Multi-Processor Programming in the
Embedded System Curriculum

Andreas Hansson'
Benny Akesson'’
Jef van Meerbergen':2

! Eindhoven University of Technology
2 Philips Research

1
10/25/2008

h o
P

TU/e

Outline

» Introduction
» Assignment
» Structure

» Discussion

|
P

2
10/25/2008

TU/e

What are we preparing the students for?

Embedded systems

...have non-functional requirements
— hard or soft real-time constraints,
— a limited power budget, and
— limited resources, e.g. memory footprint

-

» ...are constructed from highly programmable components
— changes in applications and standards
— algorithms (partially) implemented as embedded software

...make use of a platform-based approach
— many Intellectual Property (IP) blocks, with
— processor cores, accelerators and communication infrastructure from different vendors

-

» ...are using multiple processor cores
— multi-processor with distributed memories for scalability and low power
— requires parallelisation of algorithms with communication and synchronisation

» ...are going from buses to networks on chip
— programmable interconnect where the designer decides on the resource allocation
— distributed, multi-hop communication with longer latencies

|
P

TU/e

How is it done at Eindhoven University?

» Master program on embedded systems
— joint program of EE and CS

» Set of four courses, bottom-up

— lower levels of design, i.e. logic and RTL synthesis, developing ALUs, multipliers,
memories etc, with focus on FPGAs

— processor design, using the aforementioned blocks to build fully programmable
microprocessors, DSPs, ASIPs etc

— networks on chip, focusing on the issues related to the communication

— Embedded Systems Laboratory, hands-on design exercise, integrating the
previous courses and applying the lessons learnt in those courses

|
P

TU/e

Course problem description

» Put an embedded JPEG decoder on the market within 12 weeks
— a platform with multiple embedded VLIW cores is given
— port application code to embedded VLIW cores
— efficiently map application to platform
— quantitative benchmarking
— system optimisation

» Problem-driven assignment
— design teams with four members
— multi-disciplinary and multi-cultural cooperation

|
P

TU/e

Course goals, low level

» Using the development and simulation environment
— GNU make, command line compiler, linker, debugger
— upload code and data to memories using the Hive Run-Time library
— memory map variables and communicate using distributed memories
— set up network connections using the Athereal Run-Time library
— simulate the system using development environment and run the code on FPGA

» Porting sequential C code to the target processor
— identify which parts of the application that need modifications
— handle file system and terminal 1/O
— statically allocate variables that are heap-allocated in the original code
— use the frame buffer and peripherals on the FPGA board

» Parallelising the application
— orchestrate parallel execution using the Hive Run-Time library
— exploit data level and task level parallelism in a JPEG decoder
— explore different ways of implementing inter-processor communication
— benchmark the decoder in simulation and on the FPGA

} { 10/25?2008 T U/e

Course goals, high level

» Learn how embedded and deskiop programming differs
» Learn how mulii- and uni-processor programming differs
» Learn how to evaluate the performance of an embedded application

» Learn how design decisions impact the quality of the solution

7
10/25/2008

o
&

Outline

» Introduction
» Assignment
» Structure

» Discussion

|
P

8
10/25/2008

TU/e

Application

» Fully functional JPEG decoder written in sequential C

» Like many other audio/video decoders, the algorithm consists of
— Variable-length decoding (VLD),
— Inverse-discrete cosine transform (IDCT) and
— Color conversion (CC)

JPEG decoder application

Cun) Coer) Q_
JPEG » VLD > IDCT » CC BMP
9

TU/e

|
P

What is important for the course?

Reasonable amount of code

-

w

Makes use of dynamic memory and file system 1/O

-

Retains the technical difficulties of other audio/video codecs

w

The algorithm is data dependent

-

Not trivially parallel, i.e. the VLD is inherently sequential
» The code is small enough to fit in the local memory of a VLIW core (32 kb)
» Results can be presented on screen

» A JPEG decoder can be turned into M-JPEG, emphasising real-time

|
P

" TU/e
10/25/2008

Multi-processor network-based archicecture

- # " SiliconHive & £ " SiliconHive - # " SiliconHive
e | T vLIw e | vLw e | T VLW
[master] [slave | [FIFO] [master] [slave | [FIFO | [master] [slave | [FIFO]
A A A A A A
\4 v V} v \4 \ 4
| slave | [master| | _FIFO | | slave | [master| [FIFO | | slave | [master| [FIFO |
host PC —} [Ethereal } {
master master master
A A 4 A 4
slave slave slave
peripherals mem frame buffer
il
Celoxica

|
P

11 I
10/25/2008 U / e

Silicon Hive VLIW template

» Dramatically reduce

control overhead

— expose all pipeline
management to the
instruction set

— move complexity to
the compiler

— compiler explicitly
schedules all
pipeline stages

|
P

INST. MEM.

