
10/25/2008

1

TU/e

Multi-Processor Programming in the 
Embedded System Curriculum

Andreas Hansson1

Benny Åkesson1

Jef van Meerbergen1,2

1 Eindhoven University of Technology
2 Philips Research



10/25/2008

2

TU/e

Outline

Introduction

Assignment

Structure

Discussion



10/25/2008

3

TU/e

What are we preparing the students for?

…have non-functional requirements
– hard or soft real-time constraints,
– a limited power budget, and 
– limited resources, e.g. memory footprint

…are constructed from highly programmable components
– changes in applications and standards
– algorithms (partially) implemented as embedded software

…make use of a platform-based approach
– many Intellectual Property (IP) blocks, with 
– processor cores, accelerators and communication infrastructure from different vendors

…are using multiple processor cores
– multi-processor with distributed memories for scalability and low power
– requires parallelisation of algorithms with communication and synchronisation

…are going from buses to networks on chip
– programmable interconnect where the designer decides on the resource allocation
– distributed, multi-hop communication with longer latencies

Embedded systems



10/25/2008

4

TU/e

How is it done at Eindhoven University?

Master program on embedded systems
– joint program of EE and CS

Set of four courses, bottom-up
– lower levels of design, i.e. logic and RTL synthesis, developing ALUs, multipliers, 

memories etc, with focus on FPGAs
– processor design, using the aforementioned blocks to build fully programmable 

microprocessors, DSPs, ASIPs etc
– networks on chip, focusing on the issues related to the communication
– Embedded Systems Laboratory, hands-on design exercise, integrating the 

previous courses and applying the lessons learnt in those courses



10/25/2008

5

TU/e

Course problem description

Put an embedded JPEG decoder on the market within 12 weeks
– a platform with multiple embedded VLIW cores is given
– port application code to embedded VLIW cores
– efficiently map application to platform
– quantitative benchmarking 
– system optimisation

Problem-driven assignment
– design teams with four members
– multi-disciplinary and multi-cultural cooperation



10/25/2008

6

TU/e

Course goals, low level

Using the development and simulation environment
– GNU make, command line compiler, linker, debugger
– upload code and data to memories using the Hive Run-Time library
– memory map variables and communicate using distributed memories
– set up network connections using the Æthereal Run-Time library
– simulate the system using development environment and run the code on FPGA 

Porting sequential C code to the target processor
– identify which parts of the application that need modifications
– handle file system and terminal I/O 
– statically allocate variables that are heap-allocated in the original code
– use the frame buffer and peripherals on the FPGA board

Parallelising the application
– orchestrate parallel execution using the Hive Run-Time library
– exploit data level and task level parallelism in a JPEG decoder
– explore different ways of implementing inter-processor communication
– benchmark the decoder in simulation and on the FPGA



10/25/2008

7

TU/e

Course goals, high level

Learn how embedded and desktop programming differs

Learn how multi- and uni-processor programming differs

Learn how to evaluate the performance of an embedded application

Learn how design decisions impact the quality of the solution



10/25/2008

8

TU/e

Outline

Introduction

Assignment

Structure

Discussion



10/25/2008

9

TU/e

Application

Fully functional JPEG decoder written in sequential C

Like many other audio/video decoders, the algorithm consists of 
– Variable-length decoding (VLD), 
– Inverse-discrete cosine transform (IDCT) and 
– Color conversion (CC)

IDCTVLD CCJPEG BMP

JPEG decoder application



10/25/2008

10

TU/e

What is important for the course?

Reasonable amount of code

Makes use of dynamic memory and file system I/O

Retains the technical difficulties of other audio/video codecs

The algorithm is data dependent

Not trivially parallel, i.e. the VLD is inherently sequential

The code is small enough to fit in the local memory of a VLIW core (32 kb)

Results can be presented on screen

A JPEG decoder can be turned into M-JPEG, emphasising real-time



10/25/2008

11

TU/e

Multi-processor network-based archicecture

mem

Æthereal

slave

master

frame buffer
slave

master

sl
av

e

host PC

VLIW

master

m
em

slave FIFO

slave master FIFO

VLIW

master

m
em

slave FIFO

slave master FIFO

VLIW

master

m
em

slave FIFO

slave master FIFO

peripherals
slave

master



10/25/2008

12

TU/e

Silicon Hive VLIW template

Dramatically reduce 
control overhead

– expose all pipeline 
management to the 
instruction set

– move complexity to 
the compiler

– compiler explicitly 
schedules all 
pipeline stages

INST. MEM.

INST. REG.

