
Architecture and Optimal Configuration of a
Real-Time Multi-Channel Memory Controller

Manil Dev Gomony1, Benny Akesson2 and Kees Goossens1

1 Eindhoven University of Technology, The Netherlands
2 CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal

• Consumer devices mostly run on heterogeneous Multi-
Processor platforms

• Dynamic Random Access Memory (DRAM) is typically used as
shared main memory for cost reasons

Heterogeneous multi-processor platforms

25-Mar-13 1 Manil Dev Gomony / Eindhoven University of Technology

Video
Engine

Host CPU

Audio
Processor

GPU

DMA
Controller

Input
processor

HDLCD
Controller

Memory
controller

In
te

rc
o

n
n

ec
t

DRAM

• The arbiter grants memory access to one of the memory
clients at a time

• Command generator issues memory commands to serve a
memory request

Memory controller

25-Mar-13 2 Manil Dev Gomony / Eindhoven University of Technology

Arbiter

Command
generator

Memory Controller

Memory client 1

Memory client 2
DRAM

Memory client n

• Main memory bandwidth requirement > 10 GB/s by 2013

– Memory power consumption scales up with memory
operating frequency

  “Go parallel”

• Multi-channel memories

– Each channel is an independent memory module with
dedicated data and control lines

– WIDE IO DRAM (4 channels)

“Memory wall”

25-Mar-13 3 Manil Dev Gomony / Eindhoven University of Technology

Channel 3
Data + ctrl

Channel 1
Data + ctrl

Channel 4
Data + ctrl

Channel 2
Data + ctrl

• We need an architecture that can support load balancing

• We need to find the optimal mapping of memory clients to
memory channels

Problem statement

25-Mar-13 4 Manil Dev Gomony / Eindhoven University of Technology

Arbiter

Command
generator

Memory Controller 1

Arbiter

Command
generator

Memory Controller 2

DRAM 1

DRAM 2

Memory
client 1

Memory
client 2

Memory
client 3

Architecture
?

Requirements
• Bandwidth
• Latency
• Communication
• Capacity
• Request sizes

• Multi-channel memory controller architecture

• Real-time guarantees

• Mapping

• Case study

• Summary

Outline

25-Mar-13 5 Manil Dev Gomony / Eindhoven University of Technology

• Interleave memory requests across all the memory channels
available

• Poor memory utilization!

Load balancing - past approach

25-Mar-13 6 Manil Dev Gomony / Eindhoven University of Technology

Client 1

Client 2

Channel 1

Client 1

Client 2

Channel 2

Request 1 Request 1

Request 2 Request 2

Requirements
• Bandwidth
• Latency
• Communication
• Capacity
• Request sizes

Request 1 Request 1

• Channel Interleaving: a memory transaction can be chopped in to
smaller sized transactions called “Service Units” and mapped
across different memory channels

• Each memory channel can be mapped with different number of
service units from a single client

Our approach

25-Mar-13 7 Manil Dev Gomony / Eindhoven University of Technology

Memory client

DRAM 1

DRAM 2

• The Multi-channel Interleaver consists of an Atomizer, Channel selector (CS) and
a Sequence generator

• Atomizer chops the incoming requests into a number of service units of fixed size

• CS routes the service units to the different memory channels

Multi-channel memory controller architecture

25-Mar-13 8 Manil Dev Gomony / Eindhoven University of Technology

Memory
client 1

Multi-channel interleaver

Arbiter

Command
generator

Memory controller 1

Atomizer

Sequence gen 1

Memory
client 2

Atomizer

Sequence gen 2 Arbiter

Command
generator

Memory controller 2

DRAM 1

DRAM 2

CS

CS

• Logical view of the entire memory space must be continuous to avoid
explicit data partitioning and data movement while writing the
application program

