

→Embedded systems get increasingly complex

– More hardware components in a system
• Many different processors and memories

– More applications that run simultaneously
• Video player, Internet browser, phone application, navigation, etc.

– Some applications have real-time requirements
• Must finish some processing before a deadline

2

Trends in embedded systems

→ Resources are shared to reduce cost

– Results in interference between applications

– Makes timing behavior of sharing applications inter-dependent

→ Verifying real-time requirements is problematic

– All combinations of running applications must be verified

– Typically done by slow simulation → poor coverage

→ However, this problem is not without possible solutions…

3

Verification problem

→ Predictability has been proposed to address the problem

– A system is predictable if max. execution time for applications are known

– Enables formal verification of real-time requirements

– Mathematical proof instead of slow simulations

– Proof covers all combinations of running applications

→ Predictability requires models of applications and hardware

– Do not always exist

– Predictability hence only partially solves the problem

4

Predictability

→ Complementary verification approach

– A system is composable if applications do not interfere with each other

→ Isolation between applications

– No need to verify all possible combinations of applications

– Each application is verified by simulation in isolation

– Works with any application

5

Composability

→ Focus on SDRAM memory controllers

– Essential components in modern systems

– Used to store large amounts of data

– Bandwidth is a scarce resource that must be used efficiently

→ Existing SDRAM controllers are

– Either unpredictable or inflexible

– Not composable

6

The problem is:

To design a predictable and composable SDRAM memory
controller, thereby addressing the verification problem

Problem statement

→ We propose a predictable SDRAM back-end

– Combines elements of predictable and flexible memory controllers

– Does not have to know exact memory traffic at design time

– Increases flexibility, possibly with a reduction in efficiency

→A single application can read and write with predictable

timings

Flexible

controllers

Predictable

controllers

Efficiency

Predictability Flexibility

Proposed

controller7

Predictable SDRAM controller

back-end

8

→ More than one real-time application need to use the memory

– Requires an arbiter to schedule requests from the applications

– Applications have different behavior and requirements

→ We propose a Credit-Controlled Static-Priority (CCSP) arbiter
– It is predictable

– Uses priorities to separate urgent applications from the rest

– Uses budgets to stop greedy applications from monopolizing the memory

→ The hardware implementation

– Is small and fast enough for most modern memories

– Reserves bandwidth for applications efficiently

Credit-Controlled Static-Priority

arbiter

→ The proposed predictable memory controller is general

– Arbiter type can be changed to fit with application requirements

– Supports different memory types by changing the back-end

– Timings are guaranteed for all combinations of memory and arbiter types

→ We present an automatic configuration tool

– Computes arbiter and memory configuration that satisfies requirements
B

u
s

SDRAM
back-end

CCSP
arbiter

Application 1

Application 2

General design &

Configuration

10

→Novel approach to composable resource sharing

– Always delay a requests to emulate worst-case interference

– Makes timing behavior of applications independent

→Extends composability to work with a wider range of systems

– Supports any combination of predictable arbiter and predictable

memory
B

u
s

SDRAM
back-end

CCSP
arbiter

Application 1

Application 2

Composable

memory controller

→ Verification problem in embedded systems

– Increasing number of applications

– Not possible to verify real-time requirements for all combinations

→ Predictable and composable systems are promising solutions

– No good predictable and composable memory controllers

11

Conclusions

→ A predictable SDRAM back-end

→ A predictable CCSP arbiter that is suitable for sharing

memories

→ A general design where the arbiter and memory can be

changed

→ A tool that automatically computes arbiter and memory

configurations

→ An approach that makes any predictable arbiter and

memory composable

12

Contributions

