
High-Level Power Estimation and
Optimization of DRAMs

Karthik Chandrasekar





Hoog-niveau Approximatie en
Optimalisatie van DRAM

Vermogen

Karthik Chandrasekar





High-Level Power Estimation and
Optimization of DRAMs

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op dag 03 Oktober 2014 om 15.00 uur

door
Karthik Chandrasekar

Ingenieur (ir.)
Master of Science (M.Sc.) in Computer Engineering

geboren te Chennai, India



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. K.G.W Goossens

Copromotor:

Dr. K.B. Åkesson
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Summary

Embedded systems have become an integral part of our life in the last few years in
multifarious ways, be it in mobile phones, portable audio players, smart watches
or even cars. Most embedded systems fall under the category of consumer elec-
tronics, such as televisions, mobile devices, and wearable electronics. With several
players competing in this market, manufacturers of embedded systems continue
to add more functionality to these devices to make them more user friendly, and
often equip them with a very high resolution display and graphics support, and
better computing and Internet capabilities. Unfortunately, they are often con-
strained by tight power/energy budgets, since battery capacity does not improve
at the same rate as computing power. While there is clearly much progress to be
made in harnessing all the possibilities of embedded systems, limitations in bat-
tery capacities, thermal constraints and power/energy budgets surely hinder this
progress. Although technology scaling has traditionally addressed both the power
minimization and high-performance requirements, with Moore’s law nearing its
limits, the development of energy-efficient system designs has become critically
important. Thus, to be able to continue to provide new and improved features in
embedded systems, design-time and run-time power management and minimiza-
tion holds the key. As a consequence, power optimization has become one of the
most defining aspects of designing modern embedded systems.

To design such high-performance and energy-efficient embedded systems, it is
extremely important to address two basic issues: (1) accurate estimation of power
consumption of all system components during early design stages and (2) deriving
power optimization solutions that do not negatively impact system performance.

In this thesis, we aim to address these two issues for one of the most im-
portant components in modern embedded systems: DRAM memories. Towards
this, we propose a high-precision DRAM power model (DRAMPower) and a set
of performance-neutral DRAM power-down strategies.

DRAMPower is a high-level DRAM power model that performs high-precision
modeling of the power consumption of different DRAM operations, state transi-
tions and power-saving modes at the cycle-accurate level. To further improve the
accuracy of DRAMPower’s power/energy estimates, we derive better than worst-
case and realistic measures for the JEDEC current metrics instead of vendor-
provided worst-case measures from device datasheets.
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Towards this, we modify a SPICE-based circuit-level DRAM architecture and
power model and derive better than worst-case current measures under nominal
operating conditions applicable to a majority of DRAM devices (>97%) with any
given configuration (capacity, data width and frequency). Besides these better
than worst-case current measures, we also propose a generic post-manufacturing
power and performance characterization methodology for DRAMs that can help
identify the realistic current estimates and optimized set of timing measures for
a given DRAM device, thereby further improving the accuracy of the power and
energy estimates for that particular DRAM device.

To optimize DRAM power consumption, we propose a set of performance-
neutral DRAM power-down strategies coupled with a power management policy
that for any given use-case (access granularity, page policy and memory type)
achieves significant power savings without impacting its worst-case performance
(bandwidth and latency) guarantees.

We verify the pessimism in DRAM currents and four critical DRAM timing
parameters as provided in the datasheets, by experimentally evaluating 48 DDR3
devices of the same configuration. We further derive optimal set of timings using
the performance characterization algorithm, at which the DRAM can operate
successfully under worst-case run-time conditions, without increasing its energy
consumption. We observed up to of 33.3% and 25.9% reduction in DRAM read
and write latencies and 17.7% and 15.4% improvement in energy efficiency.

We validate DRAMPower model against a circuit-level DRAM power model
and verify it against real power measurements from hardware for different DRAM
operations. We observed between 1-8% difference in power estimates, with an
average of 97% accuracy. We also evaluated the power-management policy and
power-down strategies and observed significant energy savings (close to theoretical
optimal) at very marginal average-case performance penalty without impacting
any of the original latency and bandwidth guarantees.



Samenvatting

Embedded systemen zijn de laatste jaren een integraal onderdeel van ons leven
geworden; je komt ze tegen op enorm veel verschillende plaatsen, zoals in mobiele
telefoons, draagbare muziekspelers, smart watches en zelfs in auto’s. De meeste
embedded systemen vallen binnen de consumenten elektronica, zoals bijvoorbeeld,
televisies, mobiele apparaten, en draagbare elektronica. Verschillende spelers con-
curreren op deze markt, waardoor fabrikanten van embedded systemen continue
steeds meer functionaliteit toevoegen aan deze apparaten om ze gebruiksvrien-
delijker te maken. Daarnaast worden ze vaak uitgerust met een scherm en on-
dersteuning voor zeer hoge resolutie graphics, en steeds beter wordende reken- en
internetmogelijkheden.

Jammer genoeg worden fabrikanten vaak beperkt door krappe vermogens /
energiebudgetten, aangezien de batterijcapaciteit niet zo snel vooruit gaat als
het bruikbare rekenvermogen. Hoewel er duidelijk veel voortgang is geboekt
in het exploiteren van alle mogelijkheden van gentegreerde system, ondervindt
men toch hinder van de beperkingen van de maximale batterijcapaciteit, werk-
ingstemperatuur en vermogens/energiebudgetten. Technologieschaling betekende
traditioneel gezien zowel een vermogensminimalisatie als een prestatieverbetering
voor veeleisende systemen, maar omdat de wet van Moore tegen zijn limieten aan
loopt, wordt de ontwikkeling van energie-efficinte systeemontwerpen van cruci-
aal belang. De sleutel tot het kunnen blijven verbeteren en uitbreiden van de
functionaliteit van embedded systemen, is het beheren en minimaliseren van het
opgenomen vermogen, zowel in de ontwerpfase als tijdens de levensduur van het
systeem.

Voor het ontwerp van energie-efficinte gentegreerde systemen met hoge prestat-
ies is het zeer belangrijk om twee basisproblemen te adresseren: (1) nauwkeurige
approximatie van het opgenomen vermogen van alle systeemcomponenten tijdens
de vroege ontwerpfases en (2) vermogensoptimalisatieoplossingen zonder negatieve
effecten op de systeemprestaties.

In dit proefschrift adresseren we deze twee problemen voor een van de belan-
grijkste componenten in moderne embedded systemen: DRAM geheugens. We
introduceren een nauwkeurig DRAM vermogensmodel (DRAMPower), en een set
prestatie-neutrale DRAM power-down strategien.

K. Chandrasekar High-Level Power Estimation and Optimization of DRAMs



DRAMPower is een hoog-niveau DRAM vermogensmodel, dat zeer nauwkeurig
het opgenomen vermogen van verschillende DRAM operaties, toestandsovergan-
gen en energiebesparende modi modelleert, op een cycle-nauwkeurige tijdschaal.
Om de precisie van DRAMPowers vermogen/energieapproximaties te verbeteren,
leiden we realistische beter-dan-worst-case waarden af voor de JEDEC stromen,
die de door de fabrikanten aangeleverde worst-case waarden uit de datasheet ver-
vangen.

Om dit te realiseren passen we een SPICE-gebaseerd circuitniveau DRAM
architectuur- en vermogensmodel aan, en we leiden hieruit af wat de beter-dan-
worst-case stroomwaarden onder nominale omstandigheden zijn. Deze zijn toepas-
baar op de meerderheid van de DRAM geheugens (>97%) met een willekeurige
configuratie (opslagcapaciteit, databusbreedte, en klokfrequentie).

Naast deze beter-dan-worst-case stroomwaarden introduceren we ook een gener-
ieke post-productie vermogens- en prestatiekarakterisatiemethode voor DRAM
geheugens die kan helpen bij het identificeren van realistische stroomwaarden en
een geoptimaliseerde set van timings voor een specifieke DRAM chip, waardoor
de nauwkeurigheid van de vermogens- en energieapproximatie voor deze chip ver-
beterd wordt.

Om het opgenomen vermogen van DRAM te optimaliseren, stellen we een set
met prestatie-neutrale DRAM power-down strategien voor, gekoppeld aan een
vermogensmanagementpolicy, die voor iedere gegeven use case (lees- schrijfgranu-
lariteit, page policy en geheugentype) een significante vermogensbesparing oplev-
ert, zonder daarbij af te doen aan de worst-case prestatie-garanties (bandbreedte
en latency).

We verifiren dat de gespecificeerde DRAM stromen en vier kritische DRAM
timing parameters in de datasheets pessimistisch zijn, door empirisch 48 DDR3
identieke chips te evalueren. Daarnaast leiden we een optimale set timings af
met behulp van het prestatiekarakterisatiealgoritme. Bij het gebruik van deze
timings functioneert het DRAM nog steeds in worst-case omstandigheden, zonder
dat het energieverbruik stijgt. We zien dat een reductie tot respectievelijk 33.3%
en 25.9% van de DRAM lees- en schrijflatency mogelijk is, in combinatie met een
verbetering van de energie-efficintie van respectievelijk 17.7% en 15.4%.

We verifiren de correcte werking van DRAMPower door een vergelijking met
een DRAM model op circuit-niveau, en een vergelijking met echte hardwaremeting-
ing van verschillende DRAM operaties. We observeren een verschil van 1-8%
in de vermogensschattingen, met een gemiddelde nauwkeurigheid van 97%. We
evalueren ook de vermogensmanagementpolicy en power-down strategien en zien
daarbij significante energiebesparingen (dicht bij het theoretische optimum) tegen
een zeer marginale average-case presatatieafname, zonder effect op de originele
latency- en bandbreedtegaranties.
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Chapter 1

Introduction

Most modern battery-driven consumer electronics, including tablets, mobile phones,
and wearable electronics, can be categorized as embedded systems. With each new
generation and version of these devices, manufacturers continue to equip them
with better computing, visualization and internet capabilities [15, 16], which of-
ten hurt their power consumption. Since battery capacities have not improved at
the same rate as computing power [49], efficient design-time and run-time power
management and minimization techniques are of highest importance in designing
embedded systems.

To address these issues, embedded system designers rely on couple of features:
(1) accurate power estimation of all system components and (2) efficient power
optimization solutions that do not harm performance.

In this thesis, we propose solutions to address both of these two issues for one
of the most important components in the system: DRAM memories. Modern em-
bedded systems often include DRAMs [8,9], to optimize system’s performance (for
instance in display buffers to get better frame rate), but have an adverse effect on
its power and energy consumption [2,19,20] (up to 25% increase [14]). To address
this, we propose: (1) a high-precision DRAM power model called DRAMPower
that uses realistic current measures as inputs and (2) a set of performance-neutral
DRAM power-optimization strategies.

Using the DRAM power model, we identify critical DRAM operations and
states that contribute significantly to DRAM power consumption and with the
performance -neutral power-optimization strategies, we reduce their impact on
overall power consumption.

1.1 Problem Statement

Although JEDEC [10] and DRAM vendors have continuously improved DRAM
architectures [11–13] in terms of bandwidth and power efficiency, the incessantly
increasing demand for higher memory performance (bandwidth) and capacity has
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2 Chapter 1. Introduction

meant continued significance of DRAMs in overall system power consumption [19],
even when idle [20, 21]. With larger and faster DRAMs being incorporated with
every new generation of mobile phones and tablets, DRAM power consumption
in mobile devices is likely to match that of mobile processors [14]. Figure 1.1
depicts the ratios of power consumption of different components in a generic
mobile platform as observed by Siemens and Infineon [14]. As depicted, memories
are seen to consume as much power as an application processor.
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Figure 1.1: Mobile Platform Power Consumption (Adapted from [14])

As expected, DRAMs have become a crucial target for power optimization
both in the industry [14, 19, 22–24] and academia [25–37], with solutions ranging
from system-level power management down to the circuit-level optimizations, tar-
geting both active and idle power consumption. Refining the earlier statement,
the two key factors defining energy-efficient use of DRAMs in embedded systems
are: (1) accurate power/energy consumption estimation of DRAMs and (2) ef-
ficient power/energy optimization of DRAMs. Together these form the primary
focus of this thesis work. Towards this, we propose: (1) a high-precision power
model of DRAMs (DRAMPower) and (2) a set of performance-neutral DRAM
power optimization strategies.

Before discussing the problems and the proposed solutions in detail, we briefly
describe the basics of the DRAM architecture, organization and operations.

1.1.1 Background: Generic DRAM Architecture

DRAMs are independent memory devices which for instance, can be used as
shared storage between several IPs in a System-on-Chip (SoC) through a DRAM
memory controller. DRAMs have a defined architecture, interface, and a set of
operating modes. Each of the IPs in an SoC can read or write data into DRAMs by
sending read or write requests to the DRAM memory controller, which translates
these requests into memory transactions with a set of DRAM commands, data and
target memory address. Below, we describe basic DRAM organization, commands
and operations. Internally, DRAMs are organized in banks of rows and columns,
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as shown in Figure 1.2. A bank includes memory elements (cells) arranged in a
matrix structure and a row buffer (with sense amplifiers) to store contents of an
active memory row. The banks in a DRAM operate in a parallel and pipelined
fashion. However, since they all share a single I/O and command bus, only one
bank can perform an I/O operation at a particular instance in time and only one
DRAM command may be issued to the memory per clock cycle.

To read contents from the memory, an Activate command (#1 in Figure 1.2)
is first issued by the memory controller (MC in the figure) to the DRAM, which
opens the requested row and copies data from the DRAM cells in the correspond-
ing row into the row buffer. Then, any number of Read or Write commands (#3
in Figure 1.2) can be issued to read out or write into specific columns in the row
buffer. Subsequently, a Precharge command (#2 in Figure 1.2) is issued and the
contents of the row buffer are stored back into the corresponding memory row.
Reads and writes can also be issued with an auto-precharge flag to automatically
precharge as soon as the request completes. The number of read/write commands
in a transaction is called Burst Count (BC), and the amount of data read out or
written into by each command is given by the Burst Length (BL) (e.g. 8 words
for DDR3), where each word is defined by the data width of a given device. Fur-
thermore, a memory transaction may also be interleaving over more than one
bank, given by the degree of Bank Interleaving (BI). The product of BL, BC and
BI parameters determines the data access granularity with which the memory
controller accesses the memory and has a large impact on both performance and
power consumption [97].
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Figure 1.2: DRAM Organization in the System context

If any row is active, the memory is said to be in the active state, else it is in
the precharged state. Switching between a read and a write command, or vice
versa, takes a few clock cycles to allow the data bus to switch the I/O direction.
Further, to retain data in the memory, all rows in the DRAM need to be refreshed
at regular intervals, which is done by issuing a Refresh command. Internally, a
refresh is a set of activates and precharges to the same row in different banks.
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In addition to issuing these commands, it is also possible to transition to power-
down state by disabling the clock at run time to reduce power consumption, if the
memory is idle. However, the memory must be powered up whenever a refresh
command is issued. It is also possible to retain the memory contents without
refreshing by employing the Self-Refresh power-saving state, which refreshes the
memory at significantly lower power consumption than explicit refreshes.

For proper DRAM operation, the commands discussed above must be issued
by the memory controller to the DRAM in a specific order, while satisfying the
associated minimal timing constraints (for DDR2 [102] and for DDR3 [103]).
For instance, between issuing an Activate command and a Read command, the
minimum timing constraint of nRCD cycles should be respected. Some of these
constraints that need to be satisfied when issuing commands to a DDR3-800
memory [99] are specified in Table 1.1:

Table 1.1: Micron DDR3-800 Timing Constraints
Constraint Description (Minimum Time between) Time (cycles)

nRC Two ACTs to the same bank 20
nRAS An ACT and a PRE to the same bank 15
nRCD An ACT and a RD/WR to the same bank 5
nRP A PRE and an ACT to the same bank 5

nWTR A RD and a WR to the same bank and row 4
nRTP A RD and a PRE to the same bank 4
nCCD Two consecutive RDs or WRs 4
nRRD Two ACTs to different banks 4
nCL Two RDs to the same bank 5
nWR A RD and a WR to the same bank and row 6
nFAW A RD and a WR to the same bank and row 16
nRFC A REF and an ACT 44

These timing constraints specified by the datasheets are the minimal timings
between two commands. However, most DRAM controllers do not always is-
sue commands as soon as these minimal constraints are satisfied. Instead, they
schedule commands based on different command-scheduling and row-buffer man-
agement policies, where the actual duration between any two issued commands
may be greater than the minimum. For instance, the memory controller may
employ an open-page policy [50] and delay issuing a precharge to a bank until
there is a row-miss on the subsequent access to that bank.

In general, memory controllers employ the open-page policy or the close-page
policy [50] based on the assumed presence or absence of data locality in the target
application. The former policy keeps the row buffer active to reduce the access
time for subsequent accesses to the same memory row in the same bank by not
issuing a Precharge command at the end of a transaction. The latter policy
immediately closes the active row buffer at the end of every bank access with a
Precharge command, for faster accesses to any other location in the memory in
the subsequent transaction.
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1.1.2 Problem I: DRAM Power Modeling

This section addresses the first of the two problems to be addressed in this thesis:
accurate power/energy estimation of DRAMs.

To enable efficient power management, system designers rely on power con-
sumption information provided by DRAM vendors and/or power models devel-
oped by DRAM vendors. These power measures/models are required to address
three important issues: (1) to design efficient power supplies for DRAMs, (2) to
estimate power/energy usage by the DRAMs used in a system and (3) to derive
design-time and run-time power optimization policies to reduce DRAM power
consumption. The reason for employing these measures/models to address these
three issues is their accuracy . In this work, the accuracy of a given power model
is evaluated by comparing its power/energy estimates against real power measure-
ments from a given DRAM device for different DRAM operations.

JEDEC requires all DRAM vendors to furnish a set of standardized current
measures in DRAM device datasheets corresponding to different combinations
of standard memory transactions, to obtain approximate power consumption es-
timates. Although these current measures are adequate to enable designing of
suitable power supplies for DRAMs (Issue 1), they are insufficient for accurate
power/energy consumption estimation (Issue 2) and efficient DRAM power man-
agement (Issue 3), since they do not represent power consumption of individual
DRAM operations.

To resolve this issue, DRAM vendors including Micron and Samsung supple-
ment these datasheet current measures with high-level power models [17,18] that
include equations to break the datasheet current measures down to measures cor-
responding to individual DRAM transactions and to obtain a more fine-grained
account of power consumption in DRAMs. Although these models provide better
details of DRAM power consumption compared to bare datasheet current mea-
sures, they have been shown to be imprecise in their modeling of the different
individual DRAM operations, state transitions and power-saving modes [38–40].
This highlights the need for high precision modeling.

Besides the issue of precision in power modeling, the input datasheet mea-
sures used by these power models reflect worst-case current measures for all
DRAM devices manufactured with the same configuration (frequency, speed-
bin and revision) by a vendor [45, 98–100]. These measures include substan-
tial margins in current measures to address the impact of design-time process-
variations and run-time variations in operating temperature and power-supply
noise [89]. As a result, the datasheet current measures can differ significantly
from the actual observed current measures, when measured on any given DRAM
device. Hence, using datasheet current measures reduces the accuracy of their
power and energy estimates for a given DRAM device. These high-level models
employ basic algebraic functions to model power consumption, hence, the worse
the accuracy of the input, the worse the accuracy of the output.

To highlight the significant difference between the worst-case datasheet current
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measures and the nominal current measures of the manufactured lot, we present
the average data (µ) and the standard deviation (σ) in Table 1.2 that shows the
impact of process variations on a few DRAM currents [103] as observed by a
memory vendor in the production analysis data of a lot of 11,000 DDR3 1Gb
memories with 533 MHz frequency and x8 width, manufactured at 70nm.

Table 1.2: Distribution of Current Consumption

Current Nominal (Average) σ% Datasheet (Worst Case)
Type µ (mA) µ+ 5σ(mA)
IDD0 79.1 1.4 84.7
IDD1 111.1 1.2 117.8
IDD2P 13.1 7.1 17.7
IDD6 9.2 12 14.8

This distribution data is represented as probability density function of the
different currents in Figure 1.3. In the figure, the reported datasheet (DS) mea-
sures are indicated for each current measure. These datasheet measures reflect
worst-case case measures for the all devices that are sold from a particular DRAM
generation and revision. Such worst-case measures are used to improve the yield
of the manufactured devices. The devices that have worse current measures than
the datasheet measures are generally rejected from the lot. These correspond to
the device in the +6σ range.
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DS

IDD2P

DS

IDD0

DS

IDD1

Figure 1.3: Probability Density Function of Current Measures

This current distribution data shows very large difference between the datasheet
(DS) current measures and the nominal (µ) current values (by a factor of 5σ), up
to 36% and 60% for the low-power modes (power-down: IDD2P and self-refresh:
IDD6) and up to 7% for the activate-precharge (IDD1) current and 6% for the
activate-read-precharge (IDD1) current [103]. With DRAM memories now being
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manufactured at technologies below 50nm, these current variations are only ex-
pected to worsen, and so is the accuracy of the power models employing these
datasheet measures.

To address this issue of worst-case current measures, DRAM vendor RAM-
BUS [22], Hewlett Packard Research Labs [101], and academic contributors such
Weis et al. [46, 47], Keeth et al. [48], have proposed employing detailed circuit-
level models of DRAMs to obtain nominal power and energy consumption es-
timates. By employing such circuit-level models, not only is it possible to (1)
model DRAM operations and state transitions more precisely than the high-level
current measures-based models, but also to (2) derive more accurate power esti-
mates by using nominal (average-case) current measures in place of the worst-case
datasheet measures.

However, there are a few issues in employing these circuit-level models. Firstly,
the underlying DRAM architectures employed by these models may not accurately
reflect the design choices and optimizations across different DRAM vendors. Fur-
thermore, to make sure the required modifications reflect architectural differences,
one needs to have a detailed understanding of the circuit-level behavior of DRAMs,
making it very inconvenient for system designers to employ these models. To add
to this issue, DRAM vendors do not provide extensive circuit-level details of their
DRAM architectures and designs, which makes it extremely difficult to adapt
these models to reflect real designs. Finally, although the nominal current mea-
sures may be closer to real measurements (for most devices) than the worst-case
measures, they only serve as approximate indicative measurements and can still
differ from the actual current measures of a given DRAM device by a large extent.
Also, using nominal measures only covers 50% of the DRAM devices in the lot.

Considering the difficulties in employing and adapting the circuit-level mod-
els, the only feasible alternative is to employ current measures-based power
models similar to those by Micron and Samsung, but with improved precision
in their modeling of the different DRAM transactions, along with realistic or
‘better than worst-case’ current values for a device configuration, instead of
the worst-case measures.

1.1.3 Problem II: Run-Time DRAM Power Optimization

This section addresses the second of the two problems to be addressed in this
thesis: performance-neutral power optimization of DRAMs.

Most modern embedded systems employ DRAMs as a high-bandwidth low-
cost memory solution to store active application code and data to enhance system
performance. However, DRAMs also significantly impact system power and en-
ergy consumption (increase of up to 25% in mobile phones) [14, 19], even when
they are idle [20, 21] and are prime candidates for efficient run-time power man-
agement and optimization to reduce their energy consumption.

Figure 1.4 depicts DRAM energy consumption components when the DRAM
is idle 50% of the time and switching between reads and writes (using a closed-
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page policy) interspersed with the occasional refresh, for 1Gb DDR3-800 modules
from Micron. As can be noticed from the pie chart, idle energy (energy consumed
in the precharged idle standby state) contributes to more than 25% of the total
energy consumption at 50% idleness, highlighting the need for optimization of
power consumption during idle periods.
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Figure 1.4: Energy Consumption of DRAM Operations

Besides the design-time circuit-level and architectural optimizations for power
and energy-efficient DRAM designs employed by JEDEC and DRAM vendors,
run-time high-level power optimization solutions are required for efficient system
designs. Towards this, innumerable propositions have been made [14, 19, 22–37]
to optimize DRAM power consumption, obtaining different degrees of power re-
duction, often with a corresponding negative impact on performance. With the
ever-increasing demand for higher memory bandwidth, employing power optimiza-
tion strategies that trade off performance for power becomes counter-productive.
To optimize DRAM power consumption, two primary avenues are explored: (1)
reducing active power by optimizing power consumption of DRAM accesses and
refreshes and, (2) reducing standby power by optimizing power consumption when
the memory is idle.

To reduce active power consumption, general approaches target: (1) minimiz-
ing row-buffer misses and (2) reducing read-write switches. The main goal of these
approaches is to improve the average DRAM performance by reducing the over-
all number of DRAM operations and as a byproduct, reduce the DRAM energy
consumption. However, these optimizations can also impact worst-case latencies
of individual DRAM transactions, due to: (1) inefficient handling of open rows
and (2) re-ordering of transactions.

To reduce standby power consumption, DRAMs have the option of using ei-
ther (1) power-down or (2) self-refresh modes to power-off the device [103] or (3)
frequency scaling to minimize idleness. Unfortunately, the powering-off mecha-
nisms, if speculatively used, may impact performance due to their power-up la-
tencies [103]. Also frequency scaling may impact the latency of individual DRAM
operations, due to the slowing down of the memory.

K. Chandrasekar



1.2. Proposed Solutions 9

This calls for DRAM power optimization strategies that can efficiently employ
any of these approaches, while avoiding or hiding any resulting performance loss.
Such guaranteed performance is often required by applications with strict perfor-
mance requirements (such as high-performance real-time systems), which demand
worst-case guarantees from every component in the embedded system and cannot
tolerate any impact on the same.

1.2 Proposed Solutions

To address both the accurate DRAM power modeling and performance-neutral
DRAM power optimization problems, we propose the following:

1. DRAM power modeling - There are two issues to address here: (a) Improved
precision in power modeling and (b) Employing realistic or better than worst-
case current values as inputs.

To address the first issue, we propose high-level cycle-accurate high-precision
power model of DRAMs. To address the second issue, we propose to adapt a
circuit-level SPICE model to reflect the architecture of a particular DRAM
configuration and:

I. Derive better than worst-case current measures that are applicable
for a majority of DRAM devices in a particular generation (≥97%), in place
of datasheet measures, which are extremely pessimistic. These ‘better than
worst-case’ measures are obtained by introducing device level variations in
the circuit-level DRAM model and performing Monte-Carlo analysis to de-
rive ±6σ distribution of current measures (that reflect impact of process
variations). From this distribution, we select the current measures applica-
ble to ≥97% of the devices (+3σ data point).

II. Combine it with a post-manufacturing DRAM power and perfor-
mance characterization methodology to determine more realistic current
measures for a particular given DRAM device, which may lie anywhere in
the ±6σ distribution of current measures.

2. DRAM power optimization - We propose a couple of performance-neutral
DRAM power-down strategies with a run-time power management policy
that reduce memory power consumption, while preserving the original worst-
case performance guarantees.

1.2.1 Improved DRAM Power Modeling and Estimation

When it comes to DRAM power modeling and estimation, the accuracy of power
estimation can improve with: (1) An increase in the level of detail (precision)
employed in modeling the power consumption of a particular DRAM operation
(like activation, precharge, refresh, power-down etc.) and (2) A higher degree
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of accuracy of the inputs employed by the models (such as its current measures,
design specifications etc.).

In this work, we establish the accuracy of a given power model by compar-
ing its power/energy estimates against real power measurements from a given
DRAM device, thereby evaluating both the power model’s detail of modeling dif-
ferent DRAM operations/transactions and its assumptions on the DRAM current
measures it uses as inputs.

In this context, we first establish a generic metric to evaluate the accuracy of
a DRAM power model. Let M(i,j) denote a Power Model i and its modeling of
operation j and I(i,j) denote its current inputs for the particular operation (e.g.
worst-case or nominal currents). The resultant output can be derived as O(i,j),
as shown in Equation (1.1). Accordingly, the power model’s accuracy for the par-
ticular operation A(i,j) can be given by Equation (1.2), where O(ref,j) gives the
reference power consumption estimate obtained from direct power measurements
on a particular DRAM device for the particular operation j. The aggregate aver-
age of this accuracy measure over all DRAM operations (J), indicates the overall
accuracy of the power model as given by Equation (1.3), where J is the set of
all important DRAM operations. In general, since worst-case currents represent
the entire lot of DRAM devices of a particular generation and configuration and
nominal currents represent 50% of the devices of the lot, the accuracy of models
using these current measures is likely to be higher for the proportion of population
they represent.

