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* Multi-cores everywhere:
— Demanding real-time applications
— Only multi-cores will be produced in future !!!

* Interference on shared SDRAM and its effect on the
WCET (Worst Case Execution Time) of the hard real-
time applications

— Shared SDRAM: Cheap — COTS — Complicated

* Interference analysis:
— Detailed analysis
— Latency rate analysis
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Related Work

* Detailed interference analysis employs precise
timing models of shared resource and the arbiter

e Latency rate server abstraction [6] is linear lower
bound on the service provided by the resource
— Shared bus [3], NoC [4] and SRAM/SDRAM [5]
— Advantages:

* Resource independent unified modeling
* Formal performance analysis

 Comparison of the two analyses in terms of
precision is missing
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Contributions

* Detailed interference analysis of shared SDRAM
under the CCSP (Credit Controlled Static Priority)
arbitration

* Two optimizations to the latency rate analysis based
on the detailed analysis

* Empirical comparison of the two approaches in
terms of produced WCET of applications from
CHStone benchmark [8]
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* Background
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System Model

* Multi-core system with shared SDRAM
* Closed page policy [1], [2], [5]
* Interference as alternating accesses [2]

<—Response Time—>»  <«Response Time—>»
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tW = Worst case write issue time
tR; = Worst case read latency
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System Model

* Cache-miss trace from a cycle accurate simulator
[15]

* Without interference
— Interference is added later based on the two analyses
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Latency Rate Analysis

6 =Maximum latency
P = Allocated rate

Break in Request = Break in Service

Accumulated Request
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Latency Rate Analysis

* Finishing Time

E requested service
—
© , _ ,
=R busy period e busy. line |
% & — -7 provided service
g £ = = ~ - service bound
< . -

llC — - - - - -

O ; l(w"”’) . Clock cycles

ta(;)k:) ts(w"“j tf(wk) _ t;(wkdrl)

t(wh) = max(t, (W) + 0, t4(w™ 1)) + s(w*)/p

s(w*) = Size of the k" request

t.(w*) = Arrival time of the k" request

t,(w*) = Worst case scheduling time of the k" request
I(w*) = Completion latency of the k" request
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Credit Controlled Static Priority Arbiter
* CCSP

— Each master is assigned
* Initial credit= 9m
* Allocated rate = Pm
 Static priority

cm(0) =0,

——

Cm(t) + pm — 1 Y(t)=m
cm(t+1) =< cpn(t) + pm Y(t) #m Ab, >0
min(c,, (t) + pm,om) () #FmAb, =0
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CCSP Arbiter

* Due to the static priority, the scheduling latency of
an access depends on the available credits of higher
priority masters and their allocated rate

o 2 N seM Im;

m —
1 — Z“?’mjeﬂ-ﬁi Pm;

M - Set of Higher Priority Masters

— High allocation to the higher priority masters leads to
infinite latency
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* Detailed Analysis of CCSP Arbiter
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Detailed Worst Case Interference Analysis

* Intuitions for worst case interference analysis of
master m

1. Interfering accesses and the access from m form alternating
sequence of accesses towards SDRAM

2. All other masters use their credits only to interfere with m

* When mis not requesting, other masters also do not request
and accumulate as many credits as possible

* All high priority masters request together with m

3. One lower priority master requests an access one clock cycle
before m requests an access

4. One refresh interferes at every tREFI clock cycles
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Detailed Analysis

A .
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High Priority
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LW = Low Priority Write
HR = High Priority Read
HW = High Priority Write
g =2
Ref = Refresh (downtime @ tREFI)

Downtime

___— Saturate (PendingRequest = 0)

Master under investigation 11

Algorithm in the paper
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Detailed Analysis

e For next access of m the worst case
latency is lower, provided that m
requests accesses fast enough to
refrain high priority masters

= accumulate high credits
-
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E Break in request = Break in service
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e Optimization of Latency Rate Analysis
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Optimized Bound on Latency

Latency rate analysis considers
interference from high priority
masters after summing-up their

\5( | credits ~ 1.4
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Optimized Finishing Time

* Latency rate analysis:

3 requested service
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Optimized Finishing Time

* Latency rate analysis:

8 requested service
—
© , _ ,
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g £ = = ~ - service bound
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Optimized Finishing Time

New LR bound with non-preemptive behavior

_ ~ maximum rate
F‘?”S.ewﬁ“”e —— requested service
finishing times -

_new LR bound
v\ - old LR bound

non—preemptive
behavior

Accumulated
requests

s

© Clock cycles

O =0-(1/p—1)

Improves precision of analysis for all masters
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* Experiments
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* Altera cyclone lll FPGA + Micron 667

DDR2
] m1 - m6
 CHStone benchmark cache-miss traces
— JPEG (least memory intensive) @CCSP T
— Motion compensation(most memory
intensive) Aftera SDRAM HP 2
* Same application — same path on six il el
hardware trace players executing on = 0
the shared DDR2 Chip &

* M6 -> highest priority, M1 -> lowest
priority
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Experiment 1

* Equal allocations F=1/6

A35

B LR W LR bound " LR np M Det m OET B LR W LR bound LR np W Det mOET
30 -

25 -
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15 ~

10 +

100K Clock Cycles

ml m2 m3 m4 m5 m6 ml m2 m3 m4 m5 m6

JPEG Motion Compensation

LR: Default latency rate analysis
LR bound: LR optimization - Bounded latency
LR np: LR optimization - Non-preemptive service + Bound Latency
Det: Detailed analysis

Oet: Observed Execution Time
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Experiment 1

* Equal allocations F=1/6

3.8 Times larger than 1.4 Times larger than
the detailed analysis the detailed analysis

/
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100K Clock Cycles

ml m2 m3 m4 m5

Motion Compensation
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* Reduced allocation

— Reduced allocated rate of
the lowest priority master

ELR ®LRbound LRnp M Det

Converges to Unity
4

— Improved precision
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e Conclusion
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Conclusion

* Detailed worst case interference analysis of SDRAM
shared under the CCSP arbitration

* Two optimization of native latency rate analysis
based on the detailed analysis
— Bounded latency helpful to low priority masters
— Non-preemptive scheduling helpful to all masters
 Comparison of both analyses in terms of WCET
produced by them of real application

— Precision of LR analysis depends on the master’s ability to
keep the server busy
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