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Abstract

Traditional software systems were developed as a single unit responsible
for multiple operations and containing all the business logic. However, as
the system grows and is incremented with new features and functionalities,
the dependencies between its parts become unmanageable and hard to un-
derstand. To overcome some shortcomings of the monolithic architecture,
organizations moved away from monoliths and migrated their systems to
microservice architectures. On the other hand, due to their volatile oper-
ating environment, microservices must be continuously and rigorously mon-
itored to understand what is happening inside the system. One area that
is particularly unexplored for microservice applications is the employment
conformance checking techniques to verify if the execution of microservices
conforms to its initial design. Existing solutions usually need the full con-
text of execution and provide results long after the execution happens in the
application, which is not suitable for the microservice environment.

In this master thesis, we create an online conformance checker tailored for
microservice applications. We start by creating an offline conformance
checker that effectively evaluates conformance based on MDA execution
traces and sequence diagrams, operating independently of the MDA’s ex-
ecution for efficiency. After, we transition to an online paradigm improving
performance significantly, achieving conformance results in approximately
30 seconds per trace, meeting our requirement for rapid reaction to noncon-
forming sequences.
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Chapter 1

Introduction

1.1 Overview
Traditional software systems were developed as a single unit responsible for
multiple operations and containing all the business logic, meaning that all
parts of the system needed to be present for the successful execution of a pro-
gram. Due to all the components being tightly coupled and interconnected,
this architecture poses an easy way for small to medium-scale systems and
teams to manage the code base, deployment process, and communication
within an organization [20, 38]. Systems developed with this architecture
are called monolithic systems.

However, as the system grows and is incremented with new features and
functionalities, the dependencies between its parts become unmanageable
and hard to understand, even for the team that developed the system in the
first place. When the monolith gets too complex, several problems will arise,
reducing the quality of the software itself. Additionally, scaling becomes
more difficult, since the monolith can only scale in one dimension, by adding
several replicas of the monolith on a load balancer. Finally, maintaining a
big complex monolith renders it impossible to practice DevOps guidelines,
mainly continuous integration and continuous deployment, since each change
requires the redeployment of the complete system [38]. To overcome some
shortcomings of the monolithic architecture, organizations moved away from
monoliths and migrated their systems to microservice architectures.

The push and fast adoption of microservices by the industry brought new
research challenges to academia. Microservices have proven to be the way
to go for organizations that want to cope with the demands of a world that
is moving faster than ever. Quicker development and deployment of new
features are not compatible with traditional software development method-
ologies or architectures. Teams need to be scaled down, more independent
and have more ownership of the specific part of the system they are re-
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1.2 RESEARCH QUESTIONS

sponsible for. Thus, adopting a microservice architecture is a synonym for
big changes, not only at a technical level but also at the organization as a
whole [33].

Arguably, one of the most significant changes when adopting a microservice
architecture is the increased attention and investment in observability and
monitoring efforts. Due to their volatile operating environment, microservices
must be continuously and rigorously monitored to understand what is hap-
pening inside the system. This allows software engineers to optimize and
diagnose the system’s behavior [31, 40].

One area that is particularly unexplored for microservice applications is
the employment conformance checking techniques to verify if the execution
of microservices conforms to its initial design. While formal verification
has been extensively researched for monolithic systems, its adaptation and
application to microservices are relatively underexplored areas. Moreover,
there is a lack of appropriate tooling for the verification of microservice ap-
plications [2]. Finally, due to their inherent distributed nature and dynamic
deployment environment, developers and maintainers must be alerted fast to
erroneous or unexpected scenarios of execution. Existing solutions usually
need the full context of execution and provide results long after the execution
happens in the application, which is not suitable for the microservice envir-
onment. Thus, in this master thesis, we want to research how such a tool
can be implemented, what the challenges are for its implementation, and if
it can provide correct and fast results for a microservice application.

1.2 Research Questions
Building on the previous section, we aim to answer the following research
question in this master thesis:

RQ How can correct, efficient, fast, scalable, and extensible conformance
checking be implemented for microservice applications?

1.3 Outline
In Chapter 2, we formalize the problem we are trying to solve and introduce
the general concepts concerning our case study. This is followed by a review
of core concepts for this topic in Chapter 3. After, in Chapter 4, we detail
our approach to solving this problem, along with the case study of this thesis.
In Chapter 5 we survey the literature for similar works in this area, followed
by the implementation of our tool in Chapter 6 and Chapter 7. Finally, we
discuss our results and challenges to this study and conclude this thesis in
Chapter 8.

Real-Time Conformance Checking for Microservice Applications 2



Chapter 2

Problem Statement

2.1 Motivation
Let us consider the following scenario: we are developing a new software ap-
plication from scratch. To ensure that our application is developed with rig-
orous standards we will follow the guidelines for good software development
by going through each phase of the software development lifecycle of choice,
such as the V-model. A simplified illustrative example of the most common
phases of a software development lifecycle is depicted in Figure 2.1.

2.1.1 Developing a Software Application
Design

We start by generating requirements and models for our new application
in order to detail how the application should behave, how it interacts with
other applications, the constraints that it should adhere to, and the overall
architecture of the application. For instance, one deliverable of this first
phase could be a collection of sequence diagrams, like the one in Figure 2.2.
The goal of a sequence diagram is to illustrate the flow of messages between
different parts of an application and how they interact with each other and
with external systems for a particular use case.

In Figure 2.2, we can see a simple sequence diagram composed of three
actors, Service A, Service B, and Service C that exchange messages with
each other. Furthermore, we observe that these messages have an explicit
ordering: Service A starts the use case by sending a message to Service B,
after which Service B sends a message to Service C. Finally, to complete
the use case, Service C sends a message to Service A. Moreover, from our
requirements, we add a timing constraint to the operation. This exchange
of messages should not be executed in over 200 milliseconds.

Real-Time Conformance Checking for Microservice Applications 3



2.1 MOTIVATION

Figure 2.1: Schematic representation of a simple software development life-
cycle and the deliverables of each stage of the process.

Implementation and Testing

After thoroughly defining and documenting the application we move on to its
implementation. We take the system models and turn them into executable
code. Test cases are defined to ensure the application behaves according to
the initial specification and to avoid predictable errors and failures.

Deployment

The application is now ready to be executed. After setting up the needed
infrastructure, we deploy the application into the production environment
and expose the application to the outside world. We also deploy monitoring
applications to keep track of the behavior of our system.

Real-Time Conformance Checking for Microservice Applications 4



CHAPTER 2. PROBLEM STATEMENT

Figure 2.2: An example of a sequence diagram.

Maintenance and Operation

Maintenance plays a key role in ensuring the correct functioning of any
application. Even though testing attempts to identify possible erroneous
actions, no system is ever completely correct and not all faults and error
scenarios can be predicted. Moreover, since we are dealing with distrib-
uted systems, in particular a microservice application that relies heavily on
network communication and where microservices may evolve independently
over time, it is impossible to envision all possible problems that the ap-
plication can encounter during its execution in a real-world setting. Thus,
we instrument the microservices to produce telemetry, allowing software de-
velopers and maintainers to monitor its execution.

This telemetry allows for different types of analysis. Some common monit-
oring cases include observing application and hardware metrics to monitor
resource consumption and request latency, or analyzing logs and traces to
check if there are any outstanding errors during the execution of the applic-
ation and where they are located. A graphical representation of a trace is
depicted in Figure 2.3

2.1.2 Goal
For this master thesis, we are particularly interested in evaluating if an
application is actually behaving according to specification. This is called
conformance checking. Despite meticulously following the software develop-
ment cycle, it is hard to guarantee that the developed application follows
the initial models and that during its execution, it respects previously es-
tablished constraints.

Real-Time Conformance Checking for Microservice Applications 5



2.2 FORMAL DEFINITION

Figure 2.3: Graphical representation of a trace (from [44]). Each box is a
span and boxes that are contained by other boxes represent a parent-child
relationship.

To achieve this goal, we can think of a way to match the original sequence
diagrams to the traces that are collected during the execution of the system.
Since a trace represents (part of) an execution path of an operation as it
propagates through the several services that compose the application, we
can gather the relevant traces for a specific sequence diagram and analyze
the services that interacted during the operation, the order in which they
interacted, and even the time elapsed in each interaction.

Given a sequence diagram and a collection of traces, how can we check if the
traces match the sequence diagram efficiently and effectively for a running
microservice application?

We start by formally defining the conformance checking problem that was
generally described above, after which we derive the desirable requirements
that our conformance checking framework should adhere to.

2.2 Formal Definition
Graphical representations are useful to quickly grasp and visualize any given
concept. However, they provide little information about the structure that is
represented. In our case, we want to be able to describe traces and sequence
diagrams in a more abstract way to make it easier to reason about possible
ways to develop a conformance checking framework.

Real-Time Conformance Checking for Microservice Applications 6



CHAPTER 2. PROBLEM STATEMENT

2.2.1 Sequence Diagrams
Sequence diagrams follow the UML specification and can represent complex
use cases between interacting actors. In this master thesis, we are not in-
terested in the full expressiveness of sequence diagrams. For instance, we
do not intend to support sequence fragments like alt, loop, or par that
were introduced in UML 2.0. Moreover, the notation for representing mes-
sages exchanged between two actors will always use full arrows, since it
is not important to distinguish between return messages, which should be
represented by dashed arrows, or synchronous and asynchronous forms of
communication.

Let us consider again the sequence diagram in Figure 2.2. This diagram
is composed of several architectural elements. The blue boxes correspond
to the actors that participate in the modeled interactions. In our case, the
actors are the services that compose an application. Below each actor, we
can identify white boxes that have a dashed line underneath. This is called a
lifeline and represents the execution of a service during the execution of the
use case. As we will see in Chapter 4, we will use a microservice application
for our experiments that has all services running simultaneously, meaning
that for the sequence diagrams of interest, all actors will be deployed and
running during the execution of a use case. Additionally, the diagram de-
picts interactions between the modeled services. These interactions can be
exchanging messages or remote procedure calls for instance. Finally, we see
a vertical arrow on the right side of the diagram representing a time con-
straint for the operation. Although this is not part of the UML notation
for a sequence diagram, it is sufficient for the conformance checking that we
aim to implement.

We will adopt the following notation: sequence diagram s

s = {A, I, t}

is composed of the set of actors A that participate in s

A = {a | a is a service in our application},

the tuple of ordered interactions I represented in s

I = (i1, i2, ..., in−1, in),

and the timing constrain t in milliseconds. Interaction i ∈ I is a 4-tuple

i = (type, sender, receiver, content),
type ∈ {message, function},

sender, receiver ∈ A,

content = message exchanged or function called.

Real-Time Conformance Checking for Microservice Applications 7



2.2 FORMAL DEFINITION

2.2.2 Traces
Contrasting with sequence diagrams, traces don’t have a rigorous standard
that they adhere to. This makes it difficult to provide a general notation
that would fit some of the most recent open-source tools or vendors that
provide tracing libraries and process telemetry. OpenTelemetry [44] was
developed as a vendor-agnostic observability framework to overcome these
complications and proposed a standard protocol for many telemetry opera-
tions. Traces in OpenTelemetry support a wide range of operations and can
contain lots of information, fields, and attributes that are user-customizable
to aid software developers and maintainers in observing how an applica-
tion is behaving. Similarly to sequence diagrams, we are not interested in
describing in our notation the full range of features provided by OpenTele-
metry, but rather only include the fields of interest that will be useful for
our conformance checking framework.

Let us analyze the trace in Figure 2.3. Although this is a very simple
representation of a trace, it is possible to grasp the basic structure of a trace
and its components. The first thing we observe is the several rectangular
colored boxes. These boxes are called spans and the color indicates which
service emitted the span. Spans represent a unit of work or an operation
[44] and can be uniquely identified by a span ID. Furthermore, spans contain
several attributes that provide information about the context or operation
that the span captures. One of those attributes is the span name, which
depending on the developer’s choice can represent an operation name or
a routing path as shown in the spans in Figure 2.3. Other attributes of
interest include start and end times, the name of the service that emitted
the span, events, and custom user-defined fields. We will take advantage of
these custom fields to include relevant information that will help us to do
the desired conformance checking. For now, we will assume that our spans
have a field called content that carries our custom information.

Traces are essentially a collection of spans that are aggregated together
because they have the same trace ID. In our notation, we will consider the
trace ID as an attribute of a trace rather than an attribute of a span, as
OpenTelemetry represents it. Besides being related by a shared trace ID,
spans also relate with each other in different ways. For instance, spans
can be related to spans from different traces by a special field called link
in OpenTelemetry. However, we are interested in the more simpler and
common relationship: the child-parent relationship. Traces can be visualized
as a tree-like structure like the one in Figure 2.4 that depicts the trace in
Figure 2.3 as a tree. To be able to preserve these relations, spans include
a field called parent span ID. Finally, the top span of each trace is called a
root span. Root spans are different from regular spans because they have
no parent span ID.

Real-Time Conformance Checking for Microservice Applications 8



CHAPTER 2. PROBLEM STATEMENT

Figure 2.4: Trace represented as a tree. The horizontal axis represents the
parent-child relationship.

We will adopt the following notation: the set of traces TR is generated and
collected during the continuous execution of the application

TR = {tr1, tr2, ..., trn−1, trn},

where trace tr is a set
tr = {id, SP},

composed by an id, a unique character string, and the set of spans SP

SP = {sp1, sp2, ..., spn−1, spn},

where span sp is a set

sp = {id, service, operation, parent, start, end, content},

service is the service that emitted the span,

operation is the name of the operation executed,

parent is the id of the parent span,

start, end are timestamps representing the start
and end times of the span, respectively, and

content is the message sent or received and/or
function name invoked during the span and/or

2.2.3 Conformance Checking
We now have an accurate way of describing both traces and sequence dia-
grams. To be able to perform the desired conformance checking we need to
find a mapping between traces and sequence diagrams.

Real-Time Conformance Checking for Microservice Applications 9



2.2 FORMAL DEFINITION

In our notation for sequence diagrams, we defined that interactions occur
between two services and contain information that was exchanged. We can
derive a similar concept with spans belonging to the same trace. After
deriving these interactions, matching against a set of interactions of a se-
quence diagram is (almost) trivial. In the simplest case that traces and spans
are perfectly ordered, we extract the interactions from traces and compare
them one by one with the interactions in a sequence diagram to check if
they appear in the same order, and concern the same services and content
exchanged. Let us consider the following example:

Sequence Diagram s

s = {A, I, t},

t = 200ms,

A = {ServiceA, ServiceB, ServiceC},

I = (i1, i2),
i1 = (message, ServiceA, ServiceB, messageA),
i2 = (message, ServiceB, ServiceC, messageB).