O(i,j) = M(i,j)

(
I(i,j)

)
(1.1)

A(i,j) = 1− | 1− (O(i,j)/O(ref,j)) | (1.2)

A(i) =
(∑
jεJ

A(i,j)

)
/ | J | (1.3)

As stated before, the state-of-the-art transaction-level models based on current
measures such as those from Micron, are imprecise in their modeling of different
DRAM operations and state transitions and employ worst-case current measures
as inputs, whereas the circuit-level power models [22, 47, 48, 101] may not accu-
rately reflect the architectural distinctions between different DRAM generations,
across DRAM vendors and their design optimizations. As a result, both these
models are expected to fair poorly in their accuracy metric.

Considering the issues with employing circuit-level models, the only feasible
alternative is to employ high-level power models similar to those by Micron and
Samsung, which are based on JEDEC-specified currents that reflect individual
vendor’s architectural differences, but with (1) improved precision in modeling of
the different DRAM operations (M(i,j)) and (2) use of ‘better than worst-case’
and ‘realistic’ current measures (I(i,j)) instead of the worst-case datasheet current
measures, to obtain more accurate power consumption estimates (O(i,j)).
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To improve the modeling precision, we propose a high-level power model of
DRAMs referred to as DRAMPower, which models the power consumption of
different DRAM operations, state transitions and power-saving modes with high
precision and analyzes memory command timings at cycle-accurate level, resulting
in more accurate power estimates compared to transaction-level models.

To address the issue of assumptions on input currents, we propose to adapt a
circuit-level model to reflect the architectural details of a given DRAM configu-
ration and:

(I) Derive better than worst-case current measures that are applicable to >
97% of the devices with the particular configuration (+3σ of the population).

(II) Combine it with a generic post-manufacturing DRAM power and perfor-
mance characterization methodology that identifies realistic current estimates for
any given DRAM device of any configuration.

Both the solutions for power modeling and assumptions on current inputs,
improve the accuracy of the power and energy estimates of DRAMPower. We
further employ the actual measured current values for a given DRAM device as
inputs to DRAMPower, and show a very high degree of accuracy in its power
estimates over different DRAM operations, in comparison to real measurements
from hardware.

In Table 1.3, we depict the modeling detail and current inputs employed by
the state-of-the-art power models, viz., Micron (M0) and Weis et al., (M1), as
we improve DRAMPower’s (M2) accuracy by introducing high-precision cycle-
accurate modeling and use of ‘better than worst-case’ current measures (I2 [+3σ])
in place of Datasheet current measures (I0 [+5σ]) and nominal current measures
(I1 [µ]). These comparisons are valid for >97% of the DRAM devices of a given
configuration.

Additionally, we also propose a post-manufacturing power and performance
characterization mechanism to obtain more realistic current measures (I3) for a
given DRAM device. These realistic current measures are identified at the peak
performance of the given device, and are much closer to the real current measures
of the device, if it were to be operated at its peak performance. To fairly assess
the accuracy of the high-level power models (Micron and DRAMPower), we also
employ measured current (IDD) values (I4) for a given DRAM device as inputs to
both these models (M0/I4 and M2/I4, respectively), and then compare their power
estimates over different DRAM operations to real measurements from hardware
(Oref ), thereby performing a fair comparison between the three sets of power
estimates. These comparisons are also shown in Table 1.3.

In Figure 1.5, we present an overview of the different levels of detail and
current measures employed by different DRAM power models (including DRAM-
Power) and the relative degree of accuracy of their power and energy consump-
tion estimates compared to real power measurements from hardware on a 512MB
DDR3-800 DIMM using 1Gb-Micron DDR3-800 devices. As shown in the figure,
the accuracy of DRAMPower improves by employing ‘better than worst-case’ cur-
rent measures (IDDs) [53] in place of the worst-case datasheet current measures,

High-Level Power Estimation and Optimization of DRAMs



12 Chapter 1. Introduction

Table 1.3: Accuracy of State-of-the-art power models vs. DRAMPower

Better than
Datasheet Nominal Worst-Case Measured
IDDs (I0) IDDs (I1) IDDs (I2) IDDs (I4)

(Chapter 2) (Chapter 3) (Chapter 3) (Chapter 4)
Trans-Level(M0) Micron [17] Micron
Circuit-Level(M1) Weis et al. [46]
Cycle-Acc.(M2) DRAMPower DRAMPower DRAMPower

Applicable
Population % 100% 50% 97% 1 device

Standard
Deviation +5σ µ +3σ -5σ

to achieve power estimation accuracy closer to that of the circuit-level models.
It further improves the accuracy of its power estimation by employing nominal
(I1) and realistic currents (I3) which are closer to the real measures from a given
device. Finally, when employing measured currents (I4), it achieves around 97%
accuracy compared to power measures from hardware over different DRAM oper-
ations. Micron’s model also improves its accuracy when employing I4 to achieve
around 82% accuracy.

In Figure 1.6, we present an overview of the DRAM power models (M0 to M2)
and the current measures they employ (I0 to I4) and their relative degree of accu-
racy in terms of power estimates compared to real measurements from hardware
(Oref ). As can be noticed in the figure, DRAMPower (M2) using ‘better than
worst-case’ current measures (I2) is shown to be more accurate compared to ex-
isting power model/current measure combinations (M0(I0) and M1(I1)) for >97%
of the devices. For a particular DRAM device under consideration, DRAMPower
using realistic current measures (I3) and measured current values (I4) improves
in terms of power estimation accuracy and still evaluates better than the Micron
model.

1.2.2 Performance-Neutral Power Optimization of DRAMs

DRAM power management mechanisms target two power modes: active and idle,
since both are equally important to optimize. Active power management, so-
lutions range from exploiting locality to re-ordering transactions, and reducing
refreshes, all of which primarily target minimizing the number of DRAM oper-
ations and as a consequence reduce the overall energy consumption. Although
these solutions improve performance and reduce power consumption on average,
they can also impact worst-case latencies of individual DRAM transactions, since:
(1) the memory rows are kept open for long, and (2) re-ordering of transactions
can delay individual transactions.

Conservative strategies, such as the one proposed by Goossens et al. in [96],
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can be employed to optimize average-case performance without affecting worst-
case guarantees, while reducing active energy consumption. Such worst-case per-
formance guarantees are required by applications with high-performance and real-
time performance requirements that must not be violated. Additionally, as a re-
sult of reducing overall DRAM accesses, the active power optimization policies
tend to increase DRAM idleness and these idle periods must also be optimized
for reduced power consumption.

When it comes to idle power management, most solutions employ either the
power-down or the self-refresh power saving modes to power off the device when it
is idle [24,55–58] or scale down the DRAM frequency to minimize idleness [23,59–
61]. The down-side to using these power saving modes is that they can negatively
impact both the average-case performance and worst-case latencies of transactions
due to their power-up latencies, if speculatively used. Frequency scaling also
incurs a performance penalty due to overhead involved in the process and hence,
also can affect both average-case and worst-case performance.

In comparison to active power management, idle power optimization poses a
bigger challenge, since not only can the speculative use of power saving modes
reduce system performance, but can also increase the overall energy consumption.
Hence, there is a need to derive idle power optimization strategies that can effi-
ciently employ any of the power saving modes to reduce idle power consumption
without affecting the original worst-case performance guarantees, while avoiding
or minimizing any impact on average-case performance.

Considering the challenges in reducing idle power consumption in DRAMs,
with the aim of deriving performance-neutral run-time power optimization strate-
gies, we propose: (1) a conservative and an aggressive DRAM power-down strategy
and (2) a power management policy for DRAM memory controllers that employs
one of these two strategies at run time, preserving the original worst-case perfor-
mance guarantees while achieving significant power savings.

The conservative and aggressive power-down strategies exploit the idle mem-
ory service cycles identified by real-time DRAM arbiters like Round-Robin and
TDM, to initiate use of the power-down mode and differ primarily in their decision
to power-up the memory.

While the conservative strategy acts cautiously and powers up the DRAM by
the end of every arbiter service cycle (time period required by the DRAM to serve
a request), the aggressive strategy actively merges contiguous idle service cycles
to keep the memory in the powered-down state for longer continuous periods, as
depicted in Figure 1.7. It does so by snooping the arbiter/bus at the front-end of
the memory controller to look ahead for upcoming requests to the memory before
deciding to power-up. It must be noted that the aggressive strategy, as a result of
the snooping, also manages to power-up the memory in time for the next request
to be served without affecting the requester’s (memory client) original worst-case
memory performance (latency and bandwidth) guarantees.

While the conservative strategy avoids any latency penalties, the aggressive
policy efficiently bounds and hides the penalties within the original guaranteed
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latency, thereby avoiding any impact on the worst-case guaranteed performance.
However, the aggressive strategy cannot always be applied for all use-cases and
does marginally impact the average-case performance, which the conservative
strategy avoids. To assure that both these strategies are used correctly without
impacting the worst-case performance guarantees, we also propose a power man-
agement policy for the memory controller that evaluates both these power-down
strategies for their applicability and potential for energy savings, for a given sys-
tem use case, based on different memory access parameters such as access granu-
larity, page policy and memory service cycle durations and applicable power-down
modes.

This power management policy assures that the power-down strategies do not
violate the original DRAM performance guarantees. For instance, for a given use
case, if the power-up penalty of the aggressive policy cannot be hidden within
the original latency bounds, it chooses to employ conservative power-down, en-
suring no violation of the original performance guarantees. Thus, together, both
the power management policy and the two power-down strategies are worst-case
performance-neutral.

Both the power-down strategies and the power management policy can be em-
ployed together with any of the real-time memory controllers presented in [62–67].
Hence, by employing the proposed performance-neutral power-down strategies
with the run-time power management policy, the memory controller can effec-
tively and efficiently power-down the DRAM memory when it is idle, without
impacting the original DRAM worst-case performance guarantees.

1.3 Contributions

As highlighted in the previous sections, the goal of this thesis work is two-fold.
(1) To derive accurate DRAM power and energy consumption estimates. (2) To
derive efficient DRAM power optimization solutions without trading off worst-case
performance for lower power consumption.

High-Level Power Estimation and Optimization of DRAMs
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Towards this, we propose two major solutions: (1) A high-level cycle-accurate
high precision DRAM power model that uses better than worst-case or realistic
current measures to achieve accurate power and energy consumption estimates.
(2) A run-time power management policy and two DRAM power-down strate-
gies to optimize DRAM idle power consumption without affecting its worst-case
performance guarantees. There are five significant contributions of this thesis:

1. High-Precision DRAM Power Modeling

We propose a high-level cycle-accurate DRAM power model (DRAMPower)
that enables high-precision power consumption modeling of different DRAM
operations, state-transitions and power-saving modes. Towards this, we
employ cycle-level DRAM command information, analyze the actual timings
between the commands and accurately account for the power consumed
during memory state-transitions (Chapter 2). We identify the differences in
our modeling approach to existing power models based on current measures.

2. Variation-Aware DRAM Power Estimation

To further improve the accuracy of DRAMPower’s power/energy estimates,
we derive better than worst-case measures for the JEDEC current metrics
instead of vendor-provided worst-case measures from device datasheets. To-
wards this, we modify an NGSPICE-based circuit-level DRAM architecture
and power model to accommodate the effects of design-time and run-time
variations and derive a distribution of current measures (Chapter 3) applica-
ble to all DRAM devices with any given configuration (capacity, data-width
and frequency). From these measures we derive better than worst-case cur-
rent estimates applicable to a majority (>97%) of the manufactured devices
with that configuration (+3σ values in the distribution).

We then propose a generic post-manufacturing power characterization method-
ology for DRAMs to derive realistic current estimates for a given DRAM
device. To do so, we assess a DRAM’s actual performance characteristics
and identify the equivalent impact on power consumption. When employing
this methodology, we empirically determine the actual impact of manufac-
turing process-variations for a given DRAM device, thereby identifying the
excess margins for this device, in the datasheet current measures (Chapter
3). As a consequence of this effort, we also identify the best-case perfor-
mance metrics for a given DRAM device, enabling its optimized usage, both
in terms of performance and power consumption.

3. Open-Source DRAMPower Tool

The DRAMPower model has been released as an open source DRAM power
and energy estimation tool at www.drampower.info [68] for fast and accurate
DRAM power and energy estimation for DDR2/3/4, LPDDR/2/3 and Wide
IO DRAM memories based on JEDEC standards.
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The tool can be employed at two levels of abstraction: (1) Command-
level and (2) Transaction-level. To facilitate use of transaction-level traces,
DRAMPower includes an optional DRAM command scheduler (developed
by Yonghui Li at TU Eindhoven [132]), which dynamically schedules and
logs DRAM commands, corresponding to the incoming memory transac-
tions, as if it was a regular memory controller. It assumes a closed-page pol-
icy, employs FCFS scheduling across transactions and uses ASAP scheduling
for DRAM commands. The tool supports all basic DRAM memory com-
mands including read, write, refresh, activate and precharge, besides the
power-down and self-refresh modes.

4. Validating DRAMPower

We validate the DRAMPower model against power measurements from real
hardware (for a DDR3 DIMM) and compare its power estimates against
those of Micron’s power model [17]. Towards this, we employ measured cur-
rent values from a DDR3 DIMM as inputs to DRAMPower and Micron’s
model. We determine these measures by implementing the standardized
JEDEC current measurement test loops and measuring voltage drop across
a shunt resistor. We then implement several test cases covering different
DRAM operations, and state-transitions, and compare the power estimates
of DRAMPower against those of the Micron model and the actual measure-
ments from hardware (Chapter 4).

With these experiments, we highlight the significance of high-precision mod-
eling in Chapter 2 by comparing DRAMPower against Micron’s model.

5. Performance-Neutral DRAM Power Optimization

We propose two DRAM power-optimization strategies to power-down the
DRAM when it is not in use, while making sure that the worst-case per-
formance guarantees of the DRAM memory are not affected. To do so, we
employ a performance-neutral run-time power management policy that en-
sures that both these strategies are used correctly and efficiently without
violating any latency/bandwidth bounds. The power management policy
on its part evaluates both the power-down strategies for their applicability
and potential for energy savings, based on the selected memory access gran-
ularity, memory page policy and memory service cycle durations. The two
power-down strategies only differ in their powering-up policy and frequency
of powering-up, with the aggressive strategy reducing the number of power-
ups to the minimum required number and yet powering-up the memory in
time for the next request (Chapter 5).

Together, these five important contributions successfully achieve the goals of
this thesis and play a part in energy-efficient usage of DRAMs.
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1.4 Organization of this Thesis

The rest of thesis is organized as follows:
Chapter 2 describes the details of the proposed DRAM power model (DRAM-

Power), its modeling differences compared to other power models based on current
measures (especially Micron’s) and the adaptations made to it to address most
DRAM generations from DDR2 to DDR4, LPDDR to LPDDR3 and Wide IO
DRAMs. The chapter also briefly discusses the tool-flow, command scheduler
and command trace analysis of the open-source DRAMPower tool.

Chapter 3 describes the proposed post-manufacturing DRAM power and per-
formance characterization methodology that identifies the excess margins in DRAM
current and performance measures in the datasheets for any given DRAM device.
This chapter also describes the modifications made to the baseline NGSPICE
model to incorporate impact of process variations on DRAM power and perfor-
mance, and derives better than worst-case current measures for a majority of
DRAM devices in a generation with a given configuration.

Chapter 4 includes the tests and experiments used to verify and validate
DRAMPower against real hardware measurements and compares its estimates
against those of Micron’s model.

Chapter 5 describes the proposed performance-neutral power optimization
strategies and the power-management policy that enables optimization of idle
DRAM power without impacting the original performance guarantees. The chap-
ter describes the latency and bandwidth guarantees provided by real-time DRAM
memory controllers and analyses the impact of the proposed power-down strate-
gies on these measures, highlighting their worst-case performance neutrality.

Chapter 6 describes the conclusions drawn from this work and sheds light on
possible future extensions to improve this work, both in terms of power estimation
and optimization.
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Chapter 2

Cycle-Accurate DRAM Power

Modeling

DRAM memories contribute significantly to the overall system power and energy
consumption and require effective power management for their energy-efficient
use. The key prerequisite to their efficient power/energy management is to use
accurate DRAM power and energy consumption estimates. Hence, system design-
ers require high-precision power models that accurately estimate power and en-
ergy consumption of the different DRAM operations, state transitions and power-
saving modes.

All DRAM vendors furnish a set of standard current measures corresponding
to different combinations of memory operations specified by JEDEC. These mea-
sures are employed by high-level power models, which break them down into mea-
sures corresponding to individual DRAM operations. However, existing high-level
power models lack precision in their modeling of the different DRAM operations,
and hence do not report accurate power measures. Alternatively, circuit-level
power models can be employed for power estimation, since they perform accurate
modeling of these operations, transitions and modes. However, the underlying
DRAM architectures employed by these circuit-level models do not accurately re-
flect architectural distinctions between different DRAM generations, and vendor-
specific designs, and need to be extensively adapted to reflect similar configuration
as a particular DRAM device, timing behavior and current consumption.

Hence, this chapter proposes a high-level cycle-accurate power model which
employs JEDEC-specified current measures and performs high-precision modeling
of DRAM operations to obtain accurate power and energy estimates. We compare
and contrast the state of the art in high-level DRAM power models against our
proposed power equations, which improve the precision of the modeling of the
different DRAM operations, state transitions and power-saving modes. Most of
the equations presented in this Chapter have been previously published in our
papers at DSD 2011 [40] and DATE 2013 [41].
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2.1 Related Work

The most popular DRAM power model is provided by Micron [17], which de-
rives power equations for different DRAM operations using the JEDEC-specified
datasheet current measures. However, it has been found to be inaccurate or in-
sufficient for several reasons including:

1) It does not consider the power consumed during the state transitions from
an arbitrary DRAM state to the power-down and self-refresh states, reporting
optimistic power saving numbers for these modes. This also includes any manda-
tory precharges required before such power-down or self-refresh states can be
employed. Schmidt et al., empirically verified this shortcoming of Micron’s power
model in [38]. Furthermore, it does not take into account the power consumed
during the pre-refresh clock cycles used to precharge all banks before executing a
Refresh, as a part of Refresh power.

2) It employs the minimal timing constraints between successive commands
from DRAM datasheets [98], [99] and not the actual duration between them as
issued by a DRAM controller, which may well be greater than the minimum
constraints. Direct scaling of the power estimates obtained from Micron’s power
model gives pessimistic power consumption values for basic DRAM operations,
such as reads and writes.

3) It cannot directly provide power consumption values when an open-page pol-
icy or a multi-bank-interleaved memory access policy [51] or a multi-rank memory
system is employed. This is because, (a) it assumes a close-page policy by default,
(b) when multiple banks are activated in parallel, it employs inaccurate scaling of
power consumption and requires adaptations for proper power and energy estima-
tion and, (c) it does not address power estimation of multi-rank memory systems.

Schmidt et al., in [38] and [39] empirically measured the power values from a
DRAM and showed that Micron’s power model provided approximate and worst-
case power consumption numbers and over-estimated the actual savings of the
Self-Refresh mode for DRAMs. They also attributed these discrepancies to the
fact that Micron’s power model does not cover the state transitions to the Self-
Refresh or the other modes and verified this using different benchmarks.

These critical issues with Micron’s power model impact the accuracy and the
validity of the power values reported by it. This chapter addresses all of the
aforementioned issues by proposing an improved DRAM power model (DRAM-
Power) for all DRAMs. As stated in Chapter 1, the precision of the power model
using the JEDEC-specified current measures, is one of the factors that define the
accuracy of the power estimates. The proposed power model takes into account
all possible state transitions from any arbitrary DRAM state to the power-down
and self-refresh states. Our generic power model accepts a cycle-accurate DRAM
command trace of any length (from a single transaction to an application trace)
from any memory controller, supporting both open and close-page policies and
any degree of bank-interleaving memory access scheme.
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Our proposed DRAMPower model employs the actual duration between com-
mands obtained from any such DRAM command trace together with the JEDEC-
specified current and voltage values. Other existing DRAM power models such as
Rawson [42], Joshi et al. [43] and Ji et al. [44], propose DRAM power modeling
similar to Micron, but none of them identified or addressed the state transitions
issue and hence, do not provide any improved power estimation numbers. Raw-
son [42] even simplified Micron’s model further with approximate power equations,
which were less precise compared to Micron’s model. Joshi et al. [43] estimated
energy per read/write transaction and assumed all transactions have a fixed tim-
ing behavior, ignoring the scaling issue. Ji et al. [44] did not model the memory
power-saving states or state transitions, and hence, do not provide better power
consumption estimates.

2.2 Background on DRAM currents

In this section, we describe the different DRAM currents, when and how they
are measured, and the state of the banks and changes to the DRAM settings,
when they are measured. These currents are also described in detail in [103].
The measures for these currents for a MICRON 512MB DDR3-800 DIMM are
provided in Table 2.1

(1) IDD0 (One Bank Active-Precharge Current): Measured across ACT
and PRE commands to one bank. Other banks are retained in precharged state.

(2) IDD1 (One Bank Active-Read-Precharge Current): Measured across
ACT, RD and PRE commands to one bank, while other banks are retained in the
precharged state. This measurement is performed twice, targeting two different
memory locations and toggling of all data bits.

(3) IDD2N (Precharge Standby Current): Measured when all banks are
closed (in the precharged state).

(4) IDD2P0 (Precharge Power-Down Current - Slow-Exit): Measured
during power-down mode with CKE (Clock Enable) Low and the DLL locked but
off, while the external clock is On and all banks are closed (precharged).

(5) IDD2P1 (Precharge Power-Down Current - Fast-Exit): Measured
during power-down mode with CKE (Clock Enable) Low and the DLL locked
and on, while the external clock is On and all banks are closed (precharged).

(6) IDD3N (Active Standby Current): Measured when at least one bank
is open (in the active state).

(7) IDD3P (Active Power-Down Current): Measured during power-down
mode with CKE (Clock Enable) Low and the DLL locked, while the external clock
is On and at least one bank is open (active state).

(8) IDD4R (Burst Read Current): Measured during Read (RD) operation,
assuming seamless read data burst with all data bits toggling between bursts and
all banks open, with the RD commands cycling through all the banks.

(9) IDD4W (Burst Write Current): Measured during Write (WR) oper-
ation, assuming seamless write data burst with all data bits toggling between
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bursts and all banks open, with the WR commands cycling through all the banks
and the ODT (On Die Termination) stable at HIGH.

(10) IDD5 (Refresh Current): Measured during Refresh (REF) operation,
with REF commands issued every nRFC cycles.

(11) IDD6 (Self Refresh Current): Measured during self-refresh mode with
CKE Low and the DLL off and reset, while the external clock is Off and all banks
are closed (precharged).

(12) IDD1W(One Bank Active-Write-Precharge Current): This current is not
a JEDEC standard measure, however, its reference measures can be calculated
by substituting write current (IDD4W) instead of read current (IDD4R) in IDD1

current and corresponds to activation-write-precharge current.

Table 2.1: DDR3 Current Measures

Current Type Measure (mA)
IDD0 One Bank Active-Precharge Current 360
IDD1R One Bank Active-Read-Precharge Current 440
IDD1W One Bank Active-Write-Precharge Current 410
IDD2N Precharge Standby Current 180
IDD2P0 Precharge Power-Down Current - Slow-Exit 40
IDD2P1 Precharge Power-Down Current - Fast-Exit 100
IDD3N Active Standby Current 200
IDD3P Active Power-Down Current 100
IDD4R Burst Read Current 840
IDD4W Burst Write Current 840
IDD5 Refresh Current 800
IDD6 Self-Refresh Current 24

2.3 Our Approach

In this chapter, we present equations to accurately model power consumption of
different DRAM operations and estimate power savings for the different power-
down modes and the self-refresh mode. For this, we employ the actual timing
durations between successive commands issued by a DRAM controller (obtained
using a DRAM command trace), instead of the minimal timing constraints from
the datasheets, employed by Micron [17].

We also take into account the power consumed during the state transitions
from any arbitrary state into the power-down, self-refresh and refresh states. In
short, we propose a generic power model that supports any row-buffer manage-
ment policy (open-page or close-page), any command scheduling policy, any de-
gree of bank parallelism or interleaving and multi-rank DRAM systems.

To identify appropriate current consumption values for the different state tran-
sitions to the power-down or self-refresh mode, we observe: (a) the state the mem-
ory is in (active/precharged) before entering the power-down/self-refresh mode,
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(b) the state it will be in (active/precharged) after powering back up, based on
the power-saving mode selected, and (c) the changes to the CKE (Clock Enable)
signal. We obtain the timing requirements for those state transitions from the
JEDEC specified requirements, identify the duration of the transitions from the
trace and accurately calculate their energy consumption. Using this approach, we
obtain the power consumption values for any such transition and operation.

To highlight the improvement in the accuracy of modeling of DRAM opera-
tions in DRAMPower, in Figure 2.1, we present the difference in the modeling of
the self-refresh power-saving mode between Micron’s power model (indicated by
red line), DRAMPower (indicated by white line) and the actual measures.

Self-Refresh

Internal
Refresh

Power-Up

Figure 2.1: Micron (Red) vs. DRAMPower (White) vs. Measurements (Orange)

As can be noticed in the figure, Micron’s power model ignores the internal
implicit refresh instantiated at the beginning of the self-refresh period, which
may prove critical (in terms of power consumption) for shorter self-refresh periods.
This effect is captured by DRAMPower unlike Micron’s model. Similarly, state
transitions to power-down modes or auto-refreshes and use of dynamic command
scheduling policies are captured by our model, more accurately.

When it comes to regular transactions, Micron’s model employs the minimal
timing constraints (Table 1.1) like nRC (minimum duration between two Acti-
vate commands to the same bank), as the transaction length to calculate power
consumption for the transaction (Figure 1.2).

We instead propose to employ the actual transaction length denoted by nTL
for every individual transaction, as observed in the command trace of a DRAM
memory controller, to calculate the exact power consumption for that partic-
ular transaction. Note: In the context of the DRAMPower model, a read or

High-Level Power Estimation and Optimization of DRAMs



24 Chapter 2. Cycle-Accurate Power Modeling of DRAMs

write transaction ends when the data transfer corresponding to the read/write
command finishes or the associated auto-precharge (if any) finishes, whichever is
later, defining its transaction length. Similarly, an idle/power-down transaction
length is defined by the duration of the continuous period of idle/power-down clock
cycles (including power-up periods). In implementation, any overlapping cycles
between transactions are to be accounted for separately to assure no duplicate
calculations.

Additionally, the user may also specify a user-defined window of analysis to
derive the power consumption over that time period. Note that however, the
minimum transaction length for any operation is defined by the minimum timing
constraints associated with that operation. We further clarify on the minimum
and actual transaction lengths associated with every operation, as and when we
discuss them. In a nutshell, our approach employs the actual observed timings
between commands as transaction lengths, addresses DRAM state transitions,
and is applicable to all memory controller policies and schedules. We derive
our power model (DRAMPower) on the basis of JEDEC specified current and
timing measures. In the next sections, we address each of the drawbacks in
Micron’s model, with improved and new power equations from our model. We
first present equations targeting DDR2/3/4 devices and later adapt them to reflect
LPDDR/2/3 and Wide IO DRAMs.

