
A Generic, Scalable and Globally Arbitrated Memory Tree
for Shared DRAM Access in Real-Time Systems

Manil Dev Gomony
Kees Goossens

Eindhoven University of
Technology, The Netherlands

Jamie Garside
Neil Audsley

University of York,
United Kingdom

Benny Akesson

Czech Technical University
in Prague, Czech Republic

• Introduction

• Problem Statement

• Proposed Solution

• Experimental Results

• Conclusion

Outline

Benny Akesson / Czech Technical University in Prague 111-Mar-15

• An increasing number of cores share a DRAM memory

• Memory Interconnect with an arbiter grants access to DRAM

Multi-Core Platforms

11-Mar-15 Benny Akesson / Czech Technical University in Prague 2

Core 1

Memory
Controller

DRAM

Core 2

Core n

Interconnect
(IC)

Arbiter (A)

• Time-predictable hardware:
• Real-time memory controller

• Predictable arbiter for resource sharing

Real-Time Systems

11-Mar-15 Benny Akesson / Czech Technical University in Prague 3

Bounds
transaction
execution

time

Bounds
transaction

response time

Core 1

Real-time
memory

controller
DRAM

Core 2

Core n

Interconnect
(IC)

Arbiter (A)

• Three classes of existing memory interconnects:

Memory Interconnect

11-Mar-15 Benny Akesson / Czech Technical University in Prague 4

Arbiter (A)

A1

A3

A2

A1

A3

A2

Global
schedule

Buffer

Interconnect
(IC)

Centralized with
local arbitration

Distributed with
local arbitration

Distributed with
global arbitration

Not scalable Long latency, large
area/power usage

Only TDM is supported
Need to find global schedule

• Number of memory clients is increasing, more than 64

• Client requirements may be diverse

• Existing memory interconnects:

• not scalable – cannot be synthesized at higher frequencies

• decoupled arbitration stages – long latencies and larger
area/power usage

• only support TDM – cannot support diverse requirements

• We propose a globally arbitrated distributed memory
interconnect supporting multiple arbitration policies

• TDM, FBSP, and CCSP in (non)-work-conserving mode

Contribution

11-Mar-15 Benny Akesson / Czech Technical University in Prague 5

• Four main components:

1. Accounting – keeps track of the eligibility status of a client

2. Priority Assignment – assigns a unique priority to a client

3. Priority Resolution – grants access to highest priority client

4. Update State – Informs accounting about scheduled client

Generic, Scalable Memory Tree (GSMT)

11-Mar-15 Benny Akesson / Czech Technical University in Prague 6

Update state

Client 1
Priority

assignment
Priority

resolution

Client 2
Priority

assignment

Client n Accounting
Priority

assignment

Accounting

Accounting

Memory
controller

+
DRAM

• Distributed implementation – scalable
• Dedicated accounting and priority assignment (APA) for each client

• Global arbitration – low latency, area and power
• Global scheduling interval for all clients

• Generic – configurable to support diverse requirements
• Supports three different arbitration policies

GSMT Properties

11-Mar-15 Benny Akesson / Czech Technical University in Prague 7

Update state

Client 1
Priority

assignment
Priority

resolution

Client 2
Priority

assignment

Client n Accounting
Priority

assignment

Accounting

Accounting

Memory
controller

+
DRAM

• Accounting and Priority assignment (APA) schedules
requests and assigns a unique priority on the priority lines

• Request with lowest priority are dropped at the Mux stages
and are rescheduled during the next scheduling interval

• Acknowledgement is sent to scheduled client

GSMT Interface and Operation

11-Mar-15 Benny Akesson / Czech Technical University in Prague 8

d1 c1 c1 c1 c1

an

d7

clkt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d6 c3 c3 c3 c3

d5 c1 c1 c1 c1

c3 c3 c3 c3

c3 c3 c3 c3c1 c1 c1 c1

vn

d3 c3 c3 c3 c3 c3 c3 c3 c3

Scheduling interval

Dropped

v1,3 v5,6 v7 v3 v6 v7

a7 a5 a1 a7 a6 a3

APA1
d1 Priority resolution
v1

APA2

Mux3

Mux1

p1

a1

d5

v5

a5

p5

d2

v2

p2

a2

APA3
d3

v3

APA4

p3

a3

d4

v4

p4

a4

d7

v7

p7

a7

Client1

Client2

Client3

Client4

v6

d6

a6

p6

Mux2

Memory
controller

+
DRAM

Generic Configurable APA Architecture

11-Mar-15 Benny Akesson / Czech Technical University in Prague 9

1

0

SIC

FIFO
b

din doutAtomizer

a

RIC

RCr

0

1

InCr

1

0
p

B
A A≥B

B
A A≥B

LB

UB

1

0
v

1

WC

SP

 SPO

Accounting Priority selection

EN

v_SI

a

CuCr

ADD/SUB

IN1

IN2

A_out

Adder

a

1

0

A
B A≥B

A
B A≥B

v_RI
Dr

Nr

Input signals: Acknowledgement (a),
Backlogged (b)
Output signal: Priority (p)

