

CompSOC.eu

Technische Universiteit **Eindhoven** University of Technology

Memory-Map Selection for Firm Real-Time SDRAM Controllers

Sven Goossens, Tim Kouters, Benny Akesson, and Kees Goossens

COBRA - CA104

1. SDRAM

- Consists of banks, rows and columns.
- The controller decides which address bits map to the bank row and column respectively. This is the **memory map.**
- 5 commands: activate (ACT), precharge (PRE), read (RD), write (WR), refresh (REF).
- the row buffer.
- have to be satisfied.

2. Problem statement

How does the memory map influence the memory performance in terms of bandwidth, latency and power? Which memory map should an SDRAM controller use to satisfy the real-time requirements of its applications?

3. An example read access for a DDR3-800 using a (BI 2, BC 4) memory map

4. Memory map selection guidelines

- Use $BI \leq 4$ banks to avoid hitting the 4-ACT window constraint.
- Minimize timing constraint interference by choosing a large BI and/or BC. This maximizes the worst-case bandwidth.
- Match the AG of the memory map with the request size. This maximizes the useful bandwidth for the applications.
- Minimizing AG minimizes latency, at the expense of bandwidth.
- For a given AG, reducing BI reduces power, at the expense of bandwidth.

Number of Banks Interleaving (BI)

The four encircled memory maps satisfy all requirements for the use case

5. Conclusions

- Existing firm real-time controllers provide only limited memory map configurability.
- We allow the number of banks requests are interleaved over (BI) to be configured.
 - Used to optimize the memory map based on the mix of applications.
 - Beneficial for the worst-case performance in terms of bandwidth, latency and power.
 - Allows for smaller access granularities, increasing performance for small requests.
- Combined with BC the complete range of access granularities is selectable.
- We propose a methodology that takes the real-time application constraints and the power budget into account and finds a memory map satisfying the bandwidth, latency and power requirements.

Department of Electrical Engineering / Electronic Systems