
Czech Technical

University in Prague

Yonghui Li1, Benny Akesson2 and Kees Goossens1

1Eindhoven University of Technology,
2Czech Technical University in Prague

yonghui.li@tue.nl

Dynamic Command Scheduling for

Real-Time Memory Controllers

1Czech Technical

University in Prague

Mixed Time-Critical Systems

Interconnect

Core
Core

Graphics

Accelerators
LCD

Controller

DMA

Engines

Audio/Video

Processor

Real-Time Applications Non-Real-Time Applications

DRAM

MC front-end

MC back-end

 FRT  WCET

 SRT, NRT  ACET

2Czech Technical

University in Prague

Outline

 Background

 Architecture and Command Scheduling Algorithm

 Formalization of Dynamic Command Scheduling

 WCET Analysis

 Experiments

 Conclusions

3Czech Technical

University in Prague

Bank N-1

DRAM

 DRAM is accessed by scheduling commands

 ACT, PRE, RD, WR, REF, NOP

 subject to timing constraints

cmd

addr.

data

Bank 0

Activate

(ACT)
Precharge

(PRE)
Row buffer

Read

(RD)

Write

(WR)

4Czech Technical

University in Prague

Command Scheduling Approaches

 Static command schedule

 analyzable for FRT

 not scalable to multiple tasks

 Semi-static command schedule

 analyzable and scalable for FRT

 limited for a fixed size at run time;

worst-case oriented

 Dynamic command schedule

 scalable, and good ACET for SRT, NRT

 difficult to analyze

read

RDACT PRE

read write

×NoP RD×NoP ACT×NoP RD×NoP ACT RD×NoP

read read write

Read Read WriteR/W

⋯

⋯

⋯

⋯

trans

cmd

trans

cmd

5Czech Technical

University in Prague

Overview

 Goal:

 guarantee WCET for FRT

 minimize ACET for SRT, NRT

 with variable transaction sizes

 Contributions

 to support dynamic command scheduling

 back-end architecture

 scheduling algorithm

 formalization of timing behavior

 analysis of WCET

6Czech Technical

University in Prague

Outline

 Background

 Architecture and Command Scheduling Algorithm

 Formalization of Dynamic Command Scheduling

 WCET Analysis

 Experiments

 Conclusions

7Czech Technical

University in Prague

Problem

 Translate a transaction into which sequence of commands

 different number of commands for variable transaction sizes

• bank interleaving (BI), burst count (BC) per bank

 minimum timing constraints between commands

impact scheduling order and timing

 a single scheduler for all commands to any banks

• scheduling collisions

 Analyzable WCET for variable transaction sizes

queue per bank

commandstransaction

scheduler

one command

per cycle

8Czech Technical

University in Prague

Back-End Architecture

Lookup

table

Memory

map

Command

generator

Cmd queue

RD ACTRD

Local TCC

Global TCC

T
im

in
g

S
e

le
c
to

r

Arbiter

trans data

cmd

phy. addr.
log. addr.

