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Introduction

MPSoC design is getting increasingly complex
– Large number of IP components

• Accelerators and processing elements (with caches)

• Some have hard real-time requirements on bandwidth and latency

– Applications get more dynamic
• Increased input dependence

• Memory traffic is not fully known at design time

Communication through shared memory
– Large storage and bandwidth requirements

– Sharing cause interference between components (requestors)
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Sharing SDRAM / Problem Statement

External SDRAM memories
– are large and cost-effective.

– are performance bottle-necks: must be efficiently utilized.

Access times depend on previous requests, causing
– additional interference between requestors.

– variable bandwidth.

Problem to analytically verify that hard real-

time requirements on bandwidth and latency 

are satisfied at design time!
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SDRAM Architecture

SDRAMs are organized in banks, rows and columns.

A row buffer stores the currently active row.

Example memory:

16-bit DDR2-400B 64 MB:

4 banks

8K rows / bank

1024 columns / row

16 bits / column

800 MB/s peak 

(gross) bandwidth
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Basic SDRAM Operation

Memory map decodes logical address to 

physical address (bank, row, column).

Requested row is activated and copied 

into the row buffer of the bank.

Read and/or write bursts are issued to 

the active row.
– Programmed burst size of 4 or 8 words

Row is precharged and stored back into 

the memory array.

Memory

map

Logical addr. Physical addr.

0x10FF00 (2, 510, 128)
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Memory Efficiency

Memory efficiency
– The number of clock cycles when requested data is transferred divided by 

the total amount of clock cycles.

– Defines the exchange rate between gross and net bandwidth.

Four categories of memory efficiency for SDRAM:
– Refresh efficiency

– Read/write efficiency

– Bank efficiency

– Data efficiency
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Refresh Efficiency

SDRAM need to be refreshed to retain data.
– DRAM cell contains leaking capacitor.

– Refresh command must be issued every 7.8 μs for DDR2/DDR3 SDRAM.

– Data cannot be transfered during refresh.

Refresh efficiency is independent of traffic.
– Depends on storage capacity of the memory device (generally 95 – 99%).
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Read / Write Efficiency

Cycles are lost when switching direction of the data bus.

Read/write efficiency depends on traffic.
– Determined by frequency of read/write switches
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Bank Efficiency

Bank conflict occurs when a read or write targets an inactive row.
– Requires precharge followed by activate

Bank efficiency depends on traffic.
– Determined by address of request and memory map



TU/e13

Data Efficiency

A memory burst can access segments of the programmed burst size.
– Minimum access granularity

If data is poorly aligned an extra segment have to be transferred.
– Cycles are lost when transferring unrequested data. 

Data efficiency depends on traffic.
– Smaller requests and bigger burst size reduce data efficiency.

– Can be determined at design time if traffic is characterized.
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Conclusions on Memory Efficiency

Memory efficiency is difficult to determine at design time.
– Highly dependent on traffic

Require worst-case efficiency to satisfy hard real-time requirements.
– Every burst targets different rows in the same bank

– Read/write switch after every burst

Results in
– Less than 40% efficiency for all 

DDR2 memories

– Efficiency drops as memories 

become faster (DDR3)
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Statically Scheduled Controllers

Some memory controllers are statically scheduled.
– Execute static sequence of SDRAM commands

– Static mapping from read and write bursts to requestors (TDMA)

Statically scheduled controllers are 
– predictable

• Latency of requests and available net bandwidth can be computed

• Analytical verification at design time

– inefficient
• Cannot adapt to variations in traffic

– not scalable
• Combinatorial explosion in number of schedules to create, store and verify
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Dynamically Scheduled Controllers

Other controllers are dynamically scheduled 
– Dynamic memory access scheduler.
– SDRAM commands generated dynamically in run-time.

Dynamically scheduled controllers are 
– flexible

• Adapt to variations in traffic.

– efficient
• Can reorder requests to fit with memory state.
• Schedule refresh when it does not interfere.

– unpredictable
• Difficult to provide analytical bounds on net bandwidth and latency.
• Typically verified by simulation.
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Overview of Approach

We use a two-step hybrid approach.
– Combines properties of statically and dynamically scheduled controllers.

1. Memory access groups
– Precomputed sequences of SDRAM commands

– Read, write, and refresh groups

– Predictability of statically scheduled controllers

2. Predictable run-time arbitration
– Read and write groups are dynamically scheduled

– Scalability and flexibility of dynamically scheduled controllers
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Memory Access Groups

Read/write groups composed of one burst per bank.
– Maximum pipelining

– Reduces bank conflicts

Minimum access granularity of 64 B (burst length 8).
– Suitable for L2 caches and many accelerators.

– Smaller accesses supported by masking

Read

group

Read

Bank 0

Read

Bank 1

Read

Bank 2

Read

Bank 3

Write

group

Refresh

group
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Analysis of Memory Efficiency (BL 8)

Category Efficiency Comment

Refresh eff. 98.1% Issued every 7.8 μs. Group is 31 cycles.

Read/write eff. 84.2% Assume read/write switch after every group.

Bank eff. 100.0% No bank conflicts for DDR2-400 due to 

access pattern.

Data eff. 100.0% Assuming 100%.

Determined when application is characterized.

Worst-case efficiency = 98.1% x 84.2% x 100% x 100% = 82.6%
– Corresponds to 660.9 MB/s of net bandwidth

Worst-case analysis for 16-bit DDR2-400B 64 MB with burst length 8:
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Predictable Arbitration

We require a predictable arbiter
– Provides an upper bound on latency of a request

– Example: Weighted Round-Robin, Fair Queuing

Arbiter unaware of memory controller design
– Latency computed in number of groups

– Time bound is derived
• Group compositions are known

• Possible group combinations are known

Provides latency bound on net bandwidth!
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Architecture

Memory controller integrated with Æthereal network-on-chip.

Four functional units
1. Controller Engine

2. Arbiter

3. Memory Mapping

4. Command Generator
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Synthesis Results

Controller synthesized in 0.13μm CMOS technology.
– Six ports and speed target of 200 MHz requires 0.042 mm2

– Scales linearly with number of ports

Controller is small for two reasons:
1. Queues in the network interface are reused.

2. Command generator does not require registers to track memory state.
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Experimental Setup

Simulated controller in SystemC model
– Four requestors asking for 165 MB/s each

– Total load =  99.9% of net bandwidth

– Requests are 64 B

Simulation uses Credit-Controlled Static-Priority (CCSP) arbiter.
– Consists of rate regulator and static-priority scheduler

– Isolates requestors

– Negligible over-allocation

– Efficient hardware implementation
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Experimental Results

Results after 108 ns
– All requestors receive their allocated bandwidth

– No latency bound is exceeded

– Bound less tight for low priority requestors
• Worst-case is very unlikely with static-priority scheduler.

Requestor Bandwidth [B] Max [ns] Bound [ns]

r0 16499968 204 340

r1 16500032 304 615

r3 16499968 463 1185

r4 16499968 732 2810
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Conclusions

Predator is a predictable SDRAM memory controller using
– memory access groups (read, write and refresh groups).
– predictable arbitration.

Our solution provides
– lower bound on memory efficiency.
– upper bound on latency.

Implementation
– is light weight.
– scales linearly with the number of ports.

Predator allows us to verify hard real-time requirements 

on net bandwidth and latency at design time.
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Questions?

k.b.akesson@tue.nl


