
Towards Continuous Evolution through 
Automatic Detection and Correction of 
Service Incompatibilities

Prof. dr. Benny Akesson



Motivation

Thales systems have life time > 30 years and require upgrades
• Requirements significantly change during life time

• New software with new capabilities becomes available

System upgrades can take 1-2 years and happen every 10-15 years
• Many small updates collected into big infrequent upgrades

• System evolves slowly and in big steps, increasing risk

Continuously evolution reduces risk and increases added value



Continuous Evolution

Facilitated by service-oriented architectures

Service-oriented architectures provide flexibility
• Components provide and require services for particular functionality

• Service dependencies are dynamically resolved

• Abstracting component implementing service through service interface

• Decouples application from a particular technology and implementation



Service-oriented Architecture

Thales INAETICS platform provides the context of this work
• Service-oriented architecture providing resilience and evolvability

Simplified terminology
• Services are implemented by components that communicate via 

message passing

• Service interface comprises set of valid message types (formal) and 
protocol (informal)

• Messages can be passed either synchronously or asynchronously



Problem Statement

Updating service interfaces comes with associated challenges
• Many components in many products may request or provide services

• Dynamic resolution of service dependencies makes it less explicit which 
components interact

• Determining impact of update on components is challenging

• Addressing this problem manually is expensive and time consuming

This applied research considers the problem of automatically detecting 
and correcting incompatibilities resulting from service updates



Compatibility

Two types of compatibility are considered:

• Structural compatibility: 
messages specified in the service interface, and their fields, match 
those used by the client in terms of name, type, and semantics. 

• Behavioral compatibility:
service and the clients agree on the protocol. 



Contributions

Paper presents initial work towards by addressing the stated problem

The paper has three contributions:
1. Survey of state-of-the-art in areas of interface specification, and 

detection and correction of incompatible services

2. Initial steps towards a methodology to manage service 
incompatibilities

3. Work is discussed in context of simplified case study of a service in the 
radar domain



Presentation Outline

State-of-the-Art

Introduction

Methodology

Conclusions



Overview of State-of-the-Art

We survey the state-of-the-art in two areas, covering 30 publications:

1. Interface specification
• Structural specification, e.g. programming languages and many interface 

definition languages
• Behavioral specification, e.g. communication state machines, open nets, 

and process algebras
• Combinations of both, e.g. Dezyne and ComMA languages

2. Detection and correction of incompatibilities
• Detection of structural and behavioral incompatibilities
• Correction of (structural and) behavioral incompatibilities through adapter 

generation

Please refer to paper for survey



Presentation Outline

State-of-the-Art

Introduction

Case Study

Methodology

Demonstration

Conclusions



SUCCESS,

adapter generated

Original 
ComMA 
model

Updated 
ComMA 
model

Original 
Open Net

Updated 
Open Net

Check 
Accordance

Generate 
Adapter

Generate 
Code

Partner 
Open Net

Partner 
ComMA 
model

Sp
ec

if
y 

st
ru

ct
u

re
 a

n
d

 
b

eh
av

io
r

SUCCESS, no adapter needed

FAIL, no adapter exists

generate

generate

generate

no accordance

accordance

Step 1 Step 2 Step 3 Step 4 Step 5

Directions for Methodology

Five-step Methodology

1. Service Interface Specification for all services using ComMA (design time)

2. Generate Formal Model based on Open Nets from all specifications (design time)

3. Check Accordance between original and update using operating guidelines

4. Generate Adapter between services using controller synthesis

5. Generate Code from adapter model and deploy in INAETICS



Interface Specification



Service Interface Specification

ComMA selected as specification language for five reasons
1. specifies both structure and behavior, required to validate both aspects 

of compatibility

2. models both synchronous and asynchronous communication

3. successfully applied in industry before, i.e. at Philips 

4. automatic inference and migration of interface specifications simplifies 
industrial adoption

5. the tooling is based on Eclipse, which is one of the most commonly used 
modeling tools in the embedded domain



Types:

enum Response {
ACK, UPDATE

}

record PTResponse {
Response response
real usedBudget

}

Signature:

signals
PTOn(real budget)
PTOff

notifications
PTState(PTResponse

response)

Interface:

variables
PTResponse ptResponse

machine StateMachine {
initial state OFF {

transition trigger: PTOn(real budget)
do:

ptResponse.response := 
Response::ACK

ptResponse.usedBudget := -1.0
PTState(ptResponse)

next state: ON
}

state ON {
transition trigger: PTOff

do:
ptResponse.response := 

Response::ACK
ptResponse.usedBudget := -1.0
PTState(ptResponse)

next state: OFF

// Periodic update
transition do:

ptResponse.response := 
Response::UPDATE

PTState(ptResponse)
next state: ON

}
}

Example Service Interface in ComMA

+PTOn(maxBudget)

-PTState(UPDATE, 
usedBudget)GOIN

G OFF

GOIN
G ON

OFF ON

+PTOff
-PTState(ACK, -

1)

Case study changes this service by replacing some uses of a 
state message with a new Performance message



Generate Formal Model



Generate Formal Service Model

Open Nets chosen as formal service model
• Special type of Petri Nets with unconnected interface places

Open Nets for three main reasons:
1. possible to transform a ComMA specification into an Open Net

2. support both synchronous and asynchronous communication

3. existing analysis methods are available, supported by academic tools

Server Client



Check Accordance between Original and
Updated Nets



Check Accordance

Method based on Operating Guidelines chosen
• Operating Guidelines are a characterization of all possible partners

• Basic idea is to check if all partners supported by one service are also 
supported by another

• Context-independent method covers all possible partner services 
simultaneously, advantage if the number of partners is large or unknown

• Method is exact and supported by academic tool Fiona



Accordance Checking Modified PeriodicTask

v1

v2

v2 does not simulate 
v1, nor are they 

equivalent

Adapter needed!



Generate Adapter



Generate Adapter

Adapter generation approach based on controller synthesis
• Adapter architecture comprises Engine and Controller

• Engine focuses on data flow and transformations

• Controller determines order of transformation and sending

• Engine structure follows directly from mapping rules

• Controllers are synthesized to guarantee deadlock freedom

• Approach supported by academic tools Marlene and Fiona

Mapping Rules

PTOn -> PTOn;
PTOff -> PTOff;
PTStateReady -> PTStateReady;
PTState -> PTState;
PTPerformance -> PTState;

Adapter

Service 1

Engine

Controller
Service 2



Generate Code



Presentation Outline

State-of-the-Art

Introduction

Case Study

Methodology

Demonstration

Conclusions



Conclusions

Problem

• Systems with long life time need to continuously evolve

• Service-oriented architectures are enablers of continuous evolution

• Managing compatibility of evolving services remains a challenge

Methodology for detection/correction of incompatibilities was presented

• Technology selection based on survey of state-of-the-art

• Specifying structure and behavior of service interface using ComMA

• Generate Open Nets to check accordance of update and synthesize 
adapters, if necessary



I am happy to tell you more and demonstrate our work!


