
Real-Time Scheduling Using 

Credit-Controlled Static-Priority 

Arbitration

Real-Time Scheduling Using 

Credit-Controlled Static-Priority 

Arbitration

Benny Åkesson

Technische Universiteit Eindhoven

The Netherlands

Liesbeth Steffens

NXP Semiconductors Research 

The Netherlands

Eelke Strooisma

Delft University of Technology

The Netherlands

Kees Goossens

NXP Semiconductors Research & 

Delft University of Technology

The Netherlands



2

Presentation Outline

Introduction

CCSP Arbitration

Service Models

Hardware Implementation

Experimental Results

Conclusions



3

Trends in MPSoC Design

► MPSoC design gets increasingly complex.
– Moore’s law allows increased component integration.

– Digital convergence creates a market for highly integrated devices.

► The resulting MPSoCs
– have a large number of IP components.

– run many applications with both soft and hard real-time requirements.



4

MPSoC Constraints

► Resource sharing
– is required to reduce cost,

– but introduces interference between applications,

– which makes it difficult to satisfy real-time requirements.

► Resource arbiter requires an implementation that
– is small, for multiple instances to be used in the system.

– reserves service without over allocating.

– runs at high clock frequency to schedule on fine granularity.
• reduces latency and buffers.



5

Application Requirements

► Hard real-time requestors
– Example: Audio post processing IP

– Request patterns are typically regular and predictable

– Deadlines for individual requests are loose, but must always be satisfied

– Require guaranteed minimum service rate and bounded maximum latency

► Soft real-time requestors
– Example: Video decoding on cache-based processor

– Often very bursty request patterns

– Tight task-level deadlines (may span thousands of requests)

– Occasional deadline misses acceptable

– Require guaranteed minimum service rate and low average latency



6

Related Work

► Existing arbiters fail to satisfy requirements for three reasons:

– Allocation granularity coupled to latency
• All frame-based arbiters 

– Latency coupled to rate
• Fair queuing family, weighted and deficit round-robin

– Cannot run at high clock speed with small implementation
• Sporadic server (complex accounting)

• Constant bandwidth server (EDF scheduler needs complex priority queue)



7

Main Contributions

► We present a Credit-Controlled Static-Priority Arbiter 
– Comprised of a rate regulator and a static-priority scheduler

– Resembles a (σ,ρ) regulator with static-priority scheduler

► Contributions
– Regulator decouples allocation granularity from latency

– Static-priority scheduler decouples latency from rate

– Small implementation that runs at high speed

– Regulates provided service as opposed to requested service



8

Presentation Outline

Introduction

CCSP Arbitration

Service Models

Hardware Implementation

Experimental Results

Conclusions



9

Service Curves

► Service curves model interaction between requestors and resource.
– Service measured in service units, taking one service cycle to serve.

► We need bounds on service curves to work analytically.

Requested service

Provided service

Backlog

Request size

Finishing 

time

Arrival 

time



10

Requested Service Model

► We use the (σ,ρ) model [Cruz91] to upper bound requested service

► Requestors are assumed to be accurately characterized

Requested service

Requested service upper bound



11

Provided Service Model

► Service is allocated to a requestor according to an allocated burstiness, σ’, and 

an allocated service rate, ρ’.

► Allocated service rate guaranteed to active requestor after service latency Θ.
– Provides a lower bound on provided service.

Requested service

Provided service

Requested service upper bound

Provided service lower bound



12

Active Periods

► An active period of a requestor is the maximum interval in which it is 

backlogged or live.

► A requestor is live if it requested more service than allocated on 

average since start of active period.

KEY 

CONCEPT
Requested service

Provided service



13

Presentation Outline

Introduction

CCSP Arbitration

Service Models

Hardware Implementation

Experimental Results

Conclusions



14

Credit-Controlled Static-Priority Arbitration

► Arbiter consists of a rate regulator and a static-priority scheduler

► Regulator enforces an upper bound on provided service
– Enforcement required to provide latency bound

► Static-priority scheduler schedules highest priority requestor

► We consider a preemptive and non-work-conserving instance.

