
Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Critical-Path-First Based Allocation of Real-Time
Streaming Applications on 2D Mesh-Type

Multi-Cores

Hazem Ismail Ali1 Lúıs Miguel Pinho1 Benny Akesson2

1CISTER Research Centre/INESC-TEC, Polytechnic Institute of Porto, Portugal

2Eindhoven University of Technology, The Netherlands

{haali, lmp}@isep.ipp.pt, k.b.akesson@tue.nl

RTCSA 2013 - Taipei - Taiwan

August 21, 2013

1 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Overview

1 Introduction
Background
Problem

2 System Model

3 Allocation Algorithm

4 Evaluation and Results
Evaluation Metrics
Experimental Setup
Results

5 Conclusion

2 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Introduction (1/4)

Multi-core architectures integrating several low-performance
cores on a single chip became popular.

Streaming multimedia applications are becoming increasingly
important and widespread.

They have high processing requirements and timing
constraints that must be satisfied, e.g., H.264 video decoders.

The dataflow computational model is suitable for representing
streaming applications because:

1 it enables them to use the massive computational power of
multi-core systems (parallelization model).

2 it is a natural paradigm for representing them.

A dataflow model is specified by a directed graph, where the
nodes are considered as actors and the connections between
the nodes, i.e. edges, as channels of data.

3 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Introduction (2/4)
Homogeneous Synchronous Dataflow (HSDF)

a_0

b_0 b_1 b_2

c_0 c_1 c_2

d_0

1 1
1

1 1 1

11 1

1 1 1

11 1

11
1

actor

channel

i/p port

o/p port

Consumption 

rate

Production 

rate

Figure : An example HSDF graph.

Is a special case of dataflow
graphs in which all rates
(production / consumption)
associated with actor ports
are equal to 1.

When each actor is fired
once, the distribution of
tokens on all channels return
to their initial state
(complete cycle or graph
iteration).

Other models (e.g. SDF,
CSDF) can be converted to
an equivalent HSDF using a
conversion algorithm. 4 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Introduction (3/4)
Problem

Problem to be addressed:

How to Allocate real-time
streaming applications modeled
as HSDF on a multi-core
platforms such that we can
guarantee satisfying its timing
constraints?

Dataflowg(DF)
representedgin

HSDF

Multi-coregPlatform

?

Core

Interconnetedg
Networkg(IN)

actors edges

5 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Introduction (4/4)

This allocation problem has previously been tackled in several
works from a high-performance point-of-view. However, these
approaches do not consider timing constraints and thus cannot
be used for allocation of real-time dataflow applications.

We propose a new algorithm called Critical Path First (CPF).

CPF is for allocation of real-time applications modeled as
HSDF dataflow graphs on 2D mesh multi-core processors.

Results show that the proposed heuristic improves utilization
of system resources with up to 7% and speeds up the
allocation process with up to 19% compared to approaches
using a First-Fit bin-packing heuristic.

6 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

System Model

Formally, we consider a system S based on :

Dataflow (DF)
A={A1, A2,..., Am}

periodic,CrepresentedCinC
HSDF,CDAGsCG=CTV,CE1,

Multi-coreCPlatform

Core

InterconnetedC
NetworkCTIN1

actors/nodes channels/edges

actorCisCaCperiodicCtaskC

TiC=C1/

PEDFCtoCscheduleCallocatedCtasksC

Allocate

Figure : System Model.

7 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

System Model

Formally, we consider a system S based on :

Dataflow (DF)
A={A1, A2,..., Am}

periodic,CrepresentedCinC
HSDF,CDAGsCG=CTV,CE1,

Multi-coreCPlatform

Core

InterconnetedC
NetworkCTIN1

actors/nodes channels/edges

actorCisCaCperiodicCtaskC

TiC=C1/

PEDFCtoCscheduleCallocatedCtasksC

Allocate

Figure : System Model.