A

v

INST. REG.

v

INST. DECODER

FULLY-CONNECTED
- NETWORK

Y A

RF

Y Y

FULLY-CONNEC
NETWORK

TED

-
@)

SEQUENCING LOGIC

|

Vv
EFU/ \ F

Ujf— >

DATA MEM.

12
10/25/2008

TU/e

AEthereal Network on Chip

13

» modular and uniform with routers and network interfaces (NI)

» scalable on the physical and architectural level
— mesochronouns, GALS, etc

— more routers and/or Nls ':“F'
» automation R
— NoC generation, simulation, programming, / \
test bench and traffic generator (IP stub) generation, R R —EI
performance verification / \
R R R

» guaranteed service per connection L -
— bounds on latency and throughput B BT BT B T

b run-time programmable
— allow late requirement / application changes

} { 10/2;/3;008 T U/e

Network configuration

» Network connections must be setup before any communication takes place

— Unlike a bus connections must be configured between ports
— HAthereal Run-Time (ART) APl is used to configure NoC

» Configuration determines the logical topology
— What ports that are interconnected
« Who can write to the frame buffer or read from a core’s local memory?
— What throughput and latency is given the different connections
« How long time does it take to read and write to background memory?

I L
core0 —core1 core2 core0 %orez
extmem frmbuf extmem frmbuf
functional parallelisation data parallelisation

|
P

- TU/e
10/25/2008

What is important for the course?

» Multi-processor architecture with network on chip and multiple memories
— communication infrastructure where resource dimensioning is done, but resource
assignment is left for the students
— cores with fixed-point arithmetic, no operating system, no caches and explicit
memory management

» Complete system simulation environment
— one environment for functional verification, performance evaluation and
debugging, continuous refinement, etc

» An actual hardware implementation on FPGA
— face all the real problems, but gives tangible results

» Industrially relevant IP components and tools
— good for headhunting students for internships, hiring, etc

|
P

: TU/e
10/25/2008

Outline

» Introduction
» Assignment
» Structure

» Discussion

h
P

16
10/25/2008

TU/e

Design-team roles

» A design team has four members
— Application expert: understands the JPEG standard and algorithm
— Hardware expert: has detailed knowledge about the HW building blocks
— Embedded programming expert: knows about porting and communication
— Group leader: overviews project, distributes work and reports progress

» Roles are determined within the first week

|
P

: TU/e
10/25/2008

Step 1 - Install and familiarise

» Getting of the ground
— Students download, unpack and test source code distribution (JPEG decoder)
— Acquiring documentation for the development environment, HW blocks and APls

» Familiarise with a simple ‘add’ example
— deciphering Makefile and source code

» Run the application on FPGA

Done during the first lab session

: TU/e
10/25/2008

|
P

Step 2 - Single core solution

» Run the decoder on a single VLIW core

— the host reads a JPEG file and stores it as a byte array in system memory
— the host uploads program code to the VLIW and starts its execution

— the VLIW decodes image to frame buffer in system memory

— The host downloads the contents of the system memory and writes it to a bitmap

JPEG file JPEG array m

> host ::: syste

<i <i Hadit
BMP file frame buffer

JPEG array>
{ frame buffer

Typically takes three to four weeks

19
10/25/2008

|
P

VLIW

TU/e

Step 3 — Distribute code over multiple cores

» Code can be parallelised in many ways
— functional partitioning (e.g. VLD, IDCT and CC), or data partitioning (tiling)
get a balanced load on the cores for high performance, measure stall cycles

|

core

core core system
1 2 memory

interconnect host

Everything from one day for naive
tiling to six weeks for pipelining

. TU/e
10/25/2008

Requirements

» Group approved when
— working single core solution
— two working parallelisations of the code
— benchmarks comparing solutions
— presentation and report explaining approach and results
— (compare with the low-level goals)

» Grades determined by how well approach and resulis are explained
(compare with the high-level goals)

» Expected load: 9 hours per week
— 3+ 3 =6 hoursin lab.
— 3 hours outside lab.

|
P

. TU/e
10/25/2008

Assessment

» Oral presentations
— short presentation per group (15 minutes)
— individual presentations (10 minutes)

