
Dakshina Dasari, Benny Akesson,Vincent Nelis,

Muhammad Ali Awan and Stefan M. Petters

Identifying Sources of Unpredictability in

COTS-based Multicore systems

Outline of the talk

 Multicores and Real-time systems

 Sources of Unpredictability

 Caches, Buses, Memory

 Hardware prefetching

 System Management Interrupts, translation look-aside

buffers

 Discussions

3

A real-time system is a system that reacts to events in the
environment by performing predefined actions within specified
time intervals

I/O - data

I/O - data

Real-time
computing system

event

action

time

Correctness of results depends on value

and its time of delivery

 “Time is of the essence”

Real-Time Embedded Systems

Real time applications

4

Expected to exhibit the required behavior within time bounds.

Essential: upper bound on the execution times of all tasks known at design
time

Commonly called the Worst-Case Execution Time (WCET) and
depends on the environment in which the application is executed

Platform: Earlier deployed on uniprocessors

Increasing demands of applications  Deployed on multicores

COTS-based Multicores for hard real

time systems: Boon or bane?

Increased computational power

SWaP (Lesser Size, Weight, Low Power consumption)

Natural fault containment for applications

Decrease in number of computational nodes and wires

Cost efficient

Faster time to market

Integrated functionality  Lesser number of components that can

fail (e.g connectors)

COTS: Commercially-available Off The Shelf

COTS-based Multicores for hard real

time systems: Boon or bane ?

Disadvantages

Shared low level hardware resources

Shared Caches, inter communication channel, shared

memory

No spatial and temporal isolation

Variability in execution times depending on the coscheduled tasks

Complex features make timing analysis challenging

Increased unpredictability makes certification a nightmare!

The hard truths:

 Multicores are not yet hard-real time ready

 Safety critical systems form a small market segment.

 Not enough incentives to drive the industry to build

“predictable-by-design” multicore systems

 Although around since 2004, no multicore systems are fully

certifiable

 The current solution: Disable all the cores except

one!!!!

P
eripherals

Core

Core

Core

Core

Shared L2 cache

Memory Controller

Shared Front side bus

Shared Memory

Processor Chip
Bus Controller Unit

P
eripherals

Core

Core

Core

Core

Shared L2 cache

Memory Controller

Shared Front Side Bus

Shared Memory

Processor Chip

Tasks

Bus Controller Unit

P
eripherals

Core

Core

Core

Core

Memory Controller

Shared Front Side bus

Shared Memory

Processor Chip

Tasks

 Cache Contention

Bus Controller Unit

P
eripherals

Core

Core

Core

Core

Memory Controller

Shared Front Side bus

Shared Memory

Processor Chip

Tasks

 Cache Contention

Bus Controller Unit

Unpredicatability in Caches
Feature Types Timing

Analyzability

Modern

Multicores

 Replacement

Mechanism

 LRU, PLRU,

Random, FIFO

LRU Generally

PLRU

Write policy Write back,

write through

 Write through Generally

Write back

Associativity High Difficult to

analyze

High

Cache

ownership

Private /Shared

Caches

Shared caches

complex to

analyze

 Very few have

private caches

Avoid Sharing : Cache Partitioning

P
eripherals

Core

Core

Core

Core

Partition 1

Memory Controller

Shared Front Side bus

Shared Memory

Processor Chip

Tasks

L2 Partition 2 L2 Partition 3 Partition 4

Per task or Per

Core ?

Hardware

/Software?

Static

/Dynamic

Bus Controller Unit

P
eripherals

Core

Core

Core

Core

 Disabled L2 cache

Memory Controller

Shared Front Side bus

Shared Memory

Processor Chip

Tasks

Bus Controller Unit

P
eripherals

Core

Core

Core

Core

Shared L2 cache

Memory Controller

Shared Front Side bus

Shared Memory

Processor Chip

Tasks

Requests

 Bus Contention

Bus Controller Unit

Challenges for Bus Contention Delay

Analysis of a task

 Based on memory traffic (cache misses) from tasks on other

cores

 Bus Requests not tagged with task priorities

 Reordering of request servicing (Higher priority tasks are

stalled longer)

 Arbitration policy decides the availability of the bus

 Prefetching adds to the bus traffic

Bus Arbitration policies : TDMA

19

Time Division Multiple Access Bus

 Real time friendly (Predictable, Composable)

