
SDRAM Controllers for

Mixed Time-Criticality Systems

Benny Akesson and Kees Goossens

Eindhoven University of Technology

→Embedded systems get increasingly complex
– Increasingly complex applications (more functionality)

– Growing number of applications integrated in a device

– More applications execute concurrently

– Requires increased system performance without increasing power

→The resulting complex contemporary platforms
– are heterogeneous multi-processor systems with distributed memory

hierarchy to improve performance/power ratio

– use a shared single off-chip SDRAM to reduce cost

2

Trends in Embedded Systems

→Applications have different time-criticality

→Firm real-time requirements (FRT)
– E.g. software-defined radio application
– Failure to satisfy requirement may violate correctness
– No deadline misses tolerable

→Soft real-time requirements (SRT)
– E.g. media decoder application
– Failure to satisfy requirement reduces quality of output
– Occassional deadline misses tolerable

→No real-time requirements (NRT)
– E.g. graphical user interface
– No actual requirements, but must be perceived as responsive

3

Time-Criticality

→Complex systems have mixed time-criticality
– Firm, soft, and no real-time requirements in one system
– We refer to this as mixed real-time (MRT) requirements

→There are suitable memory controllers for either FRT and SRT/NRT
– No good solutions for mixes between these types

→The contributions of this presentation are
– a survey of FRT and SRT/NRT memory controllers, respectively
– an overview of MRT requirements and why existing controllers fail to

satisfy them
– a trajectory to evolve current controllers to fit with MRT requirements

4

Problem Statement

5

Presentation Outline

Firm real-time controllers

Introduction

Mixed real-time controllers

SDRAM overview

Conclusions

Soft/no real-time controllers

→An SDRAM is organized in banks, rows and columns
– A row buffer in each bank stores a currently active (open) row

→SDRAM cells suffer from leakage
– Needs to be refreshed regularly to retain data

6

SDRAM Architecture

→Memory map decodes address to bank, row, and column

→Row is activated and copied into the row buffer of the bank

→Read bursts and/or write bursts are issued to the active row
– Programmed burst length (BL) of 4 or 8 words

→Row is precharged and stored back into the memory array

7

Basic SDRAM Operation

→Execution times of requests are variable and traffic dependent
– Can vary by an order of magnitude
– Three reasons for overhead cycles:

• Activating and precharging (opening and closing) rows
• Switching direction of data bus from read to write
• Refreshing the memory

→Memory efficiency
– The fraction of clock cycles when requested data is transferred

– Determines the provided net bandwidth

– High efficiency is required since bandwidth is a scarce resource

Memory Efficiency

8

9

Presentation Outline

Firm real-time controllers

Introduction

Mixed real-time controllers

SDRAM overview

Conclusions

Soft/no real-time controllers

→FRT requirements must be satisfied even in worst-case scenario

→Typical goals of firm real-time controllers:
– Maximize the worst-case net bandwidth

– Minimize the worst-case response time

– A trade-off between the two, since they are contradictory

10

Firm Real-Time Controllers

→SDRAM performance is highly dependent on locality
– Request served quickly if it targets an open row

– No overhead of opening and closing rows

→FRT controllers are typically unable to exploit locality
– Locality has to be guaranteed also in worst case

– Difficult for a single executing application
• Requires intimate knowledge of memory accesses

– More or less impossible for multiple concurrent applications
• Memory accesses mixed by memory arbiter

– Makes average and worst-case performance very different
• One reason why it is expensive to provide firm performance guarantees

11

Locality in FRT Controllers

→As a result, FRT controllers use close-page policies [Akesson,

Paolieri, Reineke]
– Precharge banks immediately after each request

– Assumes that every request targets closed rows

→Benefits of policy
– Reduces worst-case overhead of opening/closing rows

– Increases guaranteed net bandwidth

→Drawbacks of policy
– Sacrifices best and average-case performance and power

– Limits max efficiency of 16-bit DDR3-800 with 64B requests to 80%
• Results from the Predator SDRAM controller [Akesson]

12

Close-Page Policy

→Controllers are classified as statically or dynamically scheduled
– Depends on SDRAM command scheduling mechanism

→Statically scheduled controllers
– Pre-compute SDRAM schedule at design time

– Bandwidth and execution time bounded by inspecting schedule
• Suitable for FRT requirements

– Restricted to applications with well-specified memory behavior

– Suitable for single applications without input dependence [Bayliss]
• Application-specific memory controller

• Possible to derive optimal page policy if full memory trace is known

13

Statically Scheduled Controllers

→Dynamically scheduled FRT controllers
– Schedule commands at run-time based on incoming requests

– Challenge is to analyze command scheduler
• Required to bound net bandwidth and execution times