2.4 Modeling Basic Operations

As stated before, Micron’s model employs the minimal timing constraints between
successive commands from DRAM datasheets [98], [99] and not the actual duration
between them as issued by a DRAM controller, which may well be greater than
the minimum constraints. Micron has identified the basic power components
that add up and contribute to overall memory power consumption [17]. These
include background power components such as Active Background (ActBG) and
Precharged Background (PreBG) power, and active power components such as
power of Activate (ACT ), Precharge (PRE ), Read (RD), Write (WR) and Refresh
(REF ) commands. Unfortunately, Micron employs the minimal constraints to
calculate power consumption of these active power components. As a result,
the direct scaling of the power estimates to multiple operations (multiplying)
gives pessimistic (higher) power consumption values for basic DRAM operations.
Furthermore, Micron’s model does not directly provide power consumption values
when an open-page policy or a multi-bank or multi-rank memory access [51] is
employed. This is because, it assumes a close-page policy by default and suggests
equal scaling for both activation and precharge operations even when different
timings are used by the memory controller. In reality the ratios of scaling of
activation/precharge operations can vary depending on the scheduler and hence,
equal scaling can result in higher or lower power estimates. Also, when multiple
banks or ranks are accessed in parallel, Micron’s power model requires adaptations
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for proper power and energy estimation. These adaptations are explained in detail
later in this section.

In this section, we first present DRAMPower’s alternatives (identified by sub-
script ‘D’) to Micron’s equations (identified by subscript ‘M’) for these basic power
components, considering the actual timings between commands. We then derive
equations to represent the different power-saving modes and state transitions. A
general rule of thumb is that the background power components (static power)
scale up with increase in duration, since they are always consumed whenever the
memory is ‘ON’ (leakage). On the other hand, the active power components (dy-
namic power) scale down with increase in duration, since they contribute to power
consumption only for the period when they are used (based on the switching ac-
tivity), and get averaged over the actual transaction length (nTL). The basic
power components that add up for a sample read transaction with burst length
8 (using a close-page policy) are shown in Figure 2.2. The clock cycles in which
these power components are consumed are indicated by ‘X’, for instance, P(RD)
is consumed over 4 cycles of data transfer.

BG

BG

Figure 2.2: Basic Power Components in a Read Transaction of length nTL

2.4.1 Activate and Precharge Command Power

IDD0 is specified as the average current consumed by the memory when it executes
an ACT command (to transfer the data from the memory array to the row buffer)
and a PRE command (to charge the bit lines and restore the row buffer contents
back to the memory array), within the minimum timing constraints. The IDD0

current value also includes the active background current IDD3N for the minimum
period for which the row is active (nRAS ) and the precharge current IDD2N for
the minimum period for which the row is precharged (nRP = nRC - nRAS, where
nRC is the total active and precharged time). Hence, these should be subtracted
from IDD0 for the respective durations and averaged over the transaction length
(nTL) to identify the average power consumed only due to the ACT and PRE
commands. Figure 2.3 depicts the overall current consumption curves, when an
ACT command is issued followed by a PRE command within minimum timing
constraints (repeated four times), as measured from hardware. These curves only
serve as indicators for these operations and the actual measures and scale vary
depending on the memory being used.
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Figure 2.3: ACT-PRE Measurement

The unmodified Micron power model specifies these two power components as
one, assuming by default, a close-page policy, as shown in Equation (2.1).

PM (AP) = (IDD0 − (

nRAS∑
n=1

IDD3N +

nRC-nRAS∑
n=1

IDD2N)/nRC)× VDD (2.1)

However, we split the two power components as PD(ACT, nTLa) and PD(PRE,
nTLp) and provide estimates based on the ratio of the number of active cycles
to precharge cycles in the transaction, as shown in Equations (2.2) and (2.3),
respectively.

This partitioning enables us to provide power estimates when using the open-
page policy (where the memory may be retained longer in the active state) and for
accurate scaling of appropriate power estimates (corresponding to ACT or PRE
sub-operation durations), observed as two distinct peaks in Figure 2.4. Note that
in Figure 2.4, each ACT is delayed for a few extra clock cycles after the last PRE
to allow the memory to stay idle longer in the precharged mode (to show effect
of scaling), whereas in Figure 2.3, minimum timings between the two operations
are employed.

PD(ACT, nTLa) =

nRAS∑
n=1

(IDD0 −IDD3N)× VDD/nTLa (2.2)

PD(PRE, nTLp) =

nRC∑
n=nRAS+1

(IDD0 −IDD2N)× VDD/nTLp (2.3)
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Figure 2.4: ACT-PRE Operation (Spaced Out)

When scaling the power consumption estimates for the ACT and PRE com-
mands, Micron’s model scales both activate and precharge power components by
the same factor (nRCnew, scaled sum of active and precharged time), as shown in
Equation (2.4), without considering the actual length of time spent individually
in the active and precharged states, as shown in Figure 2.5. On the other hand,
our equations employ the actual scaling factors for each of the sub-operations
as a parameter by performing cycle-accurate analysis to provide better instanta-
neous power estimates. For instance, nTLa in Equation (2.2) can be nRASnew(1)
or nRASnew(2), which are longer than nRAS, since activation power is to be
computed over the actual activation period.

For the precharge power consumption in Equation (2.3), this period can be
defined by the difference between a nRCnew and the corresponding nRASnew to
indicate the precharge period.

PM scale(AP) = PM (AP )× nRC/nRCnew (2.4)

Furthermore, when scaling this measure when two banks in parallel are acti-
vated, as shown in Figure 2.6, Micron’s model takes a direct double of the power
consumption, as shown in Equation (2.5) for multiple banks. This is incorrect,
since it ignores the clock cycles between the two ACT commands, which can
range from a minimum of ACT-to-ACT command timing constraint (nRRD) to
any number of active idle cycles defined by the memory controller leading to a
delay in the completion of the second ACT-PRE operation, and resulting in lower
average power compared to Micron’s estimates. Our equations on the other hand,
analyze each of these operations per bank and as a result, avoid any incorrect scal-
ing of the power estimates.
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Figure 2.5: ACT-PRE Scaling

PM multibank(AP, nBanks) = PM (AP )× nRC× nBanks (2.5)

Additionally, Micron’s model does not provide any power equations to model
the Precharge-All (PREA) command, which is often employed when more than
one bank has an active row. The PREA command is more efficient in its latency
and energy consumption compared to explicit PRE commands to different banks,
since it avoids use of explicit PRE commands and takes less time than multiple
PRE commands. DRAMPower provides a power equation to evaluate PREA, as
shown in Equation (2.6).

Figure 2.7 shows an instance of use of PREA command (LHS in the figure)
which precharges 4 banks (at once) compared to using 4 independent PRE com-
mands (RHS in the figure). In this equation as well, the transaction length can
be as long as nRCnew (including activation and precharge period) or nRPnew, the
actual precharging period.

PD(PREA, nTL) =
(
PD(PRE, nTL)× nopen banks +

nRP∑
n=1

IDD2N

)
/nTL (2.6)

2.4.2 Read and Write Command Power

A Read command consumes IDD4R average current during the cycles of the data
transfer, while a Write command consumes IDD4W. Since these also include the
active background current values consumed during the read or the write, IDD3N
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Figure 2.6: Two Bank Activation

PREA 4 Precharges

C
u
r
r
e
n
t

Time

Figure 2.7: PREA clarification
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must be subtracted from the IDD4R and IDD4W currents, to identify the power
associated only with the Read and the Write commands, respectively.

To calculate the power associated with the Read and Write commands, we
first sum the current values over the number of cycles the data is on the data bus
when reading from or writing to the DRAM, identified here using nR and nW,
respectively. These cycles of data transfer for a single burst of data can be derived
using the ratio of burst length (BL) to data rate (DR). For DDR memories this
equates to BL/2. The power values are scaled over the transaction length nTL to
get the average power consumed by a Read and a Write, given by Equations (2.7)
and (2.8), respectively.

Micron’s model evaluates these operations using minimal timing measures for
the nRC parameter as the transaction length, which would not hold if multi-
ple bursts of reads/writes are performed from the same active row in the bank,
where the average power consumption would be higher and merely multiplying
the read/write power by the number of bursts would not be accurate. Hence, the
actual transaction length depending on the number of bursts and the actual acti-
vation and precharge period should employed. The power consumption for reads is
shown in Figures 2.8. The operations include ACT-READ-PRE sequences (single
burst), one after the other to different banks. This is similar for writes.

PD(RD, nTL) =

nR∑
n=1

(IDD4R − IDD3N)× VDD/nTL (2.7)

PD(WR, nTL) =

nW∑
n=1

(IDD4W − IDD3N)× VDD/nTL (2.8)
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Figure 2.8: READ/WRITE clarification
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2.4.3 Background, IO and Termination Power

Besides these basic power components, other auxiliary power components are
associated with every read and write operation. When a write is issued, the
external signal used to drive the data to the memory needs to be terminated on
the memory module to avoid distortions of other signals on the memory, using
a termination resistor. This termination power is consumed whenever a write is
issued and also considers another DRAM rank in the idle mode. Similarly, when
a read is issued the power required to drive the data out through the device I/O,
must also be accounted for and is referred to as the I/O power.

These power components can be employed directly from Micron’s power model.
In order to calculate the total power for termination during a write operation, the
termination power per data bit, PM (WDQ) from Table 4 in [17], the number of
data bits written, N(WDQ), and the data strobes N(WDQS), must be multiplied.
Similarly, to calculate the total power for data I/O during a read operation, the
I/O power per data bit, PM (RDQ) from Table 4 in [17], the number of data
bits read, N(RDQ), and the data strobes N(RDQS), must be multiplied. These
power measures are computed for DDR3 memories with using the circuit shown
in Figure 2.9 and from Table 4 in [17]. In case of single rank DIMMs, I/O
and Termination power consumption is likely to be higher, since the appropriate
circuitry must be incorporated in the same rank.

CONTROLLER

DDR3 DRAM 1 DDR3 DRAM 2

R
TTPU

R
TTPD

R
ON

R
TTPU

R
TTPD

R
ON

R
TTPU

R
TTPD

R
ON 15 15

Figure 2.9: I/O and Termination Clarification

Besides these components, the memory consumes certain background power
when active. For instance, if all memory banks are in the precharged stand-by
state, the memory consumes a precharge background current (static power com-
ponent) of IDD2N [103], computed as PD(PreBG) power. However, even if a single
bank is in the active state, the memory consumes an active background current
(also static power component) of IDD3N, computed as PD(ActBG) power. These
equations are also captured by Micron’s model correctly and can be employed as
is. To obtain power consumption per clock cycle the memory is in the active or
precharged state, the corresponding current can be multiplied with the voltage
for those clock cycles.
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2.5 Modeling State Transitions

As stated earlier, Micron’s model does not consider the power consumed during
the state transitions from any arbitrary DRAM state to the power-down and
self-refresh states, reporting optimistic power saving numbers for these modes.
This also includes any mandatory precharges required before such power-down or
self-refresh states can be employed. Schmidt et al., also empirically verified this
shortcoming of Micron’s power model in [38]. Furthermore, it does not take into
account the power consumed during the pre-refresh clock cycles used to precharge
all banks before executing a Refresh, as a part of Refresh power. In this section,
we first look at the equations modeling power-down modes and transitions, then
discuss the refresh and self-refresh modes.

2.5.1 Transition into Precharge Power-down

Micron’s power model does not provide power values for the transition period to
power-down modes, resulting in optimistic estimates of power savings. This sec-
tion corrects this optimism with power equations related to the transition periods
from stand-by modes to precharge power-down modes.

When a power-down is issued in the precharge stand-by mode, a time period
of nCPDED cycles is required to enter the power-down mode. Including this
time period, the DRAM will be in power-down mode for nPD cycles. Note: nPD
is trace dependent and not a JEDEC standard measure. When employing this
mode, either a fast-exit or a slow-exit policy can be selected for DDR3. The
fast-exit power-down mode has an exit transition period of nXP and the slow-
exit power-down mode has an exit transition period of nXPDLL, where nXP ≤
nXPDLL. During nPD cycles (power-down time), the memory consumes IDD2P1

and IDD2P0 currents in the fast-exit mode and slow-exit mode, respectively.
Additionally, to employ the precharge power-down mode, the memory is re-

quired to be in the precharged state. To ensure this, a precharge(all) command
must be issued, which depending on the number of open banks (nopen banks), can
consume significant amount of power and energy over nRP cycles (as shown in
Figure 2.10), which is not captured by Micron’s power model. Equations (2.9)
and (2.10), derive the power measures for fast and slow exit precharge power-
down modes, respectively. In these equations, the total precharge power-down
duration (including transitions and precharging period) is the transaction length
(nTL = nPD + nRP). These transitions are not accurately accounted for by
Micron’s power model, which ignores the precharge-all transition step, before en-
tering power-down.

PD(PPDF, nTL)=

(
PD(PREA,nRP) +

nPD∑
n=1

IDD2P1 +

nXP∑
n=1

IDD2N

)
×VDD/nTL

(2.9)
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PD(PPDS, nTL)=

(
PD(PREA,nRP)+

nPD∑
n=1

IDD2P0+

nXPDLL∑
n=1

IDD2N

)
×VDD/nTL

(2.10)
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Figure 2.10: Precharge Power-Down Transition

2.5.2 Transition into Active Power-down

If a power-down is scheduled after a Read or a Write (without an auto-precharge),
the memory controller must wait at least nRDPDEN or nWRPDEN cycles, re-
spectively, before entering the active power-down state. During these cycles,
active stand-by current of IDD3N is consumed, in addition to the PD(RD) and
PD(WR) power consumed during the BL/2 cycles of data transfer for read and
write, respectively. These are calculated over nRDPDEN and nWRPDEN cycles,
which must be taken as the transaction lengths (nTL) of the read and write transi-
tions into power-down. Equations (2.11) and (2.12) give the power for transition-
ing from a Read and a Write (without auto-precharge) to an active power-down
mode. Figure 2.11 depicts this transition from active mode to active power-down.
PM (RDQ) and PM (WDQ) measures for I/O power consumption are employed
from Table 4 in [17].
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PD(RPD,nRDPDEN)=

(nRDPDEN∑
n=1

IDD3N × VDD +

nRDPDEN∑
n=1

PD(RD, nRDPDEN)

+
(
PM (RDQ)×N(RDQ)

))
/nRDPDEN (2.11)

PD(WPD, nWRPDEN)=

(nWRPDEN∑
n=1

IDD3N × VDD +

nWRPDEN∑
n=1

PD(WR, nWRPDEN)

+
(
PM (WDQ)×N(WDQ)

))
/nWRPDEN(2.12)
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Figure 2.11: Active Power-Down Transition

Once the transition is complete, the DRAM enters the active power-down
state. When an active power-down is issued, a time period of nCPDED cycles is
required to enter the power-down mode. Including this time period, the DRAM
will be in power-down mode for nPD cycles. When employing this mode, it has
an exit transition period of nXP cycles. During nPD (power-down time), the
memory consumes IDD3P current and during nXP cycles (power-up time), the
memory consumes IDD3N current, as shown in Equation (2.13). The transaction
length is defined over the entire transition period, power-down period and power-
up period.

PD(APD, nTL)=

(
PD(RPD,nRDPDEN) +

( nPD∑
n=1

IDD3P +

nXP∑
n=1

IDD3N

)
×VDD

)
/nTL (2.13)
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If a power-down is scheduled after Read is issued with an auto-precharge, the
waiting time before entering a precharge power-down mode is also defined by
nRDPDEN and hence, Equation (2.11) holds for this transition as well. How-
ever, if a Write is issued with an auto-precharge, the memory controller must
wait nWRAPDEN cycles before issuing the (precharge) power-down. The ac-
tive stand-by current of IDD3N is consumed during the nWRAPDEN-1 cycles
before the auto-precharge is issued and IDD2N is consumed for the precharge
cycle. In addition, PD(WR) is consumed during the BL/2 cycles of data trans-
fer and PM (WDQ) measures for I/O power consumption can be employed from
Table 4 in [17]. Also, PD(PRE) is consumed for the auto-precharge with transac-
tion length tWRAPDEN. Equation (2.14) gives the power for a transition from a
write with an auto-precharge to a precharge power-down mode. Equations (2.9)
and (2.10) can be employed with these transitions after auto-precharge to compute
the power-down mode power consumption.

PD(WAPD, nWRAPDEN)=

((nWRAPDEN-1∑
n=1

(IDD3N)+IDD2N

)
×VDD +PD(PRE, 1)

+PD(WR, nWRAPDEN) +
(
PM (WDQ)×N(WDQ)

))
/nWRAPDEN (2.14)

These transitions (overhead) from read and write or active mode to power-
down are also ignored by Micron’s power model, when estimating power consump-
tion of the power-down mode.

2.5.3 Refresh Transition

A refresh operation is used to retain the data in the DRAM by recharging the
capacitors in the memory cells. A refresh can be executed only when all the
banks of the memory are in the precharged state. A refresh thus consists of a
single Refresh command preceded by a precharge-all (PREA) command (at least
nRP cycles before refresh) to precharge all the open banks each before executing
the refresh. If all banks are already in the precharged idle state, no explicit
precharges are required.

Accordingly, PD(PREA, nTL) is consumed (with a transaction length of nRP)
depending on the number of precharges required. Micron’s model fails to consider
the power consumed during pre-refresh clock cycles, as a part of refresh power.
The refresh command by itself, consumes IDD5 − IDD3N current over the refresh
cycles (nRFC ). Another aspect of Refresh ignored by Micron’s model is that
during the last nRP cycles of the nRFC period, the memory is in the precharged
mode. During this period it consumes IDD2N current instead of IDD3N (active
background current), which is consumed during the rest of the nRFC - nRP
cycles, as shown in Figure 2.12.

The refresh and pre-refresh power components add up over nREF ( = nRP
+ nRFC ) cycles to give the total refresh power, as shown in Equation (2.15).
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Figure 2.12: Refresh Transition

PD(REF,nREF)=
(
PD(PREA,nRP)+

(nRFC∑
n=1

(IDD5−IDD3N)+

nRFC-nRP∑
n=1

IDD3N+

nRP∑
n=1

IDD2N

)
×VDD

)
/nREF (2.15)

2.5.4 Self-Refresh Mode Transition

The Self-Refresh mode is used in DRAMs to retain data even when the clock is
stopped. In this state, the rest of the memory system is powered down, but the
memory internally performs refreshes to maintain its contents without an external
clock. In order to switch to the Self-Refresh mode, it must be ensured that the
DRAM is idle and all its banks are in the precharge state (using PREA) with
nRP cycles satisfied to ensure completion of precharging operations.

After issuing the Self-Refresh command, the Clock Enable Signal (CKE) must
be kept ‘LOW’ to maintain the memory in the Self-Refresh mode. Additionally, an
explicit refresh must be issued at the start of the self-refresh period (Figure 2.13).

The minimum time that the DRAM must remain in Self-Refresh mode is
given by nCKESR. This includes nCPDED to block all the input signals, nCK-
SRE (Self-Refresh entry time), nCKSRX (Self-Refresh exit time) and a minimum
tCKE period within which the DRAM memory must initiate at least one Refresh
command. When exiting the Self-Refresh mode, it must be ensured that the clock
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is stable and then, the CKE can be changed to ‘HIGH’. Once asserted, a tim-
ing constraint of at least nXSDLL cycles must be satisfied before any other valid
command is issued to the memory. The total time required for the Self-Refresh
to finish is given by nSREF (as derived from the trace).

The IDD6 current is consumed for the time period spent in the self-refresh
mode as defined in the trace (nSR), which excludes the time spent in finishing
the explicit auto-refresh (as depicted in Figure 2.13). The auto-refresh consumes
IDD5 − IDD3N over one refresh period (nRFC) from the start of the self-refresh.
IDD2N current is consumed when exiting the self-refresh state for the nXSDLL
exit period.

If the auto-refresh finishes before the self-refresh exit begins, during these
auto-refresh cycles (denoted by nSR REF), IDD3P0 current is consumed in the
background, instead of the IDD6 self-refresh current. However, if the self-refresh
exit begins before the end of the explicit auto-refresh, the remaining cycles of the
auto-refresh operation (denoted by nEX REF) carry forward to the self-refresh
exit period. In this case, the IDD3N current is consumed in the background during
these remaining nEX REF cycles.
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Figure 2.13: Self-Refresh Clarification

Equation (2.16) derives the power consumption of the Self-refresh mode for
a transaction length nTL equal to the sum of self-refresh period, explicit refresh
period and self-refresh exit period. Micron’s model merely employs IDD6 current
during self-refresh and IDD2N current during self-refresh exit.

PD(SR, nTL) =

(( nSR∑
n=1

IDD6 +

nXSDLL∑
n=1

IDD2N +

nRFC∑
n=1

(IDD5 − IDD3N)+

nSR REF∑
n=1

IDD2P0 +

nEX REF∑
n=1

IDD3N

)
×VDD

)
/nTL (2.16)
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2.5.5 Transaction and Trace Power Computation

To estimate power consumption of an entire trace or a transaction, we provide
a generic power equation which applies to the whole of the trace. This equation
can be employed for any window of analysis (trace length) from a single transac-
tion (including idle transactions) to the entire application trace and is valid for
any degree of bank-parallelism and any memory access (open/close page) policy.
The initial state of all DRAM banks is assumed to be precharged and ready for
operation. This is a safe assumption, since at the end of DRAM initialization, all
DRAM banks are precharged.

Before deriving the equation, we list out all the transaction lengths defined in
the last sections in Table 2.2 for quick reference.

Table 2.2: Transaction Lengths

Transaction Transaction Length nTL Definition
Activation Active Period of a Trans. nRASnew
Precharge Precharge Period of a Trans. nRCnew - nRASnew

Precharge-All Precharging Period nRP
Reads/Writes Defined by number of bursts nRCnew

Precharged PD Transition Time + PD Time nRP + nPD
+ nXPDLL

Active PD Transition Time + PD Time nRDPDEN + nPD
(from Read) + nXP

Refresh Transition + Refresh nRP + nRFC
Self-Refresh Transition + Self-Refresh nRFC + nSR+

nSRREF+nEXREF

This equation (shown in Equation (2.17)) is highly parameterized and together
with the individual components described earlier fits a transaction of any length.
All the power values obtained from the power equations described before are used,
while PM (RDQ) (I/O power) and PM (WDQ) (Termination power) are obtained
from Micron’s power model [17] for the total numbers of data bits read or written.
These parameters can be obtained from any memory controller for every memory
transaction.

In Equation (2.17), i refers to the target bank, j refers to the id of a particular
transaction in the trace, nBanks refers to the number of banks accessed in paral-
lel by a given transaction in the trace and N(ActBG) and N(PreBG) refer to the
number of active and precharge cycles in the trace, respectively. N(ACT)(i,j) and
N(PRE)(i,j), refer to the number of ACT and PRE commands, and N(RD)(i,j)
and N(WR)(i,j) refer to the number of reads and writes per bank (i) per trans-
action (j). N(REF) refers to the number of Refreshes in the trace. It should be
noted that each Read and Write corresponds to a burst count (BC) of one and
hence, transactions with burst counts greater than one are defined by as many
read and write commands.
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PD(Trace)=

#Trans∑
j=1

(
PD(ActBG)×N(ActBG)+PD(PreBG)×N(PreBG)+

nBanks(j)-1∑
i=0

(
PD(ACT,nTL(i,j))× nTL(i,j)×N(ACT)(i,j)+

PD(PRE,nTL(i,j))× nTL(i,j)×N(PRE)(i,j)+

PD(RD,nTL(i,j))× nTL(i,j)×N(RD)(i,j)+

PD(WR,nTL(i,j))× nTL(i,j)×N(WR)(i,j)
)
+

PM (RDQ)× (N(RDQ)+N(RDQS)) +PM (WDQ)× (N(WDQ) +N(WDQS))+

PD(REF, nREF(j))× nREF(j)+PD(PD,nTL(j))× nTL(j)+

PD(SR,nTL(j))× nTL(j)

)
/

Trans∑
j=1

nTL(j) (2.17)

The measures for PD(REF, nREF ), PD(PD, nTLj) and PD(SR, nTLj) cor-
respond to power consumption due to state transitions, into refresh, selected
power-down mode and self-refresh mode, besides the power consumption of the
respective operation. Transactions that are not bank specific, do not have the
suffix i.

Since this power equation is highly parameterized, it can be employed for any
transaction from any given memory controller. For instance, if a memory con-
troller employs two bank accesses with a close-page policy, for a read transaction
with a burst count (BC) of 4, i = 2, j = 1, N(ACT)(i) = 2, N(PRE)(i) = 2,
N(RD) = 8, N(WR) = 0, N(REF) = 0, N(RDQ) = 1024 (128 bits per 8 word
burst x 8 bursts - x16 wide DRAM device) and N(WDQ) = 0. If an open-page
policy is employed, the N(ACT)(i) and N(PRE)(i) values are determined by the
need for activating and precharging the particular banks. If power-down or self-
refresh modes are employed, the power-down durations are accounted for by the
respective power equations.

2.6 Adapting to Mobile and Wide IO DRAMs

In comparison to the power equations presented for off-chip DDR3 DRAMs, when
it comes to Mobile DRAMs (LPDDR/2/3) and Wide IO 3D-DRAMs, the power
model should reflect the following:

(1) It should explicitly consider the multiple voltage sources in mobile and Wide
IO DRAMs for different parts of the memory device.

(2) It should reflect the changes in DRAM timing parameters due to removal
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of DLLs in mobile and Wide IO DRAMs. This applies especially to the
power-down and self-refresh power-saving modes.

(3) It should calculate the I/O power consumption directly from datasheets
using VDDQ domain current estimates, since the DRAM has moved ‘on-
chip’ in Wide IO 3D-DRAMs. In the case of LPDDRs (mobile DRAMs),
appropriate IO circuitry [121, 128] must be employed as recommended by
the DRAM vendor [17].

When it comes to basic memory operations, such as, Activate (ACT), Precharge
(PRE), Read (RD), Write (WR) and Refresh (REF), mobile and Wide IO DRAMs
are not very different compared to off-chip DRAMs, except for the use of multiple
voltage sources and the computation of I/O power consumption.

Hence, we propose a generic power estimation model in Equation (2.18) for all
basic DRAM operations and memory states that takes into account the different
voltage sources, including VDD1, VDD2, VDDCA and VDDQ.

As can be noticed from the equation, it adds up the corresponding power
estimates for all the voltage sources (calculated using the associated current mea-
sures) for the relevant memory operations. In the equation, i is used to represent
the VDD1 and VDD2 voltage domains. Note that the current measures corre-
sponding to the VDDCA and VDD2 sources have been added up and represented
by VDD2 (in Equation (2.18) and Table 2.3), since they are both tied to the 1.2V
supply.

PD(OP,nTL)=

nTL∑
n=1

( 2∑
i=1

(
IDDi×VDDi

)
+
(
IDDQ×VDDQ

))
/nTL (2.18)

Table 2.3 gives the values of currents and minimum timings (in cc) for the
respective memory operations that should be substituted in this generic power
equation. Accurate scaling of the power estimates for the basic memory opera-
tions, has been presented and described in the previous section. The table also lists
background currents consumed when the memory is in the active or precharged
states. The I/O current numbers (IDDQ) reported for the read/write operations
corresponding to the VDDQ source account for the I/O power consumption in the
generic power model in Equation (2.17).

In Equation (2.18) and Table 2.3, nTL corresponds to the period for which
the corresponding transaction must be active. For instance, nTL for a read and a
write command is given by nRD and nWR, respectively, which correspond to the
period of data transfer during the respective read and write operations. However,
nTL equates to nRAS, nRP and nRFC for ACT, PRE and REF, commands re-
spectively, which are JEDEC-specified minimum timing constraints to be satisfied
for these operations to finish [50].

If these operations continue to be active beyond these minimum timing con-
straints, appropriate scaling of power numbers must be employed as shown in
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Table 2.3: Average Power Consumption of Basic Memory Operations
Cmd/State IDD1 IDD2 IDDQ nTL (cc)

ACT IDD0 1−IDD3N 1 IDD0 2−IDD3N 2 - nRAS
PRE IDD0 1−IDD2N 1 IDD0 2−IDD2N 2 - nRP
RD IDD4R 1−IDD3N 1 IDD4R 2−IDD3N 2 IDD4R Q nRD
WR IDD4W 1−IDD3N 1 IDD4W 2−IDD3N 2 IDD4W Q nWR
REF IDD5 1−IDD3N 1 IDD5 2−IDD3N 2 - nRFC

Active IDD3N 1 IDD3N 2 - nACTBG

Precharged IDD2N 1 IDD2N 2 - nPREBG

the previous section. The nACTBG and nPREBG timings correspond to the
total time period spent in the active and precharged modes, respectively, when
performing the basic DRAM operations. These are employed to estimate the
background power consumption during these operations. nTL refers to the total
operation time window considered when estimating power for the particular op-
eration. It is equal to nTL (as defined before) for all operations except activate
and precharge commands, for which it is at least equal to the nRC timing con-
straint [50] (and may be longer depending on the scaling). Note that for accurate
power and energy estimation, the actual command timings from the given mem-
ory trace must be employed instead of the minimum timing constraints, and the
average power numbers must be appropriately scaled, as in the case of regular
off-chip DRAMs.

