An analytical model for a
memory controller offering
hard real-time performance

Benny Akesson

Introduction

 The number of memory clients, requestors, grows in
embedded systems

« Diversity in memory requirements with regard to
bandwidth and latency

— CPU, DSP (low average latency)

— Filter (minimal guaranteed bandwidth)
— Control system (low worst-case latency)

SDRAM layout

« SDRAMSs have a multi-bank architecture and is organized
In banks, rows and columns.

« Memory efficiency measures percentage of useful cycles.

* Memory cycles are wasted as:
— Rows are opened and closed
— Read/write switches
— Memory is refreshed

bank O bank 1 bank 2 bank 3

row 0
row 1

row 2
row 3
row ...

LT T T TPy BTy BT T

buffers

Problem statement

 Embedded systems require a memory
service that offers:

— Flexibility
— High memory efficiency

— Real-time guarantees on (net) bandwidth
and latency (predictability)

Efficiency

Predictability Flexibility 4

Memory controller overview

Four functional blocks
— Memory mapping

— Arbitration

— Command generator
— Data path

Static
controller design

eeeeeeeeeeee

Efficiency

Predictability

BBBBBBBB

Dynamic
controller design

Flexibility

Proposed solution [1 / 3]

Memory controller

Request buffers

o
-

—
-

oy

\‘ Memory

A

A

A

Response buffers

}

) ™ mapping

-

Arbitration

e

: Command

generation

Y

|
Data path :
|

‘<HOB(D§

« Gross to net bandwidth translation by fixing back-end

schedule

Front—end

N ———

Back—end

Proposed solution [2 / 3]

Memory controller

Request buffers

o
-

—
L

oy
L

Response buffers

A A A
A

\‘ Memory
) ™! mapping

I
i | Command
™| generation

Y

|
Data path :

< =030

Front—end

N ———

Back—end

* Allocate net bandwidth to requestors

Proposed solution [3 / 3]

Memory controller

Request buffers

N\ A

Response buffers

A A A
A

Schedule

I
i | Command
™| generation

Y

Data path :

< =030

Dynamically schedule requests for increased flexibility.

Front—end

N ———

Back—end

Back-end schedule

« Composed of read, write and refresh groups
— Groups contain low-level SDRAM commands

— One burst for every bank

 Fixed back-end schedule

— Translates gross to net bandwidth

— High predictable efficiency

Burst

—_——

Read
Bank 0

Read

Bank 1

Read Read
Bank 2 | Bank 3

Write | Read | Read

Write

Read

Read | Ref

[—

Write Read
group group

____V_______/

Basic group

—_—

Refresh
group

0>
TOoZ
TO=Z

R
D

0>
Oz
O =z
-0 >
o=z
vo=z

1 1]2

=0 >
TO =z
TOoZ

Read group

Creating a back-end schedule

Include refresh group
— Determines length of schedule

Determine basic group layout
— Read/write mix
— Affects latency and efficiency

Repeat basic group

Algorithm uses exhaustive
search

Ref

Write

Write | Read

Read

Write

Read

%ﬁ_—J

Basic group

Write

Read

Write

Read

Ref

Allocation scheme

« Back-end schedule divided into service periods

Write | Write | Read | Read | Write | Write | Read | Read | Write | Write | Read | Read | Write | Write | Read | Read | Ref

« Bursts are allocated to requestors
— Corresponds to net bandwidth
— According to bandwidth requirements
— Introduces discretization errors

11

Bandwidth guarantee

There Is no such thing as an unconditional
guarantee!

Constraints for bandwidth guarantees

— Requestors must be backlogged

— Requestors can only read or write

— Requestors must use specific access patterns

Guarantee provides analytical base for worst-case
latency

12

Dynamic front-end scheduler

Bridge between allocation scheme and back-end
schedule

Dynamically chooses a requestor that fits with the
current burst

Our implementation is a QoS-aware FCFS scheduler
— Low latency and high bandwidth traffic classes
— Low latency is preferred while within budget

13

Example system

Based on a Philips video processing SoC
Connected through Philips Athereal NoC
Two filters provide eight high bandwidth requestors

A CPU with three low latency requestors has been
added

14

« Maximum discrepancy of 0.22% from requested

« Loads up to 89.3% have been successfully simulated

Bandwidth results

Net bandwidth is delivered In real-time

bandwidth

Cumulative net bandwidth [B]

-y
(6}

10}

x 10°

Delivered net bandwidth

Time [ns]

15

Latency results

2500

2000

1500 -

Latency [ns]

1000 -

500

0 Jdd

o 1t 2 3 4 5 6 7 8 9 10
Requestor

Solution is flexible. Lower latency to low latency requestors:
— 75.8% lower worst-case latency
— 42.5% lower average latency

16

Conclusions

« QOur solution provides hard real-time guarantees on:
— Minimal net bandwidth
— Maximum worst-case latency

« Guarantees are provided through constraints

« Based on analytical model
— Guarantees are provided without simulation

Efficiency

Predictability Flexibility

17

