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Problem
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Petri nets are a nice basis to model and reason about the behavior of asynchronous 
communication systems

• Various tooling exists for modelling and analysis of different classes of nets

Software interfaces can be efficiently modelled using the class of portnets

• A constrained type of open nets that provide guarantees on weak termination

Generation of synthetic models is helpful when testing or benchmarking analysis/synthesis tools
• Large sets of random models with user-specified characteristics

• Tools for generating such models exist, but not for portnets



Overview of Contributions
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Paper has four contributions related to synthetic portnet generation

1. Defined the notion of complexity within portnets using three parameters
• Inputs, outputs, and prevalence of non-determinism

2. A method for synthetic generation of portnets using the complexity metrics as input

3. An implementation as an open-source Python tool

4. Experimental evaluation of method and demonstration of relation between the input of 
complexity parameters and the resulting portnet



Preliminaries
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Portnets
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Constrained state machine open workflow nets suitable for modelling interfaces
• Communication protocols are state machines

• An interaction between a server and a client is a workflow with a single initial and 
final place, where all nodes are on a path between those places

• Open nets contain a set of interface places (inputs and outputs)

Key constraints
• Each transition is connected to exactly one interface place, and vice versa

• Leg Property: Each leg must have at least one send and one receive transition

• Choice Property: All transitions in the postset must communicate in same direction

A portnet composed with a mirrored client is guaranteed to be weakly terminating



Refinement Rules
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Four refinement rules utilized for portnet refinement
• Each rule consists of a base rule and modified rules

Base rule form the starting point for refinement
• Refines a place or a transition

Modified rules ensure portnet constraints adhered to after application of a base rule
• E.g. determine the direction of communication

Rules are denoted as Rx modified rules as Rx’/Rx”
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Four Refinement Rules: Deterministic
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Four Refinement Rules: Non-Deterministic



Complexity Parameters
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Complexity Parameters
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Complexity parameters allow one to argue about the 
structure of a given portnet

• Used to control the output of generation

Notion of complexity in three parameters

• Number of inputs and outputs, and the prevalence of 
non-determinism 

Prevalence is defined as the fraction of arcs originating 
from split places



Portnet Generation Method
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Portnet Generation Method
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The Allowed Ruleset determines how refinement rules can 
be applied in sequence

• A sequence of refinements is referred to as a 
refinement iteration

Generation algorithm uses allowed ruleset and provided 
complexity parameters to generate resulting structure

• Each rule affects parameter values differently

Each refinement iteration starts from a single initial place 
and ends with a modified rule
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Synthetic Portnet Generation Algorithm

The generation algorithm results in a randomized 
portnet controlled by the complexity parameters

1. Start from the Initial place (L1)

2. If inputs, outputs not reached (L8)

3. Randomized refinement iteration (L10-14)
• From non-deterministic or deterministic ruleset 

(dependent on the current prevalence of the net under generation)

4. Subtract inputs, outputs from the current (L13-14)

5. Back to step 2, if necessary
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Example Generations



Experiments
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Experiments

Experimentally display the inherent relation between user-specified complexity parameters and 
the extent to which the generator can satisfy them

Four conducted experiments with fixed prevalence of non-determinism {0.2, 0.4, 0.6, 0.8}
• Varying inputs and outputs {2, 15, 20, 30, 50, 80}

• Measure the average observed prevalence as a function of user-supplied complexity parameters

• 40 iterations
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Findings from Experiments



Result of Experiments
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Experiments result in some key observations regarding generation

Difference between inputs and outputs result in a decreasing average prevalence
• Inherent relation between the refinement rules and complexity parameters

Average observed prevalence does not exceed ~0.6
• Result of randomly selecting refinement rules & application onto place



Conclusions
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Conclusions
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Introduced a methodology for synthetic generation of portnets of various complexity
• Benefit to those requiring input for tooling within the context of modelling and analysis

• Allows for easier testing and benchmarking using portnets as input

Introduced a definition of portnet complexity
• Number of inputs and outputs, and prevalence of non-determinism

Experiments showing the relation between refinement rules and complexity parameters

Methodology implemented as an open-source Python tool
• Output as PNML representation


