
Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

A Declarative Compositional Timing
Analysis for Multicores Using the

Latency-Rate Abstraction

Vítor Rodrigues
Benny Akesson

Simão Melo de Sousa
Mário Florido

PADL’13
21st of January

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Outline

Introduction

Latency-Rate Servers

Meta-Semantic Formalism

Pipeline Analysis
Haskell definitions for resource sharing
Experimental Results

Final Remarks

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Introduction
I The main timeliness criteria in embedded real-time systems is

the worst-case execution time (WCET). Depends both on:
1. Structure of the source code: loop iterations.

2. Timing-influencing hardware components: caches and pipelines.

I The state space of both input data and hardware states is too
large to be exhaustively explored =⇒ Abstract Interpretation?

I In general, the complexity of multicore timing analysis is also
affected by the predictability of access times to shared resources

I Unless resources are composable, scheduling arbitration produce
different intermediate hardware states =⇒ “architectural flows”.

I In multicore architectures, the number of “architectural flows”
(a.k.a. interleavings) is not feasible to compute!

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Overview of Approach
I Architectures with several ARM9 cores with shared resources.

I Each core has cache memories and 5-stages, in-order pipelines.

I The functions f1, f2, . . . , fk , . . . , specify the effect of pipeline state
transformations across a variable number of pipeline steps.

I “Hybrid” pipeline states include instruction vectors of size N,
adjoined with timing properties (CPI), e.g. 1,2, . . . , s, s + 1.

(a) Generic multicore architecture (b) Functional overview of pipeline steps
Figure 1: Functional model of a pipeline in a multicore architecture

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

I Let P1 and P2 be two processes running two processor tiles.

I Composability in the value domain =⇒ interleavings depend on
the scheduling made by the arbiter of the shared resource.

I For non-composable arbiters, interleavings are required.
However, if access times can be predictable =⇒ compositional
timing analysis.

(a) Non-compositional timing analysis with
architectural flows between P1 and P2

(b) Compositional timing analysis
considering only control flows

Figure 2: A and B belong to P1 and X and Y belong to P2
Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Latency-Rate Servers
I Calculate upper bounds on the access times to shared resources

to remove the variation in interference between cores.
I The formal of LR-server model provides a timing abstraction

applicable to most resource arbiters, e.g. TDM and RR . . .
I Model parameters: guarantees a minimum allocated bandwidth,
ρ, after a maximum service latency (interference), Θ.

A
c
c
u

m
u

la
te

d

re
q

u
e

s
ts

Clock cycles

service bound

provided service

busy line

requested service

busy period

ta(ωk) t̂s(ωk) t̂f(ωk) = t̂s(ωk+1)

s(ωk)

Θ

ρ

l(ωk)

t̂s(ωk) = max(ta(ωk) + Θ, t̂f(ω
k−1))

t̂f(ω
k) = t̂s(ωk) + s(ωk)/ρ

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Meta-Semantic Formalism
I Constructive fixpoint semantics based on expressions of a

two-level denotational meta-language aiming at compositionality.

I Automatically generate type-safe abstract interpreters for free for
a variety of control-flow patterns, including architectural flows.

I Domain definitions are factored into a core semantics at
compile-time (ct) and abstract interpretation at run-time (rt).

ct , ct1 ∗ ct2 | ct1 || ct2 | ct1 ⊕ ct2 | ct1 � ct2 | split rt | merge rt | rt

rt , Σ | (Σ× Σ) | rt1→ rt2

I Using refunctionalization and chaotic iteration strategies,
interpretations of the higher-order (point-free) combinators
generate the “code” of a meta-program. Let T be a relation:

T ? ,
G
n>0

T n =
G
n>0

0@G
i6n

T i

1A =
G
n>0

(λR • ((u T) b (u R)))i (⊥Σ)

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Automatic Generation of Fixpoint Interpreters

I The relational semantics of a program P is the set of input-output
relations τ ⊆ (ΣP × Instrs × ΣP).

I The abstract syntax of program paths is a dependency graph,
defined by (G a), that represents a mimic of the execution order.

data Rel a = (a, Instr , a)

data G a = Empty | Leaf (Rel a) | Seq (G a) (G a) | Unroll (G a) (G a)
| Unfold (G a) (G a) | Choice (Rel a) (G a) (G a) | Conc (G a) (G a)

I Derivation of meta-programs: syntactic phrases are dependency
graphs and denotations are the core semantics.

I Combinators are compiled into typed-λ-calculus. For example:

(∗) :: (a→ b)→ (b → c)→ (a→ c)
(f ∗ g) = λs → (g ◦ f) s

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

I Algebra of higher-order relational combinators.

I The function derive generates meta-programs with unified type.