When modeling power consumption of the power-saving modes in mobile and
Wide IO DRAMs, the power model must now take into account the difference in
their timings and current measures due to the absence of DLLs, in addition to
the introduction of multiple voltage domains (as in the case of basic operations).
To enable this, nXPDLL must be replaced by nXP in the power-down equations
and nXSDLL must be replaced by nXS in the self-refresh power equation.

2.7 DRAMPower Tool

In this section, we describe the different phases in the DRAMPower tool-flow. As
stated earlier, the tool employs our high-precision cycle-accurate DRAM power
model proposed in this chapter with current measures from vendor datasheets
and reports accurate DRAM power and energy measures for traces of any length.

2.7.1 DRAMPower Tool Flow

The DRAMPower tool can be employed with two interfaces: (1) DRAM Com-
mand traces and (2) Transaction traces. If transaction traces are used, the tool
invokes the memory command scheduler (pipelining not supported) developed
by Yonghui Li at TU Eindhoven [132], which dynamically schedules DRAM com-
mands assuming closed-page policy, corresponding to the incoming memory trans-
actions. On the other hand, if the tool is employed with DRAM command traces,
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users must provide command traces (generated by a DRAM memory controller)
similar to the ones generated by the scheduler. Once the DRAM command trace
is made available (either by the user or by the command scheduler), DRAMPower
performs command trace analysis and derives different timing and power metrics
for the given trace as described below.

DRAMPower begins by identifying the different memory commands in the
command trace (both implicit and explicit) as depicted in Figure 2.14, their tar-
get bank and issued time-stamp and defines a complete memory command list by
expanding them all (implicit precharges). The user can optionally use a ‘NOP’ or
‘END’ command at the end of trace file, with the last cycle as time-stamp to indi-
cate the end of simulation for better analysis accuracy. (This is also explicitly used
by the command scheduler). This memory command list is then forwarded to the
timing analysis phase of the tool, which identifies the number of activates, (auto)
precharges, reads, writes, refreshes, power-downs, self-refreshes, precharged and
active cycles and clock cycles in power-down and self-refresh modes. Addition-
ally, it also filters out the number of cycles the memory is idle in the active and
the precharged modes. These measures are then forwarded to the DRAM power
model through updated counters, which computes the total energy and average
power consumed by all basic DRAM operations and power-saving modes using
the memory power and timing specification as per Equation (2.17).

Trans

Commands

Expanded

Commands

# Commands

# Cycles

# Transaction Length

Results

Figure 2.14: Phases in DRAMPower Tool Flow
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To perform the trace timing analysis and power consumption computation,
the tool uses the target DRAM’s architectural, timing and current/voltage details
from datasheets in the form of XMLs. The DRAMPower tool has been integrated
in the GEM5 simulation environment [120].

2.7.2 Command Scheduler

If a transaction trace is used with DRAMPower, it invokes the dynamic DRAM
command scheduler (developed by Yonghui Li at TU Eindhoven [132]) to translate
incoming memory transactions to equivalent memory commands. The transaction
trace should include for every memory transaction, the transaction time-stamp
(in clock cycles), the transaction type (READ/WRITE) and the logical memory
address (32-bits) generated by the requester in HEX (0x). The DRAM is byte-
addressable and uses a flexible and efficient memory map as follows:

{row}-{bank}-{column}-{BI}-{BC}-{BGI}-{BL}
Here, BI gives the degree of bank interleaving, BC gives the burst size (count),

BGI gives the degree of bank group interleaving (for DDR4) and BL gives the
burst length used by the device. The BC and BL address bits are derived from
the column address bits, whereas the BI and BGI address bits are derived from
the bank address bits.

To generate memory commands for each memory transaction, the command
scheduler employs: (1) a closed-page policy (automatically precharges the ac-
cessed memory rows) (2) FCFS scheduling across incoming memory transactions
(without pipelining), and (3) ASAP scheduling for DRAM commands (i.e. sched-
ules commands as soon as the timing constraints described in Section II are met).

The scheduler supports different request sizes and degrees of bank interleaving
and bank group interleaving (for DDR4). Based on these options, it derives the
required number of read/writes commands for the given transaction, also referred
to as burst count. It uses the memory map described above to translate logical
addresses to physical addresses. Users can also select speculative usage of power-
down or self-refresh modes (if needed) for idle periods between transactions. The
scheduler logs these generated DRAM commands for command trace analysis.

2.8 Conclusion

In this chapter, we proposed DRAMPower, a high-level DRAM power model that
employs JEDEC-specified current metrics and performs high-precision modeling
of the power consumption of different DRAM operations, state transitions and
power-saving modes at the cycle-accurate level. We also highlighted the differ-
ences between DRAMPower and other existing high-level power models like Mi-
cron’s and provided updated and new power equations to achieve more accurate
power and energy estimates. Finally, we also described the tool flow of the open-
source DRAMPower tool and how it employs DRAMPower model for its analysis
and computations.
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Chapter 3

Variation-Aware Power Estimation and

Performance Characterization of

DRAMs

Having described our high-precision cycle-accurate DRAM power model, in this
chapter we propose solutions to address the issue of pessimism (for a majority of
the devices) in the current measures provided by DRAM vendors in datasheets.
Parts of work described in this chapter have been published previously in our
papers at DAC 2013 [53] and DATE 2014 [54].

3.1 Introduction

Manufacturing-time process (P) variations and run-time variations in voltage
(V) and temperature (T) can affect a circuit’s performance (delays/timings) and
power consumption severely [71–75] and DRAMs are no exception. To counter
the effects of these variations, DRAM vendors provide: (1) substantial design-
time timing margins to guarantee correct DRAM functionality under worst-case
conditions and (2) significant power margins to address the fastest devices and
the impact of run-time variations and to improve their yield. Unfortunately,
with technology scaling these design margins in power and timings have become
large and very pessimistic for the majority of the manufactured DRAMs. While
run-time variations are specific to operating conditions and their margins dif-
ficult to optimize (since they can vary across use-cases), process variations are
manufacturing-time effects and excessive process-margins can be reduced on a
per-device basis, if properly identified.

Towards this, we propose a generic post-manufacturing performance charac-
terization methodology for DRAM devices that identifies their actual achievable
performance and realistic power estimates under worst-case operating conditions
(worst-case power supply (noise) and highest temperature). As a result, we (1)
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improve the overall performance and energy efficiency of DRAM devices by op-
timizing timing margins and (2) obtain realistic power measures when retaining
original timing margins.

We further evaluate and demonstrate this methodology on 48 DDR3 devices
(from 12 identical DIMMs from one vendor [92]), derive their actual delays and
current estimates and verify their correct functionality under worst-case oper-
ating conditions. In doing so, we achieve up to 33.3% and 25.9% reduction in
DRAM Read and Write latencies, respectively. The minimum increase in mem-
ory bandwidth (BW) is by 50% for Reads and 35% for Writes. The DRAM
energy consumption furthermore reduces by 17.7% when reading and by 15.4%
when writing, resulting in improved energy efficiency.

3.2 Sources of Variation
When estimating the timing and current consumption margins, vendors consider
three primary variation sources (besides aging [88]) that can affect a DRAM’s
performance: (1) Process (P), (2) Voltage (V) and (3) Temperature (T), also
referred to as PVT variations [89].

Process variations are observed due to manufacturing-time disparities in de-
vice parameters, such as channel mobility, channel length and oxide thickness [81].
Their impact on DRAM timings and power can vary severely and randomly across
all devices produced with the same configuration [87]. Hence, vendors add sig-
nificant process (timing and current) margins to cover their worst-case impact on
the entire manufacture lot.

When it comes to run-time variations in supply voltage and operating temper-
ature, these have a defined and deterministic effect on all manufactured DRAMs,
as opposed to the random and distributed effects of process variations.

Voltage variations are represented by noise in the power-supply (reducing op-
erating voltage), which increases the transistor propagation delays in the device.
To address this, DRAM vendors define an acceptable operating voltage range (be-
tween 1.425V and 1.575V for DDR3 [99,103]) and add appropriate noise-margins
(power and timings) to assure correct functionality in the presence of maximum
noise in power supply.

Temperature variations are observed due to two factors: (1) power dissipation
of the DRAM during operation (self-heating) and (2) ambient temperature. High
operating temperatures also increase the propagation delays and drastically im-
pact leakage power. Hence, DRAM vendors define an operating temperature limit
of up to +85◦C for commercial DRAMs and add temperature-margins (power and
timings) to enable correct DRAM functionality at that temperature.

Besides these variations, aging also impacts DRAM performance [88]. How-
ever, all devices susceptible to aging and infant failures are discarded by vendors
and hence, all shipped DRAMs are guaranteed to work reliably. This filtering is
done by the ‘burn-in’ test [90], which pre-ages the devices by stress testing them
at +125◦C and 1.9V and identifies the devices likely to fail early (in ≤ 10 years).
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In a nutshell, while sufficient voltage (noise) and temperature margins are
required to guarantee correct functionality under extreme operating conditions,
process-margins can be generously over-dimensioned [91] for a majority of the
manufactured DRAM devices. In other words, most DRAMs can perform better
(in terms of latency and power consumption) than their datasheet specifications.

In this chapter, we provide an insight into the possible effects of process vari-
ations on DRAM performance and power consumption to help improve the accu-
racy of DRAM power models and enable the efficient use of DRAMs at run time.
Towards this, we propose three important contributions: (1) We demonstrate the
impact of process variations on DRAM performance and power consumption by
performing Monte-Carlo simulations on a detailed DRAM cross-section modeled
in NGSPICE [104] and derive better than worst-case current measures applicable
for a majority of the DRAM devices, from the ±6σ current distribution obtained
from the SPICE simulations. (2) We propose a methodology (set of algorithms)
to empirically determine this impact for a given DRAM device, by assessing its
actual performance characteristics during the DRAM calibration phase [103] at
system boot-time. We employ these performance estimates to identify the equiv-
alent impact on power consumption and to derive realistic current estimates. (3)
We extend the Monte-Carlo analysis to examine the impact of DRAM architec-
ture parameters, such as capacity, width and frequency, on latency variations and
current estimates to derive current measures for DRAMs with different configu-
rations.

Using these methods, we derive possible current distributions for DRAM mem-
ories of any configuration, and also determine the actual performance measures
and realistic current measure distributions for a given DRAM memory using the
characterization step at system boot-time. The derived performance measures
can be used to improve the performance of the given DRAM memory and the
realistic current measure distributions can be employed in place of the worst-case
datasheet values to obtain variation-aware DRAM power and energy estimates
when employing typical or optimized timing measures.

3.3 Background - DRAM Modeling in SPICE

This section details the background work on modeling a generic DRAM archi-
tecture at the circuit-level in NGSPICE [104] as proposed by TU Kaiserslautern
in [47,126]. We adapted this circuit-level model as a part of this work to support
Monte-Carlo analysis [105] to derive the impact of process variations on DRAM
power and performance and to verify DRAMPower power and energy estimates.

3.3.1 Baseline DRAM Cross-Section Model

DRAMs consist of memory cells arranged in arrays of rows and columns, organized
as a set of memory banks. Each bank is also equipped with a set of row buffers that
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are used as intermediates for reading from or writing into the memory cells. To
access a DRAM, a memory controller issues a set of commands in a specific order
to perform a given operation [50]. For instance, when reading from the DRAM, an
activate command is issued to transfer the data from the cells through the bitlines
to a row buffer and then the row buffer is partly read based on the memory’s
interface width and burst length. Similarly, when writing, data is first written to
the row buffer and then a precharge command is sent to store the charge into the
DRAM cells. For efficient design, the row buffers are shared between successive
rows in a bank, as only one of which can be accessed at a time.

The basic DRAM cell is modeled as a transistor-capacitor (1T1C) pair and
stores a single bit of data in the capacitor as a charge. As shown in Figure 3.1,
the transistor is controlled by a local wordline (lwl) at its gate, which connects
the capacitor to the local bitline (lbl) when turned on (activated). Before reading
the data from the memory cell, the bitlines in the memory array are precharged
(set to halfway voltage level) using an equalization circuit. When connected,
the cell capacitors change the precharged (PRE) voltage levels on the bitlines
very slightly. Hence, a set of primary sense amplifiers (PSA) (or row buffer)
distributed across memory sub-arrays are used to detect the minute changes and
pull the active bitline voltage all the way to logic level 0 or 1. Once the bitline
voltage is amplified, it also recharges the capacitors as long as the transistors
remain on. The primary sense amplifiers hold the data till all column accesses to
the same row are completed, when a precharge is issued. In our model, we used
the open bitline array structure and hence differential sense amplifiers (in PSA),
which use a reference bitline from a neighboring inactive array segment to detect
the minute difference in active bitline voltage. When the Read (RD) command
is issued, the data/charge is read out using column select lines (CSLs) from the
row buffer (PSA). The data is then switched via master datalines from the PSA
to the secondary sense amplifiers (SSA), which connect to the I/O buffers. Once
finished, the wordlines can be switched off, safely restoring the charge in the
memory cells, before starting to precharge (PRE) the bitlines again.

The memory arrays are organized in a hierarchical structure of memory sub-
arrays for efficient wiring. A memory sub-array consists of 256K cells connecting
up to 512 cells per local bitline and per local wordline. 16 memory sub-arrays
connect to one master wordline forming 4Mb blocks. 16 master wordlines and
16 column select lines (CSLs) connect the 256 memory sub-arrays to form 64Mb
memory array macros. The row and column decoders and the master wordline
drivers are placed per memory array. The N-Set and P-Set control signal drivers
used for activating the primary sense amplifiers are shared among sub-arrays.

3.3.2 DRAM Cross-Section SPICE Simulations

In the NGSPICE [104] model of the DRAM cross-section, we employed the
BSIM model cards [105] built on Low Power Predictive Technology models (LP-
PTM) [106], since there are no openly available technology libraries specific to
DRAMs. As a result, the LP-PTM devices had to be adapted to ensure func-
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tional and timing correctness of the simulated DRAM cross-section, as observed
from the simulations. We modeled the memory cell architecture (of 6F 2 area),
the equalization circuit, the wordline driver, and the sense amplifier in our model
described earlier, using the designs suggested in [22], [80] and [50]. The baseline
DRAM configuration targets a 1Gb DDR3-1066 (533MHz) x8 memory with core
timings of 7-7-7 cc at 45nm. We chose 45nm, since it is the common technology
node employed by vendors for DDR3 memories including Samsung, Micron and
Hynix. Below, we present the timings and voltages of the different signals corre-
sponding to basic DRAM operations: ACT-RD-PRE in Figure 3.2. The aim is
to validate functionality and timing for these DRAM operations as per [50].

time [ns]
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
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Figure 3.2: ACT-RD-PRE behavior in DRAM Cross-Section

As depicted in the figure, first the equalization circuit (eql) forces both the
true (active) bitline (lblt) and the complementary (reference) bitline (lblc) to the
same reference voltage (0.55V). This is followed by the local wordline (lwl) going
high to begin the activation process that switches the relevant transistors on and
connects the cell capacitors to the corresponding local bitlines. Simultaneously,
the equalization circuit (eql) de-activates to enable sensing of the change in bitline
voltage due to the charge transfer. As the wordline high reaches the required
voltage of 2.8V at around 5ns, the pre-sensing phase begins to create a minimum
voltage difference (around 200mV) between the reference (lblc) and active (lblt)
bitlines at the PSA. This is followed by the activation of the sensing circuit by
N-Set and P-Set control signals, which drives the active bitline (lblt) to logic level
1 (the charge stored in the cell corresponds to 1 here) and the reference bitline
(lblc) to 0 at around 15ns. Both the lblt and pset signals are driven to the core
voltage of 1.1V, while lblc and nset signals are driven to 0V.
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This is followed by the Read operation depicted by the rising column select
line (csl) voltage at 18ns. Following this, the charges detected at all the PSAs in a
memory sub-array are transferred via their respective local datalines to a master
dataline, which is reflected by the current drawn from the NMOS components of
the PSA (lblc) and the gradual drop in voltage level of master dataline complement
signal (depicted by mdqc). Once the mdqc drops by around 200mV (in relation
to the core voltage), the data is sensed at the SSA at around 18ns.

Once the Read operation finishes, (data received by SSA) the mdqc (master
dataline complement) is precharged back to its reference voltage (1.1V) at around
24ns and the local wordline is switched off at around 28ns. After a short delay to
close the transistor and avoid destroying the charge in the cell, the sensing circuit
in the PSA is deactivated and the bitline equalization re-starts at around 33ns.
This precharges both the local bitlines back to reference voltage levels, finishing
at 50ns, as expected for a DDR3-1066 memory [103].

Similar to the modeling of the Read operation, the Write operation is mod-
eled to copy data from the IO buffers to the SSA and then on to the DRAM
cells, within predefined timings. To model a Refresh operation, the SPICE model
translates it approximately into a set of ‘n’ internal row activations and precharges
(without explicit commands), where ‘n’ is the number of banks in the DRAM (i.e.
refreshing 1 row per bank). Hence, a Refresh operation is modeled as activating
and precharging ‘n’ rows in tRC time per row, each ACT-PRE operation to a new
row initiated after tRRD time (activation to activation time) after the last row.
To model DRAM power-down, the clock receiver is turned OFF and the CKE is
disabled. To model Self-Refresh, almost all components in the DRAM are turned
off. When powering back up, the switched off receivers are turned ON again. We
observed accurate functionality and timing as per [50] for all DRAM operations,
thus, validating the timing correctness and functionality of the modeling of the
DRAM cross-section.

3.4 Baseline Monte-Carlo Analysis

We employ the DRAM cross-section described in the last section, and observe the
impact of variation on delay and power consumption using Monte-Carlo analysis,
in the this section.

We present the results from Monte-Carlo analysis on our verified 1Gb DDR3-
1066 x8 DRAM cross-section, described in Section 3.3.2. Towards this, we vary
global device parameters such as channel length, channel mobility, and oxide
thickness and local device threshold voltage (Vth) (primarily the variations in line
edge roughness (LER) [81]), besides the interconnect parameters including wire
width and wire thickness, within pre-defined variation ranges. We obtained the
variability ranges (scaling metric (σ) in the corresponding Gaussian distributions)
for these parameters from the ITRS technology requirements on Design for Man-
ufacturability [107] and Modeling and Simulation [108] and the variation models
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of transistors from [81, 82]. We also introduce spatial-correlations in the varia-
tions among neighboring transistors, due to expected similarity in the parametric
variations. Using these variability values, we performed Monte-Carlo runs on
1000 circuit instances reflecting the variations in all the device and interconnect
parameters. From our observations, the variation in the device Vth parameter
had the biggest impact on the circuit delay and current consumption [81], since
it is directly influenced by the variations in the global device parameters. As
expected, the active (dynamic) DRAM currents and frequency increased linearly
against the variations in the Vth parameter [84, 85], while the leakage currents
increased exponentially. Hence, we analyzed the variations in leakage currents
on the natural logarithmic scale [84] to obtain the σ values of their distributions
corresponding to those of the Vth parameter.

The variations in the local and global device parameters at 45nm based on [81,
82,107,108], as used in our simulations are presented in Table 3.1. These measures
correspond to the variability introduced in the device parameters per σ change
in their Gaussian distributions. In the table, the ‘w’ corresponds to nominal gate
width and ‘l’ corresponds to nominal gate length, the σ% value gives the relative
variation to the nominal values (µ) obtained from the PTM models [106], while
the σ values correspond to the absolute values of variation.

Table 3.1: Transistor Process Parameter Variations

Tech Mobility Vth (LER) Length Tox
nm σ (%) σ (V) σ (m) σ (%)

45 8.2 3.0e-9/ 2
√

(w×l) 45e-9×0.03 1.67

The impact of process variation on the timing behavior of the DRAM cross-
section as observed from 1000 Monte-Carlo simulations considering±1σ variations
in the device and interconnect parameters, are presented in Figure 3.3. In this
figure, we present the effects on the local wordline activation (lwl), and the sensing
of the true (lblt) and complementary (lblc) bitlines by the PSA.

As can be observed from the figure, there is a significant impact on the (de-
lays) timings of the operations associated with the wordline and bitlines. For
instance, the local word line reaches its required potential (upon activation) of
2.8V at between 4ns and 6ns instead of at 5ns, which was the case for the baseline
configuration without any variation (shown in Figure 3.2). Similarly, the bitlines
reach their potential (upon sensing by the PSA) between 13ns and 17ns, compared
to around 15ns in the baseline configuration (Figure 3.2). The variations in the
bitlines and wordline impact the activation latency given by the core-timing pa-
rameter tRCD, thereby impacting both the DRAM delays (latencies) and power
consumption. The worst-case effect on these timing measures are shown in Ta-
ble 3.2 (Worst delays at lowest operating voltage). We refer to the sum of these
four critical timing metrics (tRCD, tRTP, tRP and tWR) as the functional latency
(FL) of the DRAM device.
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Figure 3.3: Variation Impact on Bitline and Wordline

Table 3.2: Variation Impact on Timing Measures @ +85◦C and 1.425V

µ σ% +1σ +3σ +5σ
Timing ns ns ns ns
tRCD 10 10 10 13.5 15
tRP 7.5 15 9 11.5 15

tRTP 7.5 5 7.875 8.75 10
tWR 5 20 6 9 15
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To translate the effect on timings in terms of power and different characteristic
DRAM currents, we identify the dynamic (active and background) currents as:
IDD0, IDD1, IDD2N , IDD3N , IDD4R, IDD4W , and IDD5, and the static (leakage)
currents as: IDD2P0 and IDD6 (when the clock is disabled). In Table 3.3, we
show the impact of process variation on the different currents for a baseline 1Gb
DDR3-1066 (533MHz) x8 DRAM memory, under worst-case operating conditions
for power consumption, which are given by 1.575V and +85◦C (Highest power at
highest voltage).

Table 3.3: Variation Impact on Current Measures @ +85◦C and 1.575V
µ σ% +1σ +3σ +5σ

Current mA mA mA mA
IDD0 98.4 2.37 100.7 105.5 110.6
IDD1 104.3 2.32 106.7 111.7 116.9
IDD2N 37.7 4.77 39.5 43.4 47.6
IDD3N 41.5 5.71 43.8 49.1 54.7
IDD4R 118.1 2.96 121.6 128.9 136.6
IDD4W 123.4 2.75 126.7 133.9 141.2
IDD5 146.1 2.15 149.6 155.7 164.2
IDD2P0 8.41 13.69 9.56 12.3 15.9
IDD6 8.04 14.02 9.17 11.9 15.5

In this table, we present the nominal measures along with the +1σ, +3σ and
+5σ estimates for the different IDD currents obtained after 1000 runs of Monte-
Carlo analysis. We also provide σ% value to get relative variation for the different
currents. As can be noticed from the table, the +5σ estimates (that are closer to
datasheet estimates [99]) are significantly higher than the nominal (µ) values for
the different IDD currents.

Combining the effects on performance and power, next we present the im-
pact of ±1σ variations on basic memory operations including Activation, Read,
Precharge and Power-down. In Figure 3.4, we present a Q-Q (quantile) plot com-
paring the distributions observed in active and leakage currents (power) and the
delays tRCD and tData (combining tRD with Read to Precharge period), cor-
responding to ±1σ variations, when simulating a set of activation-read-precharge
operations. If the two distributions used for the comparison study are similar, all
the points in the QQ plot must lie close to the line x = y. Since we employed
a Gaussian distribution in modeling the device voltage variations, we expect a
Gaussian distribution in both the observed performance and power measures for
these operations. By overlapping the two sets of measures and normalizing, the
similarity between the distributions of both measures can be identified as a linear
relation between them, as observed in the figure.

Using the current distributions from Table 3.3 and the distribution of the
functional latencies from Table 3.2, in Figure 3.5, we overlap them to obtain the
complete performance-power-variation relation in the ±6σ form. Here, the func-
tional latency range for DDR3-1066 devices is between 30ns and 55ns (sum of the
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Figure 3.4: Impact on Currents and Timing

timing parameters). The datasheet (DS) current measures are identified at +5σ
position (as stated in Chapter 1) and the datasheet (DS) timing measures are iden-
tified at -6σ position (speed-bin). (Lower value of functional latency corresponds
to faster devices.)

As can be noticed from the plot in Figure 3.5, the current measures observed
at the datasheet timings (speed-bin defined) are much lower than the worst-case
datasheet current measures observed for high speed devices. Hence, to be con-
servative and yet ‘better than worst-case’, we propose to employ +3σ current
measures in place of the worst-case measures, since they cover more than 97% of
the devices manufactured with the same configuration. These σ measures can be
reverse-engineered from any DRAM device datasheet using the current variation
factor (σ%) as shown in Table 3.3.

Having looked at a specific DRAM configuration, 1Gb DDR3-1066 devices, the
next section presents the current distributions for different DRAM configurations,
varying their frequency, capacity and data-width.

3.5 System Parameters Impact on Variation

DRAM vendors sort the memories by three system parameters: frequency, capac-
ity and data-width. In this section, we present results from more Monte-Carlo
simulations to analyze the impact on µ and σ% for the different currents when
these system parameters change. Our baseline configuration targeted 1Gb DDR3-
533MHz (1066) x8 memories. In this experiment, we alter the system parameters
individually to simulate different configurations.
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Figure 3.5: Functional Latency Vs. Current Consumption

Accordingly, we change: (1) the frequency to 800MHz and simulate a 1Gb-
800MHz-x8 memory, (2) the capacity to 2Gb and simulate a 2Gb-533MHz-x8
memory, and (3) the data-width to x16 to simulate a 1Gb-533MHz-x16 memory
and observe the impact on µ and σ% in Table 3.4.

Table 3.4: System Parameters Vs. Currents

Baseline Freq Capacity Width
Config 1Gb-533-x8 1Gb-800-x8 2Gb-533-x8 1Gb-533-x16
IDD µ σ µ σ µ σ µ σ
Type mA % mA % mA % mA %
IDD0 98.4 2.4 112 2.6 99.3 2.5 98.4 2.37
IDD1 104 2.3 118 2.2 105 2.5 113 2.22
IDD2N 37.7 4.8 42.7 4.5 46.5 6.1 37.7 4.77
IDD3N 41.5 5.7 56.7 4.5 49.9 5.3 41.5 5.71
IDD4R 118 2.9 153 3.5 127 3.3 208 3.14
IDD4W 123 2.7 159 4.1 132 3.7 213 2.6
IDD5 146 2.1 161 2.4 184 2.2 146 2.15
IDD2P0 8.4 13.7 8.4 13.7 16.6 16.1 8.4 13.7
IDD6 8 14 8 14 13.7 19.9 8 14
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As shown in the results, when increasing the frequency from 533MHz to
800MHz, all currents except the leakage currents scale up linearly due to their
dependency on the clock. When increasing the memory density, all currents scale
up linearly due to the doubling of the number of memory cells and primary sense
amplifiers. However, when the data-width is doubled, while retaining the same
page-size (1KB), only the currents reflecting data transfer, viz., IDD1, IDD4R

and IDD4W are affected, since only the number of data bits accessed during the
column accesses increases. Similarly, when a combination of system parameters
change, the impact on current measures can be estimated directly from the re-
sults in Table 3.4 by adding the corresponding impact on µ and multiplying by
σ%, for one parameter at a time, considering the most influential parameter first
(conservative and determined by % change in µ), as derived in Table 3.5.

