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Abstract—In recent years, large-scale distributed cyber-
physical systems (dCPS) have become the driving force behind
world-class manufacturing companies like ASML, Canon Pro-
duction Printing, and Philips. However, the task of evaluating
the designs of these systems by building prototypes has grown
in complexity beyond human comprehension. New research in
the field of scalable automated Design Space Exploration (DSE)
is necessary to engage with this challenge. A model of the dCPS
must be created to enable DSE, with one crucial component
being the network that connects the dCPS subsystems. The
network delay needs to be systematically evaluated in order
to effectively explore the design space. Previous work in the
fields of analytical network modeling, network simulation,
and network model validation is reviewed. In addition, a
recommended plan is presented to create and validate such
a network model based on this previous work.

Index Terms—Design space exploration, distributed cyber-
physical systems, discrete event simulation, network model
validation
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1. Introduction

Distributed Cyber-Physical Systems (dCPS) are hetero-
geneous multi-core or many-core systems, comprising dis-
tributed subsystems that are connected via complex net-
works. Nowadays, dCPS are one of the largest innovation-
driving forces behind industrial sectors such as: health in-
dustries, industrial automation, robotics, and avionics [6].
However, in recent years, dCPS have grown in complex-
ity. Traditional methods of evaluating dCPS designs, such
as building prototypes, have become too complex, time-
consuming, and costly.

In order to engage with this challenge, new research
in Design Space Exploration (DSE) methods for dCPS is
required. DSE refers to the process of automatically search-
ing the design space of all possible dCPS configurations
for one or more configurations that best satisfy the design
objectives. Given a set of design objectives, this process
severely reduces the dCPS design costs.

However, DSE in the context of dCPS poses several
critical challenges. First, the complex nature of these sys-

tems creates a design space with an extremely large number
of possible configurations to evaluate. If the assessment of
these design points is conducted via a simulation model,
achieving marginal reductions in execution time can yield
large cumulative gains. More research in the context of
design space pruning, simulation efficiency and scalability
must be done to engage with this challenge. Second, in order
to evaluate a design point, the simulation model needs to
be able to capture both the phyisical hardware components
and the software components of the system. In order to do
this, one crucial part of the simulation model is the network
model, which needs to be able to model the complex net-
work interactions typically seen between dCPS processes.

DSE2.0 [6] is an ongoing research project that aims to
extend the state-of-the-art in DSE, to find ways to overcome
the aforementioned challenges, and to leverage the DSE
process for large industrial dCPS like the ASML TwinScan
machines. The objective of this literature study is to develop
a framework for a process, based on academic literature, that
creates and validates a network delay model to be used in
the context of DSE for dCPS.

The remainder of this literature study is structured as
follows: Section 2 provides more depth and context to the
concepts introduced in this section. Section 3 reviews litera-
ture related to the problem domain. Furthermore, Section 4
discusses the findings from the related work section and
proposes a framework for creating and validating a network
delay model to be used in the context of DSE for dCPS.
Finally, Section 5 provides a conclusion on the literature
study and its findings.

2. Background

The goal of the background section is to introduce the
basic concepts required to understand this literature study, as
well as inform the reader of the broader context in which this
literature study was produced. First, the concept of Design
Space Exploration (DSE) is introduced in Section 2.1. Then,
the goal of this literature study, given the broader context
of DSE, is discussed in Section 2.2.



2.1. Design Space Exploration

Design Space Exploration (DSE) is the process of sys-
tematically evaluating a space of candidate design solutions,
called design points, that satisfy a given set of design
objectives [6]. The DSE process typically consists of four
main stages (see Figure 1):

1) Modelling: the system is discovered, described,
abstracted, and mapped to a system representation;
a model.

2) Design space creation: based on the design
choices, a design space of all possible design points
on the model is spanned. It is common practice
to perform a preliminary pruning phase, removing
design points that are invalid in ways that are easy
to spot.

3) Design space exploration: a search algorithm eval-
uates the available design points in the design
space. Some examples of search algorithms are ex-
haustive search and heuristic-based (e.g. evolution-
ary algorithms or simulated annealing) search. The
algorithm may dynamically prune design points
based on evaluation results.

4) Results: the outputs of a DSE process are interme-
diate outcomes or conclusive design recommenda-
tions.

DSE has been successfully adopted in several areas,
such as low-level hardware design for Systems-on-a-Chip
(SoC) [17] and Multiprocessor System-on-a-Chip (MPSoC)
[9]. However, the growing complexity of distributed Cyber-
Physical Systems (dCPS) poses several challenges for DSE,
such as combinatorial explosion and simulation scalability.