– Analysis often assumes large fixed-size requests [Akesson, Paolieri]
• Large enough to exploit maximum bank-level parallelism by interleaving

• Requires 64-256 B requests depending on memory device

14

Dynamically Scheduled Controllers

→A hybrid controller combines static and dynamic scheduling

→Approach based on pre-computed memory patterns [Akesson]
– Patterns are statically scheduled sequences of SDRAM commands
– Dynamically scheduled at run time

→There are five types of memory patterns
– Read, write, r/w switch, w/r switch, and refresh patterns

Hybrid Controllers

15

Read pattern for DDR2-400

→Request to pattern mapping:
– Read request → read pattern (potentially first w/r switch)
– Write request → write pattern (potentially first r/w switch)
– Refresh pattern issued when required

→Patterns result in scheduling at higher level
– Less state and fewer constraints, making them easier to analyze

→Memory patterns let us provide lower bound on bandwidth
– E.g. 1008 MB/s (63%) from a 16-bit DDR3-800 with 64 B requests

Memory Patterns

16

→All presented types of controllers have bounded execution time
– Bounding response times requires predictable arbitration

– Bounds number of interfering requests from other memory clients

→Different controllers uses different arbiters
– Statically scheduled controllers uses a static schedule

– [Paolieri] employs Round-Robin arbitration
• Targeting homogeneous chip multi-processors

– [Akesson] supports a variety of predictable arbiters
• E.g. (Weighted) Round-Robin, Credit-Controlled Static-Priority, and

Frame-Based Static-Priority

• Targets heterogeneous MPSoCs

Predictable Arbitration

17

18

Presentation Outline

Firm real-time controllers

Introduction

Mixed real-time controllers

SDRAM overview

Conclusions

Soft/no real-time controllers

→Same controllers normally used for SRT/NRT requirements
– Dynamically scheduled high-performance controllers

→SRT applications are verified by simulation rather than formally
– Firm transaction-level guarantees are not necessary

– Sufficient to satisfy application-level deadlines with high probability
• May correspond to thousands of memory requests

→Typical goals of soft/no real-time controllers:
– Maximize the average net bandwidth

– Minimize the average response time

– A trade-off between the two, since they are contradictory

 19

Soft/No Real-Time Controllers

→SRT controllers do not have to guarantee locality
– Requires locality to offset miss penalties with high probability

→Open-page policies are common in SRT controllers
– Rows are speculatively kept open to exploit locality

– Average efficiency is hence typically higher than for FRT controllers

– Best-case memory efficiency is hence around 98%
• All requests are either reads or writes to the same row

• Efficiency losses only due to mandatory refresh activities

20

Locality in SRT Controllers

→SRT controllers are flexible and supports most memory traffic
– SRT Controllers are dynamically scheduled

– Does not require formal analysis of supported memory traffic

– Enables supports of e.g. variable request sizes

→Fine-grained scheduling at level of single SDRAM bursts
– Reduces wasted data of memory patterns (data efficiency)

– Reduces response times of sensitive clients

– Low worst-case memory efficiency
• Cannot guarantee locality or bank-level parallelism

• Worst-case efficiency about 16% for DDR3-800 with BL=8 words

• Bound determined by activate-to-activate delay within a bank

• Bound derived from memory spec. and applies to most controllers

21

Flexibility

→Memory efficiency is optimized using sophisticated mechanisms

→Preference for requests that target open rows [Several]
– Reduces overhead of opening and closing rows

– Increases response times for clients targeting closed rows

→Read/write grouping [Several]
– Reduces read/write switching overhead

– Increases response times for requests in wrong direction

22

Improving Memory Efficiency

→Preference for reads over writes [Shao]
– Reads are often blocking while writes are posted

– Reduces stall cycles on processor

– No problem unless other application waits for data

→Preemption of low-priority requests in service [Lee]
– Reduces response times of high-priority clients

– Increases response times of low-priority clients

– Reduces memory efficiency due to preemption overhead

→Interactions between mechanisms are complex
– Difficult to derive useful bounds on bandwidth and response times

– May even be difficult to guarantee the default 16% net bandwidth

 23

Reducing Response Times

24

Presentation Outline

Firm real-time controllers

Introduction

Mixed real-time controllers

SDRAM overview

Conclusions

Soft/no real-time controllers

→MRT controllers must efficiently support FRT, SRT and NRT

→Current FRT controllers treat SRT/NRT clients like FRT clients
– Expensive both in terms of bandwidth and power

→Current SRT/NRT controllers treat FRT like SRT/NRT clients
– Guarantees are either not formally proven or very pessimistic