Trace Set TR

TR = {tr1, tr2},

tr1 = {tr1, SP1},

SP1 = {sp11, sp12}
sp11 = {sp11, serviceA, send, none, t0, t2, messageA}
sp12 = {sp12, serviceB, receive, sp11, t1, t2, messageA}
tr2 = {tr2, SP2},

SP2 = {sp21, sp22}
sp21 = {sp21, serviceB, send, none, t1, t3, messageB}
sp22 = {sp22, serviceC, receive, sp21, t2, t3, messageB}

Both sp11 and sp12 record activity with messageA. Moreover, sp11 sends
messageA and sp12 receives messageA. Finally, sp12 records the sending
action at t0 and sp11 records the receiving action at t1, meaning that the
sending action from serviceA preceded the receiving action from serviceB.
Hence, we derive the following interactions from TR:

itr1 = (message, ServiceA, ServiceB, messageA)
itr2 = (message, ServiceB, ServiceC, messageB)

telapsed = t3 − t0

We can now say that TR conforms to s because:

i1 = itr1 ∧ i2 = itr2 ∧ telapsed < t
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2.3 Requirements
We want to propose a conformance checking framework that is suitable for
a microservice application. As we will see in Section 3.1, microservices rely
on network communication and cooperation between services to execute
user requests. Thus, tracing becomes essential to understand and debug
this type of application. Moreover, depending on how the microservices are
instrumented, high volumes of data may be generated during their execution.
Furthermore, given that microservices are distributed over the network, it
is challenging to guarantee a correct time ordering of the generated traces.
Given these constraints, we detail the desired requirements for our checker
architecture as follows:

R1 The checker shall provide correct results.
In distributed systems, it is not trivial to have a correctly time-ordered
sequence of events. Thus, the checker needs to implement a strategy
that deals with out-of-order events to produce correct results for check-
ing traces.

R2 The checker shall be efficient.
The execution of the checker shall have minimal impact on the execu-
tion of the microservice application.

R3 The checker shall be fast.
One important aspect of modern microservice applications is to be able
to quickly detect outages and erroneous scenarios. Thus, the checker
should provide fast results for nonconforming traces.

R4 The checker shall be scalable.
Given that we expect high volumes of data to be generated and pro-
cessed, the developed architecture shall handle increased loads of data
without hindering the performance of the checker or the microservice
application.

R5 The checker shall be extensible.
The checker architecture shall have a strategy that allows for easy
increments of additional sequence diagrams to be used when processing
generated traces.
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Background

3.1 Microservices
Microservices have been around for a few years now, emerging as a trend in
the industry to overcome the inherent disadvantages of service-oriented ar-
chitecture (SOA) and monolithic architectures. Additionally, microservices
emerge at a time when organizations prioritize faster and customer-centric
development, making microservices alongside Agile and DevOps methodo-
logies the way to go for most organizations.

Considered by some authors a subset of SOA [33], microservice architecture
offers a more fine-grain development and control over each service, while
maximizing their independence by breaking away from a centralized point
of control or orchestrator that ultimately controls the flow of the system in
SOAs. In addition to constructing each service as an independent unit, mi-
croservice architecture splits business rules and logic across services and re-
lies on lighter technologies to support the communication paradigm between
each unit [16]. This philosophy offers great independence to each team
since there are no constraints on technological development stack choices
and little to no coordination is needed at deployment time. Additionally,
microservices can easily be scaled both horizontally and vertically, while
monoliths can only be scaled horizontally if they are loosely coupled. For
instance, we could scale the system horizontally by adding more instances of
a deployed microservice or vertically by adding resources to the node where
that microservice is hosted. Moreover, the system can be expanded with
new features by adding new units to the overall system, without increasing
the complexity of already developed units [27].

As an example, we can look at the Social Network application [28], which
is commonly used in research papers as a proof of concept. In Figure 3.1
we can depict a possible version of the Social Network application that has
a monolithic architecture, categorized by a single unit that executes all re-
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Figure 3.1: Monolithic example of the Social Network application

quests received and contains all business logic it needs to respond to users.
For instance, composing a post or logging in to an account are actions per-
formed inside this unit without communication with other instances than
the database. In Figure 3.2 we can see a simplified version of the Social Net-
work application with a microservice architecture. We can clearly see the
separation of concerns and independence between the Compose Post service
and the User Service that communicate with each other to execute requests
when necessary. For example, when a user writes a post, the Compose Post
service requests user information from the User Service asynchronously, al-
lowing both systems to carry out work without waiting for each other. Fur-
thermore, the Compose Post service is not connected to a database. Instead,
it offloads that work to the Post Storage service to handle the persistence of
data. In terms of scaling, it is possible to scale each individual service. If the
Compose Post service has a lot of traffic, we can scale vertically by adding
more computing power to the node where a service instance is deployed, or
we can scale horizontally by adding more instances of the Compose Post
service supported by a load balancer.

However, some new challenges arise with the adoption of a microservice
architecture. Firstly, microservices move away from shared databases to
eliminate a single point of failure and a bottleneck in the overall system.
Moreover, business rules are split over microservice units. Consequently,
microservice systems will have to deal with data duplication and an effective
data management policy to reduce the cost of querying databases [37].

Secondly, getting a complete overview of the developed system or its working
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Figure 3.2: Simplified microservice architecture of the Social Network ap-
plication

state is hard due to the independence between microservice units and con-
stant scaling or descaling of the overall system. Thus, there is an increase
in monitoring efforts and infrastructure costs. Even though maintenance
costs are lower for microservice architecture, services must be instrumented
to provide visibility into the execution of the system. Instrumentation con-
sists essentially of producing and gathering data that gives insights into a
system’s execution. However, instrumenting a microservice architecture is
fundamentally different from traditionally used techniques and best prac-
tices due to their inherent distributed nature. Additionally, due to frequent
changes in microservice applications, such as scaling actions or updates of
the microservices themselves, it is increasingly difficult to ensure and verify
the correct behavior of this type of system [31].

3.2 Containerization
Before the popularization of microservices, there was a significant evolution
in how applications are deployed due to the emergence of cloud-native ar-
chitectures. Traditional deployment of applications was done in bare metal
without any kind of virtualization. This allowed applications to run natively
in the host and utilize fully the underlying hardware. However, deploying
applications this way did not allow for any portability due to the application
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being closely tied to the hardware it was running on, which makes it difficult
to redeploy the application in a server with a different configuration. Fur-
thermore, if the application is not using fully the hardware resources at its
disposal, it is not possible to allocate or share them with another application
[35].

For these reasons, there was a need to change the deployment paradigm to
allow for more flexibility and better use of server resources. The first ab-
straction of hardware resources to virtual ones was developed by IBM using
hypervisor-based deployment that manages the virtual machines (VM) run-
ning on a host [9]. VMs work by providing a full guest operating system
(OS) image along with the necessary binaries and libraries for the applica-
tions that the VM is running. Furthermore, the VM is fully isolated from
the host’s OS [45]. However, VMs come with a performance cost. There is a
small amount of overhead when translating instructions from the guest OS
to the host OS, the startup time of a VM can be up to a few minutes and
VMs require much more storage due to packing the whole guest OS kernel
[21].

Containers emerge as a lightweight alternative that allows for better use of
resources of cloud infrastructure. Containers take a different virtualization
approach than VMs. Instead of virtualizing the underlying hardware, it fo-
cuses on abstracting the OS level. Containers are more portable, efficient,
and independent, allowing for better resource utilization of the host where
they are deployed [6]. Due to containers having low startup times and being
portable and fast to deploy, containerization tools like Docker [19] became a
popular choice to deploy microservice applications. A schematic representa-
tion of the aforementioned deployment types is depicted in Figure 3.3.

3.2.1 Container Orchestration
Microservice applications can easily scale up to hundreds or thousands of
instances deployed on a cluster. As with any traditional distributed software
system, microservice applications also have to be fault tolerant, available,
reliable, and dispersed geographically. Managing clusters at this scale and
guaranteeing the aforementioned requirements is not trivial. Thus, con-
tainer orchestration platforms such as Kubernetes [36] became an essential
component of large microservice systems. These platforms provide import-
ant functionalities to manage clusters at scale such as container scheduling,
security, networking, service discovery, and monitoring [34].

3.3 Observability
The term observability is often mentioned in the context of microservices and
monitoring. It originates from control theory and is defined as the ability
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Figure 3.3: Visual representation of bare metal, virtualized, and container-
ized deployments.

to determine a system’s internal state given its external outputs. However,
there is a lack of agreement in the software engineering community regarding
the definition of observability. We will use an adaptation of the definition
proposed by Volpert et al. [55]:

Observability is a property of a system that allows an observer to
gain an understanding of the system’s internal state by looking
at its external behavior.

Observability complements monitoring efforts by providing ways for soft-
ware developers to discover unknown and unexpected errors or failures [53].
Observability goes beyond monitoring by allowing software engineers to un-
derstand how a system is behaving, rather than just detecting issues. For
the purpose of this thesis, we will consider monitoring as a subset of observ-
ability and a requirement to make a system observable.

To provide visibility into the internal state of a system, the system needs to
produce the right outputs. These outputs can be created from, for example,
interacting with the system and looking at the files produced during the
execution of the system. Nonetheless, this is not a very efficient or structured
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Figure 3.4: Observability Workflow (slightly modified from [55])

approach to observability. Thus, the most common way to generate the
required outputs in a standardized manner is to generate telemetry data.
More concretely, we want to generate logs, metrics, and traces to enable all
observability activities. For instance, we can observe the services involved
in a particular request by using traces and monitor its resource usage by
analyzing the produced timestamped metrics during the request’s execution.
Furthermore, we can use logs to identify a specific problem that may have
occurred during its execution.

3.3.1 Observability Workflow
The lack of consensus on a definition for observability is also extended to the
phases that are related to observability itself. However, we see an overlap
in the phases that make up observability across different publications [40,
55], with the main difference between the aforementioned papers being a
slightly different terminology, an extra data reporting phase, and testing
throughout the process proposed by Volpert et al. [55]. A simplified and
adapted overview of the observability phases is depicted in Figure 3.4.

Phases of the Observability Workflow

Instrumentation is the first requirement to make a system observable. Soft-
ware engineers instrument applications and platforms to generate different
types of telemetry data to be analyzed and monitor the performance of the
application and the platform itself.

Data Collection (or data acquisition) is the task of collecting all the in-
strumentation data generated by service instances, usually by a centralized
collector. This collection can be performed by an agent that pulls data from
the service instances or by providing an endpoint for the service to push
instrumentation data.

Data Processing formats, aggregates, filters, and enriches collected tele-
metry data to relate the different types of telemetry data and achieve a
consistent format between telemetry data collected from different service
instances.

Data Storage is the task of persisting the collected and processed telemetry
data. Depending on the data’s intended use, it can be stored for short or
long term or, archived.
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Data Analysis is the phase where engineers get actionable insights from the
telemetry data. Different analysis techniques can be applied to assess the
current state of a running system. For instance, Li et al. [40] identifies
timeline analysis, service dependency analysis, aggregation analysis, root
cause analysis, and anomaly detection as some of the methods currently
used in the industry for trace analysis.

Data Reporting consists mainly of data visualization. Human operators
can visualize the state of a running system and react to potential issues by
visualizing dashboards and responding to pre-configured alerts, like CPU
usage above a certain threshold.

3.3.2 Telemetry Data
Observability is essentially a data-centric workflow, from its inception in the
instrumentation phase to producing views in the data reporting phase that
allow data-driven decision-making. Although observability is a relatively
new concept in software engineering, telemetry data and monitoring have
been the concern of software engineers for several years. Nowadays, logs,
metrics, and traces have become the fundamental types of telemetry data to
enable observability, denominated as the three pillars of observability [52,
53, 55].

The Three Pillars of Observability

Logs are timestamped records of events emitted during the runtime of a
service. Logs can be unstructured plaintext lines, structured (usually in
JSON format), or binary, usually in a domain-specific format. Logs are easy
and fast to generate. Moreover, logs can be configured to allow for different
types of verbosity. Logs are important for debugging efforts for a specific
service instance due to their fine-grained view of service events and their real-
time availability. Yet, logging presents some challenges. Firstly, processing
unstructured logs can have a big impact on performance. Furthermore, using
an incorrect sampling strategy can cause excessive logging and rising data
storage costs.

Metrics are timestamped numeric representations of system data measured
over time. In contrast to logs, metrics are easy to store and do not scale
proportionally to the number of system requests. Moreover, metrics can be
aggregated in time intervals to enable an analysis of daily or weekly trends
in a system’s performance. Metrics are also easier to analyze since they can
be effortlessly inputted into mathematical and statistical models and are the
type of telemetry data suited to define and trigger alerts.

Traces represent the entire lifecycle of a request as it travels throughout
the entire distributed system. Traces can be seen as a type of log that
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contains information on how different events relate to each other. Moreover,
traces are useful to perform several types of analysis to pinpoint possible
bottlenecks in the system and parallel flows within the execution of a request.
However, tracing can be quite complex to implement, especially because it
is hard to retrofit to legacy software.

Other Telemetry Data Types

Besides the above-mentioned telemetry data types, depending on the vendor
or tool chosen for instrumentation, some different data types may be in-
cluded and considered important, such as events, deployment logs, and ap-
plication dependencies [53]. Nevertheless, these data types can be generally
derived from the three pillars of observability. For instance, deployment logs
can be generated following a similar strategy for application logging and ap-
plication dependencies can be obtained from traces. Events have different
meanings for various authors: an event can be a log [52] or a collection of
different telemetry data for a specific request of an application [41].

3.4 Conformance Checking
Many techniques and methods have been proposed to verify if a system
is running according to specification. One of them is called conformance
checking, a form of formal verification derived from the field of process
mining [12]. The goal of conformance checking is to supply instruments to
establish a link between expected modeled behavior and behavior observed
during the execution of a process. This is done by recording event logs
during the execution of the process and, after the process has completed its
execution, matching it with a process model. This matching can be done
using several different dimensions and techniques, depending on what we
want to check, and yield different conclusions about the execution of the
process [15].

In general, conformance checking has three different independent quality
dimensions: fitness, precision, and generalization. Each dimension has a
different goal and allows for different analyses. Fitness quantifies how a
model and an event log fit each other, while precision measures the ability
of the model to capture the observed behavior without allowing for unseen
behavior in the event logs. Finally, generalization aims at quantifying the
ability of the model to account for behavior that was not seen before, since
event logs do not usually include all possible scenarios that a process model
should represent [43].