8 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

System Model

Formally, we consider a system S based on :

Dataflow (DF)
A={A1, A2,..., Am}

periodic,CrepresentedCinC
HSDF,CDAGsCG=CTV,CE1,

Multi-coreCPlatform

Core

InterconnetedC
NetworkCTIN1

actors/nodes channels/edges

actorCisCaCperiodicCtaskC

TiC=C1/

PEDFCtoCscheduleCallocatedCtasksC

Allocate

Figure : System Model.

9 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Allocation Algorithm

The algorithm is intended for allocation of applications modeled as
HSDF graphs onto 2D mesh multi-cores at design time.

It consists of two main phases:

1 Finding all the possible paths between the nodes of the
applications on the system.

2 Allocating the actors of the graph on the cores of the mesh
processor using the output information of the previous phase.

10 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

First phase: Finding all possible paths

1) Creation of source and sink actors:

a_0

b_0 b_1 b_2

c_0 c_1 c_2

d_0

1 1
1

1 1 1

11 1

1 1 1

11 1

11
1

(a) An example HSDF graph.

a_0

b_0 b_1 b_2

c_0 c_1 c_2

d_0

1 1
1

1 1 1

11 1

1 1 1

11 1

11
1

s

t

indegree = 0

outdegree = 0

source

sink

F
u

ll
 P

a
th

Partial Path

(b) Adding source s and sink t.

11 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

First phase: Finding all possible paths

2) Path enumeration:

PATHS Delay

Partial Path :

Extend Partial Path using

Resulted Paths : 

}
12 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

First phase: Finding all possible paths

2) Path enumeration: Example:

a_0

b_0 b_1 b_2

c_0 c_1 c_2

d_0

1 1
1

1 1 1

11 1

1 1 1

11 1

11
1

s

t

PATHS Delay
Initial partial path : 
Pi = < s, a_0 >

Pi = < s, a_0 > Ca_0

13 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

First phase: Finding all possible paths

2) Path enumeration: Example:

a_0

b_0 b_1 b_2

c_0 c_1 c_2

d_0

1 1
1

1 1 1

11 1

1 1 1

11 1

11
1

s

t

PATHS Delay

Pi = < s, a_0 >

Pi = < s, a_0 >

Succ(a_0)=<b_0, b_1, b_2>
Ca_0

14 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

First phase: Finding all possible paths

2) Path enumeration: Example:

a_0

b_0 b_1 b_2

c_0 c_1 c_2

d_0

1 1
1

1 1 1

11 1

1 1 1

11 1

11
1

s

t

PATHS Delay

Pi = < s, a_0 >

Pi = < s, a_0 >

Succ(a_0)=<b_0, b_1, b_2>

Resulting Paths:
Pi1 = < s, a_0, b_0 >

Pi2 = < s, a_0, b_1 >

Pi3 = < s, a_0, b_2 >

Ca_0

15 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

First phase: Finding all possible paths

2) Path enumeration: Example:

a_0

b_0 b_1 b_2

c_0 c_1 c_2

d_0

1 1
1

1 1 1

11 1

1 1 1

11 1

11
1

s

t

PATHS Delay
< s, a_0, b_0 >

Pi = < s, a_0 >

Succ(a_0)=<b_0, b_1, b_2>

}

< s, a_0, b_1 >
< s, a_0, b_2 >

Resulting Paths:
Pi1 = < s, a_0, b_0 >

Pi2 = < s, a_0, b_1 >

Pi3 = < s, a_0, b_2 >

Ca_0 + Cb_0

Ca_0 + Cb_1

Ca_0 + Cb_2

16 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Second phase: Critical-Path-First (CPF)
Definitions

Independent / Dependent Path

A path PAi
= 〈v0, v1, v2, . . . , vj〉

of a certain application Ai is said
to be independent iff all its actors
are unallocated. If at least one of
PAi

actors is already allocated,
the path is considered dependent.

Allocation Condition

Umi + uj ≤ 1

Core Selection
0

0

1 2 3

1

2

3

Current CoreNext Core
spiral_move

(a) spiral move

0

0

1 2 3

1

2

3

3 hop 1 hop 2 hop 4 hop 
Current Core

(b) find nearest core
17 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Second phase: Critical-Path-First (CPF)

CPF Algorithm (1/2)

PATHSAi
: Lookup table for all possible paths in application Ai

ordered according to criticality.
PATHSG : Global lookup table for all PATHSAi

of all applications
on the system S .