Logical-to-physical address translation

25-Mar-13 9 Manil Dev Gomony / Eindhoven University of Technology

Used region

SU 1

SU 2

SU 3

SU 4

SU 1

SU 2

SU 3

SU 4

Used region

SU 1

SU 2

SU 1

SU 2

SU 3

SU 4

SU 3

SU 4

Logical view Physical view

Channel 2

Channel 1

0x0000000

0x0010100

0x0010200

0x0000100

0x0000180

0x0000000

0x0000000

0x0000080
Ch Ch

Ch

ReqAddr - BaseAddr
PhyAddr = BaseAddr

Request size / N


R
e

q
u

e
st 2

R

e
q

u
e

st 1
 Number of service units

allocated to the channel

• Real-time guarantees

• Mapping

• Case study

• Summary

Outline

25-Mar-13 10 Manil Dev Gomony / Eindhoven University of Technology

• Heterogeneous multi-processor platforms consist of a mix of
firm real-time and soft real-time memory clients

• Firm real-time  strict latency and/or bandwidth requirements
on memory traffic

– Must be guaranteed at design-time

• Soft real-time  average memory bandwidth requirements

– Allocate as much bandwidth as possible to improve their
average-case performance

DRAM subsystem requirements

25-Mar-13 11 Manil Dev Gomony / Eindhoven University of Technology

• To provide guarantees on memory bandwidth and latency to a memory
client, a real-time memory controller uses

– A fixed set of memory access parameters such as burst size, page-
policy etc.  bounds transaction execution time

– An arbiter belonging to the class of Latency-Rate (LR) Server 
bounds response time

Real-time memory controllers

25-Mar-13 12 Manil Dev Gomony / Eindhoven University of Technology

Arbiter

Command
generator

Real-time
Memory Controller

Memory client 1

Memory client 2

DRAM

Bounds
response time

Bounds
execution time

• LR servers is a general model to capture the worst-case behavior of
various arbiters (servers) such as TDM, Round Robin, etc.

• The minimum service provided by the arbiter to a client depends on two
parameters namely service latency (ϴ) and allocated rate (ρ’)

• Worst-case latency for a memory transaction with N service units is
given by

Latency-Rate (LR) servers

25-Mar-13 13 Manil Dev Gomony / Eindhoven University of Technology

max L = +
'

N




ρ’

 Requested service

Provided service

Min. provided service

N

ϴ N/ρ’

Time

S
e

rv
ic

e
 u

n
it
s

Client 1 Client 2 Client 3 Client 4

ϴ

ρ’ = 1/4

• Mapping

• Case study

• Summary

Outline

25-Mar-13 14 Manil Dev Gomony / Eindhoven University of Technology

• Optimal mapping of memory clients to memory channels depends on

1. Granularity at which the memory requests are interleaved in each
channel

2. Bandwidth allocated to each memory client in each channel

Mapping problem

25-Mar-13 15 Manil Dev Gomony / Eindhoven University of Technology

Memory
client 1

Multi-channel interleaver

Arbiter

Command
generator

Real-time
memory controller 1

Atomizer

Sequence gen 1

Memory
client 2

Atomizer

Sequence gen 2 Arbiter

Command
generator

Real-time
Memory controller 2

DRAM 1

DRAM 2

• The rate (bandwidth) allocated to firm real-time clients must be
minimized  Soft real-time clients can be allocated with more
bandwidth

• Find the mapping of service units to the memory channels and an
allocated rate such that the sum of allocated rates to the memory clients
in all channels is minimized

• We formulated the problem as an integer programming problem

Optimization goal

25-Mar-13 16 Manil Dev Gomony / Eindhoven University of Technology

'minimize : ()c

c C r R

r
 



• Constraint 1: Meet the latency requirements

– Service units of a transaction may get served at different time
instants in different memory channels

Constraints

25-Mar-13 17 Manil Dev Gomony / Eindhoven University of Technology

Memory
client 1

Multi-channel interleaver

Arbiter

Command
generator

Real-time
memory controller 1

Atomizer

Sequence gen 1

Arbiter

Command
generator

Real-time
Memory controller 2

DRAM 1

DRAM 2

• Constraint 2: Meet the communication requirements

– Clients that need to communicate must be mapped to the same set
of memory channels and data must be aligned

• Client 1 request (Write)

• Client 2 request (Read)