 Non work-conserving

 But generally not used in COTS (Commercially available off

the shelf) systems

Core1 Core 2 Core 3 Core 4 Core 1 Core 2 Core 3 Core 4 Core 1 Core 2

 TDMA Cycle TDMA Cycle

 Assignment of bus time slots

Unpredictability in Buses

Feature Types Prefered for

Timing

Analyzability

 Present in

Modern

Multicores

 Arbitration

Mechanism

TDMA, Round

Robin, Priority

Based, FIFO

TDMA good for

Real Time systems

 Some weighted

round

robin/propriety

mechanisms

Transaction

ordering

Simple Inorder,

pipelining, split

transaction

Easier with simple

Inorder

Split transaction,

request reordering

Based on internal

priorities

Hardware

prefetching

Enabled /Disabled Disabled

prefetching, reduces

speculations

Enabled by default

Prefetching
 Prefetch instructions : Software
 Compile-time analysis, schedule fetch instructions within user

program

 Hardware based prefetching
 Intel:
 Adjacent cache line prefetcher
 Hardware Prefetching : Detecting a stride in the array access pattern

 Disadvantages of OS transparent prefetching
 Cache pollution: Replaces key cache blocks
 Uses bus bandwidth
 Delays important requests
 Timing unknown to user and causes variations in program

behavior

Some interesting research ideas
 Predictable execution model

 Compatible and predictable execution phases --prefetch all the
required data in your time slot and then start executing (assumes
TDMA)

 Controlled data acquistion and replication models proposed

 Profiling task behavior to analyze requests patterns for single task,
multiple tasks and at the core levels and analyze the interference
on the bus

 Table driven bus arbiters -- different bus access schedules based
on applications

 Budgeting the bus bandwidth --Memory centric scheduling

 And more in the paper

P
eripherals

Core

Core

Core

Core

Shared L2 cache

Memory Controller

Shared Front Side bus

Shared Memory

Processor Chip

Tasks

Requests

 Shared Memory Contention

Bus Controller Unit

Memory organization

 column address

row buffer

I/0

read write

 row address

data

 activate

 (open)

 precharge

 (close)

Unpredictability in memory accesses

 DRAM is the center of memory hierarchy:

 High density and high capacity

 Low cost but slow access (compared to SRAM)

 DRAM access generally considered to be uniform.

 Non-uniform access latencies exist within DRAM

 The Row-buffer caches the last accessed row in DRAM

Page policy : Open Page

 column address

row buffer

I/0

read write

 row address

data

 activate

 (open)

 precharge

 (close)

 Keep the current row open

 Good if high locality of reference

Page policy : Close Page

 column address

row buffer

I/0

read write

 row address

data

 activate

 (open)

 precharge

 (close)

 Close the row after access

 Good for random references

Unpredictability in DRAM Access

28

• Open page policy

• Close page policy

• Choice of policies -> variability in
access times

Page
Policies

• Prioritize requests that are present in
an open row

• Prioritize reads over writes

Request
reordering

• Periodic refresh (every 7.5 microsecs)

• Irregular refreshes (in idle cycles)

• Increase the stall

DRAM
refreshes

 Effect of system management interrupts

Executing

real time task

code
SMI

Enter SMM

(execute

handler)

 (100s of cycles)

SMM : System management mode

SMI: System managment interrupt

X cycles

Resume real

time task

code

Y cycles

Detect chipset errors

Handle system errors

CPU overheating

Fan control

Thermal and Power saving strategies
 Processors like Intel employ “sleep states” by varying the power

supplied to different devices

 Wake up latencies vary with different sleep state levels

 Deeper sleep states – Higher wake up latencies (More Idle
devices are powered down)

 If a real-time task is now scheduled–it incurs the wake up latency

 Power saving strategies cannot be disabled --may cause harm in
the long run

 Adaptive Thermal Monitoring
 Reduce the temperature when threshold is breached by reducing the

frequency and voltage adaptively

Many of these features are enabled by default and must be
accounted for in the analysis or be disabled with caution

Variability in the Execution times

Original WCET

Original WCET D1

Original WCET D1 D2

Original WCET D1 D2 D3

D1: Cache related Preemption delay

D2: Bus contention delay

D3: Delay in the shared memory

subsystem

Dx: Other parameters

Original WCET D1 D3 D2 Dx

Discussions

 Multicores are here to stay and will be eventually adopted by safety critical

systems

 Computational capabilities undisputable but must be assessed for predictability
for real time systems

 Unpredictability at each level of system design in current hardware.

 Task memory profiles also an inherent characteristic (apart from the Ci,Ti, Di)

 Holistic end to end analysis must consider all the possible sources of
unpredictability to deploy safe and robust systems

 Academic research generally assume simplified models, validated on unrealistic
simulators which do not capture the various sources of unpredictability –
Pessimistic results and solutions cannot be applied to the industry

 Need to study the hardware in detail to achieve tighter and acceptable bounds

So much more to be done!

 Additional details in paper

 Research study in the related areas

 Different approaches to solve these issues

 Limitations of current approaches and suggestions