I The function refunct performs the refunctionalization of the
datatype (Rel a).

derive :: (a→ a)→ G a→ (a→ a)
derive p (Leaf r) = p ∗ refunct r
derive p (Seq a b) = derive (derive p a) b
derive p (Conc a b) = let is = interleavings a b

ms = map (derive (create b)) is
in p ∗ scatter (length ms) ∗ (distribute ms) ∗ reduce

I The function interleavings obtains the set of architectural flows.
I The function create initializes the hardware state of the 2nd core.

scatter :: Int → a→ [a]
scatter = replicate

distribute :: [a→ a]→ [a]→ [a]
distribute = zipWith (λf a→ f a)

reduce :: (Lattice a)⇒ [a]→ a
reduce = foldl join bottom

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Pipeline Analysis
I Pipeline analysis by abstract interpretation introduces the notion

of resource association. An “hybrid” pipeline state P is:

P , (Time × Pc × Demand × R′] × D′] ×M′] × Coord)

Coord , [TimedTask]N

TimedTask , (Cycles × Stage × Task)

Task , (Instr × Pc × Demand × R′] × D′] ×M′])

I Our functional approach to pipeline analysis is done at 3 levels:
1. The transformer FT as a morphism on the domain TimedTask ;

2. The transformer FP as a morphism on the domain P, which uses
FT to compute the new elements inside the N-sized vector Coord ;

3. The transformer F]
P as a morphism on sets of hybrid states

P] , 2P , using FP to transform the hybrid states in the input set.

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

FP(i)(p) , toContext(i) ◦ [FT ◦ fromContext(p)]N

F
si

k+1
P (i)(p) , FP(i)(F

si
k

P (i)(p))

F 5+
P , F

si
WB

P

F]
P(i)(p]) , {F 5+

P (i)(p) | p ∈ p]}

I Consider FT when the current Stage is FI (“Fetch”):

fetchInstr :: (Cycles a)⇒ a→ Task→ TimedTask a
fetchInstr cycles t@Task { taskNextPc = pc, taskImem = m}

= let (classification, opcode,m′) = getMem] m pc
i = decode opcode
buffer ′ = setReg] bottom R15 (pc + 4)

in if classification ≡ Hit
then let t′ = t { taskInstr = i, taskNextPc = pc′, taskImem = m′}

in TimedTask {property = fetched cycles, stage = DI,
task = Fetched t′ buffer ′}

else let t′ = t { taskInstr = i, taskNextPc = pc′, taskImem = m′}
in TimedTask {property = missed p, stage = FI,

task = Stalled Structural t′ buffer ′}

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Haskell definitions for resource sharing

Haskell definitions for resource sharing
I Let WCET be an instantiation of the type class (Cycles a).

data WCET = WCET {cycles :: Int, ta :: Int, core :: Int, tf :: Int, delay :: Int }

I According to the LR-model, the function missed defines a cache
miss in terms of an arrival time (ta) and a previous finish time (tf):

missed w@WCET {cycles = c, ta, tf }
= let busy = ta + theta < tf

d = if busy then 1/rho else theta + (1/rho)

tf ′ = if busy then tf else ta
in w {cycles = c + round d, tf = tf ′ + d, delay = d }

I Example:

(a) Example of a multi-process program (b) Simplified multicore architecture
Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Experimental Results

Experimental Results
I Assume large private data cache memories (D-$).
I TDM arbitration with frame size of 2.

Table 1: Comparison results for architectural flows, composable TDM
No. instructions No. instructions No. of Results Architectural Composable
“application A” “application X” interleavings (CPU cycles/sec.) Flows (TDM) TDM

4 5 126
WCET 179 185

Analysis Time 57.0 0.17

5 5 252
WCET 188 188

Analysis Time 140.3 0.18

6 5 462
WCET 195 195

Analysis Time 588.7 0.43

I LR abstraction with Θ = 1 and ρ = 0.5.
I Every request requires Θ + 1/ρ cycles to complete.

Table 2: WCET results for some of the Mälardalen benchmarks
Benchmark

No. Source LR-server No. Cache TDM Overhead Analysis Time
Loop Iterations (WCET) Misses (WCET) (%) in sec. (≈)

bsort 156 1459 152 1311 10.1 0.9
crc 459 3160 304 2826 10.6 15.0

fibcall 111 994 59 885 11.0 2.3
matmult 287 2580 188 2343 9.2 5.2

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

Outline Introduction Latency-Rate Servers Meta-Semantic Formalism Pipeline Analysis Final Remarks

Summary
I The type system of Haskell is used to define a type safe and

parameterizable denotational fixpoint semantics.

I Fixpoint compositional algorithms are automatically generated,
unifying first-order data flow with higher-order control flow.

I The complexity of the multicore analysis is reduced by using a
provably sound LR abstraction on resource scheduling.

I For a simplified architecture, the compositional timing analysis in
multicore environments yields:

I loss of precision in order of 10% on average;

I factor 100 reduction in terms of analysis time.

I The precision of the WCET is very sensitive to the architecture
considered.

Vítor Rodrigues Benny Akesson Simão Melo de Sousa Mário Florido

A Declarative Compositional Timing Analysis for Multicores Using the Latency-Rate Abstraction

	Outline
	Introduction
	Latency-Rate Servers
	Meta-Semantic Formalism
	Pipeline Analysis
	Haskell definitions for resource sharing
	Experimental Results

	Final Remarks

