
Challenge the future

Delft
University of
Technology

Process-Variation Aware Mapping of
Real-Time Streaming Applications to
MPSoCs for Improved Timing Yield

Davit Mirzoyan, Benny Akesson, Kees Goossens

2

Background

• Inability to precisely control the manufacturing process in

deep-submicron technologies

• Variation in key transistor parameters (i.e. 𝑉𝑡ℎ)

• Identically designed cores in a chip and across chips have

different maximum supported frequencies (FMAX)

• Up to 40% variation in FMAX of a VLIW processor manufactured at

32nm technology [M. Miranda et al., ISQED, 2009]

• To efficiently design MPSoCs

• Variation-aware performance analysis is essential in the process

of system-level task allocation

3

Concept Demonstration

• Hardware resources (i.e. cores) with nominal FMAX

• Sufficient performance for the timing requirement of an application

• Variation affected hardware

• Still sufficient performance for the timing requirement of an application

• Variation-aware performance analysis can increase the timing yield

• The number of chips satisfying the timing requirement of an application

4

Outline

• Positioning the work

• Modelling

• Optimization problems

• Implementation algorithms

• Experimental results

• Conclusions

5

Outline

• Positioning the work

• Modelling

• Optimization problems

• Implementation algorithms

• Experimental results

• Conclusions

6

Positioning the work

• Existing solutions that propose variation-aware task allocation

and scheduling

• Use acyclic task-graphs for application modelling

• Are based on latency requirements

• Our approach

• Allows arbitrary task graphs with cyclic dependencies

• Is based on throughput requirements of real-time streaming

applications

• Primary timing requirement

7

Outline

• Positioning the work

• Modelling

• Optimization problems

• Implementation algorithms

• Experimental results

• Conclusions

8

• Set of hardware resources (processor, DSP, accelerator)

• Each resource has a set of possible operating points (FMAX)

with associated probabilities

• Chips with various operating point sets
• 𝑜𝑠 = (𝐹𝑀𝐴𝑋𝑖

𝑟1 𝐹𝑀𝐴𝑋𝑗
𝑟2 𝐹𝑀𝐴𝑋𝑘

𝑟3)

• Each chip (𝑜𝑠) has a probability of occurance

Hardware platform

r1
r2

r3

FMAX

9

Unbound graph

• Synchronous Data Flow Graph (SDFG) model of an application

• Binding unaware

• Execution times of actors are given in clock cycles on the resources

• This graph is decoupled from hardware variation

10

Bound graph

• SDFG model of an application

• Binding aware

• Multiple ways of binding application actors to the resources

• Execution times of actors are given in seconds

• Bound graph is not decoupled from hardware variation

• Impact of hardware variation on throughput for various bindings

Changing the os we can observe variation in throughput

2

2 3 1 2

2 2 3

1 1 1

1 1 1 1 1 1

d3 d4

d2 d1

a1 a2 a3

r1 r2

Execution
seconds

os={FMAXi
r1

,FMAXj
r2

}

11

Outline

• Positioning the work

• Modelling

• Optimization problems

• Implementation algorithms

• Experimental results

• Conclusions

12

Single-binding optimization

• Two optimization approaches are presented

• Objective is to maximize the timing yield

• The number of chips satisfying application throughput

requirement 𝑇𝑟𝑒𝑞

• Single-binding optimization

• Find a binding at design time such that the timing-yield is

maximized

• Yield of a binding

• Identical binding for all chips

Treq

13

Multiple-bindings optimization

• Multiple-bindings optimization

• Find and store a binding for each chip at design time

• Based on each manufactured chip, the right binding is selected at

the run-time configuration stage

• Advantage over single-binding

• Per-chip binding selection results in higher timing-yield

• Disadvantage

• Diverse software instances for the same product

• Multiple bindings are stored

14

Outline

• Positioning the work

• Modelling

• Optimization problems

• Implementation algorithms

• Experimental results

• Conclusions

15

Exhaustive algorithm

• Exhaustive and Heuristic algorithms are presented

• Exhaustive

• All binding possibilities are evaluated

• Number of all bindings: |R||A|

• Exponential complexity

• Gives the optimum solution

• Maximum improvement in yield

• Too computationally expensive for large problems

16

Heuristic algorithm

• Small number of bindings are evaluated

• |A|*(|R|-1)

• Exponential complexity is reduced to polynomial

• The bindings are generated by two phase procedure

1) Initial resource allocation

• An initial binding is derived

2) Allocation optimization

• Actors are moved from a resource to another to improve the yield

17

Initial resource allocation

• Actors with high computational demands are considered first

• Load balancing on the resources

• When allocating an actor

• Select a resource with the lowest load

• Not allocated resources?

• Select the fastest resource

• Potentially results in high yield

• Doesn’t necessarily give optimum

• The allocation can be improved

ActorsComputational

demand

18

Allocation optimization

• Allocation of actors is reconsidered

• To find a binding with higher yield for all chips or throughput per

chip

• Strategies

• Pair-wise swapping of actors (all combinations)

• Moving each actor from a resource to another (all combinations)

• Gives better results

• Still may not give the optimum as not all bindings are

evaluated

19

Outline

• Positioning the work

• Modelling

• Optimization problems

• Implementation algorithms

• Experimental results

• Conclusions

20

Experimental setup

• Applications

• H.263 Encoder, H.263 Decoder, MP3 Decoder, Modem, Satellite

Receiver, MP3 Playback and a Sample Rate Converter

• Resources

• 2-5 resources with 380, 380, 380, 440, 500 MHz nominal FMAX

• Impact of process variation [M. Miranda et al., ISQED, 2009]

• 3%, 6% and 15% FMAX mean degradations (intra-die)

• 3.3% standard deviation (3𝜎=10%) for all resources (inter-die)

• 5 discrete operating points for each resource

• SDF3 for throughput analysis

[S. Stuijk et al., ACSD, 2006.]

21

Exhaustive algorithm

• Comparison to variation-unaware nominal frequency-based

mapping approach

• Medium sized applications: 6 actors the largest

• Average improvements in yield

• VA-SBE: 11%

• VA-MBE: 21%

• Better than VA-SBE

• Run time: ~1hour

• On P4 2.8 GHz machine

22

Heuristic algorithm

• 4% average reduction in yield as compared to optimum

• Applied to large applications (22 actors the largest)

• Higher yield improvements: up to 50%

• Run time: ~15 min. (for large applications)

• Exhaustive approach is infeasible (for large applications)

• Not more than 10 bindings are stored for VA-MBH

23

Outline

• Positioning the work

• Modelling

• Optimization problems

• Implementation algorithms

• Experimental results

• Conclusions

24

Conclusions

• Single-binding and multiple-bindings approaches for mapping

cyclic task graphs to MPSoC for improved timing yield under

process variation

• Exhaustive and Heuristic algorithms that implement the

optimization approaches

• Variation awareness is important in resource allocation

• Up to 50% yield improvements (31% average)

• Heuristic algorithm scales well to large problems while giving

slight reduction in yield (4% average)

• Only a few bindings are stored for the run-time configuration

25

Questions?