2.2. Network modeling

Network modeling involves the abstraction of network
features and properties, enabling the creation of analytical
representations at varying levels of complexity [22]. Var-
ious types of analytical representations are considered in
Section 3.1. Such an analytical network model may be used
in a computer simulation environment to evaluate network
configurations, as is further discussed in Section 3.2. In
addition, a network model may be used to generate synthetic
traffic patterns that mimic the behavior of the system under
different operating conditions. This may help researchers to
identify performance bottlenecks or reliability issues with a
given network configuration.

As mentioned in Section 2.1, one of the key challenges
of applying DSE to complex dCPSs is the modelling of
heterogeneous subsystems. In order to engage with this
challenge, a network model must be created that is able to
capture the network delay of interactions between the inter-
connected dCPS subsystems. Due to the large-scale nature of
dCPS design spaces, it is important that the execution time
of the evaluation of a design point is kept to a minimum.

The relationship between the accuracy and the speed of
a computerized model is referred to as the speed-accuracy

Figure 1. The general Design Space Exploration workflow [6].

tradeoff. The accuracy of the model refers to how closely it
can replicate the behavior of the real-world network, while
speed refers to the speed at which a design point can be
evaluated. Generally, as the level of accuracy increases,
the computational complexity and execution time of the
simulation also increase. Conversely, reducing the level of
accuracy can lead to faster simulations, but at the cost of
potentially inaccurate results.

In the process of model creation, it is essential to es-
tablish well-defined Key Performance Indicator (KPI) goals
that effectively balance speed and accuracy. Some common
examples of KPIs might include the Root Mean Squared
Error (RMSE) for assessing accuracy, and simulation time
for gauging speed. These KPIs must be measured for models



that are created at varying levels of abstraction in order to
select a model that is both fast and accurate enough to be
used in a DSE context.

However, without verifying and validating a network
model, DSE judgements made on its results may be mis-
guided. Therefore, model verification and validation, as
further discussed in Section 3.3, is a crucial step in the net-
work model creation process. By incorporating a validated
network model of suitable performance and abstraction into
the DSE process, researchers can create a design space that
spans all possible network configurations that fit the design
objectives.

3. Related Work

This section provides a literature review of various con-
cepts related to the problem domain presented in Section 1.
First, Section 3.1 considers techniques for analytical net-
work modeling, which is a modeling technique that obtains
an analytical solution given some network input parameters.
Section 3.2 discusses the topic of discrete-event simulation,
which simulates network events to obtain network behaviour
metrics. Finally, some approaches regarding validation of
computer network models are discussed in Section 3.3.

3.1. Analytical Modeling

A system that evolves randomly in time, such as a
computer network, can be modeled by a stochastic process
[11]. If the system state Xn is observed at discrete time
points n = 0, 1, 2, . . ., we say that Xn, n ≥ 0 is a discrete-
time stochastic process. If the system state X(t) is observed
continuously in time, it is described by a continuous-time
stochastic process X(t), t ≥ 0 [11].

It is a common assumption in stochastic modeling of
network traffic that packets arrive at the server according to
a Poisson process. A Poisson process is a continuous-time
stochastic counting process of which the inter-arrival times
follow an exponential distribution and are Independent and
Identically Distributed (IID) [11]. Due to this assumption
of arrivals that follow a Poisson process, discrete-event
dynamic systems are often modeled using continuous-time
versions of the stochastic processes [22].

The remainder of this section will discuss various ana-
lytical modeling techniques that can be used in a stochastic
context. These modeling techniques are broadly considered
to be well-suited for the task of modeling computer net-
works. Each modeling technique will be discussed from the
following viewpoints: definitions, the input and output of
the model, and what the model can and cannot capture.

3.1.1. Markov Chains. Markov Chains are stochastic pro-
cesses used to model the probability of transitioning between
system states over time [11]. The system is assumed to have
a finite state space and to occupy one of these states at
any moment in time [20]. They are described using graph
theory, where nodes correspond to system states and the
directional edges represent the probability of transitioning

from one state to another [22]. Markov Chains are low in
analysis complexity, because they are memoryless; future
states only depend on the current state and not on any
previous states [22]. Figure 2 shows a simple example of
a Markov Chain with two states. In this example, given the
context of network modeling, state 0 could refer to the the
idle state of a network, and state 1 could refer to the state
where a packet has entered the network.

The input of a Markov Chain is the state space S, a
transition probability matrix P , and an initial state X0. The
output is a probability distribution over the states in the
chain, which represents the long-run, stationary probability
of being in each state. The probability of being in a state at
a particular time is called a transient probability [11].