Table 3.5: Multi-Parameter Impact on Currents

F&C F&W C&W F&C&W
Config 2Gb-800-x8 1Gb-800-x16 2Gb-533-x16 2Gb-800-x16
IDD µ σ µ σ µ σ µ σ
Type mA % mA % mA % mA %
IDD0 113 2.5 112 2.4 99.3 2.4 113 2.4
IDD1 119 2.4 127 2.3 115 2.3 128 2.3
IDD2N 48.6 6.3 42.7 5.0 43.7 5.1 48.6 5.1
IDD3N 52.4 5.5 56.7 5.9 47.2 6.0 52.4 6.0
IDD4R 159 3.4 244 3.2 214 3.2 250 3.2
IDD4W 163 3.8 250 2.7 217 2.7 253 2.7
IDD5 194 2.3 161 2.2 179 2.2 194 2.2
IDD2P0 14.1 18.3 8.4 15.5 14.1 15.9 14.1 16.2
IDD6 11.2 22.6 8.0 15.9 11.2 16.8 11.2 17.2

By combining these current consumption measures with the performance met-
rics as shown in Figure 3.5, similar power-performance relations can be obtained
for DRAM devices of different capacity, width and frequency. As stated before,
+3σ current measures can be employed as generic measures for >97% devices in
the particular generation. Besides these generic current measures, to obtain real-
istic current measures for each given DRAM device, it is important to characterize
the device before determining the same. Next, we propose a DRAM performance
characterization methodology that determines the actual performance metrics of
any given DRAM (as against the datasheet measures). These performance metrics
can be overlapped with the power-performance relation obtained in Figure 3.5.
Using this, we can position the given DRAM on the ±6σ power-performance dis-
tribution curves and derive realistic current measures corresponding to the actual
performance metrics of the particular DRAM. We further propose to use +1σ
current estimates relative to the positioning of the DRAM to be conservative. As
stated earlier, for nominal DRAM usage at the minimum timings, we propose to
employ +3σ current measures from the distribution.
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3.6 DRAM Memory Characterization

In the last section, we observed the expected impact of process variations on
DRAM delays and power consumption by performing Monte-Carlo simulations on
a detailed DRAM cross-section. In this section, we propose a post-manufacturing
performance characterization methodology (set of algorithms) to empirically de-
termine this actual impact for a given DRAM memory. By doing so, we relate
a DRAM’s actual performance to the impact of process variations on DRAM
currents.

We begin by identifying a set of requirements and solutions for a compre-
hensive DRAM characterization methodology. We then propose three algorithms
that can be used at run time to determine the actual timings (pruning the exces-
sive process margins) for a given DRAM device in nominal conditions (1.5V and
room temperature). Next, we derive conservative timing margins and compen-
sated timings to address noise and temperature variations using our NGSPICE
DRAM model and assure correct DRAM functionality under worst-case operating
conditions (1.425V and +85◦C).

Since this algorithm helps derive optimized timings only, to determine the
impact on power consumption, we overlap these optimized timings on the delay-
power relation obtained using the SPICE simulations in Figure 3.5 in the previous
section, and identify the corresponding current measures. We also extend this
relation to estimate the impact of the three system parameters viz., capacity (C),
frequency (F) and width (W), on DRAM performance and power consumption,
to enable use with DRAMs of different configurations.

3.6.1 Requirements and Solutions

The goal of this work is to derive a set of run time characterization algorithms that
generate a sequence of DRAM commands to conclusively determine if the DRAM
continues to operate correctly at the tested PVT operating points. Towards this, we
first define a set of requirements and solutions to derive a comprehensive DRAM
characterization methodology:

(1) Requirement: Assure completion of Read/Write operations: Data previ-
ously written into the row may be partially retained in the associated row buffer, if
the following precharging and activation operations are only partially completed.
When reading from a DRAM row, it is therefore important to assure completion
of these operations and that the correct data is being read from the cells.

Solution: Internally, DRAMs employ an open-bitline array structure for their
row buffers [50], which implies that the row buffers are shared between adjacent
memory rows (as described in Section 3.3). This pair-wise sharing enables use of
bitlines of either of the rows as voltage reference by the differential sense amplifiers
in the row buffers, when the other row is being accessed.

Hence, if both of these rows are written into in succession with the negated
dataset, it would assure that data in the row buffer for the first row is being over-
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written with flipped bits of data for the second row. Hence, when reading from
the first row, if the correct data is observed, the writing and reading operations
with the optimized timings were successful.

(2) Requirement: Varied datasets: It is important to detect the impact of the
charge in neighboring cells on the cell in the middle [93,94,109] due to cross-talk
across bitlines, which may happen at high speeds. For instance, if the neighboring
cells hold the opposite charge as the cell in the middle, it is important to observe
the effect on that cell (if any). It is also important to test each cell for stuck-at
faults [93,94].

Solution: The datasets should include data with: (a) neighboring bits flipped
and (b) all bits set to ‘1’ and all bits set to ‘0’. According to Requirement (1),
each dataset should have a corresponding negated dataset. Thus, we derive the
following datasets (ds):

ds [0] - {0xA5A5A5A5} ds [1] - {0x5A5A5A5A}
ds [2] - {0xFFFFFFFF} ds [3] - {0x00000000}

To properly test a memory location, we should employ all combinations of
datasets, while writing into and reading from alternating rows with flipped datasets
(Requirement (1)). Hence, we derive the following test sets (ts) in Table 3.6:

Table 3.6: Test Sets

ts [i] [0] ts [i] [1] ts [i] [2] ts [i] [3]
ts [0] [j] W [x] [0] W [x+1] [1] R [x] [0] R [x+1] [1]
ts [1] [j] W [x] [1] W [x+1] [0] R [x] [1] R [x+1] [0]
ts [2] [j] W [x] [2] W [x+1] [3] R [x] [2] R [x+1] [3]
ts [3] [j] W [x] [3] W [x+1] [2] R [x] [3] R [x+1] [2]

Here in a W/R [x][y] test, W/R refers to writing or reading operation, x refers
to the memory row in the bank and y refers to the dataset element being written
or verified against. The test works in the row-major order.

(3) Requirement: Test all DRAM cells comprehensively : Some DRAM cells
may perform better than others within or across different DRAM devices on a
DIMM [93,94,109]. Hence, it is important to test all the DRAM cells and identify
the weakest cells that define overall performance of the DIMM. This is to ensure
correctness of functionality of all DRAM cells under optimized timings.

Solution: In the test sets defined before, each Write and Read corresponds to
accesses of 64 bytes (512 cells) of data. The entire test set writes into and reads
from these 512 cells per row, 4 times each, on two rows in a test set and with
different datasets. Once the test set finishes, it moves to the next 512 cells in the
same two rows till it reaches the end of the rows, before switching to the beginning
of the next two rows in the same bank. These test sets are then repeated over all
banks.

(4) Requirement: Worst-case operating conditions test : Functional correctness
must be assured under worst-case operating conditions (maximum power-supply
noise and maximum temperature).
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Solution: While pruning the excessive process margins, requisite noise and
temperature margins must be retained. These noise and temperature margin
compensations must be conservatively derived and verified.

3.6.2 DRAM Characterization Algorithms

In this section, we define a set of algorithms that determine the fastest timing mea-
sures for a given DRAM device at run time under nominal test conditions (+27◦C
and 1.5V supply). Algorithm 1 (Memory Check), writes, reads and verifies each
of the datasets based on the combinations explored by the different testsets. For
each iteration of Algorithm 1, a new Read command pattern (RD Patt[ ]) and a
new Write command pattern (WR Patt[ ]) is provided by the best timings check
(btc) function in Algorithm 2, which reduces a target timing parameter one cycle
at a time when generating these command patterns. These command patterns
consist of a pre-defined set of scheduled DRAM commands like ACT-RD-PRE
based on timing constraints described in Table 1.1, but using the reduced timing
values. These operations are performed over the entire memory range, writing and
reading four times per memory location, in the order specified before. By doing
so, Algorithm 1 verifies correct DRAM functionality, with the new test patterns.
This algorithm satisfies the first 3 requirements in Section 3.6.1.

In Algorithm 2, RD Patt[1] corresponds to the DRAM command issued on
clock cycle #1 in the Read test pattern. Once explicit DRAM commands (ACT,
READ, WRITE, PRE) are issued, an explicit NOP is issued to indicate last
clock cycle in the test patterns. For each DRAM device, the test trigger in
Algorithm 3, calls Algorithm 2 for each timing parameter to be optimized. It
first targets nRCD and nRP timings, since they concern independent memory
operations (activating and precharging). It optimizes one of them and then uses
the derived minimum value to optimize the other (ordering is irrelevant). Next,
it targets the Read/Write to precharge timings viz., nRTP and nWR. They are
dependent on each other since they both inherently include nCL (column access
latency). In this case, it first individually minimizes both of them to identify
their best measures. Next, it employs the minimal independent measure of nRTP
and tries optimizing nWR and then employs the minimal independent measure
of nWR and tries optimizing nRTP. Finally, it identifies one of the combinations
of nRTP and nWR that gives the minimum sum of the two parameters. If the
application is memory Read/Write dominant, the appropriate timing (nRTP or
nWR) may be targeted specially for minimization. Each parameter is reduced
from its datasheet value to 1 or till the chip returns a FAIL.

In all, Algorithm 1 (Mem Check) is called 26 times, with each call lasting
4 seconds. The entire memory characterization finishes in less than 2 minutes.
These algorithms can be employed once during system boot time. Together these
algorithms help derive the fastest timings under nominal conditions at which the
DRAMs continue to work. However, these timings must be compensated for noise
and temperature variations, which is addressed next.
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Algorithm 1: Memory Check (Mem Check)

Require: RD Patt[ ], WR Patt[ ]
1: {Comment: FOR {all banks, rows, columns}}
2: for b = 0 → banks do
3: for r = 0 → rows do
4: for c = 0 → columns do
5: for i = 0 → 3 do
6: for j = 0 → 3 do
7: mem[b][r][c]= ts[i][j] {Comment: Data written using WR Patt}
8: mem[b][r+1][c]= ts[i][j+1] {Comment: Data written using WR Patt}
9: j+=2

10: ts[i][j] = mem[b][r][c] {Comment: Data read using RD Patt}
11: ts[i][j+1] = mem[b][r+1][c] {Comment: Data read using RD Patt}
12: end for{j}
13: {Comment: Check if data is written/read correctly}
14: if ts[i][2] 6= ts[i][0] then
15: Return FAIL
16: else if ts[i][3] 6= ts[i][1] then
17: Return FAIL
18: end if
19: end for{i}
20: end for{c}
21: end for{r}
22: end for{b}
23: {Comment: END FOR {all banks, rows, columns}}
24: Return PASS
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Algorithm 2: Best Timings Check (btc)

Require: Test ID, RCD, RP, RTP, WR
1: Init [ ] = {RCD,RP,RTP,WR}
2: Min [ ] = {1,1,1,1};
3: # Define: WL = {Write Latency (Datasheet value)}
4: # Define: BL = 8 {Burst Length}
5: for i = Init[Test ID]− 1→Min[Test ID] do
6: Init[Test ID] = i
7: RCD=Init[0], RP=Init[1], RTP=Init[2], WR=Init[3]
8: RD Patt[1] = ACT
9: RD Patt[RCD] = READ

10: RD Patt[RCD+RTP] = PRE
11: RD Patt[RCD+RTP+RP-1] = NOP
12: WR Patt[1] = ACT
13: WR Patt[RCD] = WRITE
14: WR Patt[RCD+WL+WR+BL/2] = PRE
15: WR[ PattRCD+WL+WR+BL/2+RP-1] = NOP
16: {Comment: For other cycles of RD Patt and WR Patt, no command is issued.}
17: if Mem Check(RD Patt[ ],WR Patt[ ]) == FAIL then
18: Return Init[Test ID] + 1
19: Break
20: end if
21: end for{i}
22: Return Init[Test ID]

Algorithm 3: Test Trigger

Require: RCD,RP,RTP,WR
1: for j = 0 → 3 do
2: {Comment: For all chips in the DIMM}
3: bRCD[j] = btc(0,RCD,RP,RTP,WR)
4: bRP[j] = btc(1,bRCD[j],RP,RTP,WR)
5: bRTP ind[j] = btc(2,bRCD[j],bRP[j],RTP,WR)
6: bWR ind[j] = btc(3,bRCD[j],bRP[j],RTP,WR)
7: bRTP wr[j] = btc(2,bRCD[j],bRP[j],RTP,bWR ind[j])
8: bWR rtp[j] = btc(3,bRCD[j],bRP[j],bRTP ind[j],WR)
9: if (bRTP wr[j] + bWR ind[j]) ≤ (bRTP ind[j] + bWR rtp[j])then

10: bRTP[j] = bRTP wr[j], bWR[j] = bWR ind[j]
11: else
12: bRTP[j] = bRTP ind[j], bWR[j] = bWR rtp[j]
13: end if
14: end for{j}
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3.6.3 Conservative Voltage-Temperature Compensations

The goal of this work is to eliminate the excessive process-margins from a DRAM
post-manufacturing, while retaining the requisite temperature and noise margins
and assuring functional correctness and optimal performance under worst-case
conditions. These can be identified if either the worst-case test conditions are
employed on the DIMM or equivalent worst-case circuit-level simulations are per-
formed. Although we have access to such an experimental setup, the same cannot
be expected of the users of this proposed methodology. Hence, we propose to de-
rive the impact of noise and temperature on these critical timing measures using
the NGSPICE DRAM cross-section model. Note, we do not include in the impact
of process variations, since the aim is to derive voltage and temperature margins.
The target device is a 1Gb DDR3-533MHz x16 device [99] at 45nm.

From our SPICE experiments, we derive the following results: Table 3.5
presents the impact of power-supply noise and temperature variations on the criti-
cal DRAM timings (described earlier in the chapter). The power-supply variation
impact is derived at +85◦C for voltage range between 1.425V and 1.575V. As
observed, the delays increase with increase in noise (reduced power-supply). The
temperature-variation impact is derived at 1.425V. Operating temperatures be-
tween +27◦C (nominal) and +85◦C (maximum) are simulated and as expected;
the higher the temperature, the longer the delays. As before, tRCD refers to
nRCD in ns.

Table 3.7: Impact of Noise and Temperature on Timings

Noise @ +85◦C Temperature @ 1.425V
Timings (ns) @1.575V @1.5V @1.425V @+27◦C @+70◦C @+85◦C

tWR 5.19 5.28 5.38 4.79 5.22 5.38
tRP 5.60 6.01 6.68 6.48 6.64 6.68

tRCD 9.64 9.83 10.02 9.00 9.72 10.02
tRTP 9.64 10.13 10.66 9.12 10.09 10.66

Using these observations, we derive the voltage and temperature margins for
1Gb DDR3 devices in Table 3.8, to be added to the timings obtained at nominal
conditions using the algorithms in Section 3.6.2.

We also extend our analysis to study the influence of increasing DRAM ca-
pacities on these margin compensations, since that increases the number of row
buffers in the DRAM, which affects the timings. We present the results for higher
capacity (2Gb) DDR3 memories in Table 3.8 as well. Since we are minimizing
analog delays, the DRAM frequency does not influence the margins, hence, they
will be the same for all frequencies.

As can be noticed, the margins for tRTP increased with capacity, since it may
take slightly longer to finish a Read operation due to the increase in the number
of row buffers and longer bitlines to traverse, to read the data out.

When employing these derived margins, we propose rounding up the resultant
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Table 3.8: Conservative Margins

1Gb 2Gb
Nominal WC Diff Nominal WC Diff

Timings 1.5V 1.425V Margin 1.5V 1.425V Margin
+27◦C +85◦C (%) +27◦C +85◦C (%)

tWR (ns) 4.69 5.38 14.71 4.71 5.38 14.21
tRP (ns) 5.88 6.68 13.5 5.88 6.68 13.6

tRCD (ns) 8.84 10.02 13.3 8.87 10.02 13.03
tRTP (ns) 8.84 10.66 20.55 9.74 12.79 31.36

timing measures to integer clock cycles, to derive conservative measures for the
timings. These derived conservative margins address the worst-case test require-
ment (4) in Section 3.6.1.

We employ these conservative margins (compensations for worst-case oper-
ating conditions) with the fastest timings observed using the characterization
algorithms under nominal conditions to derive conservative yet optimal timings
for a given device for worst-case operating conditions. Experiments deriving the
same for several DRAM devices are presented in the next chapter. By overlap-
ping these conservative yet optimal timings with the power-performance relation
in Figure 3.5 (also derived for worst-case operating conditions), we can derive the
expected power consumption estimates (including a +1σ margin) for the given de-
vice. The sequence of operations described above is summarized in the flow-chart
in Figure 3.6.

3.7 Related Work

When it comes to studying the impact of process variation in DRAMs, Intel ob-
served performance degradation and power variation in DRAM memories in [59,
76]. However, their test mechanisms are not publicly available. Gottscho et al.
in [45] also observed variations of around 15% in power consumption across sev-
eral 1GB DIMMs from the same vendor and around 20% across different vendors.
However, they did not establish the causes for the observed extent of power vari-
ations and did not test the DIMMs for variations in timings and performance.

Bathen et al. in [78] and [79] employed these observations and suggested mem-
ory mapping and partitioning solutions to exploit this variability, but also failed
to analyze or exploit performance variations. Liu et al. in [123] observed longer
data retention times in DRAMs than those suggested in datasheets, but did not
extend this study to optimize DRAM timings. Desai et al. in [77] performed
Monte-Carlo analysis on a single DRAM cell and basic circuit components to
estimate the variation impact for an entire DRAM memory. They further pro-
posed using adaptive body biasing to improve the yield of DRAMs. Although the
variation estimates may be acceptable for the basic circuit components, such an
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Figure 3.6: Deriving Optimized DRAM Timings and Realistic Current Measures

extrapolation to an entire DRAM is at best a coarse approximation.

Unfortunately, there are no known realistic models or studies that provide
acceptable estimates of the expected impact of process variations on DRAM power
consumption and performance and no variation data is made available by DRAM
vendors, undermining the applicability of the solutions suggested in [59, 77–79].
In this chapter, we derive realistic estimates of the impact of variations on DRAM
currents and latencies to enable use of such solutions.

When it comes to DRAM power estimation, none of the existing power models
discussed in the last chapter, consider the impact of process variations on power
consumption in DRAMs, due to lack of variation analysis and data. In this work,
we provide possible distributions of the current measures for different DRAM op-
erations, which can be employed with the JEDEC current measures-based power
models, such as [17,40,68], to obtain more realistic DRAM power estimates.

In the context of DRAM timing and functionality testing, authors of [93]
and [94] proposed industrial DRAM tests and DRAM fault models. However,
they only employed default DRAM timings in their tests. JEDEC proposed IDD
tests [103] for functional testing of the DRAM under worst-case conditions, but
they also did not change the timing measures and only tested a few pre-selected
rows in the memory. Memtest86 [109] also did not alter the DRAM timings and
only verified if the DRAM accepts and correctly retains arbitrary set of data
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written to it. Additionally, its testing is not guaranteed to stress the memory,
since it depends on the underlying processor/cache architecture.

Moreover, none of these tests considered testing all the timing margins in-
troduced due to process, temperature or voltage variations. In this chapter, we
proposed a comprehensive test methodology that varies all critical DRAM timings
and tests the entire memory with different datasets and test sets under worst-case
operating conditions.

3.8 Conclusions

In this chapter, we modified an NGSPICE-based circuit-level DRAM architecture
and power model to include the impact of run-time and design-time variations and
derived the effect on DRAM performance and power consumption on a ±6σ scale
using Monte-Carlo analysis. From this analysis, we identified better than worst-
case current measures that are applicable for >97% of the DRAM devices of a
given configuration, in place of worst-case datasheet measures. We also proposes
a generic post-manufacturing power characterization methodology for DRAMs to
derive optimized timings and realistic current estimates for a given DRAM device,
using the Monte-Carlo analysis. In the next chapter, we verify if our estimates
on variation margins hold true on a real DRAM DIMM.
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Chapter 4

Verifying & Validating DRAMPower

Having discussed the DRAMPower model and the expected impact of variation of
DRAM currents and performance, in this chapter, we aim to verify and validate
both these claims against real power and performance measurements from hard-
ware. Some of the experiments and results presented in this chapter have been
published previously in our paper at DATE 2014 [54].

4.1 Introduction

To verify and validate our work, we perform two sets of experiments that:
1. Verify the impact of process variation (process margins) on DRAM cur-

rents and the four critical DRAM timing parameters (nWR, nRP, nRCD
and nRTP) against the expected impact from Monte-Carlo simulations and
derive the fastest and compensated set of timings (using the performance
characterization algorithms) at which a DRAM continues to operate suc-
cessfully under worst-case conditions.

2. Validate DRAMPower and Micron’s power model against real power mea-
surements for different DRAM operations by employing (a) datasheet, (b)
realistic (SPICE model-based) and (c) measured current values (IDDs) as
inputs to the two models.

Towards this, we employ 12 identical Micron DDR3-1066 64-bit 512MB single-
rank SODIMMs (using 48 x16 DDR3 devices from batch MT4JSF6464HY-1G1B1)
and first explore the variation in DRAM timing measures among them using the
performance characterization algorithms. We then derive the variation in DRAM
current measures in the fastest and slowest DIMMs identified among these 12
tested DIMMs and the impact of speeding up of the fastest DIMM on its current
measures, since it represents the highest current consumption in the lot. Finally,
we employ the slowest DIMM with the highest current margins (lowest current
measures) and evaluate the accuracy of the two power models when employing
current measures from datasheets to actual measures.
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4.2 Experimental Setup

As stated earlier, we employ 12 Micron DDR3 DIMMs with the same configura-
tion for these experiments. To perform these tests, we use Xilinx ML605 boards
mounted with the said 512MB DDR3 DIMM module and program the FPGA
to: (1) trigger the test algorithms through a MicroBlaze, (2) program the test
patterns to a memory controller that uses the Xilinx PHY [110] to communicate
to the DRAM, and (3) verify the dataset read back in the memory controller.
The DIMM is operated at 400MHz instead of 533MHz, due to limitations of the
Xilinx PHY [110]. However it does not have any impact, since the delays being
tested are frequency-independent analog timings. However, for a fair comparison,
we employ current measures for a DDR3-800 MHz as baseline (which are lower
than frequency down-scaled measures of DDR3-1066 and hence more restrictive).

The power measurements are obtained by mounting the DDR3 DIMMs on a
JEDEC MO-268 [114] standard-compatible, JET-5466 SODIMM extender board
[115] equipped with a current-sensing shunt resistor of 100mΩ, using a high-end
Lecroy Wavesurfer 454 Oscilloscope (2GS/s) reporting at 500MHz. We employed
two channels on the scope, with the two probes connected across the resistor
and using a common ground. We used 1x probes for minimal signal loss. The
difference between the measures of the two channels indicates the voltage drop
observed. For average power measurements, we take the mean of the voltage drop
over more than 100 iterations of the analysis window.

For a fair evaluation, we employ worst-case operating conditions as mandated
by JEDEC for these tests. For this, we introduce: (1) maximum noise in the power
supply with the help of the shunt resistance on the DDR3 extender board and
reduce the supply voltage to 1.42V (maximum supported noise), (2) maximum
temperature variations (by forcing a Case Temperature (Tc) of +85◦C) using
current-controlled Peltier elements (explained next) and (3) heavy DRAM usage
(by continuously reading and writing from the DRAM for several hours without
idling).

To introduce worst-case operating temperature, we locally heat the DRAM
module to +85◦C without overheating the rest of the ML605 platform. The ex-
perimental setup is depicted in Figure 4.1. A couple of small 4W Peltier elements
(PEs) [111] are used to heat up two DRAM devices on a DIMM, while tempera-
ture sensors (a thermistor and a thermocouple) placed on top of the two DRAM
devices provide feedback to keep them at the required temperature. The cold
sides of the PEs are connected to a sufficiently large heat-sink to keep them at
room-temperature. The hot sides are then connected to the DRAM modules us-
ing thermal paste. Both the current-controlled PEs are connected to a digital
power supply unit. Two temperature sensors are placed between the PEs and
the DRAM module: a pre-calibrated thermocouple for accurate tracking of the
temperature and a thermistor used by a control loop to regulate the temperature,
as specified by JEDEC [103] and Micron [112] standards.
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Thermocouple
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Figure 4.1: Heating Setup

Both the PEs and the thermistor are connected to an Arduino board [113]
that reads the dynamic changes to the resistance value of thermistor (based on
an amplified voltage drop measure) and implements a simple control loop, which
in turn controls the power supply unit that heats up the PEs, thus regulating
the temperature on the DRAM module. At the same time, the thermocouple
reports accurate temperature measures through a digital multimeter for parallel
monitoring of the temperature. Both the Peltier elements and the thermistor are
calibrated off-line (before the test is initiated) against the reference thermocouple,
which has a known temperature response.

Before starting the experiment, the DRAM module is heated up until it reaches
the desired temperature (+85◦C). The control loop implemented on the Arduino
keeps the device temperature between +85◦C and +86◦C (+1◦C range). If it goes
above the temperature threshold the power supply to the PE is switched off, and
when it drops below, it is turned on again. This temperature check and update
is performed five times per second. The complete experimental setup is shown in
Figure 4.2.

Figure 4.2: Experimental Setup
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As can be noticed from the figure, the FPGA board is programmed using
the laptop on the left. The Arduino board is continuously fed dynamic thermal
resistance information from the thermistor placed on the top of one of the DDR3
modules on the DIMM via a voltage (drop) amplifier (on the breadboard). It
forwards this information to the control loop, which in turn controls the output
to the power-supply heating up the PEs.

The control loop also outputs its analysis via a display port to the laptop
on the right. This control loop is calibrated based on the output of the pre-
calibrated thermocouple. The multi-meters constantly read out the temperature
on the DDR3 devices (from both the thermistor and thermocouple), while the
scope measures the voltage drop across the 100mΩ shunt resistor on the DDR3
extender board. We use these voltage drop and resistance measures to compute
the current consumption (I = V/R).

4.3 Experiments

In this section, we perform two sets of experiments on real hardware to verify
the DRAM performance and power variations expected from the NGSPICE sim-
ulations. Additionally, we also perform experiments to validate DRAMPower by
comparing its power estimates against real hardware measurements.

4.3.1 Verifying DRAM Performance Variations

In these experiments, we begin by evaluating and validating our proposed perfor-
mance characterization methodology and derive the fastest set of timings for each
of 48 the devices on all 12 DIMMs, under nominal test conditions (1.5V/+27◦C).

We then identify the fastest DIMM, which represents maximum exploitation
of timing margins by our methodology, add the derived requisite timing compen-
sations for temperature and noise and verify if it continues to operate successfully
under worst-case conditions (1.42V/+85◦C). By validating our methodology for
the most exploited DIMM, we show that it will work for the less exploited DIMMs
as well. Besides, since the fastest DIMM is also likely to have the highest power
consumption, we also show that we do not violate any of the original current mea-
sures despite speeding it up but instead, further reduce total energy consumption
significantly.

Experiment I: Fastest Timings

We employ the performance characterization algorithms to derive the fastest tim-
ings for the 48 DDR3 devices tested under nominal conditions. The results for
the 48 DDR3 devices (from 12 DIMMs) are presented in Figure 4.3. As can be
noticed, the datasheet (DS) measures are very pessimistic compared to the actual
measures (under nominal conditions) for all the devices tested. For a fair com-
parison, we must employ similar worst-case conditions as used for the datasheet
measures, which is presented in the next experiment.
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Experiment II: Timing Compensation and Verification

For these experiments, we add the derived timing margin compensations for noise
and temperature (from Table 3.8) to the fastest DIMM (#6), which was most
exploited by our method in Experiment I. To identify this DIMM, we summed
up the four critical timing parameters for all four devices on each DIMM and
selected the one with the lowest sum. We employ the resulting compensated
timing measures (rounded-up to integer clock cycle measures and presented in
Table 4.1) and verify if they hold true under worst-case conditions.

We first programmed the non-compensated test patterns with the actual fastest
(nominal-condition) timing measures of this DIMM on to the MicroBlaze and
DRAM controller and triggered the memory test in Algorithm 1. We observed
that the test failed immediately, since these measures do not compensate for
power-supply noise or temperature (as shown in Table 4.1).