» Written report per group (4 pages sig-alt template)

» Meetings (~1 per week)
— Group meetings
— Group leader meetings
— Application group
— Benchmark committee

|
P

. TU/e
10/25/2008

Outline

» Introduction
» Assignment
» Structure

» Discussion

h
P

23
10/25/2008

TU/e

Challenges

-

How to help without solving the problem for them?
— minimising the problems involving understanding interfaces and 1/O devices
— tutorial exercises and demonstrative examples
— inter-group discussions where problems/solutions are shared

-

How to debug the students non-working code?
— show them how to do structured test and version control already from day one
— ...in real life there is no one out there to help you

w

How to cope with research-quality (buggy) tools?
— we work closely with the tool developers, good for them, good for us

w

How to give even more freedom to the students?
— not feasible with current 5 ECTS credits

-

How to set a grade on such a “fuzzy” course?
— lots of time spent with the students has proven to make it easier than
we initially thought

} { 10/2;;008 TU / e

Conclusions

» Like other courses, we emphasize
— the growing importance of software in embedded systems
— resource-limited performance-oriented design
— challenges in areas like personal time management and teamwork

» In contrast to other courses, we stress
— the challenges involved in going from uni- to multi- processor systems, and
— the importance of communication and synchronisation

» Based on student evaluations, we believe
— that the Embedded System Laboratory delivers a level of realism that helps in
motivating the students and reinforcing the experiences gained during the course

|
P

. TU/e
10/25/2008

Overview: JPEG encoding/decoding

Decoder

(V Encoder
L s s s Q s
A
0lojos 68123 -4 -3 68 - —=
0olo|s|s [23]-28[17] 3 gl 70 - 101
0|8|8|a4 -4 [17[20]-11 (23 @l > 101
8|8|ala 3| 3 [-11]-12 | |20 0
A 28] [o 0
: - - 0 0 0 0
3| [o
0 1 | 100 0
17| o
MCU A s 2 2 | 101 110
blOCk 3 20 2 +2 110 110
SlE 0 3 [11100 0
5 +1 |11101 0
A 20] [o
A s 2 +7 |11110 110
2101010 70120l 0] 0] o 0 130
olol7 s [20]-30{20] 0 11| o ol 100
0|7|8|4 0 |20]20]-10| 2] |10 - <00
NRNE offset 0 [0 [-10[-10| (10 a
v v v

Internal design flow

machine high-level
description

"""'.......................................) 0000000060 OCOCFOS 0000000000606 OC0COFOGIOSISIS

C program

spatial
compiler

Y

simulation
&
verification

A A

processor
simulator/
generator

processor
model
generator

assembler
& linker

logic synth.
place &
route

standard
C compiler

function

operation
semantic
library

unit
library

o000 0O area,speed,power [] CyCleCOunt 0000000000000 0000000°

. TU/e
10/25/2008

Internal design flow

machine
description

high-level
C program

y
' L 10/25/2008

function
unit
library

""" area, speed, power

29

operation
semantic
library

. CyC|e COUﬂt ooooooooooooooooooooo

Four simulation levels

-

Makefile target crun
— All code is compiled with gcc
— Check correctness of application code and testbench

w

Makefile target unsched
— Core code is compiled with hivece, but still non-optimised
— Generate code with instruction semantics of the specified core

v

Makefile target sched
— Schedule to maximize Instruction Level Parallelism (ILP)
— Check if core has enough resources, i.e. register files and interconnect
— Cycle count for ideal case, infinitely fast communication

v

Makefile target jpga
— Generate microcode for cores and binary for host PC
— Full detail of communication and arbitration overhead

|
P

. TU/e
10/25/2008

Functional partitioning (1)

» One task per core » Communication through system memory

— No code duplication — Creates contention for memory
— Balanced load?

& (@

NC NS /]

/./

J

I ing
¢ ingjpe

Frame
buffer

|S ing

|
P

. TU/e
10/25/2008

Functional partitioning (2)

» Some tasks read from local memory

— Faster
— Does communicated data fit?

Wl Jng

-

*Zlnﬂ

|-

—

//

h
P

0 Ingp—1

Mem

32
10/25/2008

84“9 —~

Frame
buffer

TU/e

Data partitioning

» All tasks on all cores v All cores must read entire image
— Code duplication — Severe contention for memory
— Each core decodes 1/3 image
— Balanced load?

Frame
buffer

€ ing

o
S| Mem
o

|

. TU/e
10/25/2008

P

