
Efficient Service Allocation in Hardware
Using Credit-Controlled Static-Priority Arbitration

Efficient Service Allocation in Hardware
Using Credit-Controlled Static-Priority Arbitration

Benny Åkesson

Technische Universiteit Eindhoven

The Netherlands

Liesbeth Steffens

NXP Semiconductors Research 

The Netherlands

Kees Goossens

NXP Semiconductors Research & 

Delft University of Technology

The Netherlands



2

Trends in MPSoC Design

► Embedded system design gets increasingly complex
– Moore’s law allows increased component integration

– Digital convergence creates a market for highly integrated devices

► Systems are implemented as MPSoC platforms with
– a large number of heterogeneous intellectual property (IP) components

– many concurrently executing applications with real-time requirements

► Pressure to quickly design systems in a cost-effective manner



3

Application Requirements

► Applications are mapped on the MPSoC platform
– Results in communication requirements between IP components

– IPs wanting access to a resource are referred to as requestors

► In this presentation, we consider hard real-time requestors
– Example: Audio post processing IP that is a part of an MP3 player

– Require guaranteed minimum service rate and bounded maximum latency

– The service requirements may be diverse



4

MPSoC Constraints

► Resource sharing
– is required to reduce cost,
– but introduces interference between requestors,
– making it difficult to satisfy real-time requirements.

► Access to shared resources provided by a resource arbiter

► Resource arbiter requires an implementation that
– is small.

• Allows multiple instances to be used in the system with limited impact on area

– runs at high clock frequency.
• Enables scheduling on fine granularity, reducing latency and buffers

– reserves service without over allocating.
• Prevents wasting scarce resources, such as external memory bandwidth



5

Related Work

► Existing arbiters fail to satisfy these requirements for three reasons:

– Allocation granularity coupled to latency
• Trade-off between over-allocation and low latency

• Example: frame-based arbiters, such as TDM and Weighted Round-Robin 

– Latency coupled to rate
• Cannot provide low latency without over allocating

• Example: Fair queuing family, frame-based arbiters without priorities

– Cannot run at high clock speed with small implementation
• Example: Sporadic server (complex accounting)

Frame size = 4

Granularity 1 / 4 = 25%

WC latency = 6

Frame size = 8

Granularity 1 / 8 = 12.5%

WC latency = 14



6

Credit-Controlled Static-Priority Arbitration

► A Credit-Controlled Static-Priority (CCSP) arbiter has been proposed
– Comprises a rate regulator and a static-priority scheduler

► Benefits of CCSP:
– Regulator decouples allocation granularity from latency

– Static-priority scheduler decouples latency from rate

– Small hardware implementation that runs at high speed

► Previous work only describes the model behind the rate regulator
– Assumes infinite precision and is not trivial to implement in hardware



7

Main Contributions

► In this presentation, we explore
– how to efficiently represent service allocations in hardware.

– how over allocation affects provided service.

► Paper also derives implementation of rate regulator and proves correctness

– Based on proposed service representation

– Only uses integer arithmetic



Presentation Outline

CCSP Overview

Service Allocation

Experimental Results

Conclusions

8



9

Credit-Controlled Static-Priority Arbitration

► Arbiter consists of a rate regulator and a static-priority scheduler

► Regulator enforces an upper bound on provided service
– Determines which requestors are eligible for scheduling

► Static-priority scheduler schedules highest priority eligible requestor

► We consider a preemptive and non-work-conserving instance.

Requestor 1

Requestor 2

Scheduled requestor

Scheduled requestor



10

Latency-Rate Server

► In CCSP, service is allocated to a requestor according to an allocated 

burstiness, σ’, and an allocated service rate, ρ’

► We have shown that CCSP belongs to the class of latency-rate servers

► Allocated service rate, ρ’, guaranteed to a requestor after service latency Θ
– Lower bound on provided service, bounding the finishing time of a request

















1

0

1

0

1
p

i

i

p

i

i







Presentation Outline

CCSP Overview

Service Allocation

Experimental Results

Conclusions

11



12

► Service allocation in hardware uses finite precision
– Discretization of intended real-valued allocation

– Discrete allocation must conservatively approximate the intended allocation

► Discrete allocated rate represented as fraction of integers,
– We refer to the parameters as numerator (n) and denominator (d)

– Maximum value of n, d are 2β - 1, where β is the accuracy in bits

► As a consequence, discrete allocated burstiness, 

► Conservative approximations result in over allocation
– Over allocated rate = ρ’’ – ρ’

– Over allocated burstiness = σ’’ – σ’

Service Representation

 
d

d





d

n




13

► There are multiple strategies when selecting the numerator and denominator

► We define a closest burstiness approximation (CBA) strategy
– Rationale: Minimizing over-allocated burstiness reduces latency

– Selects largest denominator

– Selects best numerator to reduce over-allocated rate as second objective

► We also define a closest rate approximation (CRA) strategy
– Rationale: Minimizing over-allocated rate reduces both waste and latency

– First selects numerator and denominator that provides closest approximation of ρ’

– If multiple pairs provide the same approximation, the one with largest denominator 

is preferred to reduce over allocated burstiness as second objective

Allocation Strategies

 
d

d





d

n


















1

0

1

0

1
p

i

i

p

i

i







14

► Both strategies provide same bound on over-allocated rate
– Less than 1 / (2β – 1)

– However, CRA typically performs much better, since worst-case only 

happens if allocated service rate is close to zero.

