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Introduction

 The number of memory clients, requestors, grows in
embedded systems

« Diversity in memory requirements with regard to
bandwidth and latency

— CPU, DSP (low average latency)

— Filter (minimal guaranteed bandwidth)
— Control system (low worst-case latency)




SDRAM layout

« SDRAMSs have a multi-bank architecture and is organized
In banks, rows and columns.

« Memory efficiency measures percentage of useful cycles.

* Memory cycles are wasted as:
— Rows are opened and closed
— Read/write switches
— Memory is refreshed
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Problem statement

 Embedded systems require a memory
service that offers:

— Flexibility
— High memory efficiency

— Real-time guarantees on (net) bandwidth
and latency (predictability)
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Memory controller overview

Four functional blocks
— Memory mapping

— Arbitration

— Command generator
— Data path

Static
controller design
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Proposed solution [1 / 3]
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Proposed solution [2 / 3]
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Proposed solution [3 / 3]

Memory controller

Request buffers

N\ A

Response buffers

A A A
A

Schedule

I
i | Command
™| generation

Y

Data path :

< =030

Dynamically schedule requests for increased flexibility.

Front—end

N ———

Back—end




Back-end schedule

« Composed of read, write and refresh groups
— Groups contain low-level SDRAM commands

— One burst for every bank

 Fixed back-end schedule

— Translates gross to net bandwidth

— High predictable efficiency
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Creating a back-end schedule

Include refresh group
— Determines length of schedule

Determine basic group layout
— Read/write mix
— Affects latency and efficiency

Repeat basic group

Algorithm uses exhaustive
search
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Allocation scheme

« Back-end schedule divided into service periods

Write | Write | Read | Read | Write | Write | Read | Read | Write | Write | Read | Read | Write | Write | Read | Read | Ref

« Bursts are allocated to requestors
— Corresponds to net bandwidth
— According to bandwidth requirements
— Introduces discretization errors
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Bandwidth guarantee

There Is no such thing as an unconditional
guarantee!

Constraints for bandwidth guarantees

— Requestors must be backlogged

— Requestors can only read or write

— Requestors must use specific access patterns

Guarantee provides analytical base for worst-case
latency
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Dynamic front-end scheduler

Bridge between allocation scheme and back-end
schedule

Dynamically chooses a requestor that fits with the
current burst

Our implementation is a QoS-aware FCFS scheduler
— Low latency and high bandwidth traffic classes
— Low latency is preferred while within budget
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Example system

Based on a Philips video processing SoC
Connected through Philips Athereal NoC
Two filters provide eight high bandwidth requestors

A CPU with three low latency requestors has been
added
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« Maximum discrepancy of 0.22% from requested

« Loads up to 89.3% have been successfully simulated

Bandwidth results

Net bandwidth is delivered In real-time
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Latency results
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Solution is flexible. Lower latency to low latency requestors:
— 75.8% lower worst-case latency
— 42.5% lower average latency
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Conclusions

« QOur solution provides hard real-time guarantees on:
— Minimal net bandwidth
— Maximum worst-case latency

« Guarantees are provided through constraints

« Based on analytical model
— Guarantees are provided without simulation
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