Some of the metrics that a Markov Chain can capture
in the context of modeling a computer network include: the
probability of state transitions (e.g. a packet being transmit-
ted from one node to another), steady-state behavior (long-
term behavior of the network) and network performance in
terms of factors such as delay, throughput, congestion, and
packet loss [13]. However, many real-world networks show
behavior that is not strictly Markovian, meaning that the
probability of the network transitioning to a new state may
depend on previous states. This makes it more difficult to
accurately model directly with a Markov Chain [13].

Markov Chains assume stationary transition probabilities
between states. However, the behavior of a network may
change over time due to factors such as changes in traffic
patterns or network topology. Furthermore, when the sys-
tems being modeled are complex, the number of possible
states is high, and modeling them directly with Markov
Chains becomes difficult. In these cases, more abstract
models like Queuing Networks and Petri Nets may be better
alternatives [22].

Figure 2. Example of a simple Markov Chain model with two nodes
representing system states, and edges connecting the nodes with weights
from the transition probability matrix P [22]. As indicated by the double
stroke, state 0 is the initial state.

3.1.2. Queuing Networks. Queuing Networks are stochas-
tic models used to analyze the behavior of systems that
involve waiting in line, such as computer networks [10].
The model describes the flow of service requests through a
system that contains service stations. When service requests
arrive at a busy service station, they are queued according
to a given queuing discipline until it is their turn to gain



access to the service station [22]. The behavior of the
system is determined by the arrival rate of customers, the
service rate of the servers, and the topology of the network.
The key assumption is that both the arrival and service
times of customers are described as stochastic processes that
follow certain probability distributions [10]. Figure 3 shows
a simple example of a Queuing Network model.

The input of a Queuing Network model consists of six
components: the arrival pattern of customers A, the service
pattern of servers B, the number of servers and service
channels X , the system capacity Y , the queuing discipline
Z (e.g. First-Come-First-Served (FCFS), Last-Come-First-
Served (LCFS), or Random Selection for Service (RSS)),
and the number of service stages. The output is a set
of performance metrics, such as the average throughput,
waiting time and queue length [19]. Different types of Queu-
ing Networks are commonly described using Kendall-Lee
notation: A/B/X/Y/Z. As an example: M/M/5/FCFS/20 may
represent a bank with exponential arrival times, exponential
service times, 5 tellers, an FCFS queuing discipline, and a
total capacity of 20 customers [3]. It is common practice to
omit capacity if no restriction is imposed and to omit the
queue discipline if it is FCFS [19].

Some of the things a Queuing Network can capture
in the context of modeling a computer network include:
traffic flow (e.g. routing and processing of traffic through
the network, identifying bottlenecks due to shared resources
on distributed systems [22]), resource utilization (e.g. band-
width, processing capacity, memory), and performance (e.g.
response time, throughput, packet loss). An important ad-
vantage of simple Queuing Network models is the low com-
plexity of the steady-state solutions (polynomial in number
of queues and customers), because they can be obtained as a
product of the steady-state solution for each of the individual
queues in the network. This is possible because each queue
operates independently of the others [22].

However, similarly to Markov Chains, some assumptions
that Queuing Networks are based on may not hold in real-
world networks. These include the assumption that arrival
rate and service times follow some given stochastic process
and the assumption that a network topology is fixed. Be-
sides, Queuing Networks do not properly model the common
synchronization mechanisms of distributed systems, some-
thing which Petri Nets are a better fit for [22].

3.1.3. Petri Nets. Petri Nets are a type of graphical and
mathematical modeling tool used to describe the behavior
of systems that involve concurrency, synchronization, and
resource sharing [14]. They are described by a directed
bipartite graph, with two types of nodes representing places
/ system states (circles) and transitions / system evolutions
(bars). The edges are called arcs, which represent the flow
of tokens (commonly associated to resources) between a
place and a transition or vice versa [16]. The behavior
of the system is determined by executing (or firing) the
enabled transitions of the Petri Net. An enabled transition is
a transition where all inputs have at least one token. Firing
is an atomic operation that consumes one token from each

Figure 3. A simple example of a Queuing Network model with three service
stations and the queues that service requests must move into before being
served according to the given queuing discipline [22].

input place and produces a token in its output places [22]
[14]. Figure 4 shows an example of a simple Petri Net model
before and after firing the transition.

There are many types of Petri Nets, each of them en-
abling different analyses which make it possible to gain a
deeper understanding of a given network [16].

• Place-Transition Petri Nets: What was described
above. They can be used to model systems that do
not have timing constraints.