Constraints

25-Mar-13 18 Manil Dev Gomony / Eindhoven University of Technology

SU 1 SU 2 SU 3 SU 4

SU 1 SU 2
SU 2

SU 2

SU 2

SU 2

Channel 1

Used region

SU 1

Channel 2

SU 1

SU 1

SU 1

Client 1 view Client 2 view

SU 3

SU 4

SU 3

SU 4

Channel 1

Used region

SU 1

Channel 2

SU 2

SU 1

SU 2

• Constraint 3: Meet the bandwidth requirements

• Constraint 4: The bandwidth allocated to all the clients in each channel
must be within the channel’s bandwidth capacity

• Constraint 5: The memory capacity allocated to all the clients in each
channel must be within the channel’s memory capacity

Constraints

25-Mar-13 19 Manil Dev Gomony / Eindhoven University of Technology

Mapping overview

25-Mar-13 20 Manil Dev Gomony / Eindhoven University of Technology

Optimization problem
formulation

Constraints

Optimization tool (CPLEX)

Objective function:

'minimize : ()c

c C r R

r
 



Memory client
requirements Architecture

specification
Latency

Bandwidth
Communication

Capacity
Request size

Memory channels
Gross bandwidth
Service unit size

Mapping results

Mapping of service units of each client to each channel
Allocated rates for each client in each channel

• We performed simulations with memory clients of different
bandwidth/latency requirements and request sizes

• In our simulations, the tool was able to find an optimal solution within
first 15 minutes!

Run-time

25-Mar-13 21 Manil Dev Gomony / Eindhoven University of Technology

Memory
Channels

Number of
Clients

Run-time

4

25 3 hrs

50 10 hrs

100 2 days

• Case study

• Summary

Outline

25-Mar-13 22 Manil Dev Gomony / Eindhoven University of Technology

• Configuring a 4-channel Wide IO DRAM in a 1080p HD video
processing system

– Multi-channel memory: Wide IO SDR 200 MHz (JEDEC)

High-Definition (HD) video processing system

25-Mar-13 23 Manil Dev Gomony / Eindhoven University of Technology

CPU
Input

Processor
Video
Engine

GPU
HDLCD

Controller

Multi-channel memory controller

Multi-channel DRAM

IPout VEin VEout GPUin GPUout LCDin CPU

• We selected a service unit size of 64 Bytes considering the request sizes

System requirements

25-Mar-13 24 Manil Dev Gomony / Eindhoven University of Technology

Clients Bandwidth
Requirements (MB/s)

Latency requirements
(clock cycles)

Request sizes
(Bytes)

Communication
group

IPout 1 - 128 1

VEin 769.8 - 128 1

VEout 93.3 - 128 2

GPUin 1000 - 256 2

GPUout 500 102 256 3

LCDin 500 102 256 3

CPU 150 - 128 4

• Requests are interleaved across channels

– To meet latency requirements  GPUout , LCDin

– To meet bandwidth requirements  GPUin, VEin

– To meet communication requirements  VEout + GPUin, VEin + IPout

Mapping results

25-Mar-13 25 Manil Dev Gomony / Eindhoven University of Technology

Client

Channel 1 Channel 2

Channel 3

Channel 4

N ρ’ N ρ’ N ρ’ N ρ’

IPout 0 0 0 0 1 0.01 1 0.01

VEin 0 0 0 0 1 0.4 1 0.4

VEout 0 0 0 0 1 0.05 1 0.05

GPUin 0 0 0 0 2 0.51 2 0.51

GPUout 2 0.4 2 0.4 0 0 0 0

LCDin 2 0.4 2 0.4 0 0 0 0

CPU 2 0.16 0 0 0 0 0 0

Total 6 0.96 4 0.8 5 0.97 5 0.97

• Summary

Outline

25-Mar-13 26 Manil Dev Gomony / Eindhoven University of Technology

• We devised a real-time multi-channel memory controller
architecture that enables interleaving memory requests across
memory channels at different granularities

• We proposed an optimal integer programming based approach to
configure the multi-channel memory controller for minimum
bandwidth utilization

– Bandwidth

– Latency

– Communication

– Memory capacity

Summary

25-Mar-13 27 Manil Dev Gomony / Eindhoven University of Technology

Questions?

25-Mar-13 28 Manil Dev Gomony / Eindhoven University of Technology

