
Automatic Generation of Efficient

Predictable Memory Patterns

Benny Akesson, Williston Hayes Jr., and Kees Goossens

Eindhoven University of Technology

→MPSoC design gets increasingly complex
– Number of applications in a device is increasing

– More processors, hardware accelerators, and memories

– Many applications execute concurrently

– Some applications have (hard) real-time requirements
• Missing a deadline results in significant quality degradation

– Resources are shared between applications to reduce cost
• Results in temporal interference between sharing applications

• Makes it difficult to satisfy real-time requirements

2

Trends in Embedded Systems

→Formal RT verification requires predictable systems
– Have performance models of both applications and hardware

→We have proposed a predictable platform (CoMPSoC)
– Processor tile with MicroBlaze processor and RTOS

– Æthereal network-on-chip

– Memory tiles with SRAM controller or Predator SDRAM controller

Formal Verification

3

→SDRAM bandwidth is scarce and must be efficiently utilized
– Off-chip pins are expensive in terms of area and power

→Our SDRAM controller is based on predictable memory patterns
– Statically computed sequences of SDRAM commands

– Dynamically scheduled at run-time

– Enable bandwidth and response times of requests to be bounded

→Memory patterns are computed manually
– Time-consuming and error-prone process

– Five patterns required per memory device / configuration

– Manually computed patterns may not use bandwidth efficiently

4

Problem Statement

→This paper presents three algorithms for pattern generation
– Branch and bound scheduling
– As-soon-as possible scheduling
– Bank scheduling

→Algorithms are experimentally evaluated
– For a range of memories and configurations
– Run-time of algorithm vs. efficiency (bandwidth)

5

Contributions

6

Presentation Outline

Predictable SDRAM controller

Introduction

Experiments

SDRAM overview

Conclusions

Generation algorithms

→An SDRAM is organized in banks, rows and columns
– A row buffer in each bank stores a currently active (open) row

→Interface has a command bus, address bus, and a data bus
– Buses shared between banks to reduce the number of off-chip pins

→SDRAM cells suffer from leakage
– Needs to be refreshed regularly to retain data

7

SDRAM Architecture

→Memory map decodes address to bank, row, and column

→Row is activated and copied into the row buffer of the bank

→Read bursts and/or write bursts are issued to the active row
– Programmed burst length (BL) of 4 or 8 words

→Row is precharged and stored back into the memory array

8

Basic SDRAM Operation

→Timing constraints determine schedulability of commands
– More than 20 constraints on minimum time between commands

• E.g. activate-to-activate, activate-to-read/write, read/write-to-

precharge, read-to-write, write-to-read, etc.

– Constraints reduce bandwidth provided by the memory

→Memory efficiency
– The fraction of clock cycles when requested data is transferred

– Determines the guaranteed net bandwidth

Timing Constraints

9

10

Presentation Outline

Predictable SDRAM controller

Introduction

Experiments

SDRAM overview

Conclusions

Generation algorithms

11

→Predictability through predictable memory patterns
– Statically computed sequences of SDRAM commands
– Dynamically scheduled at run-time

→There are five types of memory patterns
– Read, write, r/w switch, w/r switch, and refresh patterns

→Request to pattern mapping:
– Read request → read pattern (potentially first w/r switch)
– Write request → write pattern (potentially first r/w switch)
– Refresh pattern issued periodically to retain data

Predictable SDRAM

11

→Patterns enable scheduling at higher level than commands
– Less state and fewer constraints, making them easier to analyze

→Bounding memory efficiency (bandwidth)
– Worst sequence of patterns is known (scheduling rules & pattern lengths)

– Data transferred by patterns is known (by definition)

→Bounding response times
– Number of interfering requests is known (arbiter analysis)

– Request to pattern mapping is known (scheduling rules)

– Pattern to cycle mapping is known (pattern lengths)

Memory Patterns

12

→ There is a general structure for memory patterns
– Valid patterns implement this structure and satisfies all timing

constraints of the memory device

→ Structure of access patterns (read and write patterns)
– At least one activate and precharge command per bank

• Access patterns must be independent

• Incorrect rows are open in banks in worst case

• Banks are precharged immediately after access (close-page policy)

• Improves worst-case memory efficiency

– Fixed number of bursts to each bank, called burst count (BC)
• Memory efficiency increases with burst count

13

Pattern structure

→ Switching patterns
– Purpose is to allow data bus to switch direction

– Consists of zero or more NOP commands

→ Refresh patterns
– First consists of NOP command to allow all banks to precharge

– Then has a refresh command follow by NOPs to finish refresh

→ Auxiliary patterns are easy to derive given access patterns
– Shown in paper, not discussed further in this presentation

14

Structure of auxiliary patterns

15

Presentation Outline

Predictable SDRAM controller

Introduction

Experiments

SDRAM overview

Conclusions

Generation algorithms

→ Huge design space reduced using five design decisions

1. Shorter access patterns are assumed to be more efficient
– Enables finding shortest read and write patterns independently

– Auxiliary patterns are generated afterwards

– Assumption usually valid, but may reduce efficiency with up to 1%

2. Identities of banks are not distinguished
– Patterns identical if all commands to two bank are swapped

– Reduces set of valid patterns considerably

– No impact on efficiency or response time

16

Design decisions

3. Access patterns start with an activate command
– Rationale: must activate before reading or writing

– Ignores patterns starting with one or more NOP commands

– Initial NOPs typically reduce bandwidth

– No impact on efficiency or response time

4. Issue last burst to a bank with auto-precharge flag
– Less commands to schedule, limiting the design space

– Less contention on command bus, which may improve efficiency

5. Issue all bursts to a bank before moving to next
– Gives more time to activate and precharge between accesses

– Improves efficiency

17

Design decisions

→Algorithm is based on depth-first traversal of valid patterns
– Guaranteed to find shortest patterns

– Optimal given our design decisions

→Run-time of algorithm is a problem due to large search space
– 10000 optimal read patterns of 32 cycles for DDR2-400 BC=2

– Three orders of magnitude more patterns with length 37!