• Timed Petri Nets: Similar to Place-Transition Petri
Nets, but they include arcs with weights that rep-
resent the time needed to transition between states.
This allows timed Petri Nets to capture the temporal
behavior of a system, such as the response time.

• Stochastic Petri Nets: Petri Nets that include prob-
abilities associated with their transitions, which rep-
resent the likelihood of an event occurring. They
can be used to model systems that involve random
elements.

• Colored Petri Nets: Petri Nets that allow for mul-
tiple ‘colors’ of tokens. They can be used to model
complex systems with multiple types of data or
traffic.

The input of a Petri Net model is a description of the
system’s structure: the places, transitions, and arcs, as well
as a set of initial markings, which describe the number of
tokens in each place in the system. The output of a Petri
Net model is the set of reachable markings, which describes
all possible states of the system that can be reached by
executing the Petri Net [14].

Petri Nets are particularly useful for modeling con-
current systems, where multiple processes or events can
occur simultaneously. From its output, a set of performance
metrics may be deduced using reachability analysis, such as
the number of tokens in each place, the throughput, and the
response time [14]. Besides that, they can be used to model
resource allocation (e.g. bandwidth, processing power), and
system properties such as deadlock-freedom. However, the



number of possible states in Petri Nets scale exponentially
with the network size. This means that Petri Nets may not
be able to model large-scale computer networks. Besides,
similarly to Markov Chains, and Queuing Networks, they
are not able to handle topology changes in the network.

Figure 4. A simple example of a Petri Net model with four places, one
transition and four arcs, two of them as input channels to the transition,
two of them as output channels. Tokens are present at all the transition’s
input channels, which allows this transition to fire. The Petri Net is shown
before firing (left) and after firing (right) [22].

3.1.4. Latency-Rate Servers. Latency-Rate Servers is an
analytical model that is commonly used to analyze traffic
scheduling algorithms. The model is characterized by two
parameters: the latency and the service rate. The service rate
represents the guaranteed rate at which the server processes
packets sent by the client, while the latency represents the
maximum time until that rate can be guaranteed [21]. This
guaranteed service to a client is independent of the service
requests from other clients, and is achieved by the use of
accounting (reserving resources) and enforcement (no more
service when the budget is depleted) [4]. A system busy
period is a maximal interval of time during which the server
is never idle [21]. Figure 5 shows an example of how a
Latency-Rate server might react to incoming bursts of traffic
[4].

The input of a Latency-Rate model is the maximum
server latency Θi, and the minimum rate ρi. The output
of the model is a set of performance metrics such as the
maximum or mean response time [21]. Latency-Rate Servers
differ from the other analytical models discussed above,
because it is not necessarily a stochastic model. It may be
used in a stochastic context if necessary, but the latency and
rate parameters are not stochastic in nature, rather they can
be tuned to achieve results that are similar to the behaviour
of the real-life system.

The Latency-Rate server model can capture the interac-
tions between packets in a distributed network, because the
model takes the queuing behavior of packets into account as
they travel through the network [21]. As opposed to Markov
Chains, Queuing Networks and Petri Nets, the Latency-
Rate server model is not fit to analyze a wide range of
systems, rather it was specifically designed for modeling
shared-resource systems. However, the model assumes that
processing rates of the server are constant, which may not
always be the case in real-world networks.

Figure 5. A Latency-Rate server and its associated concepts [4].

3.2. Discrete-Event Simulation

Discrete-event simulation is a technique for modeling
the behavior of a complex system as a sequence of discrete
events that occur over time. The number of events is finite,
and can include events such as messages exchanged between
system components, or state transitions [5]. There are two
basic types of discrete-event simulation: trace-driven simu-
lation, where the simulation inputs come from data captured
on the real system, and and stochastic simulation, where the
workload is characterized by probability distributions [22].

Events in a trace-driven discrete-event simulation are
usually defined in terms of their occurrence time, duration,
and impact on the system state. The state of the system
is represented by a set of variables that capture important
aspects of its behavior, such as the number of entities in
the system, the status of resources, or the progress of a
particular process. At each event, the simulator determines
the impact of the event on the system state, updates the
relevant variables, and schedules any future events that may
be triggered by the current event [5].

Discrete-event simulations have become a popular tech-
nique for modeling complex computer networks and for
analyzing their behavior. One popular implementation is the
INET framework for OMNeT++, an open-source network
simulation library that is able to model several internet pro-
tocols and emulate network hardware [23]. Another example
is NS-3, an open-source discrete-event network simulator
targeted for research and educational use that supports a
range of protocols and technologies [1].