To measure and quantify quality dimensions, three distinct techniques can
be utilized. Token-replay-based approaches replay the event log over the
process model, while alignment approaches attempt to describe the observed
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Figure 3.5: Approaches to process event streams [11].

behavior by looking at the process model and aligning event logs to it.
Finally, comparison approaches transform both the process model and event
log into a common representation that makes both artifacts comparable
[43].

In the case study of this thesis, we have analogous artifacts to those used in
conformance checking: we can think of a set of traces as an event log and the
sequence diagram as a process model. Moreover, due to how sequence dia-
grams and traces are represented in our application, we chose a comparison
approach to perform conformance checking. However, as we will see in fu-
ture chapters, some significant differences exist between our implementation
and traditional conformance checking.

3.5 Streaming Conformance Checking
One open challenge in the research field of conformance checking is how to
perform real-time conformance checking [15, 43]. As we saw before, most
research done in the field focuses on applying conformance checking tech-
niques after processes are concluded. There are, however, some papers that
implement real-time conformance checking frameworks, often called stream-
ing conformance checking. This discipline aims to investigate how to per-
form conformance checking for unbounded sequences of events in real time.
Burattin [11] presents an overview of the general approaches that can be im-
plemented when processing an event stream. The approaches are described
in Figure 3.5.

The window-based models’ approach is the simplest since it stores a pre-
defined number of events before processing and analyzing them. There are
different forms of storing these events. It is possible to define the window
size by the number of events or by time. This choice depends on the specific
needs of the algorithm implemented for performing the checking. However,
this approach has the drawback of handling memory inefficiently, since it
can require the storage of a large number of events, depending on the chosen
window size.
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Another approach is to reduce the conformance checking problem to a known
stream processing one, to leverage the true and tried methods in this research
area. This is only possible if the conformance problem at hand can make
use of these techniques, such as frequency counting for example.

On the other hand, offline computation attempts to cache possible expensive
computations before starting to handle the event stream. However, not all
conformance checking problems can take advantage of this approach, and
using it can make it harder to adapt the pre-computed solutions to the
context that is being checked.

Finally, the author suggests considering a mix between the aforementioned
approaches. Choosing an approach is mainly dependent on the problem that
is being solved and the specific implementation needs and constraints.

Additionally, the author mentions some additional challenges to the success-
ful implementation of a real-time conformance checker:

1. Arrival time of events is not equal to the time of their execution.

2. How to infer if a process instance has terminated.

3. Consider different types of streaming models.

Challenges 1 and 2 are directly related to our case study. Moreover, they are
inverse qualities. For instance, we can receive events at the moment they
are terminated. This would probably involve some overhead since we would
not send events in batches to our checker, thus having more communication
over the network. Nonetheless, spans would be delivered according to their
finishing time and not starting time. Additionally, we would not be able
to know when we have received all the events for a certain execution trace.
In contrast, if we could wait until a trace is finished, the time between
the execution of the first span of a trace and the actual processing would be
greater. Furthermore, waiting for a trace to be finished means that we would
have to persist data in memory for longer periods. Finally, challenge 3 calls
for streaming conformance checking to allow for different types of streaming
models. Streaming models can allow for events to be modified or deleted
after being added to the stream, or consider all events as immutable. The
latter is called an insert-only model and the former is called an insert-delete
model. Streaming conformance checking research has mainly focused on
insert-only models, remaining an open issue to consider insert-delete models
for research in this field.
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Methodology

4.1 Case Study
In Chapter 2 we defined abstractly what conformance checking is and de-
scribed the main components that are needed to perform the conformance
checking evaluation. In Section 1.2 we outlined that we are interested in re-
searching a way to perform fast, efficient, and correct conformance checking
for a microservice application. Thus, in this section, we introduce the Meal
Delivering Application (MDA) that will be the case study for this master
thesis and serves as a test bed and as a data provider to allow us to develop
and test our conformance checking architecture.

4.1.1 The Meal Delivering Application
MDA is a meal-delivering application composed of five unique microservices
developed in C++. The application abstracts the flow of a kitchen and
delivery service. The application considers that it has a certain amount of
physical resources available to complete its processes. These resources are
kitchens, that prepare meals, and bikes, that deliver meals. In Figure 4.1
we depict a simple diagram showcasing the microservices that comprise the
MDA and the flows of communication between them. An overview of a
typical workflow in the application and the role of each microservice is as
follows:

Customers submit meal orders to the Delivery Control service that are
passed to the Planner scheduling service. After being scheduled, meal
orders are dispatched by the Meal Dispatching service according to the
schedule defined in the previous step and the resources available at the mo-
ment dispatching occurs. Subsequently, the Meal Preparation service
prepares the meal in the kitchen assigned by the Meal Dispatching service.
Finally, the Meal Delivery service dispatches the meal at the indicated
time and allocates a bike to transport the meal to the receiver.
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Figure 4.1: The Meal Delivering Application.
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Figure 4.2: The Meal Delivering application and monitoring infrastructure.

The MDA was chosen as a case study for this master thesis because it
gathers all the necessary conditions to implement our conformance checking
architecture. Firstly, we have access to several sequence diagrams used to
develop the application. Secondly, MDA follows a microservice architecture.
Finally, the application is capable of producing traces that can then be
checked for conformance against the initial sequence diagrams. All services
that are part of MDA are manually instrumented with the OpenTelemetry
library.

It is important to note that we are not particularly interested in the actual
inner workings of the MDA. For instance, the arrows in Figure 4.1 can refer
to different flows of information and operations in the application. However,
we purposely leave it without a more accurate description since we only need
to analyze the traces that result from the execution of the application and
the initial sequence diagrams conceived at design time.

4.1.2 Monitoring Infrastructure
As we saw in Chapter 3, an important aspect of microservice applications
is to be able to monitor them in order to observe their internal state and
be alerted of possible erroneous or exceptional situations. As previously
mentioned, all MDA services are instrumented and generate tracing data.
This data needs to be collected to be suitable for analysis. Moreover, we are
also interested in monitoring the resource consumption of the application.
Thus, the full MDA architecture includes monitoring applications to achieve
this goal. In Table 4.1 we describe the role of each application and in
Figure 4.2 we depict the complete architecture and the flow of information.
The box labeled "MDA" condenses all microservices that are part of the
application.

4.1.3 Deployment Strategy
All services detailed in the previous section and the MDA are deployed in a
Kubernetes [36] environment that runs at the in-house TNO Cluster. The
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Service Role

OpenTelemetry
Collector [44]

Collect traces from MDA and expose its own metrics.

Jaeger [32] Reconstruct traces received from the OpenTelemetry
Collector for visualization.

ElasticSearch [24] Persist application traces for future lookup.
Prometheus [48] Scrape metrics from MDA and the OpenTelemetry

Collector.
Grafana [29] Query Prometheus to pull data to construct graphs

and analyze metrics.

Table 4.1: Monitoring services and their role.

cluster consists of three nodes (machines), all capable of handling 110 pods
(service instances). Furthermore, one node has 4 CPUs available while the
other two have 16 CPU cores. Moreover, all nodes have 32GB of RAM that
can be allocated. To avoid possible variability in application performance,
we deploy all necessary services to the same node. This way we ensure
that critical services do not end up in a less capable node and impact the
execution of the whole application. It is important to note that pods within
a Kubernetes cluster communicate using their internal IP addresses, over a
virtual network overlay. Thus, the networking part is not lost by deploying
every service in a single node.

4.1.4 Conformance Checking for MDA
Graphical representations or concrete notations are not optimized or easily
used as input for a computer program. In Chapter 2, we have an accurate
notation for sequence diagrams and traces that allows us to reason about
the conformance checking problem in a general way. We now look into
a particular instance of the problem for our case study, namely executing
conformance checking for the MDA. These representations are the starting
point for building our checker architecture. We will apply several transform-
ations to both sequence diagrams and traces until we can develop a checker
that can read the transformed representations and output a conforming or
nonconforming result. Additionally, our approach uses common monitoring
infrastructure and can be applied to other applications that are modeled
with sequence diagrams.
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Sequence Diagrams in PlantUML

PlantUML [47] offers a way to represent sequence diagrams as text. Moreover,
this text can be used as input in the tool’s website or plugins for common
tools, like Eclipse [23], to generate graphic representations of the textual
definition. Additionally, we include annotations to denote timing constraints
as comments in PlantUML, so that the compiler can still generate the graph-
ical representations. In Listing 4.1 we give the PlantUML specification of
the From Order to Delivery sequence diagram that we will mainly use as
input for our checker to run experiments. In Figure 4.3 we depict the graph-
ical representation of the textual specification, where the timing constraint
was manually added.

1 @startuml
title

3 Sequence diagram of "From Order to Delivery "
end title

5

participant DeliveryControlService
7 participant PlannerService

participant MealDispatchingService
9 participant MealPreparingService

participant MealDeliveringService
11

’@TimingStart 250000
13 PlannerService ->

DeliveryControlService : MonitorNotification
15 MealDispatchingService ->

MealPreparingService : MealPreparationRequest
17 MealDispatchingService ->

PlannerService : ScheduleUpdateNotification
19 MealPreparingService ->

MealDispatchingService : MealPreparationResponse
21 MealPreparingService ->

MealDeliveringService : DispatchDeliveryRequest
23 MealDeliveringService ->

MealPreparingService : DispatchDeliveryResponse
25 MealPreparingService ->

MealDispatchingService :
MealPreparationUpdateNotification

27 MealPreparingService ->
PlannerService : MealPreparationUpdateNotification

29 MealDeliveringService ->
PlannerService : DeliveryUpdateNotification

31 ’@TimingEnd
@enduml

Listing 4.1: PlantUML specification of the From Order to Delivery flow.
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Traces in OpenTelemetry

The OpenTelemetry Collector provides a configuration that exports traces
in JSON format. This is convenient because JSON is easily readable by
humans and also easy to parse by computers. Listing 4.2 shows an example
of a trace generated by MDA and exported by the OpenTelemetry Collector.
Note that several fields were omitted since OpenTelemetry includes library-
related fields that are not of interest to analyze. However, we can identify
similar fields to the ones introduced in Chapter 2. We can observe a span
that has a reference to the trace it belongs to, the start and end time of
the span, along with its name and ID. This is a root span since its parentId
field is empty. Moreover, we see an orderId field that allows for unique
identification of a particular order placed to the MDA. Finally, we see that
PingMsg was received by the DeliveryControlService (omitted in the listing),
together with the time of reception.
{

2 " scopeSpans ": [
{

4 "spans": [
{

6 " traceId ": " fc6775c3cba39099920bc0475b47627e ",
" spanId ": "3 f832d58d3596a00 ",

8 " parentSpanId ": "",
"name": " postReceive ",

10 " startTimeUnixNano ": " 1699557626470949306 ",
" endTimeUnixNano ": " 1699557626470957977 ",

12 " attributes ": [
{

14 "key": "order.id",
"value": {

16 " stringValue ": "MEAL1 .0"
}

18 }
],

20 " events ": [
{

22 " timeUnixNano ": " 1699557626470955791 ",
"name": " PingMsg "

24 }
],

26 }
]

28 }
]

30 }

Listing 4.2: Example trace generated from the MDA
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4.2 Approach
To tackle the research questions presented in Section 1.2, our approach in-
volves executing a set of experiments leveraging the MDA. More specifically,
we will design an offline architecture for conformance checking that will es-
tablish a benchmark for evaluating the performance of the online checker
that will be developed.

4.2.1 Implementation
Given the requirements listed in Section 2.3, we can conceive a general idea
of how our conformance checker will look to adhere to those requirements.
For instance, R1 states that the checker shall provide correct results. To
ensure that these criteria are met, we can envision an offline version of the
checker that gathers all the execution traces for a predetermined amount of
time and only after processing it in a big batch. This way, we can ensure
that the checker will have access to all the context it needs to check if the
set of traces persisted contains one or more subsets that conform to given
sequence diagrams. However, this approach directly contradicts R3. In the
worst case, we will get a conformance result equivalent to the amount of
time that we were gathering the execution traces. One possible strategy
that can be adopted is online (real-time) processing. In this paradigm,
events are processed at the moment the checker receives them, therefore the
checker can yield faster conforming or non-conforming results. However, the
online approach presents several challenges that are not found in the offline
approach. Thus, we will implement an offline version of the checker that
will serve as a baseline for our online checker.

4.2.2 Experiments
Due to the inherently distributed nature of microservice applications and
their dynamic deployment infrastructure, replicating experimental runs and
comparing runs with each other poses some challenges. For instance, vari-
ability in execution times between runs caused by changes in networking
conditions or resource availability in the cluster to handle the workload of
the application can hinder direct comparisons between different runs using
the same version of the MDA.

To mitigate these challenges, we propose a design for our conformance check-
ing architecture that enables multiple instances of the conformance checker
to run concurrently. This approach facilitates the comparison of different
instances of the checker within the same execution of the MDA. Further-
more, we can attempt to replicate a particular run by persisting the tracing
data generated during that execution of the MDA in ElasticSearch. The
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Metric Definition

Total Checks Number of checks performed.
Conforming Checks Number of checks with a conforming result.
Nonconforming Checks Number of checks with a nonconforming res-

ult.
Check Time Duration of a check since it is started until it

finishes.
Reaction Time Time elapsed since the first interaction is ex-

ecuted in the application until the checker fin-
ishes.

Table 4.2: Checker metrics.

subsequent chapter will provide a more detailed exploration of the imple-
mentation and benefits of this methodology.

The experiments will consist of executing predefined workflows in the ap-
plication while executing the different instances of our checker in parallel
and capturing metrics that allow us to directly compare and evaluate the
performance of the instantiated checkers. Moreover, the workflows vary in
size and stress the MDA in different ways, making it possible to observe
how the checker handles different scenarios and loads. Additionally, these
experiments intend to allow us to verify if the proposed implementations
adhere to the requirements in Section 2.3.

4.2.3 Metrics for Evaluation
To compare different conformance checking architectures we need to have
the right set of metrics that indicate whether a certain implementation of the
checker is superior or more advantageous than another. Thus, we propose
two categories of metrics to evaluate the implemented checkers: checker
metrics and hardware metrics.

Checker Metrics

The objective of the checker metrics is to measure the checker’s perform-
ance and compare it across different implementations. These metrics will
provide an accurate way of understanding if the implemented checkers are
behaving as expected. In particular Total, Conforming, and Nonconforming
Checks allow us to assess the correctness of the online checker against the
offline baseline, while Check and Reaction Time relate to how fast a checker
iteration is. Table 4.2 describes the checker metrics of interest.
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Metric Definition

CPU Usage CPU percentage consumed by the services re-
lated to the checker implementation. (50%
would mean using 8 cores)

RAM Usage RAM percentage consumed by the services re-
lated to the checker implementation. (50%
would mean using 16GB)

Table 4.3: Resource metrics.

