Memory Bandwidth Regulation for Multiframe Task Sets

Muhammad Ali Awan, Pedro F. Souto, Konstantinos Bletsas, Benny Akesson, and Eduardo Tovar

Outline

- > Motivation and system model
- >Background
- >Our approach
- >Computation time
- >Heuristics
- > Evaluation
- >Conclusions

Motivation

Task Model

Platform Model

i ș

Memory Access Regulation Model

Uneven memory bandwidth across cores

Memory-aware schedulability analysis

Real-Time & Embedded Computing Systems

Schedulability analysis of Multiframe tasks

Maximum cumulative execution requirement (Baruah's approach)

For two frames = Max (a, b, c, d)

Why SOTA solutions do not work

t = 34

<u>t = 5</u>

Sequence	Total WCET	Total memory accesses	Sequence	Total WCET	Total memory accesses
S1	7	3	S1	1	0
S ²	8	<u>5</u>	S ²	2	2
S ³	<u>9</u>	4	S ³	<u>3</u>	1

WCRT = Stall + Interference of higher priority tasks + $(C^e + C^m)$

Main contributions

Worst-case memory stall for multiframe task-model

Stall-aware schedulability analysis for multiframe task-model

Five memory bandwidth and task-to-core allocation heuristics

Our proposed schedulability analysis

WCRT^{F1} = Stall + Interference of higher priority tasks + $(C^{e,F1} + C^{m,F1})$

WCRT^{F2} = Stall + Interference of higher priority tasks + $(C^{e,F2} + C^{m,F2})$ WCRT^{Fn} = Stall + Interference of higher priority tasks + $(C^{e,Fn} + C^{m,Fn})$

WCRT = Max(WCRT^{F1,} WCRT^{F2},, WCRT^{Fn})

Example

Cartesian product of sequences = { $(S^{1,A}, S^{1,B}), (S^{1,A}, S^{2,B}), (S^{1,A}, S^{3,B}), (S^{1,A}, S^{4,B}),$ $(S^{2,A}, S^{1,B}), (S^{2,A}, S^{2,B}), (S^{2,A}, S^{3,B}), (S^{2,A}, S^{4,B}),$ $(S^{3,A}, S^{1,B}), (S^{3,A}, S^{2,B}), (S^{3,A}, S^{3,B}), (S^{3,A}, S^{4,B})$ Or $\{\Theta^1,$ Θ^2 , Θ³, Θ4, Θ⁶, Θ⁷, Θ⁵, Θ8, Θ⁹, Θ^{10} . Θ^{11} , Θ^{12}

In $(k+1)^{th}$ iteration, for each tuple Θ^{x} compute stall and interference

Task B (4 frames, Period = 10) $S^{1,A}$ 1 2 3 $S^{2,B}$ 2 3 4 $S^{3,B}$ 3 4 1 $S^{4,B}$ 4 1 2 t=25 $S^{1,B} = \{F^{1,B}, F^{2,B}, F^{3,B}\}$

 $S^{2,B} = \{F^{2,B}, F^{3,B}, F^{4,B}\}$ $S^{3,B} = \{F^{3,B}, F^{4,B}, F^{1,B}\}$ $S^{4,B} = \{F^{4,B}, F^{1,B}, F^{2,B}\}$

WCRT^{Fx | (k+1)} = Stall (Θ^x) + Interference of higher priority tasks (Θ^x) + (C^{e,Fx} + C^{m,Fx}), where x = {1, 2, ..., 12}

Select tuple that gives the maximum memory regulation stall and interference.

Reducing computational cost

No. of Frames

For any two frames

 $F^i \ge F^j$, iff

 $C^{e,i} \ge C^{e,j}$ and $C^{m,i} \ge C^{m,j}$ Or $(C^{e,i}, C^{m,i}) \ge (C^{e,j} \ge C^{m,j})$

> It is sufficient to check only WCRT of Fⁱ

For any two sequences $S^x \ge S^y$, iff

No. of Sequences

 $C_{S^{x}}^{e} \ge C_{S^{y}}^{e} \text{ and } C_{S^{x}}^{m} \ge C_{S^{y}}^{m}$ Or $(C_{S^{x}}^{e}, C_{S^{x}}^{m}) \ge (C_{S^{y}}^{e} C_{S^{y}}^{m})$

It is sufficient to check

only sequence S^x

No. of tuples

For any two tuple

 $\Theta^{x} \geq \Theta^{y}$, iff

 $C_{\Theta^{x}}^{e} \geq C_{\Theta^{y}}^{e} \text{ and } C_{\Theta^{x}}^{m} \geq C_{\Theta^{y}}^{m}$ Or $(C_{\Theta^{x}}^{e}, C_{\Theta^{x}}^{m}) \geq (C_{\Theta^{y}}^{e} C_{\Theta^{y}}^{m})$

It is sufficient to check only tuple $\Theta^{\rm x}$

13

Tightness vs computational cost

Task parameters

- Period of 10
- Three frames

$$F^1$$
1 $C = 1 (C^m = 0, C^e = 1)$ F^2 2 $C = 2 (C^m = 2, C^e = 0)$ F^3 3 $C = 3 (C^m = 1, C^e = 2)$

<u>t = 34</u>

Sequence	Total WCET	Total memory accesses	Total CPU Computation
S1	7	3	4
S ²	8	5	3
S ³	9	4	5

Sequence	Total WCET	Total memory accesses	Total CPU Computation
S ¹²	8	5	4
S ³	9	4	5
Sequence	Total WCET	Total memory accesses	Total CPU Computation
S ¹²³	9	5	5

Implementation details

Task-to-core and Memory Bandwidth allocation

Even First-Fit

Each Core has equal memory bandwidth shareFirst-fit bin packing for task-to-core analysis

Five Heuristics

Uneven First-Fit

- Initially each Core has equal memory bandwidth share
- Trim-off memory bandwidth, if tasks are not schedulable with equal memory bandwidth
- Use this trimmed bandwidth to schedule remaining tasks

Priority assignment: Deadline monotonic

Memory-fit

- Assign a task to a core that requires minimum memory bandwidth

Memory density worst-fit

- Sort cores in non-increasing order of energy density
- Assign task to a core with that gives minimum increase in memory density

Total density worst-fit

- Similar to memory density worst-fit, except it uses total density instead of memory density

Experimental Setup

- > Utilization: UUnifast-discard algorithm
- > Inter-arrival time: Log-uniform distribution (10 ms- 1 s)
- > WCET of first frame = inter-arrival time × Utilization
- > Implicit deadlines (though algorithm works for constrained deadlines)
- > Number of frames: Selected randomly
- > WCET of other frames
 - > Randomly selected with log-uniform distribution
 - > Between user define value and WCET of first frame
- > Memory accesses of each frame
 - > Selected randomly
 - > Memory access time is 40 nsec
 - > Regulation period length is 100 msec
- > 1000 random task-sets per set point

Conclusions

Stall-aware schedulability analysis for multiframe task sets on multicore platforms

- > Provided techniques to reduce the computation time
- > Has possibility to trade-off tightness vs computation time
- Improved schedulability success ratio up to 85% when compared to frame-agonistic stall-aware analysis
- >Achieved 11-fold speed up with 3.7% loss in schedulability
- >Proposed five memory bandwidth and task-to-core allocation heuristics

Questions?

20

Main idea