size

BI,BC

Bank 0

MC

Back-end

9Czech Technical

University in Prague

Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

RD,RD, ACT

RD, RD, ACT

WR, ACT

WR, ACT

arbiter

𝑇𝑖

𝑇𝑖+1

0

1

2

3

10Czech Technical

University in Prague

Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction

RD,RD, ACT

RD, RD, ACT

WR, ACT

WR, ACT

arbiter

𝑇𝑖

𝑇𝑖+1

0

1

2

3

11Czech Technical

University in Prague

Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction

2. access banks in ascending order per transaction

RD,RD, ACT

RD, RD, ACT

WR, ACT

WR, ACT

arbiter

𝑇𝑖

𝑇𝑖+1

0

1

2

3

12Czech Technical

University in Prague

Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction

2. access banks in ascending order per transaction

RD,RD

RD, RD, ACT

WR, ACT

WR, ACT

arbiter

𝑇𝑖

𝑇𝑖+1

0

1

2

3

ACT

13Czech Technical

University in Prague

Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction

2. access banks in ascending order per transaction

RD,RD

RD, RD, ACT

WR, ACT

WR, ACT

arbiter

𝑇𝑖

𝑇𝑖+1

0

1

2

3

ACT ×NoP

14Czech Technical

University in Prague

Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction

2. access banks in ascending order per transaction

3. read/write data before opening another bank

RD,RD

RD, RD, ACT

WR, ACT

WR, ACT

arbiter

𝑇𝑖

𝑇𝑖+1

0

1

2

3

ACT ×NoP

15Czech Technical

University in Prague

Scheduling Algorithm

 Executes every cycle based on command priorities

 Only used for commands that satisfy their timing constraints

1. FCFS per transaction

2. access banks in ascending order per transaction

3. read/write data before opening another bank

RD

RD, RD, ACT

WR, ACT

WR, ACT

arbiter

𝑇𝑖

𝑇𝑖+1

0

1

2

3

ACT ×NoP RD

16Czech Technical

University in Prague

Outline

 Background

 Architecture and Command Scheduling Algorithm

 Formalization of Dynamic Command Scheduling

 WCET Analysis

 Experiments

 Conclusions

17Czech Technical

University in Prague

Timing Dependencies of a Transaction

 A transaction is executed by accessing successive

banks and issuing bursts per bank
iBI

iBC
iT

𝐵𝐼𝑖

𝐵𝐶𝑖

ACT RW RW PRE
tRCD tCCD tRWTP

ACT RW RW PRE
tRCD tCCD tRWTP

tCCD

tRAS

tRAS

tRP

tRP

tRRD

tRP

tRP

tRRD

tFAW

tFAW

ACT RW RW PRE
tRCD tCCD tRWTP

tCCD

tRAS
tRP

tRRD
tRP

tFAW

tCCD

⋯
tRRD

⋯

tSwitch

tSwitch

iT
Bank 0

Bank 1

Bank 𝑩𝑰𝒊 − 𝟏

     max{ , }t RW t RW tCCD t ACT tRCD  

1

1

1

18Czech Technical

University in Prague

Lemma 1 (Finishing Time)

 The finishing time of 𝑇𝑖 depends on the scheduling time of

its ACT commands and the finishing time of 𝑇𝑖−1

ACT RW RW PRE
tRCD tCCD tRWTP

ACT RW RW PRE
tRCD tCCD tRWTP

tCCD

tRAS

tRAS

tRP

tRP

tRRD

tRP

tRP

ACT RW RW PRE
tRCD tCCD tRWTP

tCCD

tRAS
tRP

tRRD
tRP

tCCD

⋯
tRRD

⋯

tSwitch

tSwitch

𝑡𝑓(𝑇𝑖)

RW

tRRD

𝑡𝑓(𝑇𝑖−1)

iT

tFAW

tFAW

tFAW

Bank 0

Bank 1

Bank 𝑩𝑰𝒊 − 𝟏

1

1

1

19Czech Technical

University in Prague

Lemma 1 (Finishing Time)

 The finishing time of 𝑇𝑖 depends on the scheduling time of

its ACT commands and the finishing time of 𝑇𝑖−1

ACT RW RW PRE
tRCD tCCD tRWTP

ACT RW RW PRE
tRCD tCCD tRWTP

tCCD

tRAS

tRAS

tRP

tRP

tRRD

tRP

ACT RW RW PRE
tRCD tCCD tRWTP

tCCD

tRAS
tRP

tRRD
tRP

tCCD

⋯
tRRD

⋯

tSwitch

𝑡𝑓(𝑇𝑖)

RW

tRRD

iT

tFAW

tFAW

tFAW

tRP
Bank 0

Bank 1

Bank 𝑩𝑰𝒊 − 𝟏

1

1

1

tSwitch
𝑡𝑓(𝑇𝑖−1)

20Czech Technical

University in Prague

Outline

 Background

 Architecture and Command Scheduling Algorithm

 Formalization of Dynamic Command Scheduling

 WCET Analysis

 Experiments

 Conclusions

21Czech Technical

University in Prague

 The maximum 𝑡𝑓 𝑇𝑖 is obtained by

 maximizing the scheduling time of each ACT command

Worst-Case Finishing Time

ACT

ACT

tRRD

ACT

tRRD

tRP

tRRD

⋯

tRRD

tFAW

ACT

𝑇𝑖

PRE
tRP

ACT

tFAW

PRE
tRP

ACT
tFAW

tRRD

PRE

𝑇𝑖−2 𝑇𝑖−1𝑇𝑖−3
1

1

1

22Czech Technical

University in Prague

 The maximum 𝑡𝑓 𝑇𝑖 is obtained by

 maximizing the scheduling time of each ACT command

 schedule commands of previous transactions as late as possible

(ALAP)

Worst-Case Finishing Time

ACT

ACT

tRRD

ACT

tRRD

tRRD

⋯

𝑇𝑖𝑇𝑖−2 𝑇𝑖−1𝑇𝑖−3
1

1

1
RW

𝑡𝑓(𝑇𝑖−1)

ACT

tRCD

ACT

ACT

⋮

tRRD

tRRD

tRRD

RW

RW

⋮

RW

𝑡𝑓(𝑇𝑖−2)

ACT

ACT

ACT

⋮

tRRD

tRRD

tRRD

tRCD

& assume a collision for each ACT

23Czech Technical

University in Prague

Theorem 1 (Variable transaction size)

 A transaction suffers WCET only if it starts with a bank that

is the finishing bank of the previous write transaction

 

 1

ˆ max{(1) ,

 (1) (1) (1) }

f i i i

i i

f i

t T BI BC tCCD

BI tRRD BC tCCD

t T tRWTP tRP tRCD

   

     

   

24Czech Technical

University in Prague

Theorem 2 (Fixed transaction size)

 With fixed size, a transaction suffers WCET only if the

previous write transaction requires the same set of banks

   1
ˆ max{ (1)

 (1) max{ , }

 max{1,(1) () },

f i f it T t T tRWTP tRP BI BC tCCD

BI tRRD BC tCCD tRCD

BI tRRD BC tCCD BI

      

    

     