Hardware Metrics

Finally, the hardware metrics capture resource consumption from the checker
and different services and applications that are part of the checker architec-
ture. Table 4.3 describes the hardware metrics of interest.
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Related Work

5.1 Conformance Checking
In Chapter 3, we introduced the main concepts related to conformance check-
ing as well as finding which of these concepts are also present in our case
study. However, our approach and implementation differ in some parts from
traditional research of conformance checking.

Firstly, we do not intend to implement formal mechanisms or calculations
usually seen in conformance checking studies to derive conclusions from the
execution of our application. Thus, we are not interested in calculating the
dimensions described in Section 3.4. It suffices that we compare the recorded
traces from the execution of the application to the sequence diagram of
choice and output a conforming or non-conforming result indicating where
the set of traces deviates from the expected behavior modeled in the sequence
diagram.

Secondly, it is common for conformance checking papers to use Petri nets
to represent process models [22]. In contrast, we choose to use sequence
diagrams as our starting point to apply conformance checking. There are
tools and approaches that map sequence diagrams to Petri nets [3, 25, 26,
42, 56] that would allow us to take advantage of process mining techniques
to perform conformance checking. Nonetheless, this would require the exe-
cution of an extra step, either using a third-party tool or implementing one
ourselves, and even then it would not be clear how to use it to our advant-
age, since it would require a deeper knowledge of process mining concepts
and terminology.

Thirdly, process models in conformance checking usually refer to business
processes [15]. It is of little importance for our case study to relate the
application’s execution to business processes to reach actionable conclusions.
In contrast, we aim to identify flaws and commonalities in the application’s
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execution without worrying about its business relation.

Finally, a major part of the research output on conformance checking tech-
niques focuses on situations where a complete event log is available [43].
An event log is considered to be complete when the process finishes its ex-
ecution and can then be processed. As we saw before, this is called offline
processing. However, in our case study, we are dealing with microservice
applications that are always executing and have an unbounded sequence of
traces. Hence, it is difficult to determine when a set of traces is complete,
even if we only check for conformance in long fixed time intervals (eg. each
day at night).

In summary, traditional conformance checking is conceptually related to the
problem we want to solve, but its usual formulations and techniques do not
apply to our case study. Besides, to the best of our knowledge, there are
none or limited studies that research conformance checking for microservice
applications. Nonetheless, we apply analogous concepts and techniques to
our implementation in the following chapters.

5.2 Streaming Conformance Checking
We now review existing literature and methodologies related to streaming
conformance checking. We start by noting that a substantial amount of
research papers follow an alignment-based technique [12, 49–51, 57, 59], be-
havioral patterns [13], or a mixed approach between alignments and prob-
ability [1, 39, 54, 58] to perform streaming conformance checking. However,
these are outside of the scope of this thesis since we opted to use a compar-
ison approach to perform conformance checking and leverage some similar
concepts to the ones found in token-replay-based techniques. We leave for
future work to investigate the suitability of alignment techniques for our
case, and if they yield better results.

Broucke et al. [10] propose a four-step process based on the token-replay
technique to perform online conformance checking: decomposition, event
dispatching, replay, and reporting and visualization. The initial stage of
the proposed methodology involves the decomposition of the overall system
Petri net. This process aims to enhance the efficiency of subsequent analyses
and decision-making tasks by breaking down the complex system into a col-
lection of subnets. This strategy allows for a faster processing of each event.
Following the decomposition phase, the collection of subnets is handed over
to an event dispatcher. This component is designed to listen for incoming
events and assess the presence of transitions within each submodel corres-
ponding to a given event. The prototype implementation deploys multiple
worker threads, each responsible for a specific number of submodels, allow-
ing for concurrent checking over multiple subnets. The third step involves
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the actual replay of events on the determined submodels from the previous
phase. This token-based replay approach is preferred over alignment and
behavioral techniques, as it allows for event-level analysis rather than trace-
level analysis. The choice of replay is driven by scalability considerations,
as alternative techniques face challenges in real-time contexts. A potential
drawback of the replay technique is the generation of superfluous tokens,
which may introduce undesired behavioral complexities. Finally, the system
logs various statistics using worker threads and replayers. Decoupled com-
ponents, such as dashboards or persistent data stores, regularly poll and
collect these statistics. Additionally, the methodology incorporates trig-
gers to detect specific situations, such as error rates surpassing predefined
thresholds.

Berti and Aalst [8] present an innovative approach to token-based replay
techniques aimed at addressing challenges such as the slow traversal of invis-
ible transitions and the token flooding problem, which involves placing miss-
ing tokens to facilitate transitions, potentially leading to a state-space explo-
sion. Instead of exhaustively exploring all possible states, the authors focus
on minimal markings where a target transition is enabled. They achieve this
through the implementation of a backward replay technique, departing from
more conventional methods. Additionally, the paper introduces strategies
for identifying frozen tokens that will never be consumed, leading to their
removal from the marking. Moreover, the authors adopt techniques used in
alignment-based conformance checkers to improve the performance of their
innovative approach, such as post-fix caching and activity caching.

In our implementation, we will employ several strategies and techniques
used in the above-mentioned papers. The process detailed by Broucke et al.
[10] gives some light on how we may develop our conformance checker. In
particular, the clever use of worker threads and mapping the right event logs
to worker instances will be similarly implemented for our case study.

Moreover, while our implementation may not explicitly involve tokens, we
anticipate encountering a similar challenge to the frozen tokens problem.
Some instances of our conformance checker may become indefinitely stuck,
awaiting events that signal the termination of a sequence. We can draw
inspiration from Berti and Aalst [8]’s approach, to incorporate strategies
into our conformance checker to address this issue. One possible strategy is
to define a maximum checking time, after which the checker is automatic-
ally concluded. Additionally, the unconventional use of token-based replay
with backward replay also offers valuable insights for optimizing our checker.
We can adopt a less traditional sequence matching approach, where we col-
lect all events related to a specific sequence and only after determining the
sequence as complete or reaching a predefined timeout, execute the conform-
ance checking algorithm, as opposed to processing the sequence in a strictly
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sequential manner.

5.3 Runtime Verification of Microservices
While related work in conformance checking helps us grasp important con-
cepts and strategies on how to implement our conformance checker, it leaves
out important details in the context of our case study: microservice applic-
ations. That is where runtime verification comes in. Runtime verification
can be considered to be the boundary between forms of formal checking and
testing, having a more practical focus than formal verification and a better
view of the execution of the application than testing approaches. Hence,
we will look at common challenges and implementation approaches that are
available in the literature for runtime verification of microservice applica-
tions.

As pointed out in the rapid review from Abdelfattah and Cerny [2], there
is a lack of adequate tools for verification in microservice applications. This
is mainly because, in an industrial setting, several obstacles hinder the us-
age of proposed tools in the literature. Such obstacles are, for instance,
lack of or incorrect specifications of the executing applications, which most
tools depend on to detect violations in the execution. As we will see, the
specification of the applications itself can be done in several different ways
which makes it difficult to come up with a general solution for most cases.
Let us look at some proposed tools and methodologies for the verification of
microservice applications.

ucheck [46] is a tool that checks and enforces invariants, such as RPCs se-
quences, in real-time for microservices. Moreover, upon detecting invariant
communications, ucheck prevents the execution of such RPC sequence. The
effectiveness of the tool is dependent on user-provided models where beha-
vior semantics are defined to allow the tool to check for invariants. ucheck
is deployed at the virtual network layer as a module on the packet pro-
cessing pipeline. This allows for isolation from the microservice itself while
capturing network traffic sent and received by all microservices. This net-
work traffic is converted into meaningful messages that can be checked for
invariants against the supplied models. However, there are some meaning-
ful limitations to this approach. Firstly, the performance of ucheck worsens
as the size of the supplied models grows, potentially hindering application
performance given the placing of the tool in the architecture of the sys-
tems. Moreover, it is not possible to detect all invariants detailed in the
models. ucheck does not access the microservice state and some invariants
might require coordination across microservices to be detected, which in the
worst case would require communication between all microservices in the
application, adding high performance overhead to the execution. Finally,
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the tool assumes that it has access to the messages exchanged between the
microservices. If an encryption method is used, ucheck would not be able
to analyze the message. To overcome this challenge, it would be necessary
to rethink the tool’s placement in the architecture, potentially moving it to
a higher level than the network layer.

We can envision some similar problems to the ones related to the ucheck
tool. The most related obstacle is regarding the size of the models them-
selves. In our case study, if a sequence diagram is very big, for instance
containing dozens of interactions, the time to achieve a conforming or non-
conforming result will be naturally big, with an upper bound being the
difference between receiving the first and last trace necessary to complete
the check. However, it will not have an impact on the application’s per-
formance since our checker will not be placed in between microservices,
but rather alongside it. Furthermore, as we won’t be capturing messages
directly from the microservices themselves but instead instrumenting the
microservices to produce tracing data, we have control over which data is
placed on the traces, thus allowing for encrypted communication during the
normal execution of the application.

Camilli [14] propose a different approach based on Netflix’s Conductor [18]
workflow orchestration tool. For applications that were built using Con-
ductor, this approach eliminates the need to specify models for applications
just for the purpose of verification. Additionally, Conductor blueprints are
transformed into time-basic Petri nets, making it possible to take advantage
of conformance checking techniques. This results in a complete abstrac-
tion from the microservice implementation and the verification is done by
comparing execution traces with execution paths in the Petri net. This, in
turn, allows for an online conformance checking paradigm but, in contrast
with ucheck, it won’t stop nonconforming operations from being executed.
However, the framework is easy to integrate into the architecture of a mi-
croservice application, given that the application takes advantage of the
Conductor tool for modeling. The Conductor tool is indeed the biggest dis-
advantage of this approach since it is not as commonly used for modeling
as UML for example. Nonetheless, the general idea of transforming the ini-
tial modeling representation to a suitable one for comparison with execution
traces can adapted for our implementation.

Finally, we review the lessons learned by Colombo and Pace [17] when im-
plementing runtime verification in industry. Their work results in a list of
recommendations, gathered from the experience of implementing runtime
verification in two case studies, that can be followed by developers to imple-
ment runtime verification in other settings. These recommendations are di-
vided into four different areas, which we detail in the next paragraphs.
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Engineering the properties. Before developing a tool or framework for
runtime verification, it is important to define what properties should be
monitored that are not captured by other methods, like testing, along with
who should define those properties and how they should be expressed.

Engineering the verification code. The authors recommend either finding
a tool that is capable of generating verification code automatically or devel-
oping one from scratch.

Architecture design. Another choice that has to be made is what paradigm
will be followed by the verification tool and where it will be placed in the
overall application architecture. The authors identify three different possib-
ilities: following an offline approach, completely decoupling the verification
tool from the main application and executing it when all the needed outputs
are available; following an online asynchronous approach, where the verific-
ation tool stays decoupled from the main application but delivers results
in real-time; or adoption an online synchronous approach, like ucheck, and
be able to stop wrongful messages from propagating throughout the main
application, and stopping its execution.

Event extraction design. The final decision is related to how the tool will
capture the events it needs to verify the executing application. The authors
propose three possible implementations: a method-call-based approach that
stops execution to capture the event, communication-based events that are
caught at the network layer, and an event-by-design approach that involves
the additional step of instrumenting the application to generate events of
interest.
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Offline Conformance
Checking

6.1 Approach
As previously detailed in Section 4.2.1, we will develop a first version of
our checker under some assumptions that simplify the conformance check-
ing problem at hand. We aim at first developing a checker application that
correctly outputs conforming or non-conforming results (R1), given the exe-
cution of our MDA compared to the initial sequence diagrams, has a minor
impact on the MDA’s execution (R2), and can support multiple sequence
diagrams checking concurrently (R5). Moreover, since the offline paradigm
offers less challenge than an online approach, the offline iteration will be
used as a baseline for comparison against the online iteration in Chapter 7.
For this iteration of our checker, we assume we have access to all the traces
generated for a given workload on the MDA. We only execute the checker
application after the workload is executed in the MDA. In our approach to
developing our conformance checking application, we follow the recommend-
ations from Colombo and Pace [17], described in Chapter 5.

Engineering the Properties

As introduced before in Chapter 2, we want to monitor properties of a
microservice application. More specifically we want to monitor if the com-
munication between the microservices that compose the MDA execute ac-
cording to specification and within a specific time frame. Moreover, these
constraints are defined by the application developers and expressed in UML
sequence diagrams. Furthermore, we verify that our current infrastructure
in Figure 4.2 does not monitor these properties. While using Jaeger in
combination with Grafana can help us analyze and draw some conclusions
regarding the latency and the order of the execution traces from the MDA,
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it is very hard or nearly impossible to accurately monitor the properties we
defined. It is possible to query Jaeger to display the latency of an individual
or an aggregation of traces in Grafana. Moreover, this is consistent with
findings of Bento et al. [7] that report the need for automated analysis be-
sides Jaeger’s ability to visualize tracing data. Still, since the traces do not
directly correspond to the initial sequence diagrams, this approach would
not suit our use case.

Engineering the Verification Code

From Chapter 5, we know that there are no tools that directly tailor to
our conformance checking needs to monitor the aforementioned properties.
Additionally, trying to leverage existing monitoring infrastructure is also
not helpful in fulfilling our case study. Thus, we decide to develop our
conformance checker from scratch.

Architecture Design

The next choice to be made is to choose what paradigm our checker should
adhere to. For now, we will follow an offline approach to develop the first
iteration of our conformance checker. The goal is to later improve this offline
version to an online asynchronous approach to make sure our implementa-
tion adheres to our requirements in Section 2.3. Moreover, this choice has
a direct influence on the modifications that will be made to the already
deployed infrastructure for the MDA. As we will see in Section 6.2.1, these
initial modifications are made to later allow an easier transition to the online
iteration of the checker application.

Event Extraction Design

Finally, we detail how the checker will capture the execution traces from
the MDA. We follow an event-by-design approach, leveraging the fact that
the MDA is already instrumented with OpenTelemetry and, thus is cap-
able of emitting traces that are captured by the OpenTelemetry Collector.
Moreover, the OpenTelemetry Collector ships with multiple plugins and is
highly configurable, giving us the flexibility to choose which tools to use to
achieve our goals.

Checking Scope

Although this is not a part of Colombo and Pace’s recommendation, we find
the need to detail some particularities of the MDA application and how this
influences the development of our checker applications.