► Bound on over-allocated burstiness of CBA is half of CRA

► Over allocation for both strategies monotonically reduces with 

increased precision
– Increasing precision never wastes more capacity nor increases latency

– Important property for design-space exploration algorithms

– Property does not hold for frame-based regulators, since latency and rate 

are coupled

Allocation Properties



15

Synthesis Results

► Arbiter implemented in VHDL and synthesized in 90 nm CMOS process
– Speed target of 200 MHz to fit with a DDR2-400 memory device

– Instance with 6 ports and 8-bit accuracy requires 0.0223 mm2

► We experiment by varying the precision of the service allocation
– Area of the implementation increases linearly with increased precision

– The bound on over-allocated rate reduces exponentially



Presentation Outline

CCSP Overview

Service Allocation

Experimental Results

Conclusions

16



17

Experimental Setup

► The context is a predictable MPSoC interconnected with Æthereal NoC

► Arbiter integrated into Predator SDRAM controller 
– Memory device is a 16-bit DDR2-400 @ 200 MHz

– Guaranteed memory bandwidth is 660 MB/s

– A request of 64B is served in about 80 ns

► We use synthetic work loads for all experiments

► All service allocations are computed at design time
– Just exercising tooling

– No simulation required



18

Experiment 1 – Allocation Properties

► We start by comparing the allocation properties of CRA and CBA
– Average and maximum measured over-allocation compared to the bounds

► Description of use cases
– We use bins with 2, 4, 6, 8 and 10 requestors

– For each bin, we generate 1000 use cases

– The total loads are uniformly distributed in the range [0, 100%]

– Allocated burstinesses are real numbers in the range [1, 5]

– Five bits of precision, results in access granularity of 1 / 31 = 3.3%



19

Over-Allocated Rate

► Maximum measured over-allocated rate:
– Close to bound for both strategies with two requestors

– Difference increases with the number of requestors
• Worst-case allocation becomes increasingly unlikely, especially for CRA

– We measure higher maximum over-allocated rate with CBA

► Average over-allocated rate:
– CRA performs better on average for all bins, as expected

– CRA reduces average over-allocated rate with a factor three over CBA



20

Over-Allocated Burstiness

► Maximum measured over-allocated burstiness:
– Similar as before, both strategies close to bound with few requestors

– We observe higher maximum over-allocated burstiness with CRA

► Average over-allocated burstiness:
– CBA outperforms CRA for all bins

– Reducing average over-allocated rate by a factor three with CRA comes at 

the cost of 25% increase in over-allocated burstiness



21

Experiment 2 – Use Case Requirements

► Comparison of how CRA and CBA satisfies use case requirements 
– Use cases have high loads and hard service latency requirements

► Description of use cases
– We use bins with 91%, 93%, 95%, 97%, and 99% total loads

– For each bin, we generate 1000 use cases

– Service latency requirements vary uniformly in range [0, 10000 ns]

– Five bits of precision in rate regulator

– Priorities are assigned using an optimal algorithm

► Interesting results are percentage of use cases where
– all bandwidth requirements are satisfied

– all latency requirements are satisfied

– both bandwidth and latency requirements are satisfied



22

Successful Use Cases

► Bandwidth allocation:
– CRA outperforms CBA significantly for use 

cases with high load, as expected

► Priority assignment:
– CRA outperforms CBA for all bins

– Over-allocated rate is worse than over-

allocated burstiness in latency expression

► Total success rate:
– CRA outperforms CBA for all tested loads

– CRA satisfies more than 4x as many use 

cases with high load on average

– CBA held back by allocation granularity

















1

0

1

0

1
p

i

i

p

i

i







23

Experiment 3 – Increasing Precision

► We study the effects of increasing precision
– We repeat previous experiment for CRA with 5 and 6 bits, respectively

► We compare with Frame-Based Static-Priority scheduler (FBSP)
– Frame size set to 31 and 63 to provide same accuracy

– Slots in frame allocated proportionally to allocated service rate

– Details about latency for this combination in paper



24

CCSP Increasing Precision

► Success rate of CCSP increases with precision
– Over-allocation and service latency both reduce monotonically

► Success rate of FBSP fluctuates with precision
– Latency and rate are coupled!

– Increasing precision is good for bandwidth allocation, but bad for latency



Presentation Outline

CCSP Overview

Service Allocation

Experimental Results

Conclusions

25



26

Summary and Conclusions

► We presented the hardware implementation of the CCSP rate regulator
– Simple implementation of active period regulation
– Accounting based on integer arithmetic with finite precision

► We introduced and compared two allocation strategies
– Closest Rate Approximation (CRA)
– Closest Burstiness Approximation (CBA)

► Conclusions:
– We showed that increasing precision results in exponential reduction of over-

allocation at cost of linear increase in area of the implementation

– Over-allocation and latency reduces monotonically for CCSP with increased 
precision, unlike frame-based arbiters

– The CRA strategy is preferred as it satisfies more use case requirements than CBA

– Having a fine allocation granularity that is decoupled from latency is essential for 
resources with high loads in real-time systems



27

Questions?

k.b.akesson@tue.nl