 (1) }tSwitch BI BC tCCD   

25Czech Technical

University in Prague

 The analytical 𝑡𝑓 𝑇𝑖 is pessimistic because of the

conservative assumption of a collision for each ACT

Worst-Case Finishing Time

ACT

ACT

tRRD

ACT

tRRD

tRRD

⋯

𝑇𝑖
1

1

1
RW

𝑡𝑓(𝑇𝑖−1)

ACT

tRCD

ACT

ACT

⋮

tRRD

tRRD

tRRD

RW

RW

⋮

RW

𝑡𝑓(𝑇𝑖−2)

ACT

ACT

ACT

⋮

tRRD

tRRD

tRRD

tRCD

𝑇𝑖−2 𝑇𝑖−1

26Czech Technical

University in Prague

 Scheduled 𝑡𝑓 𝑇𝑖 is given by a scheduling tool

Worst-Case Finishing Time (less pessimistic)

Worst-case situation Command scheduling

ACT

ACT

tRRD

ACT

tRRD

tRRD

⋯

𝑇𝑖
1

1

1
RW

𝑡𝑓(𝑇𝑖−1)

ACT

tRCD

ACT

ACT

⋮

tRRD

tRRD

tRRD

RW

RW

⋮

RW

𝑡𝑓(𝑇𝑖−2)

ACT

ACT

ACT

⋮

tRRD

tRRD

tRRD

tRCD

𝑇𝑖−2 𝑇𝑖−1

27Czech Technical

University in Prague

Outline

 Background

 Architecture and command scheduling algorithm

 Formalization of dynamic command scheduling

 WCET analysis

 Experiments

 Conclusions

28Czech Technical

University in Prague

Experiments

 Goals

 verify the validation of the formalization

 for fixed/variable transaction sizes, respectively,

• prove the execution time is upper bounded

• show tightness of bound

• obtain the average execution time

 Setup

 cycle-accurate SystemC implementation

 fixed-size transactions from Mediabench Application traces

 variable-size transactions from synthetic traffic

 16bits DDR3-800/1600/2133 SDRAMs

29Czech Technical

University in Prague

Experiment 1: Validation of Formalization

 The proposed formalism is implemented in C++ as an

open source scheduling tool

 RTMemController, http://www.es.ele.tue.nl/rtmemcontroller/

 The formalism accurately captures the SystemC

implementation

 It provides WCET and average ET results

 the analytical and scheduled WCET

 measured WCET

http://www.es.ele.tue.nl/rtmemcontroller/

30Czech Technical

University in Prague

Experiment 2: Variable Transaction Size

 The WCET bound is tight

0

10

20

30

40

50

60

16 B 32 B 64 B 128 B

Ex
ec

u
ti

o
n

 T
im

e(
cy

cl
es

)

WCET (measured in simulation)

WCET (from scheduling tool)

WCET (analytical)

Average ET

Synthetic traffic

31Czech Technical

University in Prague

Experiment 2: Variable Transaction Size

 Analytical WCET bound is pessimistic

0

10

20

30

40

50

60

16 B 32 B 64 B 128 B

Ex
ec

u
ti

o
n

 T
im

e(
cy

cl
es

)

WCET (measured in simulation)

WCET (from scheduling tool)

WCET (analytical)

Average ET

Synthetic traffic

32Czech Technical

University in Prague

Experiment 2: Variable Transaction Size

 Average ET is much lower than WCET (e.g., 74.4%)

0

10

20

30

40

50

60

16 B 32 B 64 B 128 B

Ex
ec

u
ti

o
n

 T
im

e(
cy

cl
es

)

WCET (measured in simulation)

WCET (from scheduling tool)

WCET (analytical)

Average ET

Synthetic traffic

33Czech Technical

University in Prague

Experiment 3: Fixed Transaction Size

 Compares to the semi-static approach

 Better in average case (e.g., 38.6%), never worse in worst-case

0

5

10

15

20

25

30

35

40

45

32 B 64 B 128 B

E
x

e
c

u
ti

o
n

 t
im

e
 (

c
y
c

le
s

)

WCET (measured in simulation)

WCET (from scheduling tool)

WCET (analytical)

WCET (semi-static)

Average ET (dynamic)

Average ET (semi-static)

Traces: gsmdecode, epic,

unepic and jpegencode

34Czech Technical

University in Prague

Outline

 Background

 Architecture and command scheduling algorithm

 Formalization of dynamic command scheduling

 WCET analysis

 Experiments

 Conclusions

35Czech Technical

University in Prague

Conclusions

 A back-end architecture with a scheduling algorithm for

dynamic command scheduling

 Valid formalization & analysis of WCET

 RTMemController: an open source scheduling tool based

on the formalism and provides both scheduled & analytical

WCET, and average ET

 WCET bound is tight

 Dynamic scheduling outperforms the semi-static approach

in the average case (max. 38.6%) while performing at

least equally well in the worst-case

36Czech Technical

University in Prague

Thank You.
yonghui.li@tue.nl

RTMemController: http://www.es.ele.tue.nl/rtmemcontroller/

mailto:yonghui.li@tue.nl
http://www.es.ele.tue.nl/rtmemcontroller/

