximum observed case plus a safety margin 

– Deadlines may be missed in corner cases 
 

→MRT controllers are likely to evolve from current controllers 
– Either from FRT controllers or SRT/NRT controllers 
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Mixed Real-Time Controllers 



Evolving FRT controllers to MRT requires five issues to be solved 
 

1. Trade-offs between worst/average performance 
– Only guarantee sufficient bandwidth and response times for FRT 

– Then maximize average-case performance for SRT/NRT 

– Can be done by moving to predictable open-page policies 
• Sacrifices worst-case guarantees to exploit (limited) locality 
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Evolution of FRT Controllers 

• Increases best-case efficiency from 80% to 98% 

• Reduces worst-case efficiency from 63% to around 40% 

• Preliminary results with the Predator controller [Akesson] 

• 16-bit DDR3-800 with BL=8 and 64B requests 

 



2. Providing robust FRT guarantees in presence of SRT/NRT 
– FRT behavior is well-specified, but SRT/NRT may not be 

– Guarantees must be independent of behaviors of other clients 
 

3. Increasing flexibility to support more dynamic traffic 
– FRT controllers have assumptions or restrictions on traffic 

– Cannot support dynamism present in SRT/NRT traffic 
• E.g. variable request sizes 

– May involve generalizing both controllers and analysis 
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Evolution of FRT Controllers 



4. Support for multiple use-cases 
– Applications in MRT systems may start and stop at run time 

– Requires reconfigurable FRT memory controllers 

– Challenge is to provide FRT guarantees during reconfiguration 

 

5. Predictable power-down strategies 
– Reducing power is grand challenge for coming decade 

– Existing power management limited to SRT/NRT controllers 

 
 

 

28 

Evolution of FRT Controllers 



Evolution of SRT/NRT controllers requires two issues to be solved 
 

1. Restrict or simplify use of sophisticated dynamic features 
– E.g. reordering, read/write grouping, preemption 

– Helps analyzing their impact on FRT clients 

– Required for tighter bounds on FRT performance 
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Evolution of SRT/NRT Controllers 



2. Increase access granularity beyond a single burst 
– Restricts traffic is efficiently supported 

– Enables more than 16% of net bandwidth to be guaranteed 
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Evolution of SRT/NRT Controllers 
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→Complex SoCs have mixed real-time (MRT) requirements 
– Mix of firm (FRT), soft (SRT), and no real-time (NRT) requirements 
– There are suitable controllers for FRT and SRT/NRT, but not MRT 

 

→Firm real-time controllers 
– Maximize bandwidth bound and minimize response time bound 
– Static, dynamic, or hybrid SDRAM command scheduling 
– Close-page policies to reduce miss penalty 
– Predictable arbitration 

 

→Soft/no real-time controllers 
– Maximize average bandwidth and minimize average response time 
– Dynamically scheduled with sophisticated mechanisms 
– Open-page policies to exploit locality 
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Conclusions 



→Evolution of existing FRT controllers 
1. Enable trade-offs between worst/average performance 

• Predictable open-page policies 

2. Providing robust FRT guarantees in presence of SRT/NRT 
3. Increasing flexibility to support more dynamic traffic 

• Generalize analysis 

4. Support for multiple use-cases 
5. Predictable power-down strategies 

 

→Evolution of SRT controllers 
1. Restrict or simplify use of sophisticated dynamic features 
2. Increase access granularity beyond a single burst 
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Conclusions 
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Thank you for your attention! 

 

Any questions?  

 

Our book “Memory Controllers for Real-Time 
Embedded Systems” from Springer is launched 
here at ESWEEK. Have a look! 
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