
Synthetic Portnet Generation with Controllable 
Complexity for Testing and Benchmarking

Madiou Diallo, Benny Akesson, Debjyoti Bera, and Ronald Begeer



Problem

2

Petri nets are a nice basis to model and reason about the behavior of asynchronous 
communication systems

• Various tooling exists for modelling and analysis of different classes of nets

Software interfaces can be efficiently modelled using the class of portnets

• A constrained type of open nets that provide guarantees on weak termination

Generation of synthetic models is helpful when testing or benchmarking analysis/synthesis tools
• Large sets of random models with user-specified characteristics

• Tools for generating such models exist, but not for portnets



Overview of Contributions

3

Paper has four contributions related to synthetic portnet generation

1. Defined the notion of complexity within portnets using three parameters
• Inputs, outputs, and prevalence of non-determinism

2. A method for synthetic generation of portnets using the complexity metrics as input

3. An implementation as an open-source Python tool

4. Experimental evaluation of method and demonstration of relation between the input of 
complexity parameters and the resulting portnet



Preliminaries

4



Portnets

5

Constrained state machine open workflow nets suitable for modelling interfaces
• Communication protocols are state machines

• An interaction between a server and a client is a workflow with a single initial and 
final place, where all nodes are on a path between those places

• Open nets contain a set of interface places (inputs and outputs)

Key constraints
• Each transition is connected to exactly one interface place, and vice versa

• Leg Property: Each leg must have at least one send and one receive transition

• Choice Property: All transitions in the postset must communicate in same direction

A portnet composed with a mirrored client is guaranteed to be weakly terminating



Refinement Rules

6

Four refinement rules utilized for portnet refinement
• Each rule consists of a base rule and modified rules

Base rule form the starting point for refinement
• Refines a place or a transition

Modified rules ensure portnet constraints adhered to after application of a base rule
• E.g. determine the direction of communication

Rules are denoted as Rx modified rules as Rx’/Rx”



7

Four Refinement Rules: Deterministic



8

Four Refinement Rules: Non-Deterministic



Complexity Parameters

9



Complexity Parameters

10

Complexity parameters allow one to argue about the 
structure of a given portnet

• Used to control the output of generation

Notion of complexity in three parameters

• Number of inputs and outputs, and the prevalence of 
non-determinism 

Prevalence is defined as the fraction of arcs originating 
from split places



Portnet Generation Method

11



Portnet Generation Method

12

The Allowed Ruleset determines how refinement rules can 
be applied in sequence

• A sequence of refinements is referred to as a 
refinement iteration

Generation algorithm uses allowed ruleset and provided 
complexity parameters to generate resulting structure

• Each rule affects parameter values differently

Each refinement iteration starts from a single initial place 
and ends with a modified rule



13

Synthetic Portnet Generation Algorithm

The generation algorithm results in a randomized 
portnet controlled by the complexity parameters

1. Start from the Initial place (L1)

2. If inputs, outputs not reached (L8)

3. Randomized refinement iteration (L10-14)
• From non-deterministic or deterministic ruleset 

(dependent on the current prevalence of the net under generation)

4. Subtract inputs, outputs from the current (L13-14)

5. Back to step 2, if necessary



14

Example Generations



Experiments

15



16

Experiments

Experimentally display the inherent relation between user-specified complexity parameters and 
the extent to which the generator can satisfy them

Four conducted experiments with fixed prevalence of non-determinism {0.2, 0.4, 0.6, 0.8}
• Varying inputs and outputs {2, 15, 20, 30, 50, 80}

• Measure the average observed prevalence as a function of user-supplied complexity parameters

• 40 iterations



17

Findings from Experiments



Result of Experiments

18

Experiments result in some key observations regarding generation

Difference between inputs and outputs result in a decreasing average prevalence
• Inherent relation between the refinement rules and complexity parameters

Average observed prevalence does not exceed ~0.6
• Result of randomly selecting refinement rules & application onto place



Conclusions

19



Conclusions

20

Introduced a methodology for synthetic generation of portnets of various complexity
• Benefit to those requiring input for tooling within the context of modelling and analysis

• Allows for easier testing and benchmarking using portnets as input

Introduced a definition of portnet complexity
• Number of inputs and outputs, and prevalence of non-determinism

Experiments showing the relation between refinement rules and complexity parameters

Methodology implemented as an open-source Python tool
• Output as PNML representation


