
technische universiteit eindhoven
TU/e

Predator: A Predictable SDRAM Controller

Benny Åkesson

Technische Universiteit Eindhoven

The Netherlands

Kees Goossens

NXP Semiconductors Research &

Delft University of Technology

The Netherlands

Markus Ringhofer

Graz University of Technology

Austria

TU/e2

Presentation Outline

Introduction

Memory Efficiency

Predator

Conclusions

SDRAM Basics

Related Work

TU/e3

Introduction

MPSoC design is getting increasingly complex
– Large number of IP components

• Accelerators and processing elements (with caches)

• Some have hard real-time requirements on bandwidth and latency

– Applications get more dynamic
• Increased input dependence

• Memory traffic is not fully known at design time

Communication through shared memory
– Large storage and bandwidth requirements

– Sharing cause interference between components (requestors)

TU/e4

Sharing SDRAM / Problem Statement

External SDRAM memories
– are large and cost-effective.

– are performance bottle-necks: must be efficiently utilized.

Access times depend on previous requests, causing
– additional interference between requestors.

– variable bandwidth.

Problem to analytically verify that hard real-

time requirements on bandwidth and latency

are satisfied at design time!

TU/e5

Presentation Outline

Introduction

Memory Efficiency

Predator

Conclusions

SDRAM Basics

Related Work

TU/e6

SDRAM Architecture

SDRAMs are organized in banks, rows and columns.

A row buffer stores the currently active row.

Example memory:

16-bit DDR2-400B 64 MB:

4 banks

8K rows / bank

1024 columns / row

16 bits / column

800 MB/s peak

(gross) bandwidth

TU/e7

Basic SDRAM Operation

Memory map decodes logical address to

physical address (bank, row, column).

Requested row is activated and copied

into the row buffer of the bank.

Read and/or write bursts are issued to

the active row.
– Programmed burst size of 4 or 8 words

Row is precharged and stored back into

the memory array.

Memory

map

Logical addr. Physical addr.

0x10FF00 (2, 510, 128)

TU/e8

Presentation Outline

Introduction

Memory Efficiency

Predator

Conclusions

SDRAM Basics

Related Work

TU/e9

Memory Efficiency

Memory efficiency
– The number of clock cycles when requested data is transferred divided by

the total amount of clock cycles.

– Defines the exchange rate between gross and net bandwidth.

Four categories of memory efficiency for SDRAM:
– Refresh efficiency

– Read/write efficiency

– Bank efficiency

– Data efficiency

TU/e10

Refresh Efficiency

SDRAM need to be refreshed to retain data.
– DRAM cell contains leaking capacitor.

– Refresh command must be issued every 7.8 μs for DDR2/DDR3 SDRAM.

– Data cannot be transfered during refresh.

Refresh efficiency is independent of traffic.
– Depends on storage capacity of the memory device (generally 95 – 99%).

TU/e11

Read / Write Efficiency

Cycles are lost when switching direction of the data bus.

Read/write efficiency depends on traffic.
– Determined by frequency of read/write switches

TU/e12

Bank Efficiency

Bank conflict occurs when a read or write targets an inactive row.
– Requires precharge followed by activate

Bank efficiency depends on traffic.
– Determined by address of request and memory map

TU/e13

Data Efficiency

A memory burst can access segments of the programmed burst size.
– Minimum access granularity

If data is poorly aligned an extra segment have to be transferred.
– Cycles are lost when transferring unrequested data.

Data efficiency depends on traffic.
– Smaller requests and bigger burst size reduce data efficiency.

– Can be determined at design time if traffic is characterized.

TU/e14

Conclusions on Memory Efficiency

Memory efficiency is difficult to determine at design time.
– Highly dependent on traffic

Require worst-case efficiency to satisfy hard real-time requirements.
– Every burst targets different rows in the same bank

– Read/write switch after every burst

Results in
– Less than 40% efficiency for all

DDR2 memories

– Efficiency drops as memories

become faster (DDR3)

TU/e15

Presentation Outline

Introduction

Memory Efficiency

Predator

Conclusions

SDRAM Basics

Related Work

TU/e16

Statically Scheduled Controllers

Some memory controllers are statically scheduled.
– Execute static sequence of SDRAM commands

– Static mapping from read and write bursts to requestors (TDMA)

Statically scheduled controllers are
– predictable

• Latency of requests and available net bandwidth can be computed

• Analytical verification at design time

– inefficient
• Cannot adapt to variations in traffic

– not scalable
• Combinatorial explosion in number of schedules to create, store and verify

TU/e17

Dynamically Scheduled Controllers

Other controllers are dynamically scheduled
– Dynamic memory access scheduler.
– SDRAM commands generated dynamically in run-time.

