

Background

Real-time streaming applications implemented on an MPSoC

An application: a (cyclic) task graph

Hardware platform with voltage-frequency islands (VFI)

- Mapping and scheduling to satisfy real-time requirements
- Examples
 - Software defined radio, video decoding (encoding)

Variation in Manufacturing Process

- Variation in transistor parameters
 - Die-to-die and Within-die [1]
- Variation in the maximum supported frequency of cores in an MPSoC

Figure 2. Full-wafer ELM CD measurements.

Conventional Worst-Case Design

- Design margins or guard-bands (GB)
 - To guarantee the target frequency (f_{tq}) of cores in manufactured chips

- Deterministic core frequencies
 - Application mapping, such that a given timing requirement (e.g. throughput, latency) is satisfied

Better than Worst-Case Design

- Reduced design margins
 - Smaller circuit area and thus more gross dies on a wafer
 - Target frequency of cores is not guaranteed any more

- We aim at maximizing the number of good dies
 - Dies that satisfy the throughput requirement of an application
- Accomplished by exploiting frequency variation in cores in application mapping [2] and VFI partitioning steps.

Contributions (Work Overview)

- Framework to compute the probability distribution of application throughput in a system with VFIs under variation
- Heuristic VFI partitioning algorithm for maximized timing yield
 - Percentage of chips satisfying the throughput requirement
- Good dies = timing yield x gross dies

Outline

Modeling
VFI partitioning
Experimental results

Hardware Platform

- Heterogeneous multi-processor platform
 - Multiple processing elements (PE) connected to each other by a network on chip
- Globally asynchronous and locally synchronous architecture
 - With voltage-frequency islands
- A clock-generation unit (CGU) is assigned to each VFI
 - Each CGU provides discrete frequency levels

Variation in PE Frequency

- Frequency of a PE is described by normal distributions
- Two variation types
 - Die-to-die (global)
 - Within-die (local)
- Clock-frequency levels for VFIs are selected based on combined distributions

Clock-Frequency Characterization

- A set of clock-frequency levels for each VFI
- All combinations of clock-frequency levels for the chip
- Characterizing a combination with a probability
 - Probability that VFIs are operated at specified clock-frequency levels

Unbound graph

- Application modelled as a synchronous dataflow graph (SDFG)
 - Binding unaware
 - Execution times of actors are given in clock cycles of PEs
- This graph is decoupled from hardware variation

Bound graph

- SDFG model of an application mapped to PEs
 - For a given binding
 - Resource sharing: Static Order Schedules on PEs
 - Execution time of application actors (in seconds)
- Not decoupled from hardware variation

Throughput & Timing Yield

Characterizing each combination with a throughput value

Modeling **VFI partitioning**Experimental results

Area Cost & Timing Yield Trade-Offs

- Reducing the number of VFI partitions
 - Less clock-generation units and thus smaller circuit area
 - More dies on a wafer
 - May reduce the timing yield

- Finding a beneficial trade-off between timing yield and the number of VFI partitions, such that more good dies are obtained
- Partition PEs into VFIs, such that the highest timing yield is obtained

Island criticality-based partitioning

- Island criticality metric guides the partitioning process
 - Quantifies the sensitivity of application's throughput to the frequency of a VFI
- Merge a pair of VFIs with low criticality values in iterations
 - Islands may have equal (close) criticality values

Modeling VFI partitioning **Experimental results**

Experimental setup

- MPSoC platform with 8 homogeneous PEs
- For all PEs $f_n = 500 \text{ MHz}$
- Variation in each PE
 - Die-to-die: $3\sigma/f_n = 12\%$
 - Within-die: $3\sigma/f_n = 10\%$
 - Measurements at 45 nm technology [3]
- 8 clock-frequency levels for each VFI
- A synthetic SDFG consisting of 15 actors
 - Enough parallelism for 8 PEs

Timing Yield vs. VFI Granularity

- Not all reductions in Nr. VFIs reduce the timing yield
 - VFI-5 results in a negligible reduction in timing yield
- VFI-2
 - 7% reduction
- FS:
 - 27% reduction
- VFI-5
 - More good dies?

Work Overview (recap)

Variation and area characterization for each GB reduction

Number of Good Dies

- 10 mm² chip, 7 mm² logic, 3 mm² SRAM, 0.03 mm² per CGU
- Design with (FB) and without fixed blocks (WFB)
- VFI-8, VFI-5 architectures
- 30% GB reduction (VFI-5)
 - 3.7% more good dies (FB)
- 40% GB reduction (VFI-5)
 - 7.7% more good dies (WFB)
- 4K wafers = 30M good dies
- 3.7% increase
 - 142 less wafers
- Wafer cost: \$ 3K
 - Cost saving = \$ 426K

Conclusions

- Framework to compute the probability distribution of application throughput in a system with VFIs under variation
- Heuristic VFI partitioning algorithm for maximized timing yield
- The framework is used to estimate the number of good dies
 - Dies that satisfy the throughput requirement
- It is possible to increase the number of good dies by using the proposed framework

Thank you for your attention d.mirzoyan@tudelft.nl