Due to the way that the MDA is developed and instrumented, we have
to specify which types of checks and sequence instances our checker will
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support. To check the conformance of execution traces against the sequence
diagram in Figure 4.3, we will assume that each sequence can be uniquely
identified. This is done through a user-defined field in the instrumentation
of the MDA called orderId, a string that corresponds to the name of the
order placed by the user. Looking back at our definitions in Chapter 2, the
interactions derived from a trace set include an orderId, plus all the original
fields.

Moreover, the orderId field can carry several values. As mentioned before,
this value can be the name of the order itself, but it can also be noOrder.
The MDA supports and applies batch processing in some of its workflows.
Let us consider the following example: a user places three orders to the
MDA named Meal1, Meal2, and Meal3. The interaction generated from the
execution traces can contain any of the three order names plus noOrder as
value for the orderId field. If the value of that field is one of the specific
order names, we know that it relates unequivocally to that order. However,
if the field assumes the noOrder value, it can mean that it refers to a batch
operation related to all submitted orders. We will disregard this case and
assume that the interaction does not fulfill the sequence we want to check
since this would require a more complex logic to decide when to include this
interaction as part of a valid sequence or not.

Finally, we will reject derived interactions that are not useful for the se-
quence diagram in use. Similarly to the noOrder case explained above, we
will disregard interactions whose message field does not match any of the
interactions in the sequence diagram, even if they possess matching orderId
fields. This decision implies that we might give a conforming result to a
particular set of traces that has an unexpected interaction that is not part
of the sequence diagram but took part during the execution of the applic-
ation. Furthermore, interactions that have the same attributes apart from
the time they occurred will also be discarded. This is again due to the spe-
cific behavior of the MDA. Thus, we will only consider the first occurrence
of an interaction for each order when performing the conformance checking.
This will also be the case for the online iteration.

Let us consider again our notation from Chapter 2, where we add the orderId
field introduced in this section as the last value of an interaction, and the
sequence diagram in Figure 2.2. As an example, consider that we derive the
following interactions from a set of execution traces:
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I = (i1, i2, i3, i4, i5, i6, i7),
i1 = (message, ServiceA, ServiceB, messageA, Meal1),
i2 = (message, ServiceA, ServiceB, messageA, noOrder)
i3 = (message, ServiceB, ServiceC, messageB, Meal1),
i4 = (message, ServiceA, ServiceB, messageA, Meal1)
i5 = (message, ServiceB, ServiceC, messageD, Meal1)
i6 = (message, ServiceA, ServiceB, messageA, Meal2),
i7 = (message, ServiceC, ServiceA, messageC, Meal1).

We want to check if the Meal1 order conforms to the sequence diagram
in Figure 2.2. Following the conditions outlined in this section, we would
only accept i1, i3 and i7. These directly match the interaction that can be
derived from the sequence diagram since they follow the order depicted in the
diagram, have the same message contents, and have the same actors sending
and receiving the messages. i2 would be rejected since it has noOrder as a
value in the orderId field. Similarly, i6 would be rejected because it concerns
the Meal2 order and not the intended Meal1. In the case of i4, we would
reject the interaction given that it is a repetition of i1 at a different time.
Since we consider orderId values to be unique we will not consider the cases
where interactions are repeated. Finally, i5 is also rejected since its content
field contains value messageD, that does not participate in this sequence
diagram. We will not give a nonconforming result since this interaction can
potentially be part of another sequence diagram.

6.2 The Offline Checker
We will now present the specifics of the first iteration of our conformance
checking application. We start by refining our initial architecture by includ-
ing a service that collects the execution traces from the MDA, followed by
the preprocessing of these traces so that they are in a suitable format to
be used by the checker. Finally, we introduce the algorithm that matches a
sequence diagram to the processed execution traces.

6.2.1 Architecture
To accommodate our checker we have to make some changes to the over-
all architecture presented in Figure 4.2. As previously stated, the Open-
Telemetry Collector gathers the execution traces from the MDA. We could
directly export the traces from the Collector to our checker application.
However, this would couple both applications together, which could lead
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Figure 6.1: Architecture for MDA and Offline Checker.

to some traces being lost if the checker cannot process the traces as fast
as the Collector can export them. Instead, we deploy Apache Kafka [5],
an open-source distributed event streaming platform that sits between the
Collector and the checker, uncoupling both services, while providing highly
available and resilient storage for traces as a message queue. The Collector
publishes execution traces to Kafka and the checker consumes these traces
at different rates. Moreover, Kafka will be particularly useful when we move
to the online paradigm for our checker. This is detailed in Chapter 7. The
new architecture is depicted in Figure 6.1.

Furthermore, this architecture follows good practices of implementation for
observability workflows [55]. The MDA is instrumented with OpenTelemetry
and emits telemetry data. This data is then collected by the OpenTelemetry
Collector and stored in a Kafka Queue. The checker processes and analyzes
telemetry data and finally reports the results through output files.

6.2.2 Processing Execution Traces
Before delving into the checking phase, a crucial preprocessing step needs to
be performed to refine and structure raw sequence diagrams and execution
traces. We opted to apply a comparison-based approach to perform con-
formance checking. Thus, it is essential to have both the sequence diagram
and execution traces in a comparable format for our checker to produce res-
ults. In Chapter 2, our formal definition gives a generic format that can be
derived from both artifacts making them easily comparable. Moreover, at
the beginning of this chapter, we introduced the orderId field, which makes
a series of execution traces uniquely identifiable for checking.

On one hand, to achieve this format for sequence diagrams, we process
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PlantUML definitions to generate the set of interactions that characterize
a sequence diagram. The resulting format for the PlantUML specification
in Figure 4.3 is given in Listing 6.1. This format is a very close match to
our previous formal definition of sequence diagrams. The first and last lines
allow us to identify the timing constraint that the sequence diagram imposes.
All the other lines are an exact match to our interaction definition. This
format is saved as a file that can be loaded by the checker when performing
conformance checking.
[" TimingStart ", "250000" , "" , ""]

2 [" Message ", " PlannerService ", " DeliveryControlService ",
" MonitorNotification "]

[" Message ", " MealDispatchingService ",
" MealPreparingService ", " MealPreparationRequest "]

4 [" Message ", " MealDispatchingService ", " PlannerService ",
" ScheduleUpdateNotification "]

[" Message ", " MealPreparingService ",
" MealDispatchingService ", " MealPreparationResponse "]

6 [" Message ", " MealPreparingService ",
" MealDeliveringService ", " DispatchDeliveryRequest "]

[" Message ", " MealDeliveringService ",
" MealPreparingService ", " DispatchDeliveryResponse "]

8 [" Message ", " MealPreparingService ",
" MealDispatchingService ",

" MealPreparationUpdateNotification "]
10 [" Message ", " MealPreparingService ", " PlannerService ",

" MealPreparationUpdateNotification "]
[" Message ", " MealDeliveringService ", " PlannerService ",

" DeliveryUpdateNotification "]
12 [" TimingEnd ", "" , "" , ""]

Listing 6.1: Example transformation of a PlantUML specification.

From the execution traces, there is more work that needs to be done. The
traces are published to Kafka in the format shown in Listing 4.2. Even
though this is a structured format, it is not very flexible and workable to
perform conformance checking. Thus, we parse traces into custom Python
objects that can be manipulated according to our specific needs. This is
followed by the execution of the findInteractions procedure. This pro-
cedure follows the logic presented in Section 2.2.3 to derive interactions from
the spans that are part of a specific trace. In contrast with our definition,
the output of findInteractions has some differences. These differences
simplify the processing of the traces themselves and the findInteractions
procedure detailed below. Firstly, the interactions do not include the type
field, since we assume that all interactions gathered by the procedure are of
type message. Moreover, we include a timestamp field that represents the
time that the interaction was started (when the message was sent). This
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field will be used to calculate the time elapsed between the first and last in-
teraction in a set of interactions being checked. Additionally, as introduced
earlier in this chapter we have an orderId field to uniquely identify each
set of interactions. Also, in our object representation for the spans in each
trace, there is a reference to the direct children of that span. This is done by
following the parent field. Each trace object has a reference to its root span.
Finally, we note that some extra fields are generated by the procedure that
are not important for the conformance checking. Hence, we will omit them.
The findInteractions procedure is listed in Listing 6.2 and an example of
a possible output is shown in Listing 6.3.
function findInteractions (span , interactionList )

2 if span. operation
if span. operation = " preSend "

4 interactionFound <- FALSE
for child ∈ sp. children

6 if child. operation = " preReceive "
interactionFound <- TRUE

8 interactionList .add([span.service ,
child.service , child.content ,
span.start , span. orderId ])

endif
10 endfor

if ! interactionFound
12 for child ∈ span. children

findInteractions (child ,
interactionList )

14 endfor
endif

16 endif
endif

18 else
for child ∈ sp. children

20 findInteractions (child , interactionList )
endfor

22 endelse
endfunction

Listing 6.2: findInteractions procedure.

[" PlannerService ", " DeliveryControlService ",
" MonitorNotification ", t, " MEAL10 .9"]

2 [" MealDispatchingService ", " MealPreparingService ",
" MealPreparationRequest ", t, " MEAL10 .9"]

[" MealDispatchingService ", " PlannerService ",
" ScheduleUpdateNotification ", t, " MEAL10 .9"]

4 [" MealPreparingService ", " MealDispatchingService ",
" MealPreparationResponse ", t, " MEAL10 .9"]
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[" MealPreparingService ", " MealDeliveringService ",
" DispatchDeliveryRequest ", t, " MEAL10 .9"]

6 [" MealDeliveringService ", " MealPreparingService ",
" DispatchDeliveryResponse ", t, " MEAL10 .9"]

[" MealPreparingService ", " PlannerService ",
" MealPreparationUpdateNotification ", t, " MEAL10 .9"]

8 [" MealPreparingService ", " MealDispatchingService ",
" MealPreparationUpdateNotification ", t, " MEAL10 .9"]

[" MealDeliveringService ", " PlannerService ",
" DeliveryUpdateNotification ", t, " MEAL10 .9"]

Listing 6.3: Example output of the findInteractions procedure. The
timestamp field is replaced by t to avoid long lines. All ts represent distinct
timestamps in nanoseconds.

As we will see in the next section, the findInteractions procedure is ex-
ecuted after each trace is processed and a trace object is created. Each trace
has a variable pointing to the root span of that trace. The procedure is first
called with the root span and a list object passed as a reference. This list
will be modified with the interactions found by the procedure. The proced-
ure starts to evaluate if the operation of the span is preSend in Line 3. If
this condition is true, the algorithm loops through the children of that span
to find if any have an operation name with the value preReceive between
Line 5 and Line 10. For each child span that contains a preReceive op-
eration name, an interaction is added to the interactionList variable in
Line 8. Alternatively, if no interaction is found, findInteractions is called
for each child of that span between Line 11 and Line 15. Similarly, if the
condition in Line 2 is false, findInteractions is again called for each child
of the original span between Line 19 and Line 21.

6.2.3 The Checker Algorithm
Finally, we put everything together and develop the logic behind the offline
checker. To perform offline conformance checking, we execute the following
steps:

1. Consume and buffer all messages in Kafka.

2. Stop the MDA execution to stop the production of more execution
traces.

3. Preprocess all traces to generate the set of interactions to be checked.

4. Find all unique orders present in the interactions.

5. For each order, find the relevant interactions that are part of the se-
quence diagram. This is where the actual checking is performed.
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6. Output results and stats.

A more detailed description of this process is shown in Listing 6.4.
1 sd <- ordered list of processed sequence diagram

interactions
t <- timing constraint in sd

3

kafka <- queue of execution traces
5

traceObjs <- []
7 for event ∈ kafka

traceObj <- readTrace (event)
9 tracesObjs .add( traceObj )

endfor
11

interactionList <- []
13 for trace ∈ traceObjs :

findInteractions (trace.rootSpan , interactionList )
15 endfor

17 interactionList .sort(key <- interaction . timestamp )

19 orderSet <- {}
for interaction ∈ interactionList

21 orderSet .add( interaction . orderId )
endfor

23 orderSet . remove (’noOrder ’)

25 for order ∈ orderSet
sdCopy <- sd

27 selectedInteractionsSet <- {}
// finding interactions that are part of sd

29 for interaction ∈ interactionList
if interaction . orderId != order

31 continue
endif

33 if interaction ∈ sdCopy ∧ interaction /∈
selectedInteractionsSet
selectedInteractionsSet .add( interaction )

35 sdCopy . remove ( interaction )
endif

37 if sdCopy = []
break

39 endif
endfor

41 // verification
selectedInteractionsSet .sort(key <- interaction .

timestamp )
43 duration <- selectedInteractionsSet [ -1].end -
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selectedInteractionsSet [0].start
if sdCopy != []

45 writeResults (" NONCONFORMING_MISSING ",
selectedInteractionsSet , duration )

endif
47 for j ∈ [0.. len( selectedInteractionsSet )]

if selectedInteractionsSet [j] != sdCopy [j]
49 writeResults (" NONCONFORMING_OUT_OF_ORDER ",

selectedInteractionsSet , duration )
endif

51 if duration > t
writeResults (" NONCONFORMING_TIME ",

selectedInteractionsSet , duration )
53 endif

writeResults (" CONFORMING ", selectedInteractionsSet ,
duration )

55 endfor

Listing 6.4: Algorithm for the offline conformance checker.

The readTrace function receives a Kafka event in JSON format, parses it,
and returns a custom Python trace object containing relevant information
for each trace. Each trace object is a collection of span objects, similar to
our formal definition in Chapter 2.

The writeResults procedure outputs the conformance checking results to
a file so that after the execution of the checker we can visualize the results.
Moreover, in this listing, we omitted code related to capturing and calcu-
lating statistics for simplicity. These statistics are also an output of our
conformance checker.

Additionally, we adopt a strategy that minimizes the impact of out-of-order
or incomplete traces. This is mitigated by configuring the OpenTelemetry
Collector with the Group by Trace Processor [30] that is configured to
hold individual spans for 10 seconds and aggregate them by traceId. This
ensures that if all spans that compose an execution trace arrive at the Col-
lector within a 10-second time window, the complete trace will be forwarded
to our Kafka queue. Most execution traces of the MDA have a duration that
is lower than 10 seconds, with some occasionally taking 4 minutes or longer.
This is due to the way the MDA is instrumented. However, this detail does
not impact the execution of the checker or its results, since these execu-
tion traces are not part of the sequence diagram in use. It is important
to note that this is a configurable parameter. It is possible to configure
the OpenTelemetry Collector to hold traces for longer periods, depending
on the memory available for the Collector. Additionally, given that the
checker collects all the execution traces available in Kafka and only after
starts processing them allows for a trivial solution to out-of-order events: it
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is sufficient to sort interactions by their timestamp as indicated in Line 11
of Listing 6.4.

