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Introduction

• The number of memory clients, requestors, grows in 

embedded systems

• Diversity in memory requirements with regard to 

bandwidth and latency

– CPU, DSP (low average latency)

– Filter (minimal guaranteed bandwidth)

– Control system (low worst-case latency)
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SDRAM layout

• SDRAMs have a multi-bank architecture and is organized 
in banks, rows and columns.

• Memory efficiency measures percentage of useful cycles.

• Memory cycles are wasted as:
– Rows are opened and closed

– Read/write switches

– Memory is refreshed
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Problem statement

• Embedded systems require a memory 
service that offers:
– Flexibility

– High memory efficiency

– Real-time guarantees on (net) bandwidth 
and latency (predictability)
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Memory controller overview

• Four functional blocks

– Memory mapping

– Arbitration

– Command generator

– Data path
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Proposed solution [1 / 3]

• Gross to net bandwidth translation by fixing back-end 
schedule
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Proposed solution [2 / 3]

• Allocate net bandwidth to requestors
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Proposed solution [3 / 3]

• Dynamically schedule requests for increased flexibility.
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Back-end schedule

• Composed of read, write and refresh groups

– Groups contain low-level SDRAM commands

– One burst for every bank

• Fixed back-end schedule

– Translates gross to net bandwidth

– High predictable efficiency

Read group
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Creating a back-end schedule

• Include refresh group
– Determines length of schedule

• Determine basic group layout
– Read/write mix

– Affects latency and efficiency

• Repeat basic group

• Algorithm uses exhaustive 
search
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Allocation scheme

• Back-end schedule divided into service periods

• Bursts are allocated to requestors
– Corresponds to net bandwidth

– According to bandwidth requirements

– Introduces discretization errors
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Bandwidth guarantee

• There is no such thing as an unconditional 

guarantee!

• Constraints for bandwidth guarantees

– Requestors must be backlogged

– Requestors can only read or write

– Requestors must use specific access patterns

• Guarantee provides analytical base for worst-case 

latency
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Dynamic front-end scheduler

• Bridge between allocation scheme and back-end 

schedule

• Dynamically chooses a requestor that fits with the 

current burst

• Our implementation is a QoS-aware FCFS scheduler

– Low latency and high bandwidth traffic classes

– Low latency is preferred while within budget
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Example system

• Based on a Philips video processing SoC

• Connected through Philips Æthereal NoC

• Two filters provide eight high bandwidth requestors

• A CPU with three low latency requestors has been 

added
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Bandwidth results

• Net bandwidth is delivered in real-time

• Maximum discrepancy of 0.22% from requested 

bandwidth

• Loads up to 89.3% have been successfully simulated
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Latency results

• Solution is flexible. Lower latency to low latency requestors:
– 75.8% lower worst-case latency 

– 42.5% lower average latency
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Conclusions

• Our solution provides hard real-time guarantees on:

– Minimal net bandwidth

– Maximum worst-case latency

• Guarantees are provided through constraints

• Based on analytical model

– Guarantees are provided without simulation
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