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Introduction
I The main timeliness criteria in embedded real-time systems is

the worst-case execution time (WCET). Depends both on:
1. Structure of the source code: loop iterations.

2. Timing-influencing hardware components: caches and pipelines.

I The state space of both input data and hardware states is too
large to be exhaustively explored =⇒ Abstract Interpretation?

I In general, the complexity of multicore timing analysis is also
affected by the predictability of access times to shared resources

I Unless resources are composable, scheduling arbitration produce
different intermediate hardware states =⇒ “architectural flows”.

I In multicore architectures, the number of “architectural flows”
(a.k.a. interleavings) is not feasible to compute!
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Overview of Approach
I Architectures with several ARM9 cores with shared resources.

I Each core has cache memories and 5-stages, in-order pipelines.

I The functions f1, f2, . . . , fk , . . . , specify the effect of pipeline state
transformations across a variable number of pipeline steps.

I “Hybrid” pipeline states include instruction vectors of size N,
adjoined with timing properties (CPI), e.g. 1,2, . . . , s, s + 1.

(a) Generic multicore architecture (b) Functional overview of pipeline steps
Figure 1: Functional model of a pipeline in a multicore architecture
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I Let P1 and P2 be two processes running two processor tiles.

I Composability in the value domain =⇒ interleavings depend on
the scheduling made by the arbiter of the shared resource.

I For non-composable arbiters, interleavings are required.
However, if access times can be predictable =⇒ compositional
timing analysis.

(a) Non-compositional timing analysis with
architectural flows between P1 and P2

(b) Compositional timing analysis
considering only control flows

Figure 2: A and B belong to P1 and X and Y belong to P2
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Latency-Rate Servers
I Calculate upper bounds on the access times to shared resources

to remove the variation in interference between cores.
I The formal of LR-server model provides a timing abstraction

applicable to most resource arbiters, e.g. TDM and RR . . .
I Model parameters: guarantees a minimum allocated bandwidth,
ρ, after a maximum service latency (interference), Θ.
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Meta-Semantic Formalism
I Constructive fixpoint semantics based on expressions of a

two-level denotational meta-language aiming at compositionality.

I Automatically generate type-safe abstract interpreters for free for
a variety of control-flow patterns, including architectural flows.

I Domain definitions are factored into a core semantics at
compile-time (ct) and abstract interpretation at run-time (rt).

ct , ct1 ∗ ct2 | ct1 || ct2 | ct1 ⊕ ct2 | ct1 � ct2 | split rt | merge rt | rt

rt , Σ | (Σ× Σ) | rt1→ rt2

I Using refunctionalization and chaotic iteration strategies,
interpretations of the higher-order (point-free) combinators
generate the “code” of a meta-program. Let T be a relation:

T ? ,
G
n>0

T n =
G
n>0

0@G
i6n

T i

1A =
G
n>0

(λR • ((u T ) b (u R)))i (⊥Σ)
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Automatic Generation of Fixpoint Interpreters

I The relational semantics of a program P is the set of input-output
relations τ ⊆ (ΣP × Instrs × ΣP).

I The abstract syntax of program paths is a dependency graph,
defined by (G a), that represents a mimic of the execution order.

data Rel a = (a, Instr , a)

data G a = Empty | Leaf (Rel a) | Seq (G a) (G a) | Unroll (G a) (G a)
| Unfold (G a) (G a) | Choice (Rel a) (G a) (G a) | Conc (G a) (G a)

I Derivation of meta-programs: syntactic phrases are dependency
graphs and denotations are the core semantics.

I Combinators are compiled into typed-λ-calculus. For example:

( ∗ ) :: (a→ b)→ (b → c)→ (a→ c)
(f ∗ g) = λs → (g ◦ f ) s
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I Algebra of higher-order relational combinators.

I The function derive generates meta-programs with unified type.

