
An analytical model for a 

memory controller offering 

hard real-time performance

Benny Åkesson



2

Introduction

• The number of memory clients, requestors, grows in 

embedded systems

• Diversity in memory requirements with regard to 

bandwidth and latency

– CPU, DSP (low average latency)

– Filter (minimal guaranteed bandwidth)

– Control system (low worst-case latency)

CPU

Control

Memory

Filter Interconnect

FPGA DSP



3

SDRAM layout

• SDRAMs have a multi-bank architecture and is organized 
in banks, rows and columns.

• Memory efficiency measures percentage of useful cycles.

• Memory cycles are wasted as:
– Rows are opened and closed

– Read/write switches

– Memory is refreshed



4

Problem statement

• Embedded systems require a memory 
service that offers:
– Flexibility

– High memory efficiency

– Real-time guarantees on (net) bandwidth 
and latency (predictability)

Efficiency

Predictability Flexibility



5

Memory controller overview

• Four functional blocks

– Memory mapping

– Arbitration

– Command generator

– Data path

Efficiency

Predictability Flexibility

Static 

controller design
Dynamic 

controller design



6

Proposed solution [1 / 3]

• Gross to net bandwidth translation by fixing back-end 
schedule

F

I

X



7

Proposed solution [2 / 3]

• Allocate net bandwidth to requestors

F

I

X

A

L

L

O

C



8

Proposed solution [3 / 3]

• Dynamically schedule requests for increased flexibility.

F

I

X

A

L

L

O

C

Schedule



9

Back-end schedule

• Composed of read, write and refresh groups

– Groups contain low-level SDRAM commands

– One burst for every bank

• Fixed back-end schedule

– Translates gross to net bandwidth

– High predictable efficiency

Read group



10

Creating a back-end schedule

• Include refresh group
– Determines length of schedule

• Determine basic group layout
– Read/write mix

– Affects latency and efficiency

• Repeat basic group

• Algorithm uses exhaustive 
search



11

Allocation scheme

• Back-end schedule divided into service periods

• Bursts are allocated to requestors
– Corresponds to net bandwidth

– According to bandwidth requirements

– Introduces discretization errors



12

Bandwidth guarantee

• There is no such thing as an unconditional 

guarantee!

• Constraints for bandwidth guarantees

– Requestors must be backlogged

– Requestors can only read or write

– Requestors must use specific access patterns

• Guarantee provides analytical base for worst-case 

latency



13

Dynamic front-end scheduler

• Bridge between allocation scheme and back-end 

schedule

• Dynamically chooses a requestor that fits with the 

current burst

• Our implementation is a QoS-aware FCFS scheduler

– Low latency and high bandwidth traffic classes

– Low latency is preferred while within budget



14

Example system

• Based on a Philips video processing SoC

• Connected through Philips Æthereal NoC

• Two filters provide eight high bandwidth requestors

• A CPU with three low latency requestors has been 

added

CPU

Filter 2

Memory

Filter 1 NoC



15

Bandwidth results

• Net bandwidth is delivered in real-time

• Maximum discrepancy of 0.22% from requested 

bandwidth

• Loads up to 89.3% have been successfully simulated



16

Latency results

• Solution is flexible. Lower latency to low latency requestors:
– 75.8% lower worst-case latency 

– 42.5% lower average latency



17

Conclusions

• Our solution provides hard real-time guarantees on:

– Minimal net bandwidth

– Maximum worst-case latency

• Guarantees are provided through constraints

• Based on analytical model

– Guarantees are provided without simulation

Efficiency

Predictability Flexibility