INST. DECODER

FULLY-CONNECTED
NETWORK

RF

FU FU

P
IP

E
LI

N
E

 C
O

N
T

R
O

LL
E

R

H
A

Z
A

R
D

 D
E

T
E

C
T

IO
N

B
Y

-P
A

S
S

 N
E

T
W

O
R

K
S

 &
F

O
R

W
A

R
D

IN
G

 C
O

N
T

R
O

L

S
E

Q
U

E
N

C
IN

G
 L

O
G

IC

PC

DATA MEM.

FULLY-CONNECTED
NETWORK



10/25/2008

13

TU/e

Æthereal Network on Chip

modular and uniform with routers and network interfaces (NI)

scalable on the physical and architectural level
– mesochronouns, GALS, etc
– more routers and/or NIs

automation
– NoC generation, simulation, programming,

test bench and traffic generator (IP stub) generation,
performance verification

guaranteed service per connection
– bounds on latency and throughput

run-time programmable
– allow late requirement / application changes

13

NI

NI

NI NI NI

R

R

R

R

R R



10/25/2008

14

TU/e

Network configuration

Network connections must be setup before any communication takes place
– Unlike a bus connections must be configured between ports
– Æthereal Run-Time (ART) API is used to configure NoC

Configuration determines the logical topology
– What ports that are interconnected 

• Who can write to the frame buffer or read from a core’s local memory?
– What throughput and latency is given the different connections

• How long time does it take to read and write to background memory?

core0 core1 core2

extmem frmbuf

core0 core1 core2

extmem frmbuf

functional parallelisation data parallelisation



10/25/2008

15

TU/e

What is important for the course?

Multi-processor architecture with network on chip and multiple memories
– communication infrastructure where resource dimensioning is done, but resource 

assignment is left for the students
– cores with fixed-point arithmetic, no operating system, no caches and explicit 

memory management

Complete system simulation environment
– one environment for functional verification, performance evaluation and 

debugging, continuous refinement, etc

An actual hardware implementation on FPGA
– face all the real problems, but gives tangible results

Industrially relevant IP components and tools
– good for headhunting students for internships, hiring, etc



10/25/2008

16

TU/e

Outline

Introduction

Assignment

Structure

Discussion



10/25/2008

17

TU/e

Design-team roles

A design team has four members
– Application expert: understands the JPEG standard and algorithm
– Hardware expert: has detailed knowledge about the HW building blocks
– Embedded programming expert: knows about porting and communication
– Group leader: overviews project, distributes work and reports progress 

Roles are determined within the first week



10/25/2008

18

TU/e

Step 1 – Install and familiarise

Getting of the ground
– Students download, unpack and test source code distribution (JPEG decoder)
– Acquiring documentation for the development environment, HW blocks and APIs

Familiarise with a simple ‘add’ example
– deciphering Makefile and source code

Run the application on FPGA

Done during the first lab sessionDone during the first lab session



10/25/2008

19

TU/e

Step 2 – Single core solution

Run the decoder on a single VLIW core
– the host reads a JPEG file and stores it as a byte array in system memory
– the host uploads program code to the VLIW and starts its execution
– the VLIW decodes image to frame buffer in system memory
– The host downloads the contents of the system memory and writes it to a bitmap

host VLIW
system 
memory

JPEG file

BMP file

JPEG array

frame buffer

JPEG array

frame buffer

Typically takes three to four weeksTypically takes three to four weeks



10/25/2008

20

TU/e

Step 3 – Distribute code over multiple cores

Code can be parallelised in many ways
– functional partitioning (e.g. VLD, IDCT and CC), or data partitioning (tiling)
– get a balanced load on the cores for high performance, measure stall cycles

core
0

core
2

core
1

interconnect

system
memory

host

Everything from one day for naïve
tiling to six weeks for pipelining

Everything from one day for naïve
tiling to six weeks for pipelining



10/25/2008

21

TU/e

Requirements

Group approved when
– working single core solution
– two working parallelisations of the code
– benchmarks comparing solutions
– presentation and report explaining approach and results
– (compare with the low-level goals)

Grades determined by how well approach and results are explained
(compare with the high-level goals)

Expected load: 9 hours per week
– 3 + 3 = 6 hours in lab.
– 3 hours outside lab.



