DESIGN, AUTOMATION & TEST IN EUROPE

9 – 13 March, 2015 · Grenoble · France

The European Event for Electronic System Design & Test

A Generic, Scalable and Globally Arbitrated Memory Tree for Shared DRAM Access in Real-Time Systems

Benny Akesson

Czech Technical University in Prague, Czech Republic Manil Dev Gomony Kees Goossens

Eindhoven University of Technology, The Netherlands Jamie Garside Neil Audsley

University of York, United Kingdom

Outline

- Introduction
- Problem Statement
- Proposed Solution
- Experimental Results
- Conclusion

Multi-Core Platforms

- An increasing number of cores share a DRAM memory
- Memory Interconnect with an arbiter grants access to DRAM

Real-Time Systems

- Time-predictable hardware:
 - Real-time memory controller
 - Predictable arbiter for resource sharing

Memory Interconnect

• Three classes of existing memory interconnects:

Not scalable

Distributed with local arbitration

Distributed with global arbitration

Only TDM is supported Need to find global schedule

Long latency, large

area/power usage

Contribution

- Number of memory clients is increasing, more than 64
- Client requirements may be diverse
- Existing memory interconnects:
 - **not scalable** cannot be synthesized at higher frequencies
 - decoupled arbitration stages long latencies and larger area/power usage
 - only support TDM cannot support diverse requirements
- We propose a globally arbitrated distributed memory interconnect supporting multiple arbitration policies
 - TDM, FBSP, and CCSP in (non)-work-conserving mode

Generic, Scalable Memory Tree (GSMT)

- Four main components:
 - **1.** Accounting keeps track of the eligibility status of a client
 - 2. Priority Assignment assigns a unique priority to a client
 - **3. Priority Resolution** grants access to highest priority client
 - 4. Update State Informs accounting about scheduled client

GSMT Properties

- Distributed implementation *scalable*
 - Dedicated accounting and priority assignment (APA) for each client
- Global arbitration *low latency, area and power*
 - Global scheduling interval for all clients
- Generic configurable to support diverse requirements
 - Supports three different arbitration policies

GSMT Interface and Operation

- Accounting and Priority assignment (APA) schedules requests and assigns a unique priority on the priority lines
- Request with lowest priority are dropped at the *Mux* stages and are rescheduled during the next scheduling interval
- Acknowledgement is sent to scheduled client

Generic Configurable APA Architecture

Input signals: Acknowledgement (a), Backlogged (b) **Output signal:** Priority (p) procedure ACCOUNTING(a, b) if v SI then if ((!b) & ($A \text{ out} \ge \ln Cr$)) then CuCr ← InCr else if v Rl then $CuCr \leftarrow RCr$ else $CuCr \leftarrow CuCr + Nr$ end if else if ((a) & ($A \text{ out} \ge LB$)) then $CuCr \leftarrow CuCr - Dr$ end if end procedure

```
procedure PRIORITY ASSIGNMENT(A_out)

if LB \le A_out \le UB then

p \leftarrow SP

else

p \leftarrow SPO

end if

return p

end procedure

11-Mar-15

Benny Akess
```

Register	TDM	FBSP	CCSP		
InCr	f	f.p	σ.dr		
CuCr	0	f.p	σ.dr		
RCr	0	f.p	Not used		
Nr	1	0	nr		
Dr	0	1	dr		
SP	Unique for each client	Unique for each client	Unique for each client		
SPO	SP + Offset	SP + Offset	SP + Offset		
UB	End position in TDM frame	> f.p			
LB	Start position in TDM frame	1	nr-dr		
SIC	SI	SI	SI		
RIC	f.SI	f.SI	Not used		

Benny Akesson / Czech Technical University in Prague

Experimental Setup

- RTL-level implementation of GSMT and centralized implementations of TDM and CCSP
- Cadence Encounter RTL compiler
 - 40*nm* nominal V_t CMOS standard cell library
 - Worst-case process corner

Functional Verification

- Synthetic traffic was generated from 16 clients
- Scheduling decisions of the GSMT were compared to reference implementations of TDM, FBSP, and CCSP arbiters
- All scheduling decisions were identical suggesting correct implementation
- As a result, existing timing analysis of arbiters apply

Experimental Results

	Area (mm²)			Power (mW)			f _{max} (MHz)		
# Clients	TDM	CCSP	GSMT	TDM	CCSP	GSMT	TDM	CCSP	GSMT
4	0.016	0.020	0.017	5.194	5.351	4.55	588	526	1250
8	0.029	0.036	0.035	7.883	8.073	9.77	500	435	1250
16	0.061	0.077	0.070	16.126	14.935	20.20	435	357	1250
32	0.107	0.172	0.141	17.455	25.361	41.07	333	333	1250
64	0.203	0.417	0.282	35.603	63.179	82.81	333	303	1250

- Area, power for all designs increase with number of clients due to additional logic and wiring
- f_{max} of CCSP and TDM scales down with increasing number of clients
- The critical path of GSMT is in APA and is independent for each client, and hence scales well with the number of clients
- GSMT consumes more power compared to centralized implementations

Performance Comparison

- We define two cost-efficiency metrics: bandwidth/area and bandwidth/power
- GSMT has over 51% and 37% gain in terms of area and power

• GSMT is suitable when high bandwidth is needed and client requirements are diverse

Conclusions

- The number of memory clients in multi-cores is increasing
- Existing interconnects are either not scalable for a large number of clients or do not support diverse requirements
- We presented a generic, scalable and globally arbitrated memory interconnect (GSMT)
- Compared to centralized implementations
 - Runs at four times higher frequency
 - Provides over 51% and 37% gain in bw/area and bw/power
 - Supports three different arbitration mechanisms

Thank you for your attention!

kessoben@fel.cvut.cz

Benny Akesson / Czech Technical University in Prague