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 DRAM is accessed by scheduling commands

 ACT, PRE, RD, WR, REF, NOP

 subject to timing constraints
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Command Scheduling Approaches

 Static command schedule

 analyzable for FRT

 not scalable to multiple tasks

 Semi-static command schedule

 analyzable and scalable for FRT

 limited for a fixed size at run time; 

worst-case oriented

 Dynamic command schedule

 scalable, and good ACET for SRT, NRT

 difficult to analyze
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Overview

 Goal:

 guarantee WCET for FRT

 minimize ACET for SRT, NRT

 with variable transaction sizes

 Contributions

 to support dynamic command scheduling

 back-end architecture

 scheduling algorithm

 formalization of timing behavior 

 analysis of WCET
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Problem

 Translate a transaction into which sequence of commands

 different number of commands for variable transaction sizes

• bank interleaving (BI), burst count (BC) per bank

 minimum timing constraints between commands

impact scheduling order and timing

 a single scheduler for all commands to any banks

• scheduling collisions

 Analyzable WCET for variable transaction sizes

queue per bank

commandstransaction

scheduler

one command

per cycle
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Back-End Architecture
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Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints
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Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction
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Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction

2. access banks in ascending order per transaction
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Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints
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Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints
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Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction

2. access banks in ascending order per transaction

3. read/write data before opening another bank
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Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction

2. access banks in ascending order per transaction

3. read/write data before opening another bank
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Timing Dependencies of a Transaction

 A transaction     is executed by accessing       successive 

banks and issuing        bursts per bank
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Lemma 1 (Finishing Time)

 The finishing time of 𝑇𝑖 depends on the scheduling time of 

its ACT commands and the finishing time of 𝑇𝑖−1
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Lemma 1 (Finishing Time)

 The finishing time of 𝑇𝑖 depends on the scheduling time of 

its ACT commands and the finishing time of 𝑇𝑖−1
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 The maximum 𝑡𝑓 𝑇𝑖 is obtained by

 maximizing the scheduling time of each ACT command

Worst-Case Finishing Time
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 The maximum 𝑡𝑓 𝑇𝑖 is obtained by

 maximizing the scheduling time of each ACT command

 schedule commands of previous transactions as late as possible 

(ALAP)
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Theorem 1 (Variable transaction size)

 A transaction suffers WCET only if it starts with a bank that 

is the finishing bank of the previous write transaction

 

 1

ˆ max{( 1) ,

                      ( 1) ( 1) ( 1) }
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Theorem 2 (Fixed transaction size)

 With fixed size, a transaction suffers WCET only if the 

previous write transaction requires the same set of banks

   1
ˆ max{ ( 1)

                                     ( 1) max{ , }

                                     max{1,( 1) ( ) },

                      

f i f it T t T tRWTP tRP BI BC tCCD
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                ( 1) }tSwitch BI BC tCCD   



25Czech Technical 

University in Prague

 The analytical  𝑡𝑓 𝑇𝑖 is pessimistic because of the 

conservative assumption of a collision for each ACT

Worst-Case Finishing Time
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 Scheduled  𝑡𝑓 𝑇𝑖 is given by a scheduling tool

Worst-Case Finishing Time (less pessimistic)

Worst-case situation Command scheduling
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Experiments

 Goals

 verify the validation of the formalization

 for fixed/variable transaction sizes, respectively, 

• prove the execution time is upper bounded

• show tightness of bound

• obtain the average execution time

 Setup

 cycle-accurate SystemC implementation

 fixed-size transactions from Mediabench Application traces

 variable-size transactions from synthetic traffic

 16bits DDR3-800/1600/2133 SDRAMs 
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Experiment 1: Validation of Formalization

 The proposed formalism is implemented in C++ as an 

open source scheduling tool

 RTMemController, http://www.es.ele.tue.nl/rtmemcontroller/

 The formalism accurately captures the SystemC

implementation

 It provides WCET and average ET results

 the analytical and scheduled WCET 

 measured WCET

http://www.es.ele.tue.nl/rtmemcontroller/
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Experiment 2: Variable Transaction Size 

 The WCET bound is tight
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Experiment 2: Variable Transaction Size 

 Analytical WCET bound is pessimistic
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Experiment 2: Variable Transaction Size 

 Average ET is much lower than WCET (e.g., 74.4%)
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Experiment 3: Fixed Transaction Size 

 Compares to the semi-static approach

 Better in average case (e.g., 38.6%), never worse in worst-case
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Conclusions

 A back-end architecture with a scheduling algorithm for 

dynamic command scheduling

 Valid formalization & analysis of WCET

 RTMemController: an open source scheduling tool based 

on the formalism and provides both scheduled & analytical

WCET, and average ET

 WCET bound is tight

 Dynamic scheduling outperforms the semi-static approach 

in the average case (max. 38.6%) while performing at 

least equally well in the worst-case
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Thank You.
yonghui.li@tue.nl

RTMemController: http://www.es.ele.tue.nl/rtmemcontroller/
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