Discrete-event simulations are valuable tools for under-
standing the complex interactions between components in
a dCPS and for guiding dCPS design decisions. However,
there are several research gaps and challenges related to
discrete-event simulation for dCPS design space exploration.
One limitation is the scalability of discrete-event simulations
for large-scale and complex dCPS, as the number of events,
interactions, and components increases [8]. Another chal-
lenge is the lack of standardized modeling approaches and
simulation tools for dCPS. Table 1 in the appendix shows
a high-level comparison of various state-of-the-art discrete-
event simulation tools. While commercial tools such as
NetSim, OPNET, and QualNet provide a comprehensive set
of features for simulating computer networks, open-source



simulators such as OMNeT++, NS-2, NS-3, and J-SIM offer
platforms that are extensible for researchers and developers
to experiment with non-standard network configurations and
protocols.

3.3. Network Model Validation

Model validation is often defined as: “substantiation that
a computerized model within its domain of applicability
possesses a satisfactory range of accuracy consistent with
the intended application of the model”. Model verification
can be defined as: “ensuring that the computer program of
the computerized model and its implementation is correct”
[18].

Providing this validity substantiation is a critical step in
the process of developing a (simulation) model, as models
based on hypothetical relationships, faulty code or incor-
rect data are void of meaning. Still, model verification
and validation are known as one of the most challenging
methodological issues associated with computer simulation
techniques, because there are many approaches and not one
given plan that works for every project. It is important
to consider alternative methods and the requirements for a
given project [15].

In the case of network simulation models, validation and
verification may be done in the following contexts [2]:

• Simulator verification: Verifying that a simulation
platform or tool is bug free.

• Protocol validation and verification: Ensuring that
the simulation model of a network protocol faithfully
replicates the real-world implementation of that pro-
tocol.

• System validation and verification: Ensuring that
the simulation model of a physical resource faith-
fully replicates the real-world behaviour of that
physical resource.

• Scenario validation: Proving that a reasonable rela-
tionship exists between the simulation experiments
and the real life situations in which the correspond-
ing technology will be deployed.

• Methodology validation: Validating that the exper-
iment was designed with appropriate attention paid
to removing statistical bias.

Since this literature study does not assume any given
simulation platform or simulation model, for the remainder
of this section, the term validation refers to the context of
scenario validation. For the same reasons, the topic of model
verification is out of scope for this section of this literature
study.

One commonly accepted method to validate a simula-
tion model is the Naylor and Finger validation approach
[15], which includes three phases: Face Validity (asking
system experts whether the model behavior is reasonable),
Validation of Model Assumptions, and Validation of Input-
Output transformations (comparing the real system’s and
the model’s outputs using the same input data) [7]. This
is also known as Multistage validation, combining the three

historical methods of Rationalism, Empiricism and Positive
Economics. Additional validation methods may include:
Historical Data Validation (using part of the historical sys-
tem data to build the model, and the remaining data to test
if the model behaves as the system does to avoid overfitting
the model), Extreme-Condition Testing (whether the model
output is plausible for extreme and unlikely conditions),
and Turing Tests (system behavior experts are asked if
they can discriminate between system and model outputs)
[18]. Turing tests by expert opinion are a popular way to
incrementally validate a model [22].

Many of these methods aim to validate a simulation
model by comparing its output to real-world data. To obtain
this real-world data it must be collected and empirically
verified. Data collection in the context of network modeling
for dCPS begins with the step of network exploration, in
which the topology of the network is automatically discov-
ered and registered. It is also possible to do this manually,
but effort is reduced by a great deal by employing automatic
network discovery due to the complex nature of dCPS
networks. Following that step comes network measurement,
which deploys tracing software on the topology to measure
network logs and performance metrics. These logs may be
used to drive trace-driven discrete event simulations, and
then to compare with the simulation outputs.

However, network exploration and measurement suffer
from a similar issue as discrete-event simulations: there is
a severe lack of standardized approaches and tools. Table 2
and Table 3 in the appendix show high-level overviews
of several available network discovery and network mea-
surement tools respectively to illustrate the diversity of
choices. The network exploration tools listed in Table 2
in the appendix mainly differ in the level of automation
and comprehensiveness. Tools such as Advanced IP Scan-
ner, LanTopoLog, and NetScanTools are primarily used
for port scanning, host discovery, and network mapping,
while Open-AudIT, Device42, and Total Network Inven-
tory offer more comprehensive network discovery, inventory
management, and IT documentation capabilities. The net-
work measurement tools listed in Table 3 in the appendix
can be broadly categorized into two categories: monitoring
platforms and distributed tracing platforms. Monitoring plat-
forms