An Efficient Configuration Methodology for Time-Division Multiplexed Single Resources

Trends in Consumer Electronics Systems

- →Embedded systems get increasingly complex
 - Increasingly complex applications (more functionality)
 - Growing number of applications integrated in a device
 - More applications execute concurrently
 - Requires increased system performance without increasing power
- →The resulting complex contemporary platforms
 - are multi-core systems to improve performance/power ratio
 - Resources in the system are shared to reduce cost

Application Requirements

→ Firm real-time requirements (FRT)

- E.g. Software-defined radio
- Failure to satisfy requirement may violate correctness
- No deadline misses tolerable

→No real-time requirements (NRT)

- E.g. graphical user interface
- No specified timing requirements, but must be responsive
- →Clients access shared resources on behalf of applications
 - Require a minimum bandwidth and a maximum latency

HD video and graphics processing system

Problem Statement

- → Resource sharing results in **interference** between clients
 - Causes resource contention
 - Contention is resolved by a resource arbiter
 - Time-Division Multiplexing (TDM) is commonly used

- → Problem is finding a schedule length and slot assignment
 - that satisfies bandwidth and latency requirements of RT clients
 - that minimizes utilization to maximize performance of NRT clients
 - in reasonable computation time

Contributions

→The five main contributions of this work are:

- 1. Latency analysis for arbitrary slot allocation
- 2. Formulation of the configuration problem and proof it is NP-hard
- 3. An optimized ILP formulation assuming given schedule length
- 4. Heuristic algorithm to choose schedule length
- Experimental evaluation of scalability and trade-offsCase study of HD video and graphics processing system

Introduction

Latency-Rate Servers

Latency Analysis

Optimized ILP Formulation

Frame-Filtering Heuristic

Experiments

Latency-Rate Servers

- →Latency-rate servers abstracts service from shared resources
 - Client provided guaranteed rate, ρ , after maximum latency, Θ $w_i^j \geq \max(0, \rho_i \cdot (j \Theta_i))$
 - Latency and rate depend on arbiter and its configuration
- → Benefits of latency-rate servers
 - Many compatible arbiters
 - Works with sequences of requests
 - Compatible with system-level analysis frameworks

Time-Division Multiplexing

→TDM operation

- Periodically repeating schedule (frame), f
- Each slot is resource access with bounded ET

→TDM configuration

- Each client i allocated φ_i slots $\rho_i = \phi_i/f$
- Exact slots determined by slot assignment policy
- Two simple policies are continuous and equidistant assignment

$$\Theta_i^{co} = f \cdot (1 - \rho_i)$$

$$C_1 \quad c_1 \quad c_1$$

$$C_1 \quad c_1$$

→ Problem

- Continuous provides worst possible latency
- Equidistant provides best latency, but is not always possible
- New analysis required for more complex and irregular assignment

Introduction
Latency-Rate Servers

Latency Analysis

Optimized ILP Formulation

Frame-Filtering Heuristic

Experiments

Motivational Example

- → Computing latency is more difficult than it seems
 - Not just largest gap in schedule
 - Must sustain allocated rate after latency

Example with frame size 10, 5 allocated slots to c_1 , and largest gap 3

Sub-Tables and Offsets

- → Analysis divides TDM schedule into **sub-tables**
 - Each sub-table has continuous allocation
 - Easy to determine local latency and rate
- \longrightarrow Latency offset computed for each sub-table $\delta^j = \phi^j + \tilde{\phi}^{j+1} \phi^j \cdot 1/\rho$
 - Ability to sustain rate through idle part of following sub-table
 - Positive offset means longer latency required

Latency for Arbitrary Allocation

- →Local sub-table analyses combined into **global analysis**
- → We prove that latency is computed according to:

$$\Theta = \max_{j \in [1,N} \left(\Theta^j + \max\left(0,\max_{k \in [1,N]} \sum_{l=j}^{j+k-1} \delta^l\right)\right)$$

For every possible start and end sub-table, take maximum of local latency + sum of offsets

- → Complexity is quadratic w.r.t. number of sub-tables
 - Max f / 2 sub-tables

Introduction
Latency-Rate Servers
Latency Analysis

Optimized ILP Formulation

Frame-Filtering Heuristic

Experiments

Problem Formulation

- →Details of TDM Configuration Problem / Latency-Rate (TCP/LR)
 - Determine frame size
 - Determine allocation and slot assignment for all RT clients
 - All latency and rate requirements must be satisfied
 - Total allocated rate must be minimal
- →We prove that problem is NP-hard
 - Periodic Maintenance Scheduling Problem is a special case