I The function refunct performs the refunctionalization of the
datatype (Rel a).

derive :: (a→ a)→ G a→ (a→ a)
derive p (Leaf r) = p ∗ refunct r
derive p (Seq a b) = derive (derive p a) b
derive p (Conc a b) = let is = interleavings a b

ms = map (derive (create b)) is
in p ∗ scatter (length ms) ∗ (distribute ms) ∗ reduce

I The function interleavings obtains the set of architectural flows.
I The function create initializes the hardware state of the 2nd core.

scatter :: Int → a→ [a ]
scatter = replicate

distribute :: [a→ a ]→ [a ]→ [a ]
distribute = zipWith (λf a→ f a)

reduce :: (Lattice a)⇒ [a ]→ a
reduce = foldl join bottom
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Pipeline Analysis
I Pipeline analysis by abstract interpretation introduces the notion

of resource association. An “hybrid” pipeline state P is:

P , (Time × Pc × Demand × R′] × D′] ×M′] × Coord)

Coord , [TimedTask ]N

TimedTask , (Cycles × Stage × Task)

Task , (Instr × Pc × Demand × R′] × D′] ×M′])

I Our functional approach to pipeline analysis is done at 3 levels:
1. The transformer FT as a morphism on the domain TimedTask ;

2. The transformer FP as a morphism on the domain P, which uses
FT to compute the new elements inside the N-sized vector Coord ;

3. The transformer F ]
P as a morphism on sets of hybrid states

P] , 2P , using FP to transform the hybrid states in the input set.
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FP(i)(p) , toContext(i) ◦ [FT ◦ fromContext(p)]N
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I Consider FT when the current Stage is FI (“Fetch”):

fetchInstr :: (Cycles a)⇒ a→ Task→ TimedTask a
fetchInstr cycles t@Task { taskNextPc = pc, taskImem = m}

= let (classification, opcode,m′) = getMem] m pc
i = decode opcode
buffer ′ = setReg] bottom R15 (pc + 4)

in if classification ≡ Hit
then let t′ = t { taskInstr = i, taskNextPc = pc′, taskImem = m′}

in TimedTask {property = fetched cycles, stage = DI,
task = Fetched t′ buffer ′}

else let t′ = t { taskInstr = i, taskNextPc = pc′, taskImem = m′}
in TimedTask {property = missed p, stage = FI,

task = Stalled Structural t′ buffer ′}
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Haskell definitions for resource sharing

Haskell definitions for resource sharing
I Let WCET be an instantiation of the type class (Cycles a).

data WCET = WCET {cycles :: Int, ta :: Int, core :: Int, tf :: Int, delay :: Int }

I According to the LR-model, the function missed defines a cache
miss in terms of an arrival time (ta) and a previous finish time (tf ):

missed w@WCET {cycles = c, ta, tf }
= let busy = ta + theta < tf

d = if busy then 1/rho else theta + (1/rho)

tf ′ = if busy then tf else ta
in w {cycles = c + round d, tf = tf ′ + d, delay = d }

I Example:

(a) Example of a multi-process program (b) Simplified multicore architecture
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Experimental Results

Experimental Results
I Assume large private data cache memories (D-$).
I TDM arbitration with frame size of 2.

Table 1: Comparison results for architectural flows, composable TDM
No. instructions No. instructions No. of Results Architectural Composable
“application A” “application X” interleavings (CPU cycles/sec.) Flows (TDM) TDM

4 5 126
WCET 179 185

Analysis Time 57.0 0.17

5 5 252
WCET 188 188

Analysis Time 140.3 0.18

6 5 462
WCET 195 195

Analysis Time 588.7 0.43

I LR abstraction with Θ = 1 and ρ = 0.5.
I Every request requires Θ + 1/ρ cycles to complete.

Table 2: WCET results for some of the Mälardalen benchmarks
Benchmark

No. Source LR-server No. Cache TDM Overhead Analysis Time
Loop Iterations (WCET) Misses (WCET) (%) in sec. (≈)

bsort 156 1459 152 1311 10.1 0.9
crc 459 3160 304 2826 10.6 15.0

fibcall 111 994 59 885 11.0 2.3
matmult 287 2580 188 2343 9.2 5.2
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Summary
I The type system of Haskell is used to define a type safe and

parameterizable denotational fixpoint semantics.

I Fixpoint compositional algorithms are automatically generated,
unifying first-order data flow with higher-order control flow.

I The complexity of the multicore analysis is reduced by using a
provably sound LR abstraction on resource scheduling.

I For a simplified architecture, the compositional timing analysis in
multicore environments yields:

I loss of precision in order of 10% on average;

I factor 100 reduction in terms of analysis time.

I The precision of the WCET is very sensitive to the architecture
considered.
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