We then programmed the test patterns with the rounded-up compensated tim-
ing measures and observed that the device worked correctly without any issues.
We continued the test un-interrupted for over 4 hours under the worst-case op-
erating conditions, transferring over 16TB of data to and from the memory in
the process. At the end the test finished successfully, as depicted in Table 4.1,
thereby verifying the validity of the conservative timing measures derived based
on temperature and noise compensations.

Table 4.1: Test Measures and Results

Test nRCD nRP nRTP nWR Result
Type (cc) (cc) (cc) (cc)

Fastest 4 3 4 1 FAIL
Margins 13.3% 13.5% 20.5% 14.7% -

Compensated 5 4 5 2 PASS

Experiment III: Evaluating Performance Benefits

Having tested the 12 DIMMs and verified the conservative timing measures for
the fastest DIMM, in this experiment, we evaluate the performance benefits of
employing our proposed performance characterization methodology on the fastest
(#6) and the slowest (#1) DIMMs. In Tables 4.2 and 4.3, we present the im-
pact on read and write latency and bandwidth, when employing the compen-
sated (for worst-case conditions) and un-compensated (for nominal conditions)
timings for the smallest access granularity (64 bytes) for the 64-bit DIMM. The
read/write latency measures represent the latency for activating, reading/writing
and precharging a bank row. The read/write bandwidth measures indicate the net
bandwidth observed in the read/write latency period (64 bytes/latency). As can
be observed, under worst-case operating conditions, the fastest DIMM achieved
around 61.5% and 35% improvement in read and write bandwidths, and around
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38% and 25.9% improvement in read and write latency, respectively. The slowest
DIMM also achieved significant improvements, including 61.5% and 28.5% im-
provements in read and write bandwidths and 38% and 22.2% improvement in
read and write latencies.

Table 4.2: Impact on Read Latency and Bandwidth
Read Latency Read Bandwidth

Latency Reduction Bandwidth Increase
(cc) (%) (GBps) (%)

Original 21 - 1.22 -
Fastest Comp 13 38.10 1.97 61.54
Fastest Nom 10 52.38 2.56 110.00

Slowest Comp 13 38.10 1.97 61.54
Slowest Nom 11 47.62 2.33 90.91

Table 4.3: Impact on Write Latency and Bandwidth
Write Latency Write Bandwidth

Latency Reduction Bandwidth Increase
(cc) (%) (GBps) (%)

Original 27 - 0.95 -
Fastest Comp 20 25.93 1.28 35.00
Fastest Nom 17 37.04 1.51 58.82

Slowest Comp 21 22.22 1.22 28.57
Slowest Nom 18 33.33 1.42 50.00

These results show the pessimism in DRAM datasheet timings and the im-
portance of our DRAM characterization methodology. Also, if nominal operating
conditions are maintained, these gains increase significantly.

4.3.2 Verifying DRAM Power Variations

In these experiments, we first derive a set of standard current measures specified
by JEDEC (IDDs) for the fastest and slowest DIMMs identified in the previous
experiments using the default datasheet timings. By employing the fastest and
slowest DIMMs, we cover both the extremes in terms of power consumption for
a fair evaluation. The standard JEDEC current measures correspond to different
combinations of memory operations and are obtained using standardized mea-
surement test loops [103] under worst-case run-time operating conditions. We
compare these measures to the nominal and better than worst-case current es-
timates derived by the NGSPICE model and the datasheet measures. Next, we
also observe the impact of using the compensated timings with the fastest DIMM
on its current measures, since shrinking the timing measures may increase them
drastically. We chose the fastest DIMM to show the worst-case impact of our
methodology.
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We show that although the current measures increase, they are still much lower
than the datasheet measures for the fastest DIMM. We also show that despite this
increase in power consumption, we achieve significant savings in terms of energy,
due to the shortened latencies.

Experiment IV: Measuring IDD currents

We performed a set of eleven current measurements under worst-case operating
conditions to obtain the JEDEC standard IDD currents for the fastest and slowest
DDR3 DIMMs. We present the screen-shots from the Oscilloscope for the slowest
DIMMs and list all IDD measures for both these DIMMs in Table 4.4.

We also compare the measured IDDs to datasheet measures and NGSPICE
based nominal and better than worst-case current measures. We classify these cur-
rent measures as complete and partial currents. Complete currents are measured
over complete DRAM operations and partial currents are measured for specific
DRAM operations which may be triggered using additional DRAM operations.
These partial currents are filtered out by repeating the concerned operation sev-
eral times and then using density plots, which highlight the current measure
corresponding to that operation. The current measures can be obtained using
the the mean voltage drop value in (1) column P1 for the complete currents and
(2) the Math ERES (Enhanced Resolution) box on the lower left hand corner for
the partial currents. In this section, we show the plots for one Complete current:
IDD0 and one Partial current: IDD2P. The measurement plots for the other IDD

currents are shown in Appendix A. A summary of all the current measurements
is shown in Table 4.4.

[1] IDD0 current - Complete Current
The IDD0 test loop measures current across one ACT and PRE command

combination sent to one bank, with the other banks retained in precharged state
and the test looping over all banks one after the other. The time period between
an ACT and PRE command is maintained as nRAS cycles. nRC cycles after
the ACT command, the test switches to the next bank and repeats itself over all
the banks in the DRAM, with one bank active at a time. Since this test repeats
itself without requiring any additional operations, the measurement observed is a
complete current and shown in Figure 4.4.

[2] IDD2P current - Partial Current - Requires Precharging
The IDD2P test loop measures current in the precharged power-down state.

This test starts with a PREA command (observable as a peak at the beginning
of the plot in Figure 4.5) and then a power-down is initiated. The time period
between the PREA and power-down commands is maintained as nRP cycles to
allow all the banks to be precharged. The DRAM is retained in the power-down
state for 2000 clock cycles (sufficiently long compared to precharging time and
power-up time). Retaining the DRAM in the power-down state for a long duration
helps identify the power consumption of the power-down state in density plots.
After this period, a power-up is issued and the test pattern ends after further
nXPDLL clock cycles, power-up exit latency (short peak period at the end of the
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ACT

PRE

Figure 4.4: Measuring IDD0

plot). The test pattern then repeats itself in a loop (iteration shown in Figure 4.5.
Using the density plot shown in Figure 4.6, the voltage drop corresponding to the
power-down state can be observed by the dotted line across the region in red
(highest density identifier) and is reported by the 3rd measure in the Math ERES
(Enhanced Resolution) results on the bottom left of Figure 4.6. The PREA
current in Figure 4.5 is not very high since all banks are already precharged at
the end of one test loop.

Similarly, we observed all the different IDD measures for the fastest and slow-
est 512MB DDR3-800 DIMMs identified in the previous experiment (plots for
the fastest DIMM in Appendix A). In Table 4.4, we compare these measured
currents to the nominal and better than worst-case measures derived using the
SPICE simulations and the datasheet measures. Note that the datasheet current
measures from Micron do not include I/O power consumption, however, the real
measurements on the JET-5466 board do. For a fair comparison, we resolve this
by employing the Micron power calculator [17] estimates for I/O power consump-
tion and subtracting them from the real measurements for a fair comparison.
The SPICE model also does not consider I/O power consumption. In this table,
IDD1W is not a JEDEC standard measure, however, its reference measures can be
calculated by substituting write current (IDD4W) instead of read current (IDD4R)
in IDD1 current and corresponds to activation-write-precharge current. As can
be observed from the results, the current measures for both the fastest and the
slowest DIMMs are significantly lower than the datasheet measures.
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Figure 4.5: Measuring IDD2P after Precharging

Figure 4.6: Measuring IDD2P - Density Plot
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In the case of the slowest DIMM, this difference ranges from 21% in the case
of IDD1R current to 65% in the case of IDD6 self-refresh current. Employing
the nominal (average) or better than worst-case current measures derived from
the SPICE simulations on the circuit-level model would provide better values of
currents than the worst-case measures. The difference between the nominal and
measured values is only about 13% for IDD1R current and 25% for IDD6 current
for the slowest DIMM and 6% for IDD1R current and 25% for IDD6 current for
the fastest DIMM (from the evaluated population).

Table 4.4: DIMM Current Measures under worst-case operating conditions

Fastest Slowest Nominal Better than Datasheet Slowest
(I4) (I4) (I1) Worst-Case (I0) vs. DS

Range → (-5σ) (-6σ) (µ) (+3σ) (I2) (+5σ)
Current ↓ mA mA mA mA mA %
IDD0 263 241 320 343 360 -33
IDD1R 376 346 400 428 440 -21
IDD1W 320 293 335 360 410 -28
IDD2N 110 101 140 164 180 -43
IDD2P 17 16 20 30 40 -60
IDD3N 116 107 150 177 200 -46
IDD3P 39 38 48 63 100 -62
IDD4R 584 535 722 790 840 -36
IDD4W 599 549 730 793 840 -34
IDD5 477 462 717 766 800 -42
IDD6 8.4 8.4 11.2 16.6 24 -65

Experiment V: Side-Effects of Scaling Timings

Based on the performance-variation results, if we shrink the timing measures to
reflect a DRAM’s actual performance, we risk increasing the DRAM power con-
sumption. However, since we are only exploiting process-margins in the timings,
the current measures should NOT go higher than the worst-case datasheet current
values, since the current measures also include appropriate process-margins.

By overlapping the measured performance metrics (including temperature and
noise margins) with the power-performance relation obtained in Figure 3.5, we
observe that the performance of this particular DIMM (fastest) ranks around the
+1σ mark. As suggested earlier, we conservatively estimate the power consump-
tion at +2σ from the SPICE simulations.

We then verify the +2σ SPICE estimates to the actual power consumption
measured by using these optimized timings. The currents affected by our op-
timization of the four critical analog timings include: (1) activation-precharge
current (IDD0) [103], (2) activation-read-precharge current (IDD1) [103], and (3)
activation-write-precharge current (IDD1W). As before, we subtrace the estimates
for I/O power consumption from the real measurements for a fair comparison.
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The impact on current measures for the fastest (most exploited) DIMM are
presented in Table 4.5. The results show that the current measures, despite
shrinking the analog delays, remain lower than the datasheet and the conservative
+2σ SPICE estimates. This is as expected, since we are not violating any timing
margins for noise and temperature or any of the actual delays associated with
these operations. We are merely conservatively identifying the excessive process-
margins associated with these delays and eliminating them partially depending
on the actual impact on a given DRAM device.

Table 4.5: Impact on Current Measures

Current Measured (I4) SPICE (+2σ) (I3) Datasheet (I0)
Type (mA) (mA) (mA)
IDD0 314 330 360
IDD1 396 410 440
IDD1W 320 340 410

4.3.3 Verifying and Validating DRAMPower

In this section, we present two sets of experiments to highlight the accuracy of
the power and energy estimates of the DRAMPower model and tool. For each
experiment, we present the power consumption estimates of DRAMPower and
Micron’s model when using the measured IDDs (from the tested DIMM) as inputs
to both the models for a fair comparison and compare them to real measurements
from hardware.

In the first set of experiments, we scale the number of activations and reads to
analyze the differences in their modeling of the active DRAM operations and the
corresponding impact on power. Since varying the number of writes and degree
of bank-interleaving have a similar scaling impact, we present those experiments
in Appendix A. In the second set of experiments, we observe the power impact of
state transitions from active to power-down and self-refresh modes, and analyze
the differences in their modeling of DRAM power-saving modes and state transi-
tions. Transitions to idle mode and refreshes are also presented in Appendix A,
since they have a similar impact as transition into power-down.

For all experiments, we employed directed micro-benchmarks that reflect all
possible combinations of DRAM commands and operations. We decided to em-
ploy these micro-benchmarks since it was easier to continuously run them over in
loops and measure voltage drop averages over time. The accuracy of power esti-
mates can be expected to be the same for the different operations under realistic
workloads as well.
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Experiment VI: Verifying scaling of power

DRAMPower employs the actual timings between commands obtained from a
given DRAM command trace (in place of the minimal timings from DRAM
datasheets) and performs cycle-accurate power estimation with high-precision
modeling of different DRAM operations under any degree of bank interleaving.

To stress the importance of accurate scaling, we first show scaling of ACT-PRE
operations across two different degrees of bank interleaving. We then show the
impact of issuing multiple bursts of read commands on the corresponding power
consumption, including transactions with multi-bank interleaving. With these
experiments, we show the importance of precisely modeling scaling of DRAM
timings and support for multi-bank interleaving.

In these 4 experiments, we achieve significantly better accuracy compared to
Micron’s estimates, as will be shown later in Table 4.6. Similar impact of writes
and more degrees of bank-interleaving are presented in Appendix A.

[1] 2 Banks - ACT-PRE: We performed the two-bank activate-precharge
operations to highlight the importance of the need for accurate scaling in Micron’s
power modeling, as represented by the current measures in Figure 4.7. The test
is looped over several times.

In this case, the average power consumption is expected to be slightly lower
than two times that of a single bank ACT-PRE. This is due to nRRD delay, which
is imposed as a restriction (minimum timing constraint) between successive ACT
commands to different banks, which increases the transaction length. On the
other hand, Micron’s model estimates this power measure to be exactly twice of
that of a single-bank ACT-PRE, ignoring the effect of the nRRD delay. This is
addressed by accurate scaling shown in Equations (2.2) and (2.3) in Chapter 2.

[2] 8 Banks - ACT-PRE: We also performed the eight-bank activate-precharge
operations to further emphasize importance of the need for accurate scaling, as
represented by the current measures in Figure 4.8. In this case, the average power
consumption is expected to be closer to that of the four-bank ACT-PRE. This is
due to nFAW delay, which in this case for this particular DRAM, keeps first and
last four ACT commands in separate groups over time without overlapping each
other. This is true by design, to keep the DRAM power consumption low. As a
result, the power consumption averages out to be similar to that of the four-bank
ACT-PRE. On the other hand, Micron’s model estimates this power measure to
be eight times of that of a single-bank ACT-PRE.

[3] 4 Reads - 1Bank: We performed the four successive Read operations to a
bank including the corresponding ACT-PRE operations to stress the importance
of power modeling of Read transactions, as shown by the current measures in
Figure 4.9. In this case, the average power consumption is expected to be slightly
lower than the sum of four Read operations and that of a single bank ACT-PRE.
This is due to the total latency of the transaction, which can be calculated as
the sum of nRCD delay after the ACT command leading up to the first Read,
nRTP delay after the last Read before a PRE is issued, the nRP delay for the

High-Level Power Estimation and Optimization of DRAMs



80 Chapter 4. Verification & Validation of DRAMPower

2 ACTs

2 PREs

Figure 4.7: 2 Banks - ACT-PRE

8 ACTs (with FAW)

8 PREs

Figure 4.8: 8 Banks - ACT-PRE

K. Chandrasekar



4.3. Experiments 81

PRE to complete and successive nCCD delays between the Read commands. This
overall latency is expected to be longer than nRC cycles, which is assumed as the
transaction length by Micron’s model. This is addressed by Equations (2.2), (2.3)
and (2.7) in Chapter 2, which scale timing appropriately.

ACT READs

PRE

Figure 4.9: 4 Reads - 1 Bank

[4] 1 Read - 4 Banks: We performed the four-bank activate-precharge opera-
tions combined with a Read operation on each bank to emphasize accurate scaling
of both sets of operations, as represented by the current measures in Figure 4.10.

In this case, the average power consumption is expected to be significantly
lower than the sum of four Read operations and that of four single bank ACT-
PRE commands. This is due to the total latency of the transaction, which can be
calculated as the sum of nRCD delay after the first ACT command leading up to
the first Read, nRTP delay after the last Read (to the fourth bank) before a PRE
is issued, the nRP delay for the last PRE to complete, the nRRD delay between
the four successive ACT commands and the successive nCCD delays between the
four Read commands. This overall latency is expected to be much longer than
nRC cycles, which is assumed as the transaction length by Micron’s model to
estimate this power measure, ignoring the nRRD delays.

These experiments show the importance of accurate scaling of power measures,
which is achieved by DRAMPower unlike Micron’s model. This will be evident
from the power estimates for the two models for these experiments, as presented
later in Table 4.6.
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ACTs

READ

PRE

READ

Figure 4.10: 1 Read - 4 Banks

Experiment VII: Verifying DRAM state transitions

DRAMPower performs high-precision modeling of DRAM power saving states
and state transitions into the low power states. In the following set of experi-
ments, we employ transactions with transitions to different states (power-down
and self-refresh) and obtain the power consumption value from real hardware
measurements, to compare against DRAMPower’s estimates. Transitions into
idle and refresh states are shown in Appendix A.

To underline the importance of modeling state transitions, we perform exper-
iments that involve significant transitions from: (1) ACT-PRE commands into
precharged power-down state and then powering back up, and (2) ACT-PRE
commands into Self-refresh state and powering back up. With these experiments,
we show the importance of precise modeling memory state transitions. In these
2 experiments as well, we achieve significantly better accuracy compared to Mi-
cron’s estimates, as will be shown later in Table 4.6, at the end of this section.

[5] ACT - PRE to Precharged Power-Down: We performed the ex-
periment to transition from a single-bank activate-precharge operation into the
precharged powered-down state, as represented by Figure 4.11. In this case, it
is important to note that the power consumption reduces gradually as we enter
or exit the precharged power-down state. This transition must be captured in
the power model based on the duration for which the clock is gated and the time
required to power-up the memory back into a precharged idle (standby) state.
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Micron’s model does not model these transitions. In our power model, we address
these transitions as shown in Equations (2.9) and (2.10) in Chapter 2.

ACT-PRE

PD ENTRY

PD EXIT

Figure 4.11: ACT - PRE to Precharged Power-Down

ACT-PRE

REFRESH

SR EXIT

SR ENTRY

ACT-PRE

Figure 4.12: ACT - PRE to Self-Refresh
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[6] ACT - PRE to Self-Refresh: We performed an experiment to transition
from a single-bank activation-precharge operation into the self-refresh mode, as
represented by the current measures in Figure 4.12.

In this case, it is important to note that an auto-refresh is instantiated when
transitioning into a self-refresh. The power consumption due to this auto-refresh
can be significant, depending on the duration of the self-refresh period.

This transition must be captured in the power model depending on the du-
ration for which the clock is gated and stopped and the time required to power-
up the memory back into a precharged idle (standby) state, as shown in Equa-
tion (2.16) in Chapter 2. Micron’s model does not model these transitions into
and out of a self-refresh operation.

Summary

We employed the measured IDDs (I4) with both the high-level DRAM power
models (M0 and M2) and observe their relative accuracy in the 17 DRAM oper-
ation tests (11 are shown in Appendix A) and compared the power estimates to
real hardware measurements (Oref ) in Figure 4.13. As evident from Figure 4.13,
DRAMPower performs much better compared to Micron’s power model in all
cases, with an average of 97% accuracy.
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Figure 4.13: Accuracy of DRAMPower & Micron Model using Measured IDDs

In case of self-refresh test (#6), the accuracy drops by 8%. This can be at-
tributed to the fact that our model assumes a digital implementation of the DLL
in the DIMM. However, the particular MICRON DIMM tested shows character-
istics of an analog implementation of DLL [119], as evident from the gradual drop
in power consumption in Figure 4.12 when the clock is gated or turned-off. The
power estimation accuracy improves with longer self-refresh periods.
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In Table 4.6, we present the measured power values for the 17 experiments and
the corresponding estimates from DRAMPower (M2) and Micron’s model (M0),
when using datasheet (DS) IDDs (I0), measured IDDs (I4) and nominal IDDs
(I1) as inputs to the two models. For each of these estimates, we also provide
the error % in brackets compared to the measured reference. At the end, we
present the average accuracy measure for each of these model and input currents
combinations over the 17 experiments. As observed, DRAMPower (M2) when
employing measured currents IDDs (I4) achieved an accuracy of 97% on average,
compared to Micron’s model (M0), which achieved an average accuracy of 82%.

Note, we do not compare the models using ‘better than worst-case’ current
measures (I2), since they are more pessimistic than nominal currents for the
DIMM being tested. Similarly, we do not compare the models using realistic
current measures (I3), since the comparison is under nominal timings and not
optimized timings, for which the I3 currents are relevant.

These results underline the accuracy of DRAMPower’s power estimates and
the significance of high-precision cycle-accurate modeling and use of accurate
current measures as inputs.

4.4 Conclusion

In the first set of experiments, we showed significant performance gains by optimiz-
ing process-variation margins in DRAM timings. In the second set of experiments,
we showed large differences in the current measured from real hardware and from
DRAM datasheets. In the final set of experiments, we validated DRAMPower’s
power estimates. We showed that compared to real measurements in hardware,
DRAMPower on average achieved over 97% accuracy in power estimation for a
set of 17 micro-benchmarks. In comparison, Micron’s model achieved around 82%
accuracy, highlighting the importance of high-precision cycle-accurate modeling of
DRAM state transitions and accurate scaling of power estimates based on actual
observed timings, as performed by DRAMPower.
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Chapter 5

Real-Time DRAM Power Optimization

This chapter is based on our work on real-time power-optimization policies for
DRAMs, published at DAC 2012 [86].

5.1 Introduction

Increasing performance and functionality demands of modern embedded systems
often reflect poorly in overall system energy consumption. With the end of Den-
nard Scaling [130, 131], the power-density of chips is no longer constant, hence,
power management has become extremely important. This becomes critical when
the power supply is limited, as in the case of battery-powered devices. With the
market pushing for both high-performance and green-computing solutions [6, 7],
the demand for higher performance has been constantly met by tighter power
and energy budgets. Hence, to satisfy the application performance requirements
within the limited energy budgets, it is extremely important to employ run-time
power optimization solutions that do not sacrifice the overall system performance,
for all system components, including DRAMs.

DRAMs have been shown to contribute considerably to the system energy
consumption [14], irrespective of whether they are in use or not. Several power
optimization strategies have been proposed in the recent past targeting DRAM
power consumption. While some target active-power management by reducing the
number of DRAM operations, such as Activation and Precharging by exploiting
row-buffer locality [129] or reducing refreshes, others target idle-power optimiza-
tion by powering-down the DRAMs or scaling the frequency down [23] to reduce
standby power consumption.

Active-power optimization policies reduce the overall DRAM usage by mini-
mizing DRAM operations and improve average performance. As a consequence,
they may also increase idleness in DRAMs. On the other hand, standby-power op-
timization powers-down the DRAM but may impact DRAM’s performance guar-
antees, due to its power-up latencies. Hence, it is important for idle-power opti-
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mization strategies to efficiently avoid or hide the performance loss, so that they
can retain the overall average-case and worst-case system performance. Note:
Frequency scaling to reduce idle power consumption would always impact the
latency of individual DRAM operations, due to the slowing down of the mem-
ory, hence, power-down mechanisms are more suitable when performance loss is
not acceptable. Such performance neutrality in powering-down the DRAM could
be essential for applications with real-time requirements, which demand worst-
case performance guarantees from every component in the system, including the
DRAMs and cannot tolerate any impact on guaranteed worst-case performance.

Real-time DRAM controllers provide such guarantees to a memory client, in
terms of a minimum guaranteed bandwidth and/or a maximum latency bound
for memory accesses. Real-time DRAM controllers, such as [62–67], employ pre-
dictable memory arbiters, such as Round-Robin or Time Division Multiplexing, to
schedule memory accesses from different requesters and to provide performance
guarantees. If they speculatively employ power-down mechanisms at run-time
when the memory is idle, it can affect both the latency and the bandwidth guar-
antees provided, due to the power-up latencies [103]. As a result, the existing
real-time memory controllers do not support run-time power-down. Hence, there
is a need for performance-neutral power-down strategies that would retain the
original DRAM performance guarantees, while reducing DRAM power consump-
tion when it is idle.

Towards this, in this chapter, we propose: (1) a conservative and an aggres-
sive DRAM power-down strategy and (2) a run-time power management policy
that employs these two strategies efficiently, while preserving the original DRAM
performance guarantees. Both these strategies exploit the idle memory service
cycles by initiating DRAM power-down and can be employed with any real-time
arbiter like TDM, Round-Robin, etc. They can be used with either of the two
power-down modes (fast-exit or slow-exit), defined in Chapter 2. The difference
between the two strategies is defined by the DRAM power-up scheme employed
by them. The conservative strategy powers-up the DRAM by the end of every
powered-down service cycle and avoids any impact on the original performance
guarantees. The aggressive strategy on the other hand, powers-up only when there
is a new request to serve and yet manages to avoid impacting the performance,
by successfully hiding the power-up penalty within the original latency bounds.

To further assure that both these strategies are used in a performance-neutral
way, we add a run-time power-management policy. This policy first evaluates
both these power-down strategies for their applicability based on DRAM access
granularity and memory service cycle durations. It then selects the most energy-
efficient combination of power-down strategy and power-down mode (fast/slow
exit) that does not violate the original DRAM performance guarantees.

Both the power-down strategies and the power management policy together
can be adapted and employed with any of the real-time memory controllers pre-
sented in [62–67]. By employing the proposed performance-neutral power-down
strategies with the run-time power management policy, these memory controllers
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can effectively and efficiently power-down the DRAM memory when it is idle,
without impacting the original DRAM performance guarantees.

In this chapter, we experimentally evaluate the combination of the power man-
agement policy and the two proposed power-down strategies for three different
DRAM generations on four concurrently executing media applications on an MP-
SoC platform using a real-time DRAM memory controller.

5.2 Related Work

Real-time DRAM memory controllers such as [62–67] employ predictable arbiters,
like Round-Robin or TDM, and provide latency and/or bandwidth (rate) guar-
antees by bounding the temporal interference between requesters.

[63] employs Round-Robin arbitration and provides upper bounds on delays
for different memory accesses. Similarly, [65] employs Round-Robin arbitration
and uses worst-case response time as memory access latency bound. [62] adopts
a budget-based static-priority arbitration and provides bounds on latency and
guarantees a minimum bandwidth for every memory requester. It also supports
Round-Robin or TDM arbiters.

[66] uses TDM arbitration and provides bandwidth guarantees and a worst-
case execution time for memory accesses. In [64], weighted Round-Robin arbi-
tration is used to provide both bandwidth guarantees and latency bounds. [67]
uses static scheduling of commands and round-robin arbitration and provides
predictable memory access latencies. However, none of these real-time memory
controllers support power-down, due to the impact of power-up latencies on per-
formance guarantees.

When it comes to work on idle power minimization in DRAMs, there exists no
generic performance-neutral power-down solution for use with real-time memory
controllers. For instance, [55] proposed to reduce idle power consumption by
using a compiler-directed selective power-down and a hardware-assisted run-time
power-down. However, the former is not applicable to memory controllers and
the latter can incur large performance penalties due to mis-predictions of future
idleness.

[24] proposed history-based scheduling and an adaptive memory throttling
mechanism to allow memory to remain in the idle mode for longer periods of time
to increase duration of power-down. [57] proposed a fuzzy-logic based prediction
mechanism to dynamically employ power-down or self-refresh modes based on pre-
dicted idle period lengths. However, this mechanism is speculative by nature and
cannot be used with real-time memory controllers. Unfortunately, these methods
incur performance penalties and cannot be used for real-time applications with
high performance requirements.

Several articles have targeted active power minimization. For instance, [23,61]
employ DVFS techniques, [29,32,36,37,122,133] target improving row-buffer hits
and [31, 124, 125, 127] target reducing of number of refreshes. However, these
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techniques may impact worst-case latencies of individual transactions, which can
be critical in real-time systems. Besides, most of the existing real-time power-
saving solutions provide application-specific optimizations.

In short, real-time memory controllers do not currently support generic power-
down mechanisms, and existing power-saving solutions cannot be used with real-
time memory controllers. This work bridges this gap and provides run-time power-
down strategies for real-time DRAM memory controllers that are performance-
neutral and optimize idle power consumption.

5.3 Background

In this section, we give details on real-time DRAM memory controller architec-
tures and arbiters and their real-time guarantees that form the basis for deriving
the power-optimization strategies.

5.3.1 Memory Controller

A generic DRAM memory controller architecture can be visualized as comprising
two sections, a front-end and a back-end, as depicted in Figure 5.1.

