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Introduction

Many multi-core systems have both streaming applications
and traditional real-time applications.

The dataflow computational model is suitable for streaming
applications because:

1 it enables the use of multi-core systems (parallelization
model).

2 it is a natural paradigm for representing them.

A dataflow model is specified by a directed graph, where the
nodes are considered as actors and the edges between the
nodes as channels of data.
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Background
Homogeneous Synchronous Dataflow (HSDF)

Figure: An example HSDF graph.

Is a special case of dataflow
graphs in which all rates
associated with actor ports
are equal to 1.

When each actor is fired
once, the distribution of
tokens on all channels return
to their initial state (graph
iteration).

Other models can be
converted to an equivalent
HSDF using a conversion
algorithm.

4 / 21



Introduction Background Problem Contribution System Model Algorithm Validation Conclusion

Problem

To enable real-time scheduling
techniques on such mixed
systems, a unified model is
required to represent both types
of applications running on the
system.

Problem to be addressed:

How to Extract Timing
Parameters of real-time
streaming applications modeled
as HSDF Directed Cyclic Graphs
(DCG)?

Existing work is restricted to
dataflow applications represented
as acyclic applications.
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Contribution

We propose an algorithm for extracting timing parameters
(si ,Ci ,Ti ,Di ) of HSDF actors, where:

si offset (starting time).

Ci Worst Case Execution Time (WCET) (Given by the
application).

Ti period.

Di relative deadline.

Enables applying traditional real-time schedulers and analysis
techniques on HSDF.
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System Model

Dataflow(DF)
(WCET,P/C rates, )

represented inSDF,CSDF,...etc.

Non-Dataflow
(NDF)

Transformation toHSDF

and calculatedby
theproposedalgorithm

Nodes/Actors

ExtractReal-TimeParameters

Applications

EnableMappingandSchedulingon
Multi-\Many- CorePlatform

Arbitrary Deadline Tasks
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Algorithm

The proposed algorithm extracts the timing parameters
(si ,Ci ,Ti ,Di ) of dataflow applications with timing constraints at
design time.

It consists of two main phases:

1 Finding all the possible paths in the applications graph.

2 Extracting the timing parameters of individual actors in the
graph using the output information of the previous phase.
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Algorithm
Definitions

Path:

A route between two actors vx and vy with a latency constraint
Dxy .

Path Sensitivity γ:

Criticality of a path with respect to path density. The path density
is the tightness of the latency constraint Dxy for a path P
compared to its execution time.

γ =
∑
∀vj∈P

Cj

Dxy
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Algorithm
Methods

We consider two well-known methods for pipelines (Paths):

1) The NORM method

divide the end-to-end deadline Dxy of a pipeline proportionally to
the computation time of its tasks :

Di =
Ci∑

∀vj∈P Cj
· Dxy

2) The PURE method

distribution of the laxity ε = Dxy −
∑

∀vj∈P Cj , equally among all
tasks of the pipeline, such that each task have equal slack δ = ε

|Vp | :

Di = Ci + δ
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Algorithm
Methods

Deriving cycle latency constraints:

HSDF applications can have several cycles. Each cycle requires a
latency constraint Dcycle

xy that satisfies the throughput requirement
ζi of the application:

A quick choice for Dcycle
xy = Ti = 1

ζi
.

A better choice of Dcycle
xy considers the number of tokens

involved in this cycle dcycle , to relax Dcycle
xy and enable

capturing overlapping iterations.

Dcycle
xy =

dcycle
ζi

Refer to Section IV.B in our paper for more details.
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Algorithm
Methods

Deriving end-to-end latency constraint:

In case of an HSDF application without a specified end-to-end
latency constraint Dxy , is defined as:

Dxy = max { Ti︸︷︷︸
period

, β ·
∑

∀vi∈CP
Ci︸ ︷︷ ︸

exec. time of CP

}

where β is a constant that ranges [1,∞).

β =
1

max∀cycle∈G{γcycle}

Refer to Section IV.B in our paper for more details.
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First phase: Finding all possible paths

1) Creation of source and sink actors:

(a) An example HSDF graph. (b) Adding source s and sink t.

Unifies all the paths that traverse the graph from the input to
the output of the graph have a uniform form that starts with s
and end with t.

Allows to deal with multiple input/output graphs.
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First phase: Finding all possible paths

2) Path enumeration:

Finds all timed-constrained paths and orders them (descendingly)
according to sensitivity γ.
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Second phase: Extracting timing parameters

Algorithm

The second phase repeats for each application. It do the following:

1 Picks a time-constrained path Pi in order of sensitivity.

2 Each selected path Pi is assigned deadlines Dj and offsets sj .
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Example

HSDF graph example: Sol: Algorithm First Phase:

We have three paths:
P1 = 〈e, f , d〉, D1

ed = 3, γ1 = 1
P2 = 〈b, c〉, D2

bc = ?
P3 = 〈a, b, c , d〉, D3

ad = ?

Sol: Deriving Latency constraints:

D2
bc =

dcycle
ζ = 2

0.5 = 4, γ2 = 0.5

D3
ad = max {Ti , β ·

∑
∀vi∈P3

Ci} = max {2, 1
γ2
· 4} = 8, γ3 = 0.5

Therefore, P = {〈P1, γ1〉, 〈P2, γ2〉 〈P3, γ3〉} =
{〈(e, f , d), 1〉, 〈(b, c), 0.5〉, 〈(a, b, c , d), 0.5〉}
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Example

HSDF graph example: Sol: Algorithm Second Phase:

Individual deadline calculation:
P1: De = 1,Df = 1,Dd = 1
P2: Db = 2,Dc = 2
P3: Da = 3

Sol: Algorithm Second Phase:

Offset assignment:
P̂ = {〈P3,D

3
ad〉, 〈P1,D

1
ed〉}

P3: sa = 0, sb = 3, sc = 5, sd = 7
P1: se = 5, sf = 6

17 / 21



Introduction Background Problem Contribution System Model Algorithm Validation Conclusion

Example

Therefore:

{a, b, c , d , e, f } =
{(0, 1, 2, 3), (3, 1, 2, 2), (5, 1, 2, 2), (7, 1, 2, 1), (5, 1, 2, 1), (6, 1, 2, 1)}

HSDF graph example: HSDF timing diagram

a
b
c
d
e
f
0 1 2 3 4 5 6 7 8 9 10
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Formal Validation

Through formal proofs (refer to Section V in the paper), we assure
that the assigned timing parameters by our proposed algorithm
guarantees satisfying application timing constraint using any
known real-time scheduling algorithm.
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Conclusion

The main contribution is that the HSDF graphs can be cyclic
or acyclic and the graph actors are modelled as
arbitrary-deadline tasks.

We formally proved that the assigned timing parameters
satisfies the timing constraints of the application.

It enables applying traditional real-time analysis techniques on
dataflow graphs follows from representing as tasks.

A method to assign individual deadlines and offsets for
real-time dataflow actors and support for two deadline
assignment techniques (NORM/PURE) that are widely used
in the literature.
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Questions ?
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