PAi
: A path of application Ai in PATHSG lookup table,
PAi

= 〈v0, v1, v2, . . . , vj〉.
P
p
Ai

: Partial path of full path PAi

LP
p
Ai

: List of partial paths.

begin
n = spiral move();
foreach PAi

in PATHSG do
if PAi

is Independent then
foreach vj in PAi

do
while (all cores are not tested) and (vj not
allocated) do

if Umn + uvj ≤ 1 then
allocate vj on core mn.

else
n = spiral move();

if vj not allocated then
unallocate ∀vj ∈ Ai from M.

else // Dependent Path Case
–Dependent Case Next Slide.

18 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Second phase: Critical-Path-First (CPF)

CPF Algorithm (2/2)

begin
n = spiral move();
foreach PAi

in PATHSG do
if PAi

is Independent then
–Independent Case In Previous Slide.

else // Dependent Path Case

search for possible Pp
Ai

in PAi
.

classify found Pp
Ai

& add them to LPp
Ai

.

foreach Pp
Ai

in LPp
Ai

do

if Head or Tail then
find the reference actor (Parent).
allocate using find nearest core.

else if Middle then
calculate mid-point (core).
allocate using find nearest core.

if (vj in Pp
Ai
) not allocated then

unallocate ∀vj ∈ Ai from M.

Partial Path Classes

v0 v1
v2 v3 v4 v5

allocated

unallocated

Head
reference node

(a) Class Head partial path

v0 v1
v2 v3 v4 v5

Tail

(b) Class Tail partial path

v0 v1
v2 v3 v4 v5

Middle

(c) Class Middle partial path

19 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Evaluation Metrics

Two metrics are used to evaluate our approach:

1 Number of allocated applications N.

2 Average end-to-end worst-case response time gain of the
applications Rav

Again
.

Also we measured :

Total utilization of the multi-core processor UM (the average
of all core utilizations, UM =

∑n
i=1 Umi/n, where Umi is the

utilization of core i).

Run-time tr of the algorithm.

20 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Experimental Setup

CPF has been evaluated by implementing an allocation tool
and experimenting on a set of streaming applications. These
streaming applications are taken from the SDF3 Benchmark.

The allocation tool instantiates randomized combinations of
these applications to create sets of 500 applications.

Five experiments have been carried out in order to assess the
suitability of the proposed approach under different types of
applications with different utilizations (High/Low).

The size of the multi-core platform is an 8x8, 64 core 2D
mesh.

21 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Evaluation and Results

Summary of results

High%High%High%/Low%Low%Low% 100%100%100%/0%0%0% 80%80%80%/20%20%20% 60%60%60%/40%40%40%

Mean of CPF FF CPF FF CPF FF
N 64.1 64.3 98.1 92.1 124.3 117.9

tr (sec) 2.9 3.1 2.3 2.9 1.8 2.1

R
av
Again

31.2% 24.4% 22.3%

High%High%High%/Low%Low%Low% 40%40%40%/60%60%60% 20%20%20%/80%80%80%

Mean of CPF FF CPF FF
N 173.6 168.8 300.1 294.9

tr (sec) 1.3 1.3 0.7 0.4

R
av
Again

14.1% 8.2%

22 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

Conclusion

CPF maximizes the overall utilization of the system resources
by allocating paths that have the highest impact on the
end-to-end response time of the application first.

CPF is able to minimize the average end-to-end worst-case
response time of the applications allocated on the system by
enabling application-level parallelism.

Both algorithms executes in a few seconds, showing that the
added complexity is negligible.

23 / 24



Introduction System Model Allocation Algorithm Evaluation and Results Conclusion

The End

24 / 24


	Introduction
	Background
	Problem

	System Model
	Allocation Algorithm
	Evaluation and Results
	Evaluation Metrics
	Experimental Setup
	Results

	Conclusion