The front-end includes a bus and buffers per input port of the bus to accept
incoming requests from different requesters (clients) and an arbiter that selects
one of them at a time to be served by the memory. The back-end includes the
logic required to translate the arbiter selected request into a set of scheduled
commands, address and data components of a memory transaction and forwards
them to the DRAM memory, based on the memory’s timing requirements.

FRONT-END BACK-END

COMMAND GEN

MEMORY MAP

DATA

CMD

ADDR

DRAM MEMORY CONTROLLER MEMORY

/ Guarantee

[Latency-Rate]

Net Bandwidth ( )

Service Cycle Length ( )

Req. 1

Req. 2

Req. N Arbiter

Figure 5.1: Memory Controller Overview
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In the case of real-time DRAM controllers, both of these sections together
provide performance guarantees for each incoming request in terms of a maximum
bound on the latency and a minimum bound on the bandwidth [117], such that
each incoming request is served in a finite known time.

As depicted in the figure, the back-end defines a net memory bandwidth (γ)
based on the maximum service cycle length (Λ) for a given memory access gran-
ularity (G). The net memory bandwidth gives the actual memory bandwidth
attainable for requests of a given access granularity taking into account the perfor-
mance loss due to DRAM timing requirements on related operations, as opposed
to the theoretical peak memory bandwidth where 2 words of data are assumed to
be transferred every clock cycle in or out of the memory. The maximum service
cycle length gives the worst-case latency of scheduling DRAM commands corre-
sponding to a read or a write request of a defined access granularity (supported
request size in bytes). Hence, the net memory bandwidth is defined by access
granularity of a request.

In the front-end, the arbiter defines a maximum latency bound (Θ) and a min-
imum guaranteed rate of service (ρ), in terms of service cycles for every requester.
The maximum latency bound is defined in terms of number of service cycles and
depends on (1) the number of requesters accessing the DRAM (also indicated by
the number of input ports on the bus) and (2) the service cycles allocated by the
arbiter to each of those requesters. The guaranteed rate of service gives the pro-
portion of the service provided to all requesters, that is allocated to the particular
requester.

By combining the latency-rate guarantee (in terms of service cycles) of the
front-end and the net memory bandwidth and the maximum service cycle length
defined by the back-end, we can define a requester’s bandwidth guarantee (β) as
the fraction ρ of the net memory bandwidth (γ) and an access time guarantee (Φ)
as the equivalent of Θ in absolute time.

5.3.2 Arbiters and Latency-Rate Servers

Real-time DRAM memory controllers employ predictable arbiters to provide la-
tency and rate (bandwidth) guarantees to requesters accessing the memory. These
arbiters use real-time scheduling algorithms like Round-Robin and TDM, and can
be analyzed using the Latency-Rate (LR) server model [95], to characterize their
performance guarantees.

These guarantees are provided to a requester in terms of a minimum allocated
rate of service (ρ) and a maximum service latency (Θ), whenever it is busy (re-
questing a higher rate of service on average than allocated to it). To formally
define a busy requester, we first define standard Latency-Rate notations.

Let ρi denote the allocated rate of service for requester i, Ai(τ1, τ2] denote the
rate of arrival of requests of requester i in time interval (τ1, τ2], and Wi(τ1, τ2]
denote the rate of service provided to requester i in the same time interval. Then,
we can define the busyness of a requester as per Definition 5.1.
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Definition 5.1 Busy Requester : A requester i is busy in a time interval
(τ1, τ2], if its arrival rate is greater than its allocated rate of service, defined by
Equation (5.1).

Ai(τ1, τ2] ≥ ρi · (τ2 − τ1) (5.1)

Hence, a requester is considered busy, if its arrival rate during the time interval
(τ1, τ2] is greater than or equal to its minimum allocated rate of service. Note
that it is possible that the actual provided service is higher than the allocated
rate of service, if the system has the unallocated or unused capacity to support
it. Hence, a requester’s busyness is defined independently of the rate of service
provided to it and is only based on the rate of service allocated to it. Whereas, a
requester’s backlog is defined in terms of its actual provided service (Wi) instead
of its minimum allocated rate of service, as described in Definition 5.2.

Definition 5.2 Backlogged Requester : A requester i is backlogged at time t,
if its arrival rate is greater than its provided service, defined by Equation (5.2).

Ai(0, t) > Wi(0, t) (5.2)

These service rates are depicted in the form of service curves for a requester
in Figure 5.2.
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Figure 5.2: Latency-Rate Server

In the figure, we identify a busy line as the red dash-dotted line representing
the slope of the allocated rate of service ρ. A busy period for a requester corre-
sponds to the maximum time interval when its requested service rate (indicated
by the green curve) is above the busy line (allocated rate of service), else, it is
considered to be not busy (lower requested service rate). The requested service
curve depicts the arrival of the requests from the requester over time and the
allocated service line depicts the guaranteed service rate by which the requests of
a busy requester is served over time.

The actual provided service (indicated by the blue curve) may be higher than
the allocated rate. This provided service curve shows how the requests actually
get served over time by the memory, which can be greater than or equal to the
allocated service rate. As a result, in such cases, the requester may be busy but
not backlogged, since it got better service rate than its minimum allocated rate.
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As stated earlier, a busy requester is also guaranteed a maximum service la-
tency (Θ). This maximum latency bound gives the maximum initial duration
after which the busy requester starts getting served at its allocated rate (ρ) by
the memory. During this waiting period, the requester gets backlogged (since it
is busy and not getting service) and when it is not longer busy, its backlogged
requests accumulated during its busy period will get served at the guaranteed
rate. We formally define a Latency-Rate server characterized by Θ and ρ using
Definition 5.3.

Definition 5.3 Latency-Rate (LR) Server (Maximum Service Latency (Θi)
and Minimum Service Rate (ρi)): If a requester i starts a new busy period j for a
time interval (τ1, τ2], a server S is an LR server, if and only if for any tε(τ1, τ2] it
provides the requester i a guaranteed rate of service ρi delayed only by an initial
non-negative time period Θi, as shown in Equation (5.3):

WS
i,j(τ1, t) ≥ ρi · (t− τ1 −Θi) (5.3)

In this case, Θ depends on the number of interfering requests from competing
requesters and is defined in terms of service cycles. ρ is defined by the fraction
of service cycles allocated to the requester. Note that the actual observed service
latency, may be less than the maximum service latency bound (Θ), if there is
less interference from competing requesters. However, if the requester is provided
only its allocated rate of service, as long as it is busy, it will always be backlogged
(have pending requests), since it will have more incoming requests than served
requests. In other words, if a requester i is busy in a time interval (τ1, τ2], then
Equation (5.4) holds for any tε(τ1, τ2].

Ai(τ1, t) ≥ ρi · (t− τ1) > ρi · (t− τ1 −Θi) (5.4)

As shown in this equation, for any Θi > 0, for a busy requester, the arrival
rate will be greater than the allocated service rate, hence the requests will always
be backlogged. In short, a Latency-Rate (LR) arbiter provides a busy requester,
a guaranteed rate of service ρ after a maximum service latency Θ (measured
in service units). These translate to absolute time (β (Minimum Bandwidth
Guarantee) and Φ (Maximum Access Time Guarantee)) when combined with a
real-time memory controller back-end.

5.3.3 Deriving Memory Controller Guarantees

This section describes how bandwidth (rate) and access time (latency) guarantees
are derived for a real-time DRAM controller.

To define the minimum bandwidth guarantee, we begin with deriving the net
memory bandwidth. The net memory bandwidth (γ) is predominantly defined by
the access granularity parameter (G), which is given by the request (atom) size
supported by the memory controller for all requests and the maximum service
cycle length (Λ) for the particular access granularity.
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The maximum service cycle length (Λ) for a given access granularity of the
memory controller can be computed as the maximum of: (1) the service time of
a read transaction (nRD) and the time to switch to a read after a write (nWTR),
and (2) the service time of a write transaction (nWR) and the time to switch to
a write after a read (nRTW) (given by Equation (5.5)).

Λ = max(nWTR + nRD,nRTW + nWR) (5.5)

The read and write transaction service times nRD and nWR are derived as the
maximum time required to serve a read and a write transaction, respectively [117].
The time to switch between read and write transactions (or vice versa) are also
derived by the analysis of the memory controller based on memory-specific timing
constraints [117,132].

Using the definition of maximum service cycle length (Equation (5.5)), we can
derive the net memory bandwidth. We compute the net memory bandwidth (γ)
over a period of the length of a refresh interval (nREFI). In doing so, we consider
every service cycle during nREFI (in clock cycles) to be as long as the maximum
service cycle length (Λ). Hence, the total number of service cycles (num Λ) in
nREFI is given by Equation (5.6). Note that this is a conservative estimate used
for simplification of the analysis. Here, nRFC is the length of a single refresh
request in clock cycles.

num Λ = b(nREFI− nRFC)/Λc (5.6)

The total data transfer during this period, assuming an access granularity of
G bytes, is given by num Λ× G. Hence, the net memory bandwidth in one refresh
interval tREFI is given by Equation (5.7).

γ = num Λ×G/tREFI (5.7)

Having derived the net memory bandwidth, next, we express the guaranteed
rate of service (ρi) in absolute time. Assuming TDM or Round-Robin arbitration,
say ‘x’ is the number of service cycles allocated to the requester (i) from the total
number of service cycles in a frame of size F (where, F > x), ρi corresponds to
the fraction of service cycles allocated to requester i, as shown in Equation (5.8).

ρi = xi/F (5.8)

Using the net memory bandwidth definition from Equation (5.7) and value of
ρi from Equation (5.8), we define the minimum bandwidth guarantee in Defini-
tion 5.4, as follows:

Definition 5.4 (Minimum Bandwidth Guarantee): A minimum bandwidth
guarantee βi is provided to a requester i based on its allocated guaranteed rate
of service (ρi) and the net memory bandwidth (γ), as shown in Equation (5.9).

βi = ρi × γ (5.9)
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Having defined the minimum bandwidth guarantee βi, next, we define the
maximum access time guarantee (Φi) provided to a requester i as the maximum
initial time period for which the requester in a new busy period may have to
wait, before it is provided sustained service at its allocated bandwidth (βi). Φi
represents the latency guarantee (Θi) in absolute time. Equation (5.10) informally
depicts this relation, however, it is expanded later to consider all interferences in
a real system in Equation (5.16).

Φi = Θi × Λ (5.10)

Using this definition of maximum access time guarantee (Φi), the maximum
finishing time of any request j of Requester i in a busy period can be defined as
the maximum of (1) arrival time of request j + Φi or (2) completion time of the
last request j − 1 in the same busy period and ρ fraction of service cycles in a
service time frame (F ), as given by Equation (5.11).

tfinj
i

= max(tarrji
+ Φi, tfinj−1

i
) + F/xi × Λ (5.11)

The exact value of Φ depends on the type of Latency-Rate arbiter being used,
such as Round-Robin, TDM, Credit-Controlled Static Priority, etc. [117,118]. In
this work, we restrict our analysis to the most commonly used (LR) arbiters,
Round-Robin and TDM, which use slot/frame-based arbitration (allotting a de-
fined number of service slots per requester per arbitration time-frame).

To derive a conservative common bound for Φ applicable to Round-Robin and
TDM, we begin by defining the timing parameters that contribute towards the
same. We derive the worst-case value of Φ assuming all requesters are busy and
competing for the memory.

1. The maximum service cycle length parameter (Λ) is defined as the maximum
time period to service a given request of access granularity G. It can be
computed as discussed earlier in Equation (5.5).

2. The minimum service cycle length parameter (λ) gives the minimum time
period for the memory to serve a request of access granularity G, after which
the next request may have to be scheduled. This parameter λ can be em-
ployed by the arbiter as its scheduling interval : defined as the time instant
during a service cycle, at which it decides which requester to serve next.
λ is the minimum of the service latencies of a read or write transaction,
as shown in Equation (5.12). Note that, in general, arbiters may employ
different time instances per service cycle for scheduling the next request.
However, a scheduling interval as long as λ waits long enough to give subse-
quent requesters sufficient time to arrive before their slots and high-priority
requests to be detected as late as possible, which is better for lower worst-
case access time guarantee for high-priority requesters by avoiding getting
blocked by lower priority requests (see next point).
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Hence, to be deterministic and derive lower worst-case guarantees, we em-
ploy the scheduling interval parameter for all service cycles. Note: If no
request is waiting to be served, the slot goes idle and is at most as long
as the scheduling interval, since anything shorter will affect the worst-case
guarantee, as will be shown next.

λ = min(nRD,nWR) (5.12)

The read and write transaction service times (nRD and nWR) are derived
by the memory controller analysis as stated before.

3. Combining Equations (5.5) and (5.12), the difference between the two, gives
the time for which the next requester selected for service at the scheduling
interval (λ) may have to wait before the end of the current service cycle.

The shorter this difference, the lower is the effective value of Φ (worst-case
access time guarantee). Hence, any value of scheduling interval shorter than
λ will only worsen the worst-case access time guarantee Φ. We define this
difference between the two as the Blocking Period, denoted by ∆, as shown
in Equation (5.13).

∆ = Λ− λ (5.13)

4. Besides the Blocking Period (∆), a request (rki ) may have to wait longer
depending on the time required to serve the interfering memory requests. As
stated before, assuming TDM or Round-Robin arbitration, with xi being the
number of service cycles allocated to the requester i from the total number
of service cycles in a frame of size F, a request (rki ) in the worst-case, may
have to wait for F - xi requests to be served first, before it is forwarded for
service. This latency is defined as the Interference Period, denoted by I,
given by Equation (5.14).

Ii = (F − xi)× Λ (5.14)

5. Also, if the request (rki ) arrives just after the scheduling interval during a
service cycle, it may be delayed further by one full service cycle in addition
to the F - x service cycles, if another request was scheduled in its place.

This period is defined as the Penalty Period, denoted by P and in the worst-
case is equal to one Λ.

6. Finally, since the Interference Period may stretch longer than a refresh
interval (nREFI), further interference may be caused by automated Refresh
requests. This additional delay is defined as Refresh Delay, denoted by nRef,
derived in Equation (5.15).
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In this equation, we conservatively figure out the number of refresh intervals
during the Interference Period and add the delays due to the corresponding
number of refresh requests. From the refresh interval, we subtract Λ to
account for any delay in scheduling the refresh due to a currently execution
read or write request of request size G.

Finally, we add the latency of one full refresh operation (+1 in the equation)
to account for the fact that the Interference Period and refresh interval may
not be aligned (a refresh may be issued at the beginning of the Interference
Period) and this can result in one additional refresh operation.

nRef =
(
d((F − xi)× Λ + Pi + ∆)/(nREFI− Λ)e+ 1

)
× nRFC (5.15)

Together, these delays add up to define a conservative value of Φi for a given re-
quester i, for Latency-Rate arbiters like TDM and Round-Robin in Definition 5.5,
as follows:

Definition 5.5 (Maximum Access Time Guarantee): A maximum access time
guarantee Φi is provided to a requester i as the maximum time period the re-
quester may have to wait in a new busy period to get its allocated service. The
value of Φi is given by the sum of the service cycles of all interfering requests,
including refreshes, as shown in Equation (5.16).

Φi = ∆ + nRef + Pi + Ii (5.16)

Figure 5.3 sums up these worst-case interfering service cycles to derive a con-
servative bound for Φi.

Blocking

Period
Interference PeriodPenalty

Period
Refresh Delay

<-- --><--nRef--><-- --><-------(F-x). -------->

<-------------------------- -------------------------->

Figure 5.3: Deriving Worst-Case Maximum Access Time Guarantee (Φ)

This access time guarantee (Φ) is a conservative estimate, and may be opti-
mized specific to the actual arbitration being used (as shown in [116,117]).

Having derived the original bandwidth and access time guarantees provided
by a real-time memory controller, next, we define our proposed real-time DRAM
power-down strategies and show that these original performance guarantees are
preserved even when employing them.
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5.4 Real-Time Power-Down Strategies

Employing DRAM power-down mechanisms may affect the access time (latency)
and bandwidth guarantees provided by a real-time memory controller, due to
the expected performance impact of the powering-up latencies. Hence, exist-
ing real-time memory controllers do not support DRAM power-down. In this
section, we propose two performance-neutral run-time power-down strategies for
real-time memory controllers that employ predictable LR arbiters; one a con-
servative strategy and the other an aggressive strategy. These strategies can be
employed whenever the memory is idle (not backlogged) to reduce memory power
consumption, while preserving the original guaranteed performance bounds.

As stated before in Chapter 2, it is possible to employ either the fast-exit
or slow-exit modes, when employing DRAM power-down. We can hence derive
Power-Up Latency, the period after which the DRAM can be accessed again (sent
an ACT command), as per Equation (5.17) for fast-exit and as per Equation (5.18)
for slow-exit.

nPUP(F ) = nXP (5.17)

nPUP(S) = nXPDLL− nRCD (5.18)

As can be noticed in Equation (5.18), nPUP contains the minimum timing
constraint between an ACT and a RD/WR command (nRCD) [103], besides the
slow-exit (nXPDLL) power-up timing constraint. The rationale behind it is as
follows: When using the slow-exit power-down mode in the precharged state,
every read/write transaction ends with a precharge and begins with an ACT
command. The power-up timing constraint before issuing a RD/WR command
after a slow-exit power-down is given by nXPDLL in Equation (5.18). For efficient
memory access, the first RD/WR command is scheduled immediately after nRCD
is satisfied, after an ACT command is issued. However, since a RD/WR can be
issued only after a duration of nXPDLL cycles, after the memory begins to power-
up [103], the corresponding ACT in the transaction can be issued immediately
after nXPDLL - nRCD is satisfied, to avoid any additional delays in issuing the
RD/WR command.

5.4.1 Conservative Strategy

The first strategy involves triggering a special power-off request whenever an
arbiter service cycle is idle. This power-off request is designed to power-down
the memory and power it back up within the minimum service cycle length, thus
hiding the power-up transition latencies within the idle service cycle. This ensures
that the scheduling of memory access requests is not disturbed and the power-
down mechanism is effectively hidden from the requesters. This latency and
bandwidth neutral strategy provides significant energy savings and preserves both
the guaranteed access time bound and bandwidth. The idle service cycle length is
equal to the minimum service cycle length (λ), as defined earlier in Equation (5.6).
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Since both the power-down period (nPDN) and power-up period (nPUP) should
fit within λ, we derive the length of the power-down period in Equation (5.19).

nPDN = λ− nPUP (5.19)

5.4.2 Aggressive Strategy

The second strategy is more aggressive, since it checks for new requests before
powering up the memory. It involves issuing a power-down request when there
are no pending requests at the arbiter, and snooping the arbiter inputs for new
requests before the end of the current idle service cycle. If there are any pending
requests, a power-up request is issued to the memory to power it up by the end
of the idle service cycle (thus maintaining the scheduling interval).

To implement this strategy, we introduce a Snooping Point at a pre-defined
time instance from the start of the idle service cycle, before the end of the schedul-
ing interval, as shown in Figure 5.4. This snooping point (nSnoop) can be derived
by subtracting the power-up latency (nPUP) (F/S) from the minimum (idle) ser-
vice cycle length (λ), as given by Equation (5.20). This strategy assures that the
memory powers-up in time and the following request is scheduled on-time, if it
arrives before this snooping point.

nSnoop = λ− nPUP (5.20)

WRITE PDN/IDLE

n
RTW

Snooping

Point

n
PUP

PDN/IDLE

Figure 5.4: Snooping Point in Aggressive Power-Down

However, if the next request arrives after the snooping point but before the end
of the scheduling interval, no power-up will be issued and the memory continues
to be in the power-down mode for one more idle slot. This results in the next
request being delayed by a service cycle of length λ.

Such a situation may impact the original performance guarantees, since they
were derived using the scheduling interval as the time to schedule the next trans-
action and not the snooping point, which is introduced to support the power-down
mechanism. To ascertain any performance impact of using the snooping point as
the scheduling time when the power-down mode is employed, we derive the perfor-
mance guarantees based on the snooping point, and compare them to the original
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guarantees. It is important to note though, that the original scheduling interval
is retained whenever there are pending (backlogged) requests in the system and
the memory is not idle. The snooping point is employed only when the memory is
powered-down. Hence, the worst-case performance guarantees when the system is
busy, are not affected by power-down, since it is not employed when the system is
not idle. However, it must be assured that the performance guarantees when the
system is indeed powered-down, are not any worse than the original performance
guarantees.

Towards this, we first define a value of access time guarantee for when the
system is idle (powered-down) as Φ′ in Equation (5.21). Φ′ should be lesser than
or equal to Φ. When the system is in the power-down mode and the snooping point
is employed in place of the original scheduling interval, instead of the blocking
period of ∆ = (Λ− λ) in Equation (5.16), a minimum delay equal to the power-
up period of nPUP is observed, before the request can be served. During this
power-up period, competing requests may arrive, and as a result, the worst-case
interference period (I ) due to competing requests and penalty due to additional
refreshes is applicable as before. Furthermore, if the request arrives just after the
snooping point and the system continues to be in the power-down state, a penalty
period (P) is used up by an idle slot of length λ (minimum service cycle) and not
Λ (maximum service cycle due to another request), as in the original case.

Combining these conditions, we derive a value of Φ′, when the system is idle,
as shown in Equation (5.21).

Φ′ = nPUP + ((F − x)× Λ) + λ+ nRef (5.21)

Since Φ′ must be less than or equal to Φ, the difference between the definitions
of Φ and Φ’ must at most be zero. Combining the two, we derive the following:

(Λ− λ+ Λ)− (nPUP′ + λ) ≥ 0 (5.22)

where, nPUP′ is the maximum acceptable value of power-up penalty (nPUP)
such that Φ′ is lesser than or equal to Φ.

This reduces to:

2×∆ ≥ nPUP′ (5.23)

This defines the maximum value of nPUP′, the maximum value of power-
up period that does not affect the original latency guarantee (Φ). Hence, the
aggressive power-down strategy is employed when the power-up penalty is shorter
than 2 × ∆. As a result, it can successfully hide any performance impact within
the original Φ. We define Equation (5.23) as the power-up neutrality condition.

Since the aggressive strategy employs the snooping point to power-up and
always powers-up within the idle period length λ, it does not affect the value
of λ or Λ. As a result, it has no impact on the original bandwidth (β) and
latency (Φ) guarantees. In essence, by using the aggressive strategy only when the
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neutrality condition is met, ensures it to be latency (access-time) and bandwidth
neutral, thus guaranteeing real-time memory performance. The advantage of
this strategy is that all contiguous idle periods are combined into one large idle
period, thereby avoiding frequent powering-up of memory as in the case of the
conservative strategy, to save more energy.

5.5 Impact of Speculative Strategies

To highlight the importance of the proposed conservative and aggressive power-
down strategies in the real-time systems context, we analyse the impact of powering-
up the DRAM when a new request arrives at the arbiter. We define such a
power-down strategy as a Speculative power-down strategy that powers-down the
memory whenever it is idle and allows it to power-up even at any point in the idle
service cycle (even after the snooping point).

In the worst-case, a request may arrive at the last clock cycle of the idle service
cycle (the original scheduling interval, λ) and hence, the power-up transition time
(nPUP) is added to the maximum service cycle length (Λ) of the following request.
This impact on Λ increases its value to Λ′′ as a result of a speculative power-up
and is shown in Equation (5.24). Hence, this reduces the number of service cycles
in a refresh interval and thus, the net memory bandwidth from γ to γ′′ and the
bandwidth guarantee from β to β′′, as shown in Equations (5.25) and (5.26),
respectively. It also increases Φ to Φ′′ due to the impact of the power-up latency
(nPUP) on Λ, based on Equation (5.21), as shown in Equation (5.27).

Λ′′ = Λ + nPUP (5.24)

γ′′ = num Λ′′ ×G/nREFI (5.25)

β′′ = γ′′ × ρ (5.26)

Φ′′ = nPUP + ((F − x)× Λ′′) + λ+ nRef (5.27)

Such a drop in bandwidth guarantee and increase in access-time guarantee
are not acceptable in high-performance real-time systems, as we show in the next
section.

5.6 Power Management Policy

In this section, we present a power-down management policy (Algorithm 4) that
actively determines the combination of the best power-down strategy (conserva-
tive or aggressive) and power-down mode (fast-exit or slow-exit) [103] based on
their best achievable power-savings and the use-case (access granularity) defined
at design-time.
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Algorithm 4: Power-Down Management Algorithm

Require: nOff (= λ)
1: if nOff > nCKE + nXPDLL− nRCD then
2: {Comment: Minimum PRE Slow-Exit Duration}
3: if nXPDLL− nRCD ≤ 2 ×

(
max SCL−min SCL

)
then

4: {Comment: Performance Neutrality Condition - Aggressive}
5: Mode← Slow-exit
6: Strategy← Aggressive
7: else
8: {Comment: Possible Mode-Strategy - Slow-exit-Conservative}
9: if nXP ≤ 2 ×

(
max SCL−min SCL

)
then

10: {Comment: Performance Neutrality Condition - Aggressive}
11: Evaluate Slow-exit/Conservative and Fast-exit/Aggressive for nOff× 2
12: Mode← Best Mode
13: Strategy← Best Strategy
14: else
15: Mode← Slow-exit
16: Strategy← Conservative
17: end if
18: end if
19: else if nOff > nCKE + nXP then
20: {Comment: Minimum PRE Fast-Exit Duration}
21: if nXP ≤ 2 ×

(
max SCL−min SCL

)
then

22: {Comment: Performance Neutrality Condition - Aggressive}
23: Mode← Fast-exit
24: Strategy← Aggressive
25: else
26: Mode← Fast-exit
27: Strategy← Conservative
28: end if
29: else
30: Mode← No PD
31: Strategy← No PD
32: end if
33: return Mode and Strategy

To employ Algorithm 4, we derive a ‘power-off’ (nOff) period for the entire
power-down request (including the power-up latency nPUP and minimum power-
down time nCKE), equal to the λ (idle service cycle length), which is derived based
on the access granularity of the requests, as shown in Equation (5.7). Based on
the ‘power-off’ period, the algorithm may select either the aggressive strategy or
the conservative strategy with the slow-exit or fast-exit power-down mode, while
ensuring the neutrality condition in Equation (5.23) is not violated. Also, if there
can be no energy savings with any of the power-down modes, the algorithm opts
against the use of power-down (No PD).
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As shown in the algorithm (Line 3), if the neutrality condition is satisfied,
the aggressive power-down strategy with the slow-exit mode is selected. If not,
other combinations are evaluated (Lines 25 to 33). For instance, if the neutrality
condition is met with the aggressive strategy using the fast-exit mode, we evaluate
the power-savings offered by slow-exit conservative strategy combination against
th at of the fast-exit aggressive strategy for a conservative minimal power-down
period of nOff × 2 (Line 28). We employ this minimal power-down period for the
evaluation, since the aggressive strategy is useful only if there are at least two
consecutive idle slots.

However, if the aggressive strategy cannot ensure bandwidth neutrality, then
the slow-exit power-down mode is employed in combintation with the conservative
strategy (Lines 31/32). If the ‘power-off’ period is not long enough to employ slow-
exit power-down mode, we check for the possibility of using fast-exit power-down
with aggressive strategy (Line 13). If this is not feasible, the fast-exit mode is
selected with the conservative strategy (Lines 18/19). If the idle service cycle
cannot accommodate any power-down mode, then the algorithm opts against the
use of power-down.

In short, this power management policy conservatively selects the best possible
mode-strategy combination (if feasible) for the given use-case, that assures no
impact on the original performance guarantees.

5.7 Experiments and Results
We perform experiments to show: (1) the effectiveness of the power-management
policy that selects a combination of power-down mode and strategy for different
memories and (2) the power-saving efficiency of the proposed policies for the
different memories when compared to using no power-down, speculative power-
down and theoretical best power-savings.

5.7.1 Power-Management Policy

We evaluated four memories each (of different frequencies) from 7 DRAM gener-
ations (DDR2/3/4, LPDDR/2/3 and Wide IO DRAM) to observe the effective-
ness of the power-management policy. From these evaluations, we selected four
memories across different DRAM generations, that caused the power-management
policy to select a unique combination of power-down strategy (conservative or ag-
gressive) and power-down mode (slow-exit or fast-exit) to enable performance
neutral power-management.