The algorithm is divided into three different parts: initialization, finding
interactions, and verification.

Initialization. We start by loading the desired sequence diagram, already
processed like in Listing 6.1, along with the timing constraint associated
with the diagram in Lines 1 and 2. This is followed by the checker initiating
a connection to the Kafka queue where the OpenTelemetry Collector is
publishing raw traces in Line 4. After we stop the MDA’s execution, we
read all traces in Kafka, creating a trace object for each event present in
the queue and adding the trace objects into the traceObjs list between
Line 6 and Line 10. After the creation of all the trace objects, we proceed to
execute the findInteractions procedure for all traces and sort the resulting
interactionsList in Lines 12 to 17. To finalize the initialization part, we
again loop through all interactions to find all the unique order ids present in
the list between Line 10 and Line 22. Additionally, we remove the noOrder
value from the orderSet, per the scope we defined at the beginning of this
chapter.

Finding Interactions. In this part, we start the actual checking by finding
all the interactions that relate to the orders present at the orderSet, one
by one. First, we create a copy of our sequence diagram in Line 26, to
allow for the reuse of the sequence diagram without loading it again. This
is followed by collecting all the interactions that have the orderId field equal
to the order variable in the for loop that starts on Line 25, and that are
part of sdCopy. In Line 30 we reject interactions that don’t have a matching
orderId and in Line 33 we accept interactions that are part of sdCopy and
are not already present in the selectedInteractionSet variable, to avoid
duplicates. Additionally, we remove the equivalent interaction from sdCopy
in Line 35, given that when we have an empty sequence diagram, we know to
have found all the needed interactions that belong to the sequence diagram
for the initial order id. This is evaluated in Line 37.

Verification. Upon finding a complete set of interactions, we check if the
interaction present in selectedInteractionsSet adhere to the constraints
imposed by the sequence diagram. We start by sorting the interactions in
the set in Line 42 by their timestamp. After, we calculate the total duration
of the sequence by subtracting the timestamp of the first event in the sorted
set from the last event in the set in Line 43. We start by checking in Line
44 if the sdCopy variable is empty. If not, it means we haven’t found a
complete set of interactions that satisfy the sequence diagram in the loop of
Line 29. Thus, we output a nonconforming result due to some interactions

Real-Time Conformance Checking for Microservice Applications 48



CHAPTER 6. OFFLINE CONFORMANCE CHECKING

being missing. If we have a complete set of interactions, we loop over the
sorted set between Lines 47 and 50 and compare it to the order in sdCopy.
If at any point there is a mismatch between the selectedInteractionsSet
and the sequence diagram, we output a nonconforming result due to some
interactions being out of order. The last check to be made is if the set of
interactions adheres to the timing constraint t. If the total duration is bigger
than t, we output a nonconforming result due to time violation in Lines 51
to 53. Finally, if all conditions are satisfied, we output a conforming result
in Line 54.

6.2.4 Evaluation
We now evaluate the implementation of our offline conformance checker.
The goal of this section is to assess if the offline implementation meets the
requirements defined in Section 2.3. We start by outlining the experiments’
design, followed by an in-depth analysis of all the experimental runs and
how the checker is impacted by higher-volume experiments.

Experimental Design

As we saw before, in order to generate telemetry data to be used by the off-
line checker, we need to submit meal orders to the MDA. These orders can
be configured to be executed in a determined amount of time. Moreover, the
more orders are submitted to the MDA, the more telemetry data is gener-
ated, and the longer the execution time of the MDA and the checkers are. We
draw up the experiments described in Table 6.1 to evaluate the performance
of the offline checker, following the metrics described in Section 4.2.3 and
against the requirements in Section 2.3. Experiment 0 allows us to evaluate
if the checker is correct (R1), by submitting an order that should be labeled
as conforming, one that should be labeled as nonconforming due to a time
constraint violation, and finally, an order that will be stopped mid-execution
and should be labeled as nonconforming due to missing spans. These three
orders demonstrate that the checker correctly identifies and processes all
relevant cases that we want to check. The rest of the experiments consist
of 20-second orders with varying order sizes. Orders are submitted to the
MDA with a 10-millisecond interval in each experiment. This allows us to
grasp the efficiency (R2), fastness (R3), and scalability (R4) of the offline
checker. Finally, we will also discuss the checker’s ability to use multiple
sequence diagrams (R5) to conclude our evaluation.

R1: Correctness

We start by determining if the checker can correctly identify conforming
and nonconforming sequences. As mentioned earlier, this is the main pur-
pose of Experiment 0. In the sequence diagram used for these experiments,
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Experiment No No of Orders Order Time Delay b/w Orders

0 3 20s, 30s, 60s 10 ms
1 1 All 20s 10 ms
2 10 All 20s 10 ms
3 50 All 20s 10 ms
4 100 All 20s 10 ms
5 200 All 20s 10 ms
6 300 All 20s 10 ms
7 400 All 20s 10 ms
8 500 All 20s 10 ms

Table 6.1: Description of experiments executed. The delay between orders
corresponds to a waiting time before submitting a new order to the MDA.

presented in visually Figure 4.3 and textually in Listing 6.1, it is defined
what interactions must be identified in a set of traces for the traces to be
labeled as conforming, along with the maximum duration that the sequence
can take. The first order of Experiment 0, with orderId set as CORRECT
is configured to take 20 seconds and should be labeled as conforming by
the checker, while the second order named TIME_VIOLATION is configured
to take 30 seconds, violating the timing constraint present on the sequence
diagram of 25 seconds, and thus should be labeled as nonconforming. Fi-
nally, the final order with orderId value UNFINISHED is configured to take
60 seconds. However, we will interrupt the execution before the full extent
of the order can be executed by the MDA, meaning that the checker will
not see the necessary traces to label the sequence as conforming. Thus, we
expect a nonconforming result due to missing interactions. In the following
listings, we present the output of the offline checker for this experiment. For
all listings below, the timestamp field is replaced by t to avoid long lines.
Moreover,ts represent distinct timestamps in nanoseconds, and the metrics
in the last line of each listing are measured in seconds.

Starting with the 20-second order of Experiment 0, we can observe in List-
ing 6.5 the interactions that the checker chose to verify the conformance
against the supplied sequence diagram. As expected, the checker gives a
conforming result, since it was able to capture all the interactions present
in the sequence diagram, and the Sequence Time was lower than the 25
seconds allowed by the sequence diagram (represented by Max Time in the
listing). We look at the Check Time and Reaction Time metrics later in this
chapter.
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1 Result : CONFORMING
[" PlannerService ", " DeliveryControlService ", "

MonitorNotification ", t, " CORRECT "]
3 [" MealDispatchingService ", " MealPreparingService ", "

MealPreparationRequest ", t, " CORRECT "]
[" MealDispatchingService ", " PlannerService ", "

ScheduleUpdateNotification ", t, " CORRECT "]
5 [" MealPreparingService ", " MealDispatchingService ", "

MealPreparationResponse ", t, " CORRECT "]
[" MealPreparingService ", " MealDeliveringService ", "

DispatchDeliveryRequest ", t, " CORRECT "]
7 [" MealDeliveringService ", " MealPreparingService ", "

DispatchDeliveryResponse ", t, " CORRECT "]
[" MealPreparingService ", " MealDispatchingService ", "

MealPreparationUpdateNotification ", t, " CORRECT "]
9 [" MealPreparingService ", " PlannerService ", "

MealPreparationUpdateNotification ", t, " CORRECT "]
[" MealDeliveringService ", " PlannerService ", "

DeliveryUpdateNotification ", t, " CORRECT "]
11 Check Time: 0.000106854 Sequence Time: 20.09

Max Time: 25.00 Reaction Time: 82

Listing 6.5: Output of the offline checker for the 20-second order of
Experiment 0.

Moving on to the 30-second order submitted on Experiment 0, we observe in
Listing 6.6 that the chosen interactions are labeled as NONCONFORMING_TIME,
due to the Sequence Time of the interaction being greater than the allowed
25 seconds.

1 Result : NONCONFORMING_TIME
[" PlannerService ", " DeliveryControlService ", "

MonitorNotification ", t, " TIME_VIOLATION "]
3 [" MealDispatchingService ", " MealPreparingService ", "

MealPreparationRequest ", t, " TIME_VIOLATION "]
[" MealDispatchingService ", " PlannerService ", "

ScheduleUpdateNotification ", t, " TIME_VIOLATION "]
5 [" MealPreparingService ", " MealDispatchingService ", "

MealPreparationResponse ", t, " TIME_VIOLATION "]
[" MealPreparingService ", " MealDeliveringService ", "

DispatchDeliveryRequest ", t, " TIME_VIOLATION "]
7 [" MealDeliveringService ", " MealPreparingService ", "

DispatchDeliveryResponse ", t, " TIME_VIOLATION "]
[" MealPreparingService ", " MealDispatchingService ", "

MealPreparationUpdateNotification ", , " TIME_VIOLATION
"]

9 [" MealPreparingService ", " PlannerService ", "
MealPreparationUpdateNotification ", t, "
TIME_VIOLATION "]
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[" MealDeliveringService ", " PlannerService ", "
DeliveryUpdateNotification ", t, " TIME_VIOLATION "]

11 Check Time: 0.000151412 Sequence Time: 30.06
Max Time: 25.00 Reaction Time: 69

Listing 6.6: Output of the offline checker for the 30-second order of
Experiment 0.

Finally, we look into the 60-second order, the last order submitted in Ex-
periment 0. We purposefully interrupt the execution of this order to show
that the offline checker can handle cases where traces, and in this case in-
teractions, are missing from the telemetry data captured during the MDA’s
execution. As expected, the checker outputs a nonconforming result due to
some spans being missing. This can be seen in Listing 6.7.

1 Result : NONCONFORMING_MISSING
2024 -02 -14 10:14:31

3 [" PlannerService ", " DeliveryControlService ", "
MonitorNotification ", t, " UNFINISHED "]

Check Time: 0.000148652 Sequence Time: 0.0 Max Time: 25
Reaction Time: 57

Listing 6.7: Output of the offline checker for the 60-second order of
Experiment 0.

As a final remark on the checker’s correctness, we note that the implement-
ation also outputs a correct result if the interactions were to be out-of-order.
This would happen if the application executes a certain meal order in a dif-
ferent sequence than the one specified in the target sequence diagram. This
behavior is detected in Listing 6.4 in Lines 47 to 50. However, we were not
able to experimentally demonstrate this, as it would require changing the
MDA application to execute operations in a different order. In this case,
the checker would output a NONCONFORMING_OUT_OF_ORDER result.

Let us now consider Experiments 1 to 8. We will analyze the results and look
at how the metrics change with the higher loads of the experiments. This
will allow us to verify if the checker meets R2, R3, and R4. All experiments
include 20-second orders, varying only the number of orders submitted in
each experiment. Moreover, we expect that all orders will be labeled by the
checker as CONFORMING. In Figure 6.2, we can see the total checks realized
in each experiment, along with the number of checks labeled as CONFORMING
and NONCONFORMING. The checker outputs the expected result for all sub-
mitted orders in each experiment.
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Figure 6.2: Overview of Experiments 1 to 8 and their checking results.

R2: Efficiency

To evaluate the efficiency of the offline checker we look at the CPU and
memory (RAM) consumption throughout the experiments, and the weight
of the needed infrastructure for Experiment 8, since it is the experiment that
gives a higher load to the system. Starting with the CPU and memory con-
sumption for all infrastructure in Experiment 8, we can observe in Figure 6.3
it is very low through most of the experimental run, almost always below
0.5%, except at the end where the offline checker peaks around 3% CPU us-
age. We will examine this behavior later in this chapter. On the other hand,
in Figure 6.4 we can see that RAM consumption presents a different pattern.
While the offline checker’s RAM remains fairly low across the experiment,
Kafka and the OpenTelemetry Collector have a rising RAM consumption
throughout the experiment and with higher values than the checker. This
can be attributed to the fact that the Collector and Kafka handle and store
dense JSON files, while the checker handles slimmer versions of these JSON
files as Python objects. Thus, it is expected that with larger data volumes,
the RAM consumption will keep increasing. This can be mitigated in Kafka
by setting smaller data expiration dates instead of the default 7 days. This
expiration date has to be sufficient for the checker to consume the execution
traces from Kafka. Regarding the Collector, it is harder to optimize since
it handles telemetry data emitted by the target application.
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Figure 6.3: CPU consumption for all infrastructure necessary for the checker
in Experiment 8.

Considering CPU and memory consumption for the checker only, we can ob-
serve how these metrics vary with higher loads in the different experiments
in Figure 6.5 and Figure 6.6, by analyzing the peaks for each metric. Start-
ing with RAM consumption, we can see that the peak RAM consumption
remains more or less constant below 20MB in each experiment, highlighting
that the strategy chosen to process the incoming events from Kafka applies
to our use case. On the other hand, the maximum CPU consumption shows
a growing trend with a higher volume of orders submitted to the MDA.
This is due to the strategy implemented to do the checking in the offline
paradigm, where the checker only consumes events throughout an experi-
ment and only in the end processes everything. This behavior is consistent
with the one shown in Figure 6.3 for Experiment 8. At the end of the ex-
periment, we see a spike in CPU consumption that corresponds to when the
actual checking takes place.

Nonetheless, regarding the efficiency of consuming resources, the checker
presents a low resource consumption overall, for the resources available for
these experimental runs.
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Figure 6.4: RAM consumption for all infrastructure necessary for the checker
in Experiment 8.

Figure 6.5: Maximum CPU consumption for the offline checker through
Experiments 1 to 8.
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Figure 6.6: Maximum RAM consumption for the offline checker in each
experiment through Experiments 1 to 8.