Requestor 1

Requestor 2

Scheduled requestor

Scheduled requestor



15

Benefits of Provided Service Regulation

► Benefits of regulating provided service instead of requested service:

1. Implementation is less complex 
– Only aware of request at head of buffer (smaller state)

2. Size of request does not have to be known up front
– Example: decoding time of a video frame / SDRAM access time

– Requested service regulation needs worst-case assumptions on size

– We charge one unit per cycle and preempt when budget is depleted



16

Accounting

► Accounting based on active period
– Upper bound on provided service increased with ρ’ for active requestor

– Inactive requestor reset to current provided service + σ’

► Service curves go to infinity!
– Represented as finite potential, π, in hardware

– Potential = current provided service bound – current provided service

– Requestor eligible if it has potential for at least a service unit, π(t) ≥ 1 – ρ’ 

Requested and provided service

Provided service upper bound

Provided service lower bound



17

Key Analytical Results

► Critical instance for a requestor happens when all higher priority 

requestors start active periods simultaneously

► Active requestor gets allocated rate, ρ’, after service latency

assuming σ’ ≥ σ.
– Same bound as for (σ,ρ) regulator with static-priority scheduler

► CCSP belongs to the class of latency-rate servers.
– Useful for both network calculus and data-flow analysis

► The finishing time of a request is derived.

















1

0

1

0

1
p

i

i

p

i

i







18

Presentation Outline

Introduction

CCSP Arbitration

Service Models

Hardware Implementation

Experimental Results

Conclusions



19

Hardware Implementation

► Arbiter integrated into Predator SDRAM controller
– Used in context of predictable MPSoC interconnected with Æthereal NoC

► Functional units:
– Request buffers

– Priority switch and look-up table (LUT) for configurable priorities

– Logic performing eligibility test

– Multiplexer tree implementing static-priority scheduler

– Register bank storing potential and state machine that updates it



20

Synthesis Results

► Synthesis results
– 90 nm CMOS process

– Speed target of 200 MHz to serve as arbiter for a DDR2-400 memory

– Instance with 6 ports requires 0.0223 mm2 

– Speed target met up to 10 ports – area scales linearly

– Largest contributors to area are state registers



21

Presentation Outline

Introduction

CCSP Arbitration

Service Models

Hardware Implementation

Experimental Results

Conclusions



22

Use case – H.264 decoder

► Simulated SystemC models of memory controller and arbiter with 

H.264 use case executing on TriMedia 3270 processor.

► Soft real-time application consisting of 
– Read and write channels for TriMedia (TM_rd, TM_wr)

– Display controller (DC) 

– File reader (FR)

► Two hard real-time periodic traffic generators (HRT_1, HRT_2)
– Modeling e.g. pixel processing engines



23

Configuration

► Memory controller service unit is 64 B, taking about 80 ns to serve.
– Total load is 90.7% of offered bandwidth (high load!)

► Priority assignment:
– High priorities to soft real-time application for low average service latencies

– Low priorities to hard real-time requestors

► Use case was simulated for 200 ms



24

Experimental results (1)

► Measured max cases lower than analytical bounds
– Worst-case gets increasingly unlikely with lower priority

– Worst-case characterizations cannot necessarily happen simultaneously

Requestor σ’ ρ’ priority avg. Θ max Θ Θ

TM_rd 8.0 0.106 0 3.19 9 N/A

TM_wr 4.0 0.061 1 8.60 18 N/A

DC 2.0 0.047 2 0.10 2 N/A

FR 4.4 0.017 3 55.67 63 N/A

HRT_1 4.4 0.340 4 0.17 10 20

HRT_2 3.4 0.340 5 2.23 23 47



25

Experimental results (2)

► Inverting all priorities to test tightness of analytical bound
– Traffic generators create critical instance in beginning

– Maximum measured values closer to bounds

► All simulation results are identical to (σ,ρ) regulator with static-priority 

scheduler, although CCSP has benefits of regulating provided service.

Requestor σ’ ρ’ priority max Θ Θ

HRT_2 3.4 0.340 0 0 0

HRT_1 4.4 0.340 1 4 5



26

Presentation Outline

Introduction

CCSP Arbiter

Service Models

Hardware Implementation

Experimental Results

Conclusions



27

Conclusions

► We presented a Credit-Controlled Static-Priority Arbiter
– consists of rate regulator and static-priority scheduler

► Regulator decouples allocation granularity from latency
– No dependence on frame sizes etc.

► Static-priority scheduler decouples latency and rate using priorities

► Small implementation that runs at 200 MHz with up to 10 requestors

► Same results as a (σ,ρ) regulator with static-priority scheduler 
– Both analytically and during simulation.

► Regulates provided service as opposed to requested service
– Implementation less complex 
– Size of request does not have to be known up front



28

Questions?

k.b.akesson@tue.nl