These memories and their selection of power-down strategy and mode include:

1. MICRON 1Gb DDR2-1066 x16 - Aggressive / Slow-exit

2. MICRON 1Gb LPDDR-333 x32 - Conservative / Fast-exit

3. MICRON 2Gb DDR3-1600 x8 - Conservative / Slow-exit

4. MICRON 2Gb LPDDR2-1066-S4 x32 - Aggressive / Fast-exit
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Employing these four memories as targets for the power-management policy, we
evaluate the two proposed real-time power-down strategies and power-management
algorithm against a speculative power-down and a theoretical best power-down
policy. We derive two sets of results: (1) The efficiency of the power-management
policy (PD) in terms of its impact on performance guarantees Φ and β compared
to using speculative power-down. (2) The effectiveness of the power-management
policy (PD) with respect to its impact on energy savings and execution times of
applications and compare the same against speculative power-down.

5.7.2 Experimental Setup

We employ four commonly used Mediabench [83] applications: (1) H.263 encoder,
(2) EPIC Encoder, (3) JPEG Encoder and (4) MPEG2 Decoder. We executed
these four test applications independently on the Simplescalar simulator [69] with
a 16KB L1 D-cache, 16KB L1 I-cache, 128KB shared L2 cache and 64-byte and
128-byte cache line configurations. We filtered out the L2 cache misses, and
obtained a trace of the transactions meant for the DRAM memory. The traces
were obtained assuming zero DRAM latency and the actual latencies are included
by the memory controller during the simulations.

To simulate four requesters, we employ the traces from these four applications
on four blocking trace players in a SystemC model of our real-time MPSoC plat-
form [70] connected to our real-time DRAM memory controller [62] that uses a
Round-Robin arbiter.

To derive the theoretical best-case energy savings when using power-down,
we generate memory traces without enabling power-down and post-process the
same by manually inserting power-down and power-up commands (based on the
selected mode and strategy) during idle periods such that there is no impact
on the trace execution times and performance guarantees. We use the observed
energy savings as the theoretical best-case value.

The memory controller implements the power-management policy with the
two strategies/modes and powers down the memory whenever it is idle. The
memory controller also implements a speculative power-down strategy to compare
its impact against the two proposed strategies.

5.7.3 Impact on Performance Guarantees

We show the effectiveness of the power-management policy (PD) in terms of its
impact on performance guarantees Φ (access-time guarantee) and β (bandwidth
guarantee) compared to using speculative power-down in Table 5.1. The table
depicts the combinations of power-down mode and strategy used by the power
management policy for the four memories and their impact on the worst-case
latency and bandwidth guarantees compared to not using any power-down. The
table also shows the possible impact of speculative power-down policy on these
factors for these memories.
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Table 5.1: Difference in Worst-Case Bandwidth and Latency

Mem PD PD PD Spec Spec
Type Policy β′ Φ′ β′′ Φ′′

(%) (%) (%) (%)
DDR2-1066 AGG / SE 0% 0% -10.9% 3.1%
LPDDR-333 CON / FE 0% 0% -13.2% 2.6%

LPDDR2-1066 AGG / FE 0% 0% -16.8% 5.5%
DDR3-1600 CON / SE 0% 0% -15.0% 7.8%

As can be observed from the table, the power management policy (PD) avoids
any impact on both the latency and bandwidth guarantees, while the speculative
policy significantly impacts both the performance guarantees (up to 7.8% increase
in Φ and 16.8% decrease in β), compared to no power-down.

5.7.4 Power-Saving Efficiency

In these experiments, we evaluate the efficiency of the two proposed real-time
power-down strategies and power-management policy against a speculative power-
down and a theoretical best power-down policy, with respect to their energy sav-
ings and execution times.

Figure 5.5 shows the average memory power savings achieved when running
the four application traces and using the selected power-down policy for the 4
memories. It also compares the same against the savings offered by the speculative
policy and a theoretical best power-down policy.

Table 5.2 presents the energy consumption measures before and after employ-
ing these power-down policies. As can be noticed from the results, the proposed
power-down strategy obtains power-savings close to the theoretical best savings
for all memories and all combinations of power-down mode and strategy. The
speculative policy also achieves significant energy savings (always ≤ 1% from the-
oretical best), however, with a much larger impact on the performance guarantees.
Note: The differences in the energy savings for the different memories depend not
just on the combination of power-down mode and strategy employed, but also on
the potential power savings offered by the power-down modes for that memory.

Table 5.2: Energy Consumption using different policies

Mem PD No PD PD Speculative Theoretical
Type Policy Energy Energy Energy Energy

(mJ) (mJ) (mJ) (mJ)
DDR2-1066 AGG / SE 192.78 59.62 60.32 59.55
LPDDR-333 CON / FE 250.83 32.12 32.5 32.08

LPDDR2-1066 AGG / FE 100.03 33.4 33.87 33.36
DDR3-1600 CON / SE 126.06 42.01 42.55 41.89

Figure 5.6 shows the impact on the total execution time of the four applica-
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Figure 5.5: Energy Savings vs. No Power-Down

tions, when using either the selected power-management policy or the speculative
policy for the 4 memories. This result highlights the marginal impact on the
proposed policy on average-case execution time.
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Figure 5.6: Power-Down vs. Speculative Execution Time Penalty

As depicted in the graph, the proposed power-management policy has smaller
impact on the execution times of the applications compared to using the spec-
ulative power-down policy for all memories and all combinations of power-down
mode and strategy. This impact on the average case performance for both the
proposed policy and the speculative policy is marginal. However, as shown earlier,
there is a significant difference when it comes to worst-case performance guaran-
tees. The impact on the overall execution time depends on the number of times
power-up penalty is observed. Hence, more power-ups result in higher penalty for
the speculative strategy.
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5.8 Conclusion

In this chapter, we proposed two real-time DRAM power-down strategies termed
(i) conservative and (ii) aggressive. To verify their applicability to real-time sys-
tems, we first derived the original performance guarantees provided by a Latency-
Rate arbiter in a real-time system. We then analyzed the impact of the pro-
posed power-down strategies on these guarantees. From the analysis, we de-
rived a neutrality condition, which would ensure that these strategies when used,
never worsen the original performance guarantees. We finally proposed a run-time
power management policy that employs either of these two strategies efficiently in
combination with a DRAM power-down mode (fast-exit or slow-exit), such that
the original DRAM performance guarantees are preserved. The proposed power-
management policy (PD) and the two power-down strategies together achieve sig-
nificant energy savings close to the theoretical best possible savings, at very low
average-case performance penalty, without impacting any of the original latency
and bandwidth guarantees. On the other hand, although speculative power-down
has similar energy savings, its worst-case behavior is worse, as is its average case
execution time.
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Chapter 6

Conclusions and future work

In this chapter, we summarize the conclusions at the end of this thesis work and
provide an insight into possible uses and extensions to this work.

6.1 Conclusions

This thesis targeted the two key factors defining energy-efficient use of DRAMs
in embedded systems: (1) accurate power/energy estimation of DRAMs and (2)
efficient power/energy optimization of DRAMs. Towards this, we proposed a
high-precision power model of DRAMs referred to as ‘DRAMPower’ and a set of
performance-neutral DRAM power-down strategies.

DRAMPower is a high-level DRAM power model that employs JEDEC-specified
current metrics and performs high-precision modeling of the power consump-
tion of different DRAM operations, state transitions and power-saving modes
at the cycle-accurate level. To further improve the accuracy of DRAMPower’s
power/energy estimates, we derived nominal measures for the JEDEC current
metrics instead of vendor-provided worst-case measures from device datasheets
that pessimistically account for worst-case design-time and run-time variations.
Towards this, we modified a SPICE-based circuit-level DRAM architecture and
power model to accommodate the effects of these variations and derived nominal
current measures under nominal operating conditions applicable to all DRAM de-
vices with any given configuration (capacity, data-width and frequency). Besides
these nominal current measures, we also proposed a generic post-manufacturing
power and performance characterization methodology for DRAMs that identified
the actual current estimates and optimized set of timing measures for a given
DRAM device, thereby, further improving the accuracy of the power and energy
estimates for that particular DRAM device.
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To optimize DRAM power consumption, we proposed a set of performance-
neutral DRAM power-down strategies coupled with a power management policy
that for any given use-case (access granularity, page policy and memory type)
achieved significant power savings without impacting its worst-case performance
(bandwidth and latency) guarantees.

We verified the impact of variations on DRAM currents and four critical
DRAM timing parameters (nWR, nRP, nRCD and nRTP) on 48 DDR3 devices
of the same configuration against the expected impact from SPICE simulations.
We derived optimal set of timings (using the performance characterization algo-
rithm) for the fastest device at which it continued to operate successfully under
worst-case run-time conditions, without increasing its energy consumption. We
observed up to of 33.3% and 25.9% reduction in DRAM read and write latencies
and 17.7% and 15.4% improvement in energy-efficiency.

We validated DRAMPower against a circuit-level DRAM power model and
verified it against real power measurements from hardware for different DRAM
operations and observed between 2-8% difference in power estimates, with an av-
erage of around 97% accuracy. We also evaluated the power-management policy
and power-down strategies and observed significant energy savings (close to theo-
retical optimal) at very low average-case performance penalty without impacting
any of the original latency and bandwidth guarantees.

6.2 Future work

The power modeling and optimization work proposed in this thesis open-up sev-
eral new research opportunities and can be further extended to improve their
applicability.

• The high-precision DRAM power model (DRAMPower) can be used to eval-
uate memory controller policies and strategies on row-buffer management,
transaction scheduling and use of power-saving policies and modes.

• Track DRAM power and energy consumption per application for each clock
cycle it accesses the memory.

• Predict DRAM power/energy consumption for an application based on its
expected memory usage and optimize the same.

• Evaluate multi-channel or multi-rank DRAM management policies in terms
of power/energy consumption.

The variation study and performance characterization algorithm can lead to:

1. Improved performance extraction from DRAMs that can perform better
than worst-case.
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2. Use of faster DRAM timings at run-time without frequency scaling to avoid
the associated overhead.

Additionally, the power modeling and optimization work can be extended to:

1. Adapt DRAMPower to include memories like GDDR5, Hybrid Memory
Cube (HMC), RLDRAM and FB (fully buffered) DIMMs.

2. Identify individual power-performance behavior of all the DRAMs in a given
system (heterogeneity) and exploit the same to map applications.

3. Perform performance-neutral active power management. For instance, fre-
quency scaling for LPDDRs or improve average performance and power
consumption using memory access information from the processor or data
locality information from the memory controller.
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Chapter A

Power Measurements

A.1 Current Measures - Datasheet vs. Hardware

Having presented the current measurement plots for IDD0 and IDD2P currents in
Chapter 4, in this section in Appendix A, we provide the measurement plots for
the remaining DRAM currents (defined in Chapter 2, Section 2.2). As before, we
classify the currents as partial or complete depending on the operations involved
and the current measures can be obtained using the the mean voltage drop value
in the measurement plots from: (1) column P1 for the complete currents and (2)
the Math ERES (Enhanced Resolution) box for the partial currents.

[1] IDD1R current - Complete Current
The IDD1R test loop measures current across ACT, RD and PRE commands

sent to one bank, with the other banks retained in precharged state. The time
period between the ACT and RD commands is maintained as nRCD cycles and
between RD and PRE commands as nRAS − nRCD cycles. nRC cycles after
the ACT command, the test is repeated on the same bank but on a different row
with different data to introduce flipping of bits on the data bus. The data set is
defined by JEDEC. Hence, before the test is initiated the data is written to the
specific two rows in all banks. After reading from the two rows in a bank, the test
switches to the next bank and repeats itself over all the banks in the DRAM, with
one of the banks and the same two rows in that bank accessed in a loop iteration.
Since this test also repeats itself without requiring any additional operations (after
the initial writing operations), the measurement observed is a complete current.
Note that when reading data from the DIMM, the power measurements using
the JET-5466 extender board include the power consumption due to the I/O
pins and associated circuitry. This is given by Micron’s estimates on I/O power
consumption [17], and must be subtracted from the measured current (based on
mean voltage drop), since the datasheet measures do not include these. I/O power
during a read operation is computed in terms of a current of 176mA per 64-bits
of data read out from the DRAM [17] at the supply voltage (1.5V). This test loop
is depicted in Figure A.1. As shown in the figure, the test loop repeats itself over
different banks and the average current measure is identified as IDD1R current.
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ACT
READ

PRE

Figure A.1: Measuring IDD1R

[2] IDD1W current - Complete Current

The IDD1W test measures current across ACT, WR and PRE commands sent
to one bank, with the other banks retained in precharged state. The time period
between the ACT and WR commands is maintained as nRCD cycles and between
WR and PRE commands as nWL+nWR+BL/2 cycles [103]. nRP cycles after
the PRE command, the test is repeated on the same bank but on a different row,
with different data being written (specified by JEDEC), as in the case of IDD1R

current. After writing into the two rows in a bank, the test switches to the next
bank and repeats itself over all the banks in the DRAM, with one bank active
at a time. Since this test also repeats itself without requiring any additional
operations, the measurement observed is a complete current. Note that, the
IDD1W current is not a JEDEC standard measure, however, its reference measures
can be calculated by substituting write current (IDD4W) instead of read current
(IDD4R) in IDD1 current and the timings scaled as per writing to precharge timing
requirements [103].This test loop is depicted in Figure A.2.

[3] IDD2N current - Partial Current - Requires Precharging

The IDD2N test loop measures current in the precharged state, after a set of
ACT and PRE commands are sent to one bank, with the other banks retained
in precharged state. The time period between the ACT and PRE commands is
maintained as nRAS cycles. The time period between PRE and the end of the
test pattern is kept at 2000 clock cycles (sufficiently long compared to nRAS),
which retains the DRAM in the precharged state. The test pattern then switches
to the next bank and repeats itself over all the banks in the DRAM, with one
bank accessed at a time.
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ACT

WRITE

PRE

Figure A.2: Measuring IDD1W

Since this test requires activation and precharging operations to retain the
DRAM in the precharged state (as shown in Figure A.3), we use density plots to
identify the voltage measure for the longest retained state (precharged state) as
depicted in Figure A.4. This voltage measure can be observed by the dotted line
across the region in red (density identifier).

[4] IDD3N current - Partial Current - Requires Activation

The IDD3N test measures current after an ACT command is sent to one bank,
with the other banks retained in precharged state. Subsequently, a PRE command
is issued to the same bank after 2000 clock cycles, hence retaining the bank in the
active standby state for a long period. Then, the bank is allowed to precharged
over nRP clock cycles after which, the test pattern switches to the next bank
and repeats itself over all the banks in the DRAM, with one bank accessed at
a time. Since this test requires activation and precharging operations to retain
the DRAM in the active standby state (as shown in Figure A.5), we use density
plots to identify the voltage measure for the longest retained state (active standby
state), as depicted in Figure A.6.

According to JEDEC, the IDD3N current should the same irrespective of the
number of active banks (one or all). To verify this claim, we modified the IDD3N

test loop to first activate all 8 banks in the DRAM (instead of just one) and then
retained the memory in the active standby state for a long period. The corre-
sponding current measure for this modified test loop is depicted in Figure A.7.
From our experiment, we observed a marginal difference in the IDD3N current
measure when all 8 banks are active, as shown in Figure A.8.
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PRECHARGED IDLE

ACT PRE

Figure A.3: Measuring IDD2N after Precharging

Figure A.4: Measuring IDD2N - Density Plot
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To be conservative, we chose to employ this measure (with 8 banks open) for
the reference IDD3N current.

Active Idle

ACT ACT

Figure A.5: Measuring IDD3N with 1 Active Bank

Figure A.6: Measuring IDD3N with 1 Active Bank - Density Plot
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Active Idle Period

8 PREs and 8 ACTs 8 ACTs and 8 PREs

Figure A.7: Measuring IDD3N with 8 Active Banks

Figure A.8: Measuring IDD3N with 8 Active Banks - Density Plot
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[5] IDD3P current - Partial Current - Requires Activation
The IDD3P test loop measures current in the active power-down state. This

test starts with an ACT command sent to a bank and then a power-down is ini-
tiated. The time period between the ACT and power-down commands is main-
tained as nRAS cycles to allow the bank to be activated, while the other banks
are retained in the precharged state, since only one bank has to be active when
entering the power-down mode. The DRAM is retained in the power-down state
for 2000 clock cycles (sufficiently long compared to activating time and power-up
time). After this period, a power-up is issued, followed by a PRE command. The
time period between the power-up and PRE command is maintained as nXP clock
cycles and the test pattern ends after further nRP cycles to allow the precharge
to complete. The test pattern then switches to the next bank starting again with
an ACT command and repeats itself over all the banks in the DRAM.

Since this test requires activation, precharging and power-up operations be-
sides retaining the DRAM in the active power-down state (as shown in Fig-
ure A.9), we use density plots to identify the voltage measure for the longest
retained state (active power-down state, depicted in Figure A.10.

As can be observed from the density plot in Figure A.10, the active power-
down state is a low power consuming state compared to the active idle/standby
state in Figure A.8.

Active Power-Down Period

ACT PD
PD

Exit

Figure A.9: Measuring IDD3P

High-Level Power Estimation and Optimization of DRAMs



130

Figure A.10: Measuring IDD3P - Density Plot

[6] IDD4R current - Complete Current - Read dominant test

The IDD4R test loop measures current across several RD commands sent to one
bank, with the other banks retained in precharged state. Before issuing several
read commands, the row needs to be activated, hence an ACT command is issued
first. The time period between the ACT and first RD command is maintained
as nRCD cycles. Thereafter a burst of 64 RD commands are sent to the same
open row to consecutive columns. After these RD commands, a PRE command is
issued to close the bank after nRTP clock cycles. After the precharging operation
finishes (i.e. nRP cycles later), the test pattern ends. The test then switches to
the next bank and repeats itself over all the banks in the DRAM, with one bank
active at a time. Before the test is instantiated the data is written to the JEDEC-
specified rows in all banks. Since this test is dominated by Reads, and only one
activate and precharge, we subtract the activation-precharge energy calculated in
the IDD0 test in Figure 4.4 and the I/O power consumption (only for Reads) from
the total observed energy in Figure A.11, to obtain the IDD4R current measure.

[7] IDD4W current - Complete Current - Write dominant test

This is the same as IDD4R test loop except with issuing Writes instead of
Reads. Since this test is dominated by Writes, and only one activate and precharge,
as in the case of IDD4R, we subtract the activation-precharge energy calculated
from the IDD0 test from the total observed energy in Figure A.12, to obtain the
IDD4W current measure.
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READs

ACT

Read

to PRE

PRE

Figure A.11: Measuring IDD4R

ACT

WRITEs

PRE

Figure A.12: Measuring IDD4W
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[8] IDD5 current - Complete Current
The IDD5 test loop measures current across several REF commands, with

all banks retained in the precharged state. Each REF command is followed by
another REF command after nRFC clock cycles, the duration to allow a REF
command to finish. A burst of 64 REF commands are sent. A few are shown in
Figure A.13. Since this test only involves refreshes, which repeat without requiring
any additional operations, the measurement observed is a complete current.

REFRESH

Figure A.13: Measuring IDD5

[9] IDD6 current measurement - Partial Current - Required Precharging
The IDD6 test loop measures current in the self-refresh low power state. This

test starts with a self-refresh (SREN) command, when all the banks are in the
precharged state and ends after a power-up is instantiated and completed. The
time period between the SREN and power-up (SREX) command is 2000 clock
cycles (sufficiently long compared to the power-up time). After this period, a
power-up is issued and the test pattern ends after further nXSDLL clock cy-
cles. This test pattern repeats itself over time. Since this test requires power-up
operations besides retaining the DRAM in the self-refresh state (as shown in Fig-
ure A.14), we use density plots to identify the voltage measure for the longest
retained state (self-refresh state), depicted in Figure A.15. As can be observed
from the plot in Figure A.14, there is a peak observed after entering the self-
refresh mode, before the power consumption drops down. This can be attributed
to the internal refresh that is instantiated when the self-refresh mode is entered.
Another interesting aspect is the gradual drop in power consumption, when enter-
ing self-refresh instead of the immediate drop. This can be attributed to the fact
the Micron DIMM employs an analog implementation of the DLL [119] instead

K. Chandrasekar



Current Measures - Datasheet vs. Hardware 133

of a digital implementation. The density plot in Figure A.15 further shows that
the self-refresh state is lowest power consuming state in DRAMs.

SR

Entry

REFRESH

SR

Exit

Gradual Drop (Analog DLL)

Figure A.14: Measuring IDD6 with Precharging

Figure A.15: Measuring IDD6 - Density Plot
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A.2 DRAMPower Evaluation

The DRAMPower validation in Chapter 4 included two sets of experiments. The
first set was defined with the aim to analyze the accuracy of the modeling of the
active DRAM operations while scaling the timings and number of reads/writes
and degree of bank-interleaving. The second set of experiments analyzed the same
for state transitions from active to power-down and self-refresh modes, the idle
standby mode and refreshes. In this section, we present more tests [#7 to #17]
and their corresponding measurement plots highlighting the same modeling issues
with more experiments.

A.2.1 Activation - Precharge Scaling

[7] 4 Banks - ACT-PRE: We performed the four-bank activate-precharge op-
erations, as represented by the current measures in Figure A.16.

In this case, the average power consumption is expected to be significantly
lower than four times of that of a single bank ACT-PRE (as also observed in
the experiment). This is due to successive nRRD delays, which are imposed as
a restriction (minimum timing constraint) between the four ACT commands to
different banks. On the other hand, Micron’s model estimates this power measure
to be exactly four times of that of a single-bank ACT-PRE, ignoring the effect of
all the nRRD delays.

4 ACTs

4 PREs

Figure A.16: 4 Banks - ACT-PRE
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A.2.2 Read / Write Scaling

[8] 8 Reads - 1 Bank: We performed the eight successive Read operations to
a bank including the corresponding ACT-PRE operations, as represented by the
current measures in Figure A.17.

In this case, the average power consumption is expected to be significantly
lower than the sum of eight Read operations and that of a single bank ACT-PRE.
This is due to the total latency of the transaction, which can be calculated as the
sum of nRCD delay after the ACT command leading up to the first Read, nRTP
delay after the last Read before a PRE is issued, the nRP delay for the PRE to
complete and successive nCCD delays between the eight Read commands, which
is much longer than nRC cycles.

ACT

8 READs

Read to PRE
PRE

Figure A.17: 8 Reads - 1 Bank

[9] 4 Writes - 1 Bank: We performed the four successive Write operations
to a bank including the corresponding ACT-PRE operations, as represented by
the current measures in Figure A.18.

In this case, the average power consumption is expected to be much lower
than the sum of four Write operations and that of a single bank ACT-PRE. This
is also due to the total latency of the transaction, which can be calculated as the
sum of nRCD delay after the ACT command leading up to the first Write, nWL
+ nWR + n(BL/2) delay after the last Write before a PRE is issued, the nRP
delay for the PRE to complete and successive nCCD delays between the Write
commands.

High-Level Power Estimation and Optimization of DRAMs



136

ACT
4 WRITEs

PREWrite

Recovery

Figure A.18: 4 Writes - 1 Bank

[10] 8 Writes - 1 Bank: We also performed the eight successive Write oper-
ations to a bank, as represented by the current measures in Figure A.19.

In this case as well, the average power consumption is expected to be much
lower than the sum of eight Write operations and that of a single bank ACT-PRE,
due to the total latency of the transaction, which is a lot longer than nRC cycles.

A.2.3 Bank Interleaving - Reads / Writes

[11] 1 Read - 2 Banks: We performed the two-bank activate-precharge opera-
tions combined with a Read operation on each bank, as represented by the current
measures in Figure A.20.

In this case, the average power consumption is expected to be lower than the
sum of two Read operations and that of two single bank ACT-PRE commands.
This is due to the total latency as well, which can be calculated as the sum of
nRCD delay after the first ACT command leading up to the first Read, nRTP
delay after the last Read (to the second bank) before a PRE is issued, the nRP
delay for the last PRE to complete, the nRRD delay between the two ACT
commands and the successive nCCD delays between the two Read commands.

[12] 1 Read - 8 Banks: We extended the last experiment and performed
eight-bank activate-precharge operations combined with a Read operation on each
bank to further highlight the importance of modeling scaling, as represented by
the current measures in Figure A.21.
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ACT

8 WRITEs
Write

Recovery PRE

Figure A.19: 8 Writes - 1 Bank

2 ACTs

2 READs

2 PREs

Figure A.20: 1 Read - 2 Banks
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In this case, the average power consumption is expected to be closer to that of
four-bank activate-precharge operation combined with a Read operation on each
bank (Figure 4.10) due the nFAW delay imposed after activating four banks and
significantly lower than the sum of eight Read operations and that of eight single
bank ACT-PRE commands.

ACTs

4 READs

PRE

PRE

READ

PRE
PRE

READ

ACTs

READs

Figure A.21: 1 Read - 8 Banks

[13] 1 Write - 2 Banks: We performed the two-bank activate-precharge
operations combined with a Write operation on each bank (similar to reads), as
represented by the current measures in Figure A.22.

In this case as well, the average power consumption is expected to be lower
than the sum of two Write operations and that of two single bank ACT-PRE
commands.

[14] 1 Write - 4 Banks: We also performed the four-bank activate-precharge
operations combined with a Write operation on each bank and observed similar
scaling effects as in the case of reads, as represented by the current measures in
Figure A.23.

[15] 1 Write - 8 Banks: We further performed the eight-bank activate-
precharge operations combined with a Write operation on each bank and observed
current measures closer to the 4 bank active case, as observed for reads. This is
depicted in Figure A.24.
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2 ACTs

2 WRITEs

2 PREs

Figure A.22: 1 Write - 2 Banks

4 ACTs

4 WRITEs

PREs

Figure A.23: 1 Write - 4 Banks
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ACTs

4 WRITEs

PRE

PRE

WRITE

PRE

PRE

WRITE

PRE

Figure A.24: 1 Write - 8 Banks

A.2.4 Impact of State Transitions

[16] ACT to Active Power-Down: We performed an experiment to transition
from a single-bank activation operation into the active powered-down state to
highlight the importance of modeling this state transition, as represented by the
current measures in Figure A.25.

In this case, it is important to note that the power consumption reduces grad-
ually as we enter or exit the active power-down state. This transition must be
captured in the power model depending on the duration for which the clock is
gated and the time required to power-up the memory back into an active idle
(standby) state. Micron’s model does not model these transitions.

[17] ACT - PRE to Refresh: We performed an experiment to transition
from multi-bank activation-precharge operations into the refresh mode to high-
light the importance of modeling this state transition, as represented by the cur-
rent measures in Figure A.26. In this case, it is important to note that the power
consumption due to the enforced precharging (multi-bank), which may be re-
quired before starting a refresh operation, is significant and must be accounted as
a part of the refresh power consumption. Furthermore, the power-consumption
during the last nRP cycles during a refresh operation, is slightly lower than the
rest of the clock cycles. This is because internally the DRAM transitions into the
precharged state during the last nRP cycles of the refresh operation, hence the
background current is lower. Micron’s model does not model these transitions
into and out of a refresh operation.
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ACT

Active Power-Down Period

PD

Exit
PD

ExitPD

Entry

Figure A.25: ACT to Active Power-Down

ACTs

PREs REFRESH

Figure A.26: ACT - PRE to Refresh

These experiments provide sufficient data to validate the DRAMPower model
and verify its power estimates against real hardware measures. These results
are employed in Chapter 4 in Table 4.6 and Figure 4.13 to verify DRAMPower’s
estimates.
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• G. Thomas, K. Chandrasekar, B. Åkesson, B. Juurlink, K. Goossens, A
Predictor-Based Power-Saving Policy for DRAM Memories, In Proc. DSD
2012.

Posters

• K. Chandrasekar, High-Level Power Estimation of DRAMs, PhD Forum -
DATE 2014.
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