10/25/2008

22

TU/e

Assessment

Oral presentations
– short presentation per group (15 minutes)
– individual presentations (10 minutes)

Written report per group (4 pages sig-alt template)

Meetings (~1 per week)
– Group meetings
– Group leader meetings
– Application group
– Benchmark committee



10/25/2008

23

TU/e

Outline

Introduction

Assignment

Structure

Discussion



10/25/2008

24

TU/e

Challenges

How to help without solving the problem for them?
– minimising the problems involving understanding interfaces and I/O devices
– tutorial exercises and demonstrative examples
– inter-group discussions where problems/solutions are shared 

How to debug the students non-working code?
– show them how to do structured test and version control already from day one
– …in real life there is no one out there to help you

How to cope with research-quality (buggy) tools?
– we work closely with the tool developers, good for them, good for us

How to give even more freedom to the students?
– not feasible with current 5 ECTS credits

How to set a grade on such a “fuzzy” course?
– lots of time spent with the students has proven to make it easier than 

we initially thought



10/25/2008

25

TU/e

Conclusions

Like other courses, we emphasize
– the growing importance of software in embedded systems
– resource-limited performance-oriented design 
– challenges in areas like personal time management and teamwork

In contrast to other courses, we stress
– the challenges involved in going from uni- to multi- processor systems, and
– the importance of communication and synchronisation

Based on student evaluations, we believe
– that the Embedded System Laboratory delivers a level of realism that helps in 

motivating the students and reinforcing the experiences gained during the course



10/25/2008

26

TU/e



10/25/2008

27

TU/e

Overview: JPEG encoding/decoding

-12-113-3

-112017-4

317-28-23

-3-4-2368

4488

4880

8800

8000

3489

4870

8700

9002

-10-1000

-1020200

020-30-20

00-2070

-12

-11

-11

3

20

3

-3

17

17

-3

-4

-28

-4

-23

-23

68

-10

-10

-10

0

20

0

0

20

20

0

0

-30

0

-20

-20

70

-1

-1

-1

0

2

0

0

2

2

0

0

-3

0

-2

-2

7

11110+7

11101+1

-3

+2

-2

-1

0

sym

11100

110

101

100

0

code

100

100

100

0

110

0

0

110

110

0

0

11100

0

101

101

11110

DCT ZZ Q VLC

IDCT ZZ IQ VLD+

-

offset

MCU 
block

Encoder

Decoder



10/25/2008

28

TU/e

function
unit

library

operation
semantic

library

machine
description

high-level
C program

assembly
code

(C-syntax)

standard
C compiler

processor
model

(C-syntax)

compiled
simulator

cycle count

binary
code

state view
&

trace file

HDL
code

logic synth.
place &
route

area, speed, power

netlist
layout

simulation
&

verification

spatial
compiler

processor
model

generator

assembler
& linker

processor
simulator/
generator

Internal design flow



10/25/2008

29

TU/e

function
unit

library

operation
semantic

library

machine
description

high-level
C program

assembly
code

(C-syntax)

standard
C compiler

processor
model

(C-syntax)

compiled
simulator

cycle count

binary
code

state view
&

trace file

HDL
code

logic synth.
place &
route

area, speed, power

netlist
layout

simulation
&

verification

spatial
compiler

processor
model

generator

assembler
& linker

processor
simulator/
generator

Internal design flow

hours to days minutes to hours



10/25/2008

30

TU/e

Four simulation levels

Makefile target crun
– All code is compiled with gcc
– Check correctness of application code and testbench

Makefile target unsched
– Core code is compiled with hivecc, but still non-optimised
– Generate code with instruction semantics of the specified core

Makefile target sched
– Schedule to maximize Instruction Level Parallelism (ILP)
– Check if core has enough resources, i.e. register files and interconnect
– Cycle count for ideal case, infinitely fast communication

Makefile target fpga
– Generate microcode for cores and binary for host PC
– Full detail of communication and arbitration overhead



10/25/2008

31

TU/e

Functional partitioning (1)

Frame 
buffer

IDCTVLD CC

B
u

f
0

B
u

f
1

B
u

f
2

B
u

f
3

One task per core
– No code duplication
– Balanced load?

Communication through system memory
– Creates contention for memory



10/25/2008

32

TU/e

Functional partitioning (2)

Mem Frame 
buffer

IDCTVLD CC

B
u

f
0

B
u

f
2

B
u

f
3

B
u

f
1

Some tasks read from local memory
– Faster
– Does communicated data fit?



10/25/2008

33

TU/e

Data partitioning

Mem Frame 
buffer

B
u

f
3

B
u

f
0

VLD
IDCT

CC VLD
IDCT

CC VLD
IDCT

CC

All tasks on all cores
– Code duplication
– Each core decodes 1/3 image
– Balanced load?

All cores must read entire image
– Severe contention for memory


