Predictable And Composable System -on- Chip Memory Controllers

Benny Åkesson
Embedded systems get increasingly complex

- **More hardware components** in a system
 - Many different processors and memories

- **More applications** that run *simultaneously*
 - Video player, Internet browser, phone application, navigation, etc.

- Some applications have **real-time requirements**
 - Must finish some processing before a deadline
Resources are shared to reduce cost
- Results in **interference** between applications
- Makes timing behavior of sharing applications **inter-dependent**

Verifying real-time requirements is problematic
- **All combinations** of running applications must be verified
- Typically done by slow simulation → **poor coverage**

However, this problem is not without possible solutions…
Predictability has been proposed to address the problem:

- A system is predictable if max. execution time for applications are known.
- Enables formal verification of real-time requirements.
- Mathematical proof instead of slow simulations.
- Proof covers all combinations of running applications.

Predictability requires models of applications and hardware:

- Do not always exist.
- Predictability hence only partially solves the problem.
Complementary verification approach

- A system is composable if applications do not interfere with each other

Isolation between applications

- No need to verify all possible combinations of applications
- Each application is verified by simulation in isolation
- Works with any application
Focus on SDRAM memory controllers

- **Essential** components in modern systems
- Used to store large amounts of data
- Bandwidth is a **scarce resource** that must be used efficiently

Existing SDRAM controllers are

- Either **unpredictable** or **inflexible**
- Not **composable**

The problem is:

To design a predictable and composable SDRAM memory controller, thereby addressing the verification problem
We propose a predictable SDRAM back-end

- Combines elements of predictable and flexible memory controllers
- Does not have to know exact memory traffic at design time
- Increases flexibility, possibly with a reduction in efficiency

A single application can read and write with predictable timings
More than one real-time application need to use the memory
- Requires an arbiter to schedule requests from the applications
- Applications have different behavior and requirements

We propose a Credit-Controlled Static-Priority (CCSP) arbiter
- It is predictable
- Uses priorities to separate urgent applications from the rest
- Uses budgets to stop greedy applications from monopolizing the memory

The hardware implementation
- Is small and fast enough for most modern memories
- Reserves bandwidth for applications efficiently
The proposed predictable memory controller is **general**

- Arbiter type can be changed to fit with application requirements
- Supports different memory types by changing the back-end
- Timings are guaranteed for all combinations of memory and arbiter types

We present an **automatic configuration** tool

- Computes arbiter and memory configuration that satisfies requirements
Novel approach to composable resource sharing
- Always delay a requests to emulate worst-case interference
- Makes timing behavior of applications independent

Extends composability to work with a wider range of systems
- Supports any combination of predictable arbiter and predictable memory
Verification problem in embedded systems

- Increasing number of applications
- Not possible to verify real-time requirements for all combinations

Predictable and composable systems are promising solutions

- No good predictable and composable memory controllers
→ A predictable SDRAM back-end

→ A predictable CCSP arbiter that is suitable for sharing memories

→ A general design where the arbiter and memory can be changed

→ A tool that automatically computes arbiter and memory configurations

→ An approach that makes any predictable arbiter and memory composable
Predictable And Composable System -on- Chip Memory Controllers

Benny Åkesson