18

Branch and bound scheduling

→Search space is pruned to reduce run-time

→Two bounding conditions determine if branch can be discarded
1. If pattern is longer than current shortest pattern

2. If pattern is will be longer after scheduling remaining commands
• Determined based on timing constraints between successive activate

commands and read/write commands

→Neither of these conditions can discard an optimal solution

→Run-time may be hours or days despite pruning
– Faster algorithm required for faster memories or high burst counts

19

Pruning the search space

→ASAP scheduling is a heuristic that aims to reduce run-time
– Simple intuitive algorithm

– Schedule commands as early as possible to find short schedules

→Algorithm works cycle-by-cycle
– Determine set of valid commands

– Use simple priority mechanism to schedule command
1. Read/write command (puts data on bus)

2. Activate command (enables future data transfer)

3. NOP

20

ASAP scheduling

→It executes in a second, but patterns are not always efficient
– Activates scheduled increasingly far from their read/writes

– Additional NOPs required to satisfy precharge conditions

– Reduces memory efficiency up to 10% compared to B&B

→This motivates looking for a better heuristic

21

Problem with ASAP scheduling

ASAP read pattern
for DDR2-400

Balanced read pattern
for DDR2-400

→Bank scheduling is a heuristic that aims for high efficiency
– Builds on lessons from ASAP algorithm

– Aims to keep activates close to their read/write commands

→Algorithm works bank-by-bank
– Schedules first bank according to minimum timing constraints

– Tries scheduling read/write at BL/2 cycles from last access
• Successful if its activate can be scheduled tRCD cycles earlier

• Otherwise move read/write one cycle later and try again

→It executes in a second and provides high efficiency!

22

Bank scheduling

23

Presentation Outline

Predictable SDRAM controller

Introduction

Experiments

SDRAM overview

Conclusions

Generation algorithms

→Experiments consider a range of memories and configurations
– DDR2-400 (DDR2-800 and DDR-1600 in paper)

– 16 bit interface, 4 banks, 512 Mb capacity

– Burst count (BC) 1, 2, and 4

– Programmed burst length (BL) of 4 and 8 words

→Experiment considers worst-case memory efficiency
– No simulation, exercises tooling

– Independent of input

24

Experimental Setup

→Worst-case efficiency results
– All patterns are identical with BL=4

• Timing constraints give few options with small bursts

– Efficiency of ASAP is up to 10.2% lower than for B&B
• Longer write pattern due to precharge problem

– Bank scheduling provides same efficiency as B&B for all settings

→Run-time results
– typically in a second for all algorithms

– B&B requires 8 days with BC=4

– B&B does not finish in 10 days for

DDR3-1600 BC=2,4

25

DDR2-400

26

Presentation Outline

Predictable SDRAM controller

Introduction

Experiments

SDRAM overview

Conclusions

Generation algorithms

→A predictable memory controller has been proposed
– Enables formal verification of SoCs with large storage requirements

– Based on memory patterns, which must be generated manually

→The paper presents three pattern generation algorithms

→We show that the choice of algorithm matters
– Difference between B&B and ASAP scheduling is up to 10.2%

– B&B is efficient, but is slow for faster memories with more banks

– Bank scheduling is fast and provides same efficiency as B&B

→Bank scheduling provides a favorable trade-off between run-

time and efficiency

27

Conclusions

→Algorithm is based on depth-first traversal of valid patterns
– Guaranteed to find shortest patterns

– Optimal given our design decisions

→Run-time of algorithm is a problem due to large search space
– 10000 optimal read patterns of 32 cycles for DDR2-400 BC=2

– Three orders of magnitude more patterns with length 37!

29

Branch and bound scheduling

→Worst-case efficiency results
– All algorithms perform identically for all settings

– Write patterns are not longer with ASAP scheduling
• Memory has eight banks

• Four-activate window spreads out activates better

→Run-time results
– ASAP and bank scheduling takes a second

– B&B with BC=1 took 7 days to generate

– B&B with BC=2 and 4 did not finish

in 10 days!

30

DDR3-1600

→Worst-case efficiency results
– All algorithms perform almost identically for all settings

– ASAP scheduling provides 0.1% high efficiency than others for BC=2
• Write patterns three cycles longer than for other algorithms

• Longer write pattern reduces lengths of auxiliary patterns

• Benefit is negligible

• Shows drawback of first design decision – shorter is not always better

→Run-time results
– ASAP and bank scheduling takes a second

– B&B with BC=4 took 32 minutes

31

DDR2-800