procedure ACCOUNTING(a, b)
if v_SI then

if ((!b) & (A_out ≥ InCr)) then
CuCr ← InCr

else if v_RI then
CuCr ← RCr

else
CuCr ← CuCr + Nr

end if
else if ((a) & (A out ≥ LB)) then

CuCr ← CuCr - Dr
end if

end procedure

procedure PRIORITY ASSIGNMENT(A_out)
if LB ≤ A_out ≤ UB then

p ← SP
else

p ← SPO
end if
return p

end procedure

Register TDM FBSP CCSP

InCr f f.ρ σ.dr

CuCr 0 f.ρ σ.dr

RCr 0 f.ρ Not used

Nr 1 0 nr

Dr 0 1 dr

SP Unique for each
client

Unique for each client Unique for each client

SPO SP + Offset SP + Offset SP + Offset

UB End position in
TDM frame

> f.ρ

LB Start position in
TDM frame

1 nr-dr

SIC SI SI SI

RIC f.SI f.SI Not used

• RTL-level implementation of GSMT and centralized
implementations of TDM and CCSP

• Cadence Encounter RTL compiler
• 40nm nominal Vt CMOS standard cell library

• Worst-case process corner

Experimental Setup

11-Mar-15 Benny Akesson / Czech Technical University in Prague 10

• Synthetic traffic was generated from 16 clients

• Scheduling decisions of the GSMT were compared to
reference implementations of TDM, FBSP, and CCSP arbiters

• All scheduling decisions were identical suggesting correct
implementation

• As a result, existing timing analysis of arbiters apply

Functional Verification

11-Mar-15 Benny Akesson / Czech Technical University in Prague 11

• Area, power for all designs increase with number of clients due to
additional logic and wiring

• fmax of CCSP and TDM scales down with increasing number of clients

• The critical path of GSMT is in APA and is independent for each client,
and hence scales well with the number of clients

• GSMT consumes more power compared to centralized implementations

Clients
Area (mm2) Power (mW) fmax (MHz)

TDM CCSP GSMT TDM CCSP GSMT TDM CCSP GSMT

4 0.016 0.020 0.017 5.194 5.351 4.55 588 526 1250

8 0.029 0.036 0.035 7.883 8.073 9.77 500 435 1250

16 0.061 0.077 0.070 16.126 14.935 20.20 435 357 1250

32 0.107 0.172 0.141 17.455 25.361 41.07 333 333 1250

64 0.203 0.417 0.282 35.603 63.179 82.81 333 303 1250

Experimental Results

11-Mar-15 Benny Akesson / Czech Technical University in Prague 12

• We define two cost-efficiency metrics:
bandwidth/area and bandwidth/power

• GSMT has over 51% and 37% gain in terms of area and power

• GSMT is suitable when high bandwidth is needed and client
requirements are diverse

Performance Comparison

11-Mar-15 Benny Akesson / Czech Technical University in Prague 13

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.00

0.10

0.20

0.30

0.40

0.50

0.60

4 8 16 32 64
TDM (Bandwidth/Area) CCSP (Bandwidth/Area)
TDM (Bandwidth/Power) CCSP (Bandwidth/Power)

x
B

a
n

d
w

id
th

/A
re

a

x
B

a
n

d
w

id
th

/P
o

w
er

Number of clients

• The number of memory clients in multi-cores is increasing

• Existing interconnects are either not scalable for a large
number of clients or do not support diverse requirements

• We presented a generic, scalable and globally arbitrated
memory interconnect (GSMT)

• Compared to centralized implementations

• Runs at four times higher frequency

• Provides over 51% and 37% gain in bw/area and bw/power

• Supports three different arbitration mechanisms

Conclusions

11-Mar-15 Benny Akesson / Czech Technical University in Prague 14

Questions?

11-Mar-15 Benny Akesson / Czech Technical University in Prague 15

Thank you for your attention!

kessoben@fel.cvut.cz