– Worst-case may be maximum observed case plus a safety margin

– Deadlines may be missed in corner cases

→MRT controllers are likely to evolve from current controllers
– Either from FRT controllers or SRT/NRT controllers

25

Mixed Real-Time Controllers

Evolving FRT controllers to MRT requires five issues to be solved

1. Trade-offs between worst/average performance
– Only guarantee sufficient bandwidth and response times for FRT

– Then maximize average-case performance for SRT/NRT

– Can be done by moving to predictable open-page policies
• Sacrifices worst-case guarantees to exploit (limited) locality

26

Evolution of FRT Controllers

• Increases best-case efficiency from 80% to 98%

• Reduces worst-case efficiency from 63% to around 40%

• Preliminary results with the Predator controller [Akesson]

• 16-bit DDR3-800 with BL=8 and 64B requests

2. Providing robust FRT guarantees in presence of SRT/NRT
– FRT behavior is well-specified, but SRT/NRT may not be

– Guarantees must be independent of behaviors of other clients

3. Increasing flexibility to support more dynamic traffic
– FRT controllers have assumptions or restrictions on traffic

– Cannot support dynamism present in SRT/NRT traffic
• E.g. variable request sizes

– May involve generalizing both controllers and analysis

27

Evolution of FRT Controllers

4. Support for multiple use-cases
– Applications in MRT systems may start and stop at run time

– Requires reconfigurable FRT memory controllers

– Challenge is to provide FRT guarantees during reconfiguration

5. Predictable power-down strategies
– Reducing power is grand challenge for coming decade

– Existing power management limited to SRT/NRT controllers

28

Evolution of FRT Controllers

Evolution of SRT/NRT controllers requires two issues to be solved

1. Restrict or simplify use of sophisticated dynamic features
– E.g. reordering, read/write grouping, preemption

– Helps analyzing their impact on FRT clients

– Required for tighter bounds on FRT performance

29

Evolution of SRT/NRT Controllers

2. Increase access granularity beyond a single burst
– Restricts traffic is efficiently supported

– Enables more than 16% of net bandwidth to be guaranteed

30

Evolution of SRT/NRT Controllers

31

Presentation Outline

Firm real-time controllers

Introduction

Mixed real-time controllers

SDRAM overview

Conclusions

Soft/no real-time controllers

→Complex SoCs have mixed real-time (MRT) requirements
– Mix of firm (FRT), soft (SRT), and no real-time (NRT) requirements
– There are suitable controllers for FRT and SRT/NRT, but not MRT

→Firm real-time controllers
– Maximize bandwidth bound and minimize response time bound
– Static, dynamic, or hybrid SDRAM command scheduling
– Close-page policies to reduce miss penalty
– Predictable arbitration

→Soft/no real-time controllers
– Maximize average bandwidth and minimize average response time
– Dynamically scheduled with sophisticated mechanisms
– Open-page policies to exploit locality

 32

Conclusions

→Evolution of existing FRT controllers
1. Enable trade-offs between worst/average performance

• Predictable open-page policies

2. Providing robust FRT guarantees in presence of SRT/NRT
3. Increasing flexibility to support more dynamic traffic

• Generalize analysis

4. Support for multiple use-cases
5. Predictable power-down strategies

→Evolution of SRT controllers
1. Restrict or simplify use of sophisticated dynamic features
2. Increase access granularity beyond a single burst

 33

Conclusions

[Akesson] B. Akesson and K. Goossens. “Architectures and Modeling of Predictable Memory Controllers for Improved

System Integration”. In Proc. DATE, 2011

[Bayliss] S. Bayliss and G. Constantinides. “Methodology for designing statically scheduled application-specific SDRAM

controllers using constrained local search”. In Proc. FPL, 2009.

[Lee] K. Lee, T. Lin, and C. Jen. “An efficient quality-aware memory controller for multimedia platform SoC. In IEEE Trans. on

Circuits and Systems for Video Technology”,15(5), 2005.

[Paolieri] M. Paolieri, E. Quinones, F. Cazorla, and M. Valero. “An Analyzable Memory Controller for Hard Real-Time CMPs”.

In: Embedded Systems Letters, IEEE, 1(4), 2009.

[Reineke] J. Reineke, Isaac Liu, Hiren Patel, Sungjun Kim, and Edward Lee. “PRET DRAM Controller: Bank Privatization for

Predictability and Temporal Isolation”. In: Proc. CODES+ISSS, 2011

[Several] Several different works, listed in paper.

[Shao] J. Shao and B. Davis. “A burst scheduling access reordering mechanism”. In Proc. HPCA, 2007.

34

References

Thank you for your attention!

Any questions?

Our book “Memory Controllers for Real-Time
Embedded Systems” from Springer is launched
here at ESWEEK. Have a look!

 35

Questions