Basic Model

→ Formulation has four constraints and assumes frame size is given

- 1. Each slot is allocated to maximally one client $\sum_{c_i \in C} x_i^j \le 1, \quad j \in F.$
- 2. Each client must have enough slots to satisfy rate requirement $\sum_{j=1}^f x_i^j \ge f \cdot \hat{\rho}_i, \quad c_i \in C.$
- 3. Worst-case service cannot exceed service provided by TDM table

$$\underline{w}_i^j \leq \sum_{l=k}^{(k+j) \bmod f} x_i^l, \qquad k \in F, c_i \in C, j \in F.$$

4. Worst-case service must satisfy latency-rate guarantee

$$\underline{w}_i^j \ge \hat{\rho}_i \cdot (j - \hat{\Theta}_i), \quad j \in F, c_i \in C.$$

Five Optimizations

- 1. Lower bound on slots also considers latency requirement
 - Conservatively assumes equidistant allocation
 - Client latency-dominated if this is more than rate requirement
- 2. Removing redundant constraints for latency-dominated clients
 - We prove it is sufficient to check single point on service curve
- 3. Removing rotational symmetry
 - Give first slot to client with smallest slot requirement
- 4. Value propagation for different values of frame size
- 5. Checking if allocation feasible after discretization

Introduction
Latency-Rate Servers
Latency Analysis
Optimized ILP Formulation

Frame-Filtering Heuristic

Experiments

Frame-Filtering Heuristic

- → Trying all possible frame sizes might be time-consuming
 - K-heuristic chooses K candidate sizes to reduce computation time
 - Implies trade-off between computation time and utilization
- → Determines over-allocation for each candidate
 - Discretized rate required rate
 - Sort candidates ascending based on total over-allocation
 - Return K first candidates
- →Expected behavior
 - Optimal for bandwidth-dominated clients
 - Ok for latency-dominated clients as it prefers large frame sizes

Introduction
Latency-Rate Servers
Latency Analysis
Optimized ILP Formulation
Frame-Filtering Heuristic

Experiments

Experimental Setup

- →Two sets of synthetic use-cases with 4, 8 and 16 clients
 - 500 bandwidth-dominated and 500 latency-dominated
 - Frame sizes from n to 8n, heuristic uses K=1
- → Bandwidth-dominated use-cases
 - Total bandwidth requirements in [0.8, 0.95]
 - Relaxed latency requirements
- →Latency-dominated use-cases
 - Total bandwidth requirements in [0.35, 0.5]
 - Tighter latency requirements
- →CPLEX solver running on 12 Xeon cores with 64 GB memory

Bandwidth-Dominated Clients

- →Both optimal solution and K-heuristic solve all 1500 use-cases
 - Computation time increases exponentially with clients
 - 4 days for optimal solution and 30 hours for K-heuristic
- →K-heuristic sub-optimal in 8 use-cases with 4 clients
 - Use-cases close to being latency-dominated
 - Negligible loss of 0.03% in total allocation for these 500 use-cases

Latency-Dominated Clients

- →Optimal solution solves 1500 use-cases and K-heuristic 1496
 - Faster than bandwidth-dominated cases due to optimizations
 - 44 hours for optimal solution, 8 hours for K-heuristic
 - K-heuristic sacrifices 0.5% (median) in total allocation
 - Worse than for bandwith-dominated clients, which is intuitive
- →All experiments repeated with continuous assignment strategy
 - Only succeeds in 452 / 3000 cases, typically with few clients

Introduction

Latency-Rate Servers

Latency Analysis

Optimized ILP Formulation

Frame-Filtering Heuristic

Experiments

- → This work addresses a **TDM configuration problem**
 - Bandwidth and latency requirements of RT clients must be satisfied
 - Total allocation must be minimized to maximize NRT performance
- →We propose
 - A quadratic latency analysis for arbitrary slot assignments
 - An optimized ILP formulation for the NP-hard configuration problem
 - A heuristic providing near-optimal results in 28% computation time
- →Our approach outperforms continuous assignment algorithm
- → Demonstrated on HD video and graphics processing system

