

Design, Automation & Test in Europe 24-28 March, 2014 - Dresden, Germany

The European Event for Electronic System Design & Test

Coupling TDM NoC and DRAM Controller for Cost and Performance Optimization of Real-Time Systems

Manil Dev Gomony¹, Benny Akesson² and Kees Goossens¹

¹ Eindhoven University of Technology, The Netherlands ² Czech Technical University in Prague, Czech Republic

TU

Multi-processor platforms

- Network-on-Chip is used as an interconnect
 - For scalability as opposed to bus-based interconnects
- Main memory (DRAM) is a shared resource
 - For cost and communication reasons

In real-time systems

- Memory clients comes with real-time requirements on memory bandwidth and/or latency
 - Real-time NoCs and Memory Subsystems

Minimize cost and maximize performance!

Real-time NoC

- Statically scheduled Time Division Multiplexed (TDM) NoC
 - Single global TDM schedule
- Provide end-to-end guarantees on latency and bandwidth between a source and destination
 - Dedicated virtual channel/circuit

Real-time memory subsystems

- Provide guarantees on memory bandwidth and latency to a memory client
 - *Real-time memory controller*: Fixed set of memory access parameters (burst size, page-policy)
 - Atomizers (AT) split larger transactions to smaller sized *service units*
 - Predictable arbiter for resource sharing

Motivation

 Existing TDM NoCs and real-time memory subsystems are optimized independently

- Multiple arbitration points!
- Reducing to a single arbitration
 - Reduces worst-case latency
 - Destination NI needs a single output port

Our contributions

- Novel methodology to couple any existing TDM NoC with a real-time memory subsystem
 - Compute the different NoC configurations for minimal area and/or power consumption
- Trade-off between area and power consumption
 - For different NoCs and memory devices
- Comparison of coupled and decoupled architectures by synthesizing the designs
 - In 40nm technology

Outline

Introduction

- Coupling TDM NoC and memory subsystem
- Dimensioning the NoC
- Experiments
- Conclusions

Coupling NoC and memory subsystem

- Remove the bus-based arbitration in the memory subsystem
- Move atomizers and decoupling buffers to the client side
- Perform memory arbitration in the NoC
 - Lose flexibility in selecting different arbitration for memory!

Need to address..

- Different clock domains, transaction granularities
 - What should be the buffer size?
 - How to select NoC interface width and operating frequency?
 - How to guarantee real-time performance to clients?

NoC configuration

- NoC transports *flits* and the memory controller executes service units
 - Configure NoC flit size = service unit size
- Buffer of size equal to the service unit is required at the destination NI
 - Complete service unit need to be buffered

Bandwidth matching

 NoC link bandwidth must be same as the memory subsystem in a service cycle

Clock alignment

- Clock edges of NoC and memory subsystem must be aligned at the service cycle boundaries
 - Single clock source

Coupled architecture - operation

Manil Dev Gomony / Eindhoven University of Technology

Outline

- Introduction
- Coupling TDM NoC and memory subsystem
- Dimensioning the NoC
- Experiments
- Conclusions

Design parameters

• The service cycle duration of a given memory device can be computed using state-of-the art methods

• The interface width and operating frequency of the NoC need to be selected based on area vs. power trade-off

Manil Dev Gomony / Eindhoven University of Technology

NoC dimensioning

- Given a memory device with frequency f_m , service unit size of SU^{bytes} with service cycle SC_m^{cc}
- Determine all (*f_n*, *IW_n*) combinations which satisfies the hardware constraints

Step 1: Compute all possible values of f_n that are integer multiples and common fractions of f_m

Step 2: Select the values of f_n such that the clocks will be aligned at the boundaries of the service cycles

 $(SC_m^{cc} \times f_n) \mod f_m = 0$

Step 3: Compute the values of IW_n corresponding to the different f_n using the bandwidth matching equation

$$f_n \times \frac{IW_n}{8} \times \frac{SC_n^{cc} - \delta_{ov}}{SC_n^{cc}} = f_m \times \frac{SU^{bytes}}{SC_m^{cc}}$$

Outline

- Introduction
- Coupling TDM NoC and memory subsystem
- Dimensioning of TDM NoC
- Experiments
- Conclusions

Experimental setup

- RTL-level implementations of
 - Router and NI of two different TDM NoC types
 - Packet switched : Aelite
 - Circuit switched : Daelite
 - TDM arbiter
 - Bus using the Device Transaction Level (DTL) protocol
 - Comparable to AXI and OCP protocols
- Power/area estimation using the Cadence Encounter RTL compiler
 - 40 nm nominal Vt CMOS standard cell library

Area vs. power trade-off

Area/power savings

- 16 memory clients → 16 ports in destination NI
- Four-stage NoC tree consisting of 15 routers and NIs
- Service unit size 64 B \rightarrow NI buffer size

Worst-case latency savings

- 16 clients with same bandwidth allocated to all clients
 - Assuming the same TDM allocation for the NoC in both architectures

Memory	NoC frequency (MHz)	Interface width (bits)	Worst-case latency (ns)	
			Decoupled	Coupled
LPDDR-266	266.0	15	4.81	2.65
LPDDR-416	416.0	15	3.08	1.70
LPDDR2-667	399.6	16	2.51	1.38
LPDDR2-1066	355.3	22	2.45	1.35
DDR3-800	480.0	23	2.11	1.17
DDR3-1600	400.0	17	1.83	1.00
Over 44				

Outline

- Introduction
- Coupling TDM NoC and memory subsystem
- Dimensioning of TDM NoC
- Experiments
- Conclusions

Conclusions

- Existing NoCs with a global TDM schedule can be coupled with a real-time memory controller by
 - Configuring NoC flit size equal to the service unit size
 - Selecting NI buffer size equal to the service unit size
 - Using a single clock source
- We proposed a methodology for computing the NoC parameters for power vs. area trade-off
- For a system with up to 16 clients, coupling the NoC with the memory subsystem saves over
 - 17% area
 - 11% power consumption
 - 44% worst-case latency
- Give up flexibility in selecting different arbiters for memory!

Questions?