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Trends in MPSoC Design

► MPSoC design gets increasingly complex.
– Moore’s law allows increased component integration.

– Digital convergence creates a market for highly integrated devices.

► The resulting MPSoCs
– have a large number of IP components.

– run many applications with both soft and hard real-time requirements.
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MPSoC Constraints

► Resource sharing
– is required to reduce cost,

– but introduces interference between applications,

– which makes it difficult to satisfy real-time requirements.

► Resource arbiter requires an implementation that
– is small, for multiple instances to be used in the system.

– reserves service without over allocating.

– runs at high clock frequency to schedule on fine granularity.
• reduces latency and buffers.



5

Application Requirements

► Hard real-time requestors
– Example: Audio post processing IP

– Request patterns are typically regular and predictable

– Deadlines for individual requests are loose, but must always be satisfied

– Require guaranteed minimum service rate and bounded maximum latency

► Soft real-time requestors
– Example: Video decoding on cache-based processor

– Often very bursty request patterns

– Tight task-level deadlines (may span thousands of requests)

– Occasional deadline misses acceptable

– Require guaranteed minimum service rate and low average latency
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Related Work

► Existing arbiters fail to satisfy requirements for three reasons:

– Allocation granularity coupled to latency
• All frame-based arbiters 

– Latency coupled to rate
• Fair queuing family, weighted and deficit round-robin

– Cannot run at high clock speed with small implementation
• Sporadic server (complex accounting)

• Constant bandwidth server (EDF scheduler needs complex priority queue)
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Main Contributions

► We present a Credit-Controlled Static-Priority Arbiter 
– Comprised of a rate regulator and a static-priority scheduler

– Resembles a (σ,ρ) regulator with static-priority scheduler

► Contributions
– Regulator decouples allocation granularity from latency

– Static-priority scheduler decouples latency from rate

– Small implementation that runs at high speed

– Regulates provided service as opposed to requested service
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Service Curves

► Service curves model interaction between requestors and resource.
– Service measured in service units, taking one service cycle to serve.

► We need bounds on service curves to work analytically.

Requested service

Provided service

Backlog

Request size

Finishing 

time

Arrival 

time
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Requested Service Model

► We use the (σ,ρ) model [Cruz91] to upper bound requested service

► Requestors are assumed to be accurately characterized

Requested service

Requested service upper bound
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Provided Service Model

► Service is allocated to a requestor according to an allocated burstiness, σ’, and 

an allocated service rate, ρ’.

► Allocated service rate guaranteed to active requestor after service latency Θ.
– Provides a lower bound on provided service.

Requested service

Provided service

Requested service upper bound

Provided service lower bound



12

Active Periods

► An active period of a requestor is the maximum interval in which it is 

backlogged or live.

► A requestor is live if it requested more service than allocated on 

average since start of active period.

KEY 

CONCEPT
Requested service

Provided service
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Credit-Controlled Static-Priority Arbitration

► Arbiter consists of a rate regulator and a static-priority scheduler

► Regulator enforces an upper bound on provided service
– Enforcement required to provide latency bound

► Static-priority scheduler schedules highest priority requestor

► We consider a preemptive and non-work-conserving instance.

Requestor 1

Requestor 2

Scheduled requestor

Scheduled requestor
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Benefits of Provided Service Regulation

► Benefits of regulating provided service instead of requested service:

1. Implementation is less complex 
– Only aware of request at head of buffer (smaller state)

2. Size of request does not have to be known up front
– Example: decoding time of a video frame / SDRAM access time

– Requested service regulation needs worst-case assumptions on size

– We charge one unit per cycle and preempt when budget is depleted
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Accounting

► Accounting based on active period
– Upper bound on provided service increased with ρ’ for active requestor

– Inactive requestor reset to current provided service + σ’

► Service curves go to infinity!
– Represented as finite potential, π, in hardware

– Potential = current provided service bound – current provided service

– Requestor eligible if it has potential for at least a service unit, π(t) ≥ 1 – ρ’ 

Requested and provided service

Provided service upper bound

Provided service lower bound
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Key Analytical Results

► Critical instance for a requestor happens when all higher priority 

requestors start active periods simultaneously

► Active requestor gets allocated rate, ρ’, after service latency

assuming σ’ ≥ σ.
– Same bound as for (σ,ρ) regulator with static-priority scheduler

► CCSP belongs to the class of latency-rate servers.
– Useful for both network calculus and data-flow analysis

► The finishing time of a request is derived.
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Hardware Implementation

► Arbiter integrated into Predator SDRAM controller
– Used in context of predictable MPSoC interconnected with Æthereal NoC

► Functional units:
– Request buffers

– Priority switch and look-up table (LUT) for configurable priorities

– Logic performing eligibility test

– Multiplexer tree implementing static-priority scheduler

– Register bank storing potential and state machine that updates it
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Synthesis Results

► Synthesis results
– 90 nm CMOS process

– Speed target of 200 MHz to serve as arbiter for a DDR2-400 memory

– Instance with 6 ports requires 0.0223 mm2 

– Speed target met up to 10 ports – area scales linearly

– Largest contributors to area are state registers
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Use case – H.264 decoder

► Simulated SystemC models of memory controller and arbiter with 

H.264 use case executing on TriMedia 3270 processor.

► Soft real-time application consisting of 
– Read and write channels for TriMedia (TM_rd, TM_wr)

– Display controller (DC) 

– File reader (FR)

► Two hard real-time periodic traffic generators (HRT_1, HRT_2)
– Modeling e.g. pixel processing engines
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Configuration

► Memory controller service unit is 64 B, taking about 80 ns to serve.
– Total load is 90.7% of offered bandwidth (high load!)

► Priority assignment:
– High priorities to soft real-time application for low average service latencies

– Low priorities to hard real-time requestors

► Use case was simulated for 200 ms
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Experimental results (1)

► Measured max cases lower than analytical bounds
– Worst-case gets increasingly unlikely with lower priority

– Worst-case characterizations cannot necessarily happen simultaneously

Requestor σ’ ρ’ priority avg. Θ max Θ Θ

TM_rd 8.0 0.106 0 3.19 9 N/A

TM_wr 4.0 0.061 1 8.60 18 N/A

DC 2.0 0.047 2 0.10 2 N/A

FR 4.4 0.017 3 55.67 63 N/A

HRT_1 4.4 0.340 4 0.17 10 20

HRT_2 3.4 0.340 5 2.23 23 47
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Experimental results (2)

► Inverting all priorities to test tightness of analytical bound
– Traffic generators create critical instance in beginning

– Maximum measured values closer to bounds

► All simulation results are identical to (σ,ρ) regulator with static-priority 

scheduler, although CCSP has benefits of regulating provided service.

Requestor σ’ ρ’ priority max Θ Θ

HRT_2 3.4 0.340 0 0 0

HRT_1 4.4 0.340 1 4 5
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Conclusions

► We presented a Credit-Controlled Static-Priority Arbiter
– consists of rate regulator and static-priority scheduler

► Regulator decouples allocation granularity from latency
– No dependence on frame sizes etc.

► Static-priority scheduler decouples latency and rate using priorities

► Small implementation that runs at 200 MHz with up to 10 requestors

► Same results as a (σ,ρ) regulator with static-priority scheduler 
– Both analytically and during simulation.

► Regulates provided service as opposed to requested service
– Implementation less complex 
– Size of request does not have to be known up front
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Questions?

k.b.akesson@tue.nl