R3: Fastness

We now turn our attention to two other metrics that tell us how fast the
checker can process traces and output conformance results. The first one we
look at is the check time. This metric measures the time elapsed since the
checker first started checking a certain order until it’s finished. In Figure 6.7,
we can see the average check time for all orders in each experiment. No
matter the size of the experiment, the average time remains constant and
close to 0 seconds. This means that once the checker has all the data it
needs to produce a conformance result, it can do so in a very short amount
of time. In contrast, we can observe the average reaction times for orders
in each experiment in Figure 6.8. This metric represents the time elapsed
between the timestamp in the first interaction and the time that the checker
outputs a conforming or nonconforming result. There is a consistent increase
in the average reaction time with experiments that are composed of more
orders. Our current implementation only starts processing the execution
traces when the MDA application is stopped. This means that the checker
only outputs a conformance result first order submitted to the MDA after
it possesses all execution traces for all orders. Thus, the time to get a
result will be equal to the time that the MDA was running. For instance,
Experiment 8, which consists of 500 orders, has an average reaction time
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Figure 6.7: Average check times for the offline checker through Experiments
1 to 8.

close to 3500 seconds and we can see in Figure 6.3 that the experiment ran
for close to 6500 seconds, which is close to double the average reaction time
for the experiment. Hence, our current implementation does not meet this
requirement, since we want to be able to act fast against nonconforming
traces.

R4: Scalability

As previously observed, while resource consumption remains consistently low
across all experimental runs, a concerning pattern emerges in CPU usage as
the volume of orders processed increases. This indicates a scalability issue
with our offline implementation, as peak CPU usage continues to rise with
the growing number of orders. Additionally, we have noted a detrimental im-
pact on reaction times with larger experiments, evidenced by the increasing
average time to react as experiment size expands. This further underscores
the inadequate scalability of our implementation, as it will increasingly delay
the fulfillment of conformance results for submitted orders.

R5: Extensibility

For our final requirement, we designated that the checker should be easily
extensible to allow for the use of multiple sequence diagrams. Although we
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Figure 6.8: Average reaction times for the offline checker through Experi-
ments 1 to 8.

do not present an experiment in this section that directly validates that this
requirement is met, we note that the checker is agnostic with regard to the
sequence diagram that is used. This means that the checker can be deployed
with any sequence diagram in the PlantUML specification language, and
following the initial constraints in Chapter 2, since we do not support the
full syntax of the diagrams. Moreover, to check multiple sequence diagrams
at the same time, it is only necessary to deploy the checker application with
a different sequence diagram, as they work independently and get the same
traces from Kafka.
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Online Conformance
Checking

7.1 Motivation
In the previous chapter, we presented our first attempt at building a con-
formance checker for our microservice application. We used an offline pro-
cessing paradigm to analyze execution traces in batches after a certain
amount of time had elapsed.

This approach already fulfills most of our requirements. The checker cor-
rectly captures, processes, and matches execution traces to a provided se-
quence diagram, producing correct conformance results (R1). Moreover,
the design decision regarding the placement of the checker in the overall
architecture, with the addition of using Kafka ensures that its execution is
decoupled from the MDA, thus not impacting the normal flow of the main
application, while also consuming minor hardware resources (R2). Further-
more, we can argue that the checker is also extensible (R5) since checking
different sequence diagrams is achieved by deploying another checker in-
stance with a different sequence diagram as input. However, as predicted,
the offline approach falls short of the other two requirements. The offline
version of the checker is not fast, since the reaction time to each interaction
will be, in the worst case, as slow as the time elapsed between the actual
execution of the interaction and the time that we actually process the trace,
that is equal to the time that the MDA is running and executing workflows
(R3). Moreover, it is hard to make the case that our checker is scalable (R4)
since it is currently developed as a single unit of work that needs the full
execution context to be able to operate correctly.
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7.2 From Offline to Online Conformance Checking
To address requirements R3 and R4 we switch our approach to online (real-
time) processing of execution traces. Instead of gathering all execution
traces and only doing the necessary processing for conformance checking
afterward, we aim to process a trace immediately after it is available in
Kafka. This would decouple the reaction time from the MDA’s execution
time, allowing for faster conformance results. Moreover, as this change in
paradigm will need several adaptions to how we process and deliver con-
formance results, it is a chance to modularize our checker and more easily
identify where the checker can be scaled to handle bigger loads.

More concretely, we adopt an online asynchronous approach [17] to develop
the online version of our checker, in favor of the online synchronous ap-
proach, to maintain the MDA and the checker application decoupled and
independent from one another, and minimize the impact the checker has on
the MDA’s regular execution (R2). This also directly influences our decision
regarding the placement of the online checker in our architecture: we deploy
the checker similarly to the offline checker, instead of following an approach
like ucheck [46], which is deployed close to each microservice and intercepts
the communications between them.

Additionally, our algorithm also needs to be adapted. In the online pro-
cessing paradigm, we don’t have access to the full context nor do we know
when that context will be available. Thus, we need to find a strategy that
allows the checker to follow an online approach for faster reaction times,
without sacrificing its correctness. Drawing inspiration from Burattin’s
streaming conformance checking approaches [11], we use a hybrid approach
between window-based and problem-reduction approaches. We start by ap-
plying a window of a single trace followed by reducing our problem from
matching an entire set of traces to a sequence diagram to checking if the
interactions derived from a single trace are part of the sequence diagram.
Moreover, our approach correctly handles interactions that come out of or-
der. In this approach, we capture relevant events in any order that they are
received, and only after having a complete set of interactions that can be
compared to the sequence diagram, do we initiate the conformance checking
by sorting those interactions based on their execution time.

This strategy creates the necessity of keeping the state of the orders that
are being checked since now multiple orders can be checked simultaneously,
in contrast to our offline approach where we searched for all the relevant
interactions for each orderId present, one order at a time. Thus, we im-
plement a mechanism similar to the one proposed by Broucke et al. [10]:
instead of using worker threads to concurrently check subnets, we create a
mapping between an orderId and a checker instance to correctly route each
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interaction to the right checker. Finally, we have to account for the problem
of not knowing if a given interaction will arrive or if it was actually executed
by the MDA. We apply a similar approach to the one followed by Berti and
Aalst [8], by assigning to each checker instance in use a 10-second keep-alive
timeout. When the timeout expires, the checker outputs a nonconforming
result, considering that there are missing interactions to validate against the
sequence diagram. Moreover, this prevents checker instances from accumu-
lating, due to never being terminated and thus overly consuming memory
resources.

7.3 The Online Checker
Building on the previous sections in this chapter, we present the online
version of the conformance checker introduced in Chapter 6. As before, we
modify the overall architecture, followed by changing the algorithm to take
into account the new checker paradigm.

7.3.1 Architecture
We are now able to fully leverage the Kafka service first deployed in the
offline version of the checker. The checker polls Kafka and consumes each
event present in the queue immediately, instead of buffering its full content
as before. Moreover, in Figure 7.1, we can see that we maintained the
offline checker deployed next to the online version. This is consistent with
the approach described in Chapter 4 to allow for an accurate evaluation of
the online implementation against the offline checker, due to the challenges
of replicating and comparing different experimental runs. Moreover, we
can delegate to Kafka the work of keeping track of which events have been
consumed for each checker instance. This is done by using the consumer
group’s configuration in Kafka. Each checker instance is assigned a different
consumer group ID, and Kafka manages which event should be consumed
by each checker autonomously.

7.3.2 Checker Algorithm
The most significant changes lie in the algorithm used to perform the actual
checking. Instead of collecting and buffering every execution trace available
in Kafka in one go, we introduce the poll function that returns a single event
present in the queue. That event is then processed as before resulting in a list
of interactions. Each interaction is then passed to the right checker instance
that possesses the same orderId as the interaction being used. Moreover,
we keep track of the checker instances through a map indexed by orderId
and whose value is the actual checker instance. Each checker is a class
that contains an attribute startTime, a timestamp equivalent to the time
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Figure 7.1: Architecture for MDA and Online Checker.

that the checker instance was created, and methods run and verify. The
run method updates the checker state upon the arrival of an interaction,
while the verify method is executed once a set of interactions satisfies a
complete sequence diagram, or the checker is given a termination signal. If
the checker instance still exists after a 10-second window, we output the
conformance results up to that point and eliminate the instance. Finally,
although not visible in the algorithm presented here, we separated the code
that captures the checker execution stats into its separate class to allow it
to be shared between instances and make sure that the stats are coherent.
The new algorithm is described in Listing 7.1.
sd <- ordered list of processed sequence diagram

interactions
2 t <- timing constraint in sd

4 kafka <- queue of execution traces

6 activeCheckersMap <- {}

8 while kafka != []
trace <- poll(kafka)

10 traceObj <- readTrace (trace)

12 interactionList <- []
findInteractions (trace.rootSpan , interactionList )
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14 interactionList .sort(key <- interaction . timestamp )

16 for interaction ∈ interactionList
if interaction . orderId /∈ activeCheckersMap

18 activeCheckersMap [ interaction . orderId ] = new
Checker (sd , getCurrentTime (), t)

endif
20 isCheckFinished <- activeCheckersMap [ interaction .

orderId ].run( interaction )
timeElapsed <- getCurrentTime () -

activeCheckersMap [ interaction . orderId ].
startTime

22 if isCheckFinished ∨ timeElapsed > 10
activeCheckersMap [ interaction . orderId ]. verify

()
24 delete activeCheckersMap [ interaction . orderId ]

endif
26 endfor

endwhile
28

class Checker (sd , timestamp , t)
30 sdCopy <- sd

startTime <- timestamp
32 maxDuration <- t

selectedInteractionsSet <- {}
34

function run( interaction )
36 if interaction ∈ sdCopy ∧ interaction /∈

selectedInteractionsSet
selectedInteractionsSet .add( interaction )

38 sdCopy . remove ( interaction )
endif

40 if sdCopy = []
return TRUE

42 endif

44 return FALSE
endfunction

46

function verify ()
48 selectedInteractionsSet .sort(key <- interaction .

timestamp )
duration <- selectedInteractionsSet [ -1].end -

selectedInteractionsSet [0].start
50 if sdCopy != []

writeResults (" NONCONFORMING_MISSING ",
selectedInteractionsSet , duration )

52 endif
for I ∈ [0.. len( selectedInteractionsSet )]
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54 if selectedInteractionsSet [i] != sd[i]
writeResults (" NONCONFORMING_OUT_OF_ORDER

", selectedInteractionsSet , duration )
56 endif

if duration > maxDuration
58 writeResults (" NONCONFORMING_TIME ",

selectedInteractionsSet , duration )
endif

60 writeResults (" CONFORMING ",
selectedInteractionsSet , duration )

endfunction
62 endclass

Listing 7.1: Algorithm for the online conformance checker.

There are some fundamental changes to the algorithm presented in List-
ing 6.4. Instead of reasoning about the algorithm as being divided into
three different parts we redesigned and modularized the previous logic into
three components: initialization, main loop, and checker class.

Checker Class. Starting with the latter component, we encompassed the
checking logic onto a class that can be instantiated on the fly. As mentioned
before, we need to keep track of multiple orders at a time. Thus, in Lines
29 to 33, we initialize a checker instance object that receives a sequence
diagram, a timestamp, and t as input. The timestamp denotes the time
that the checker object was created and helps determine if the checker has
been running for longer than 10 seconds, while the rest of the parameters
are similar to the ones we had before. Between Line 35 and Line 45, we
create the run function that contains the logic behind deciding whether to
accept a given interaction or not. Finally, the verification logic in the offline
algorithm is contained in the verify function between Line 47 and Line
61.

Initialization. Going back to the beginning of the listing, we do a similar
initialization of the variables seen before. We load the processed sequence
diagram and its timing constraint in Lines 1 and 2, followed by the con-
nection to the Kafka queue in Line 6. In this algorithm, we introduce the
activeCheckersMap explained at the start of this section to keep track of
the orders that are being checked in Line 6.

Main Loop. The change of paradigm means that instead of gathering all
the execution traces, we process traces one by one, as soon as they are avail-
able in Kafka. Thus, we poll Kafka until no more traces are left in the
queue. Kafka will stop receiving new traces as soon as the MDA’s execution
is stopped. This condition is evaluated in Line 8. From here, we apply a
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similar logic to the one seen in the previous chapter, with a few new condi-
tions. We start by consuming a trace from Kafka in Line 9 and creating a
trace object in Line 10. After, we execute the findInteractions procedure
as before, between Line 12 and Line 14. For each resulting interaction in
interactionList, we go to our map to see if a key already has the same value
as the orderId field in the interaction. If this is a new order that isn’t being
checked, we create a new Checker object and add it to the map in Lines 17
to 19. We advance by taking the right checker on the map and executing
the run method and storing its return value in the isCheckFinished variable
in Line 20. Additionally, we calculate the time that has elapsed since the
checker for that order was instantiated in Line 21. The loop logic ends with
the decision if the checker for that order should be terminated. We evaluate
if the checking is concluded or if 10 seconds have passed since the checker
was started. If any of these conditions are true, we execute the verify
method of the checker that outputs the final result in Line 23 and delete the
checker from the map in Line 24.

7.3.3 Evaluation
Just as we assessed the offline checker in Chapter 6, we now follow a sim-
ilar approach to evaluate the implementation of our online checker. Here,
we revisit the requirements outlined in Section 2.3, examining whether the
online checker satisfies them. Additionally, we conduct a direct comparison
between this new online version and the offline checker introduced in the
previous chapter by examining the biggest experimental run and the overall
evolution of metrics for both checkers across experiments.

Experimental Design

To be able to distinguish and decide what implementation is better, the focus
of this evaluation section is to compare both the offline and the online checker
against each other, to determine if the online implementation outperforms
the offline one, without sacrificing correctness or efficiency. Thus, we will
conduct the same set of experiments as in the previous chapter. However,
instead of having only the offline checker deployed in our infrastructure, we
also have the online checker. Both checkers will consume the same data
from Kafka and operate independently from each other. The experiments
mentioned in the following paragraphs are described in Table 6.1.

R1: Correctness

To demonstrate the correctness of our online implementation we show the
output of the online checker in Listing 7.2, Listing 7.3, and Listing 7.4 for
Experiment 0. The online checker gives correct results to all three orders and
is consistent with what we saw on the offline checker’s evaluation. Moreover,
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in Figure 7.2 we observe that the online checker also evaluates correctly
all orders for Experiments 1 to 8 and is on par with the offline checker’s
behavior. For all listings below, the timestamp field is replaced by t to
avoid long lines. Moreover,ts represent distinct timestamps in nanoseconds,
and the metrics in the last line of each listing are measured in seconds.
Result : CONFORMING

2 [" PlannerService ", " DeliveryControlService ", "
MonitorNotification ", t, " CORRECT "]

[" MealDispatchingService ", " MealPreparingService ", "
MealPreparationRequest ", t, " CORRECT "]

4 [" MealDispatchingService ", " PlannerService ", "
ScheduleUpdateNotification ", t, " CORRECT "]

[" MealPreparingService ", " MealDispatchingService ", "
MealPreparationResponse ", t, " CORRECT "]

6 [" MealPreparingService ", " MealDeliveringService ", "
DispatchDeliveryRequest ", t, " CORRECT "]

[" MealDeliveringService ", " MealPreparingService ", "
DispatchDeliveryResponse ", t, " CORRECT "]

8 [" MealPreparingService ", " MealDispatchingService ", "
MealPreparationUpdateNotification ", t, " CORRECT "]

[" MealPreparingService ", " PlannerService ", "
MealPreparationUpdateNotification ", t, " CORRECT "]

10 [" MealDeliveringService ", " PlannerService ", "
DeliveryUpdateNotification ", t, " CORRECT "]

Check Time: 20.092 Sequence Time: 20 Max Time: 25.00
Reaction Time: 30

Listing 7.2: Output of the online checker for the 20-second order of
Experiment 0.