Dynamically scheduled controllers are
– flexible

• Adapt to variations in traffic.

– efficient
• Can reorder requests to fit with memory state.
• Schedule refresh when it does not interfere.

– unpredictable
• Difficult to provide analytical bounds on net bandwidth and latency.
• Typically verified by simulation.

TU/e18

Presentation Outline

Introduction

Memory Efficiency

Predator

Conclusions

SDRAM Basics

Related Work

TU/e19

Overview of Approach

We use a two-step hybrid approach.
– Combines properties of statically and dynamically scheduled controllers.

1. Memory access groups
– Precomputed sequences of SDRAM commands

– Read, write, and refresh groups

– Predictability of statically scheduled controllers

2. Predictable run-time arbitration
– Read and write groups are dynamically scheduled

– Scalability and flexibility of dynamically scheduled controllers

TU/e20

Memory Access Groups

Read/write groups composed of one burst per bank.
– Maximum pipelining

– Reduces bank conflicts

Minimum access granularity of 64 B (burst length 8).
– Suitable for L2 caches and many accelerators.

– Smaller accesses supported by masking

Read

group

Read

Bank 0

Read

Bank 1

Read

Bank 2

Read

Bank 3

Write

group

Refresh

group

TU/e21

Analysis of Memory Efficiency (BL 8)

Category Efficiency Comment

Refresh eff. 98.1% Issued every 7.8 μs. Group is 31 cycles.

Read/write eff. 84.2% Assume read/write switch after every group.

Bank eff. 100.0% No bank conflicts for DDR2-400 due to

access pattern.

Data eff. 100.0% Assuming 100%.

Determined when application is characterized.

Worst-case efficiency = 98.1% x 84.2% x 100% x 100% = 82.6%
– Corresponds to 660.9 MB/s of net bandwidth

Worst-case analysis for 16-bit DDR2-400B 64 MB with burst length 8:

TU/e22

Predictable Arbitration

We require a predictable arbiter
– Provides an upper bound on latency of a request

– Example: Weighted Round-Robin, Fair Queuing

Arbiter unaware of memory controller design
– Latency computed in number of groups

– Time bound is derived
• Group compositions are known

• Possible group combinations are known

Provides latency bound on net bandwidth!

TU/e23

Architecture

Memory controller integrated with Æthereal network-on-chip.

Four functional units
1. Controller Engine

2. Arbiter

3. Memory Mapping

4. Command Generator

TU/e24

Synthesis Results

Controller synthesized in 0.13μm CMOS technology.
– Six ports and speed target of 200 MHz requires 0.042 mm2

– Scales linearly with number of ports

Controller is small for two reasons:
1. Queues in the network interface are reused.

2. Command generator does not require registers to track memory state.

TU/e25

Experimental Setup

Simulated controller in SystemC model
– Four requestors asking for 165 MB/s each

– Total load = 99.9% of net bandwidth

– Requests are 64 B

Simulation uses Credit-Controlled Static-Priority (CCSP) arbiter.
– Consists of rate regulator and static-priority scheduler

– Isolates requestors

– Negligible over-allocation

– Efficient hardware implementation

TU/e26

Experimental Results

Results after 108 ns
– All requestors receive their allocated bandwidth

– No latency bound is exceeded

– Bound less tight for low priority requestors
• Worst-case is very unlikely with static-priority scheduler.

Requestor Bandwidth [B] Max [ns] Bound [ns]

r0 16499968 204 340

r1 16500032 304 615

r3 16499968 463 1185

r4 16499968 732 2810

TU/e27

Presentation Outline

Introduction

Memory Efficiency

Predator

Conclusions

SDRAM Basics

Related Work

TU/e28

Conclusions

Predator is a predictable SDRAM memory controller using
– memory access groups (read, write and refresh groups).
– predictable arbitration.

Our solution provides
– lower bound on memory efficiency.
– upper bound on latency.

Implementation
– is light weight.
– scales linearly with the number of ports.

Predator allows us to verify hard real-time requirements

on net bandwidth and latency at design time.

TU/e29

Questions?

k.b.akesson@tue.nl

