Resource-Efficient Real-Time Scheduling Using Credit-Controlled Static-Priority Arbitration

Firew Siyoum, Benny Akesson, Sander Stuijk, Kees Goossens, Henk Corporaal

Eindhoven University of Technology, The Netherlands

RTCSA-2011, Toyama, Japan

August 31, 2011

TU/e Technische Universiteit Eindhoven University of Technology

Where innovation starts

Embedded Systems

 run multiple applications with real-time requirements such as throughput and latency.

Dataflow Modeling

 For design-time analyzability, application models, such as dataflow techniques, are used.

Homogeneous Synchronous Dataflow (HSDF)

Actors connected through channels.

Multiprocessor System-on-Chip (MPSoc)

architecture-aware model captures various system aspects.

Resource sharing

- MPSoC resources are shared to reduce cost.
- Service guarantee is the minimum service an arbiter guarantees each requestor.

Credit-Controlled Static-Priority (CCSP) Arbiter

- consists of a rate regulator and scheduler.
- schedules the highest-priority eligible requestor.
- the rate-regulator guarantees an allocated fraction of the resource.

Credit-Controlled Static-Priority (CCSP) Arbiter

- consists of a rate regulator and scheduler.
- schedules the highest-priority eligible requestor.
- the rate-regulator guarantees an allocated fraction of the resource.

Latency-rate (\mathcal{LR}) Service Guarantee

is a linear model on the provided service.

R,

Contributions

> A piece-wise linear service guarantee and its dataflow model.

Implications

- A given MPSoC resource can support more requestors, or
- Accommodate a given set of requestors with less resource capacity.
- Experimental result: savings from 26%-67% in memory bandwidth.

6/15

Piece-wise Linear Service Guarantee

Dataflow Model

Experimental Results

TU/e Technische Universiteit Eindhoven University of Technology

The Formal Model

Service allocation for $r \in R$

- Abstract resource view: service unit and service cycle
- ▶ allocated service is the pair (burstiness, rate) = $(\sigma'_r, \rho'_r) \in \mathbb{R}^+ \times \mathbb{R}^+$.

•
$$\sum_{\forall r \in R} \rho'_r \leq 1 \text{ and } \sigma'_r \geq 1.$$

Service curves

- w the requested service curve
- w' the provided service curve

• backlog -
$$q(t) = w(t) - w'(t)$$

- live line $ho_r' \cdot (t au_1 + 1)$
- ► a requestor is live if w_r is above the live line.

7/15

Replenishment Policy

Active period

 is the maximum interval of time a requestor is backlogged and/or live.

Potential $(\pi_r(t))$

is the amount of budget a requestor has.

Service guarantee

- How do we compute the minimum guaranteed service for any active period?
 - by considering the active period with the maximum interference

\mathcal{LR} Service Guarantee

- For every active period $[\tau_1, \tau_2]$, it guarantees a minimum service at a rate of ρ' , after a maximum latency, Θ .
- However, it does not take into account bursty provided service; hence, it gives pessimistic WCRT.

Bi-rate Service Guarantee

Bi-rate Service Guarantee

• A higher rate (ρ^*) interval, followed by the regular service rate (ρ') .

• The higher rate,
$$ho_r^* = 1 - \sum_{\forall s \in R_r^+}
ho_s'.$$

10/15

Dataflow Model

Dataflow Model of Bi-rate Service Guarantee

- ▶ For *n* requested service units within an active period,
- s of them are served at the higher rate, and
- n s of them are served at the regular allocated rate.

12/15

Given

- ► a CCSP arbitrated SRAM memory controller,
- ▶ a video decoder application running on a GPP of a given frequency

We need to find

- the arbiter configuration that satisfies a throughput requirement,
 - both according to the latency-rate and the bi-rate service guarantees

Resource utilization

• E.g. At priority 3, where $\sigma = 1$, ρ drops from 0.68 to 0.22. This is a memory bandwith saving of 67%.

13/15

Pessimistic service guarantees lead to resource over-allocation.

- A tight service guarantee enables
 - a given MPSoC resource to support more requestors, or
 - a given set of requestors to be accommodated with less resource.
- We present a tight service guarantee for CCSP
 - a piece-wise linear guarantee for accurately capturing the provided service
 - a dataflow model for real-time timing analysis at system-level
- Experiments show memory bandwidth savings from 26% 67%.

Thank you! Questions?