1 Result : NONCONFORMING_TIME
[" PlannerService ", " DeliveryControlService ", "

MonitorNotification ", t, " TIME_VIOLATION "]
3 [" MealDispatchingService ", " MealPreparingService ", "

MealPreparationRequest ", t, " TIME_VIOLATION "]
[" MealDispatchingService ", " PlannerService ", "

ScheduleUpdateNotification ", t, " TIME_VIOLATION "]
5 [" MealPreparingService ", " MealDispatchingService ", "

MealPreparationResponse ", t, " TIME_VIOLATION "]
[" MealPreparingService ", " MealDeliveringService ", "

DispatchDeliveryRequest ", t, " TIME_VIOLATION "]
7 [" MealDeliveringService ", " MealPreparingService ", "

DispatchDeliveryResponse ", t, " TIME_VIOLATION "]
[" MealPreparingService ", " MealDispatchingService ", "

MealPreparationUpdateNotification ", , " TIME_VIOLATION
"]

9 [" MealPreparingService ", " PlannerService ", "
MealPreparationUpdateNotification ", t, "
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TIME_VIOLATION "]
[" MealDeliveringService ", " PlannerService ", "

DeliveryUpdateNotification ", t, " TIME_VIOLATION "]
11 Check Time: 30.056 Sequence Time: 30.06 Max Time: 25.00

Reaction Time: 40

Listing 7.3: Output of the online checker for the 30-second order of
Experiment 0.

1 Result : NONCONFORMING_MISSING
2024 -02 -14 10:14:31

3 [" PlannerService ", " DeliveryControlService ", "
MonitorNotification ", t, " UNFINISHED "]

Check Time: 47.347 Sequence Time: 0.0 Max Time: 25
Reaction Time: 57

Listing 7.4: Output of the online checker for the 60-second order of
Experiment 0.

Figure 7.2: Overview of Experiments 1 to 8 and their checking results.

R2: Efficiency

Let us now revisit the CPU and RAM usage by the checker during the
experiments. Starting with CPU usage for Experiment 8, we can observe
in Figure 7.3 that adding the online checker to the overall infrastructure
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had a very low impact on CPU usage. Since the online checker is directly
connected to Kafka, like the offline checker, there is no extra effort required
to power the infrastructure, as CPU usage is similar to what we saw in the
offline checker case. Moreover, we can see that the online implementation is
more efficient with CPU consumption than the offline checker. The online
checker does not have a peak at the end of the experiment, since the checking
effort is done throughout the execution, in contrast with the offline approach
that did it all in the end. Additionally, the RAM usage was also unaffected
by the addition of the online checker. In Figure 7.4, we can see that, like the
CPU, the infrastructure does not use more RAM than before. Moreover,
the online checker consumes marginally more RAM than the offline version,
maintaining the memory efficiency of the previous implementation.

This behavior is also consistent across experiments. In Figure 7.5 and Fig-
ure 7.6 we compare the maximum CPU and RAM usage of each checker
throughout Experiments 1 to 8. The online checker’s maximum CPU usage
remains consistently low and close to 0 in every experiment while the off-
line checker’s maximum CPU consumption grows with the number of orders.
This shows that the online implementation made a step forward by reducing
CPU usage while maintaining the correctness of the offline checker. Addi-
tionally, the maximum RAM usage for both checkers is close to 20MB. The
online checker uses marginally more memory since it keeps more objects in
memory given that it checks multiple orders at the same time and needs to
maintain state for all of them, while the offline checker only keeps state for
one order at a time when it starts doing the actual checking in final stages
of an experiment.

R3: Fastness

One of the main drives to adopt an online processing approach was to achieve
better reaction times to nonconforming traces than the offline approach
gave us. In Figure 7.7 we can compare the average reaction times for both
checkers in the different experiments. The online checker is a significant
improvement in this metric. First, the reaction time is not dependent on
the number of orders that are checked. Secondly, the online checker achieves
a constant reaction time of 30 seconds for each order in all experiments.
This is a consequence of the time that an order takes to be executed, which
for Experiments 1 to 8 is 20 seconds, plus the 10 seconds that traces are
retained by the OpenTelemetry Collector to aggregate all spans that make
a particular trace before they are sent to Kafka and subsequently to the
checker for processing. Looking again at Listing 7.2 and Listing 7.3 we can
see that this is in fact the case. For the 20-second order, the reaction time
is 30 seconds while for the 30-second order, the reaction time goes up 10
seconds, to a total of 40 seconds. Thus, we devise the following formula for

Real-Time Conformance Checking for Microservice Applications 68



CHAPTER 7. ONLINE CONFORMANCE CHECKING

Figure 7.3: CPU consumption for all infrastructure necessary for the checker
in Experiment 8.

Figure 7.4: RAM consumption for all infrastructure necessary for the checker
in Experiment 8.
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Figure 7.5: Maximum CPU consumption for the offline and online checkers
through Experiments 1 to 8.

Figure 7.6: Maximum RAM consumption for the offline and online checkers
in each experiment through Experiments 1 to 8.

Real-Time Conformance Checking for Microservice Applications 70



CHAPTER 7. ONLINE CONFORMANCE CHECKING

the reaction time of our online implementation:

ReactionT ime = SequenceT ime + CollectorT ime + Other

where SequenceTime is the time that takes a set of traces subject to checking
takes to execute in the application (in our case, it corresponds to an order
in the MDA), CollectorTime is the delay time before the OpenTelemetry
Collector published execution traces to Kafka and Other corresponds to
other factors that can influence the time to react like network delays, or in
the case of missing interactions, the 10-second timeout defined earlier. This
shows that the reaction time is independent of the checker implementation,
only depending on the application itself and the predefined time to gather
all the spans of a trace in the OpenTelemetry Collector.

We also observe some changes regarding the average check time for each
order. The average check times for both checkers throughout Experiments
1 to 8 can be seen in Figure 7.8. At first glance, it may seem that the online
checker is substantially slower than its counterpart. However, the consistent
20-second duration check time for each order can easily be explained by the
way the online checker works. In contrast with the offline implementation,
the online checker starts checking for an order the moment that the first
trace for that order is received by the checker. Since the orders that consist
of Experiments 1 to 8 are 20 seconds long, the time elapsed between receiving
the first and last interactions for a particular order will naturally be the time
that it takes to execute that order in the application, plus some network
delays.

R4: Scalability

As we already mentioned, the online checker improves several aspects that
the offline version lacked. This also makes the online implementation more
scalable than its predecessor. For instance, as we saw CPU usage is no
longer dependent on the number of orders, not peaking higher with higher
volumes of data like the offline checker. Moreover, the reaction times are
also not linked to the number of orders processed and are consistent for each
order in each experiment. Thus we can consider that our online approach
meets the scalability needs that we defined.

R5: Extensibility

Finally, we analyze if the online checker can also easily be extended to check
multiple sequence diagrams at the same time. Like the offline checker, we
do not have an experiment that can validate our claim. However, we again
note that the online checker is sequence diagram agnostic, and different
checker instances work independently from each other, not requiring any
coordination between them. Thus, checking multiple sequence diagrams
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Figure 7.7: Average reaction times for the offline and online checkers through
Experiments 1 to 8.

Figure 7.8: Average check times for the offline and online checkers through
Experiments 1 to 8.
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would only require deploying a new online checker instance with a different
sequence diagram.
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Conclusion

In this master thesis, we set out to address the challenge of implement-
ing fast, efficient, and correct conformance checking for microservice ap-
plications. Microservice architectures have gained popularity due to their
scalability, flexibility, and maintainability benefits. However, ensuring the
conformance of these distributed and independently deployable services to
a predefined specification remained a challenge. Traditional conformance
checking approaches were not suitable for the dynamic microservice environ-
ment and no tool had been used in the specific combination of our use case of
sequence diagram and modern execution traces. Through in-depth research
and experimentation, we developed a real-time conformance checker using
open-source tools and provided insights and contributions to the field.

RQ How can correct, efficient, fast, scalable, and extensible conformance
checking be implemented for microservice applications?

Our approach to the research question involved creating an offline conform-
ance checker tailored for microservice applications. This tool effectively eval-
uated conformance based on MDA execution traces and sequence diagrams,
operating independently of the MDA’s execution for efficiency. Transition-
ing to an online paradigm improved performance significantly, achieving
conformance results in approximately 30 seconds per trace, meeting our re-
quirement for rapid reaction to nonconforming sequences. Ultimately, we
developed a proof-of-concept online conformance checker suitable for mi-
croservice applications.

Contributions. With this thesis, we contribute with a novel approach to
perform conformance checking using a comparison of transformations of se-
quence diagrams and execution traces. Moreover, we also contributed to
the field with an architecture that follows good observability pipelines’ prin-
ciples and that can be adapted and used by other telemetry analysis ap-
plications or dataflows. Our approach is application-agnostic and ensures
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reaction times as fast as the execution of requests in the application itself,
with minor delays in processing and checking for conformance. Moreover,
the implemented online checker is a lightweight service with a minor impact
on the overall infrastructure of a system.

8.1 Beyond Conformance Checking
The main focus of our work was conformance checking and we proposed
an adequate architecture that makes it possible to evaluate conformance
for microservice applications. However, we argue that this architecture can
potentially serve more purposes than just conformance checking. Through
a clever use of observability pipelines, we envision that our architecture in
Figure 7.1 can be extended with different applications that perform other
telemetry data analysis. For example, the work of processing execution
traces can be separated from the checker and deployed as a separate service
that publishes the transformed traces into a new Kafka topic. In turn, this
new service can be used in several observability pipelines that adhere to
the format posted by this service to a Kafka topic. For instance, a bottle-
neck analysis application can consume from the Kafka topic that contains
the preprocessed traces and use them for this analysis, without needing to
incorporate this preprocessing in the application itself. Moreover, these ser-
vices would be able to be completely decoupled from one another thanks to
Kafka which would serve as an intermediary in all communications.

8.2 Threats to Validity
In this master thesis, we developed and presented a proof-of-concept con-
formance checking application that delivers real-time results for the Meal
Delivery microservice application. We achieved promising results and ful-
filled our initial requirements concerning the design and implementation of
our checker. However, it is important to note that there are some risks and
threats to the validity of our study. We outline them in this section.

Limited evaluation. To evaluate the quality of our checker we leaned on
tracing data produced by the MDA. While this allowed us to tailor our
checker to this application and, in general, to microservice systems, the
use of a single application is a limitation. More extensive testing would
need to be conducted to accurately access our checker’s behavior to similar
systems. Moreover, the MDA is not a production or real-world system.
Thus, during our experiments, we might not have been able to test important
behavior that more complex real-world systems might exhibit compared to
the MDA.
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Request latency. Adding to the previous point, as we mentioned before,
the MDA traces are mostly 2 seconds long. Moreover, the sequence diagram
being checked is composed of interactions that ideally should be executed
in 25 seconds or less. If another application has longer traces or longer
sequences to be checked, we may need more memory resources to cope with
the extra time that each interaction is kept in memory and that each checker
instance is executing.

Stress testing. A more restricting aspect of using the MDA as the source
of our telemetry data is that we are not able to stress test our checker during
our experiments. The MDA is not capable of generating higher telemetry
data loads which can be a hurdle to both focal points of our architecture:
the OpenTelemetry Collector and Kafka. Kafka in particular can handle
close to a million messages per second, making it very hard for the MDA
to reach those levels of throughput. Thus, the checker is not impacted by
possible losses of traces anywhere in the process.

Sequence diagrams. Another limitation of our checker is the support for the
UML syntax of sequence diagrams. The checker currently does not support
more complex statements such as loops or optional sequences. Checking
these types of interactions could increase the complexity of the checker, as
well as introduce new challenges to the checker’s development.

Instrumentation. Finally, we assume that the MDA is instrumented in such
a way that the emitted telemetry data correctly resembles the actual execu-
tion done by the application. If this would not be the case, the checker would
be outputting wrong results since its initial data would be incorrect.

8.3 Future Work
During the development of the online conformance checker in this thesis,
we identified possible improvements that can be implemented in the future.
Throughout the thesis, we made some choices regarding the direction we
wanted to head towards to implement the checker, cutting some possibilities
along the way, since we did not have time to pursue all possible alternat-
ives.

One immediate improvement that could be made is to support the full syntax
of sequence diagrams. In Chapter 2, we excluded some syntax elements like
loops and alternative sequences to simplify our implementation. However,
supporting the complete syntax would allow our checker to be used with a
wider range of diagrams and be suitable for more use cases.
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Another possible direction to improve our checker is to revisit the related
work on conformance checking. Although we chose to deviate from the
known conformance checking techniques, due to the particularity of using
sequence diagrams, we open the possibility of researching how more tradi-
tional methods can be implemented in our use case. This can be done by
transforming the sequence diagrams to Petri nets and finding a way to re-
play the OpenTelemetry-generated traces in these Petri nets. Furthermore,
with the Petri net as our model, it is possible to test the suitability of other
techniques, particularly alignments, which are subject to the most research
output for conformance checking.

Additionally, we could consider integrating concepts from other research
fields to improve our checker’s implementation. For instance, a more thor-
ough research of real-time processing might reveal interesting techniques
that improve the processing logic of our checker. Additionally, research on
complex event processing has some strong similarities to the processing that
we do on the execution traces side. Together with Apache Flink [4], the
aggregation and filtering of execution traces can be optimized and paral-
lelized. Moreover, Flink would help expand our architecture to different
telemetry analysis pipelines since it would decouple most of the processing
from the logic of the checker and other tools that might be present in the
architecture.

Finally, reporting results and metrics could be enhanced. Currently, the
checker writes its outputs to locally stored files. However, we can imagine
building a real-time dashboard that keeps track of the metrics accompanied
by a repository that flags nonconforming execution traces and produces a
PlantUML specification highlighting the cause of a nonconforming result.
The generated metrics could also be reformatted and scrapped by Prometh-
eus, taking advantage of existing visualization tools like Grafana.
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