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Background 

• Inability to precisely control the manufacturing process in 

deep-submicron technologies 

• Variation in key transistor parameters (i.e. 𝑉𝑡ℎ) 

• Identically designed cores in a chip and across chips have 

different maximum supported frequencies (FMAX) 

• Up to 40% variation in FMAX of a VLIW processor manufactured at 

32nm technology [M. Miranda et al., ISQED, 2009] 

 

• To efficiently design MPSoCs 

• Variation-aware performance analysis is essential in the process 

of system-level task allocation 
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Concept Demonstration 

• Hardware resources (i.e. cores) with nominal FMAX 

 

 

 

• Sufficient performance for the timing requirement of an application 

 

• Variation affected hardware 

 

 

• Still sufficient performance for the timing requirement of an application 

 

• Variation-aware performance analysis can increase the timing yield 

• The number of chips satisfying the timing requirement of an application 
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Positioning the work 

• Existing solutions that propose variation-aware task allocation 

and scheduling 

• Use acyclic task-graphs for application modelling 

• Are based on latency requirements  

 

• Our approach 

• Allows arbitrary task graphs with cyclic dependencies 

• Is based on throughput requirements of real-time streaming 

applications 

• Primary timing requirement 
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• Set of hardware resources (processor, DSP, accelerator) 

 

 

 

• Each resource has a set of possible operating points (FMAX) 

with associated probabilities 

 

 

• Chips with various operating point sets  
• 𝑜𝑠 = (𝐹𝑀𝐴𝑋𝑖

𝑟1  𝐹𝑀𝐴𝑋𝑗
𝑟2  𝐹𝑀𝐴𝑋𝑘

𝑟3) 

• Each chip (𝑜𝑠) has a probability of occurance 

 

Hardware platform 

r1
r2

r3

FMAX
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Unbound graph 

• Synchronous Data Flow Graph (SDFG) model of an application 

• Binding unaware 

• Execution times of actors are given in clock cycles on the resources 

 

• This graph is decoupled from hardware variation 
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Bound graph 

• SDFG model of an application 

• Binding aware 

• Multiple ways of binding application actors to the resources 

• Execution times of actors are given in seconds 

• Bound graph is not decoupled from hardware variation 

• Impact of hardware variation on throughput for various bindings 

Changing the os we can observe variation in throughput 
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Single-binding optimization 

• Two optimization approaches are presented 

• Objective is to maximize the timing yield 

• The number of chips satisfying application throughput   

requirement 𝑇𝑟𝑒𝑞 

• Single-binding optimization 

• Find a binding at design time such that the timing-yield is 

maximized 

• Yield of a binding 

 

 

 

• Identical binding for all chips 

Treq
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Multiple-bindings optimization 

• Multiple-bindings optimization 

• Find and store a binding for each chip at design time 

• Based on each manufactured chip, the right binding is selected at 

the run-time configuration stage 

 

• Advantage over single-binding 

• Per-chip binding selection results in higher timing-yield 

 

• Disadvantage 

• Diverse software instances for the same product 

• Multiple bindings are stored 
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Exhaustive algorithm 

• Exhaustive and Heuristic algorithms are presented 

 

• Exhaustive 

• All binding possibilities are evaluated 

• Number of all bindings: |R||A|  

• Exponential complexity 

• Gives the optimum solution 

• Maximum improvement in yield 

 

• Too computationally expensive for large problems 
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Heuristic algorithm 

• Small number of bindings are evaluated 

• |A|*(|R|-1) 

• Exponential complexity is reduced to polynomial 

 

• The bindings are generated by two phase procedure 

 

1) Initial resource allocation 

• An initial binding is derived 

 

2) Allocation optimization 

• Actors are moved from a resource to another to improve the yield 
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Initial resource allocation 

• Actors with high computational demands are considered first 

• Load balancing on the resources 

• When allocating an actor 

• Select a resource with the lowest load 

• Not allocated resources? 

• Select the fastest resource 

 

 

 

 

• Potentially results in high yield 

• Doesn’t necessarily give optimum 

• The allocation can be improved 

 

ActorsComputational 

demand
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Allocation optimization 

• Allocation of actors is reconsidered 

• To find a binding with higher yield for all chips or throughput per 

chip 

• Strategies 

• Pair-wise swapping of actors (all combinations) 

• Moving each actor from a resource to another (all combinations) 

• Gives better results 

• Still may not give the optimum as not all bindings are 

evaluated 
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Experimental setup 

• Applications 

• H.263 Encoder, H.263 Decoder, MP3 Decoder, Modem, Satellite 

Receiver, MP3 Playback and a Sample Rate Converter 

• Resources 

• 2-5 resources with 380, 380, 380, 440, 500 MHz nominal FMAX 

• Impact of process variation          [M. Miranda et al., ISQED, 2009] 

• 3%, 6% and 15% FMAX mean degradations (intra-die)  

• 3.3% standard deviation (3𝜎=10%) for all resources (inter-die) 

• 5 discrete operating points for each resource 

 

• SDF3 for throughput analysis 

[S. Stuijk et al., ACSD, 2006.] 
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Exhaustive algorithm 

• Comparison to variation-unaware nominal frequency-based 

mapping approach 

• Medium sized applications: 6 actors the largest 

• Average improvements in yield  

• VA-SBE: 11%  

• VA-MBE: 21% 

• Better than VA-SBE 

 

 

 

• Run time: ~1hour  

• On P4 2.8 GHz machine 
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Heuristic algorithm 

• 4% average reduction in yield as compared to optimum 

• Applied to large applications (22 actors the largest) 

• Higher yield improvements: up to 50% 

• Run time: ~15 min. (for large applications) 

• Exhaustive approach is infeasible (for large applications) 

• Not more than 10 bindings are stored for VA-MBH 
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Conclusions 

• Single-binding and multiple-bindings approaches for mapping 

cyclic task graphs to MPSoC for improved timing yield under 

process variation 

 

• Exhaustive and Heuristic algorithms that implement the 

optimization approaches 

 

• Variation awareness is important in resource allocation 

• Up to 50% yield improvements (31% average) 

 

• Heuristic algorithm scales well to large problems while giving 

slight reduction in yield (4% average) 

 

• Only a few bindings are stored for the run-time configuration 
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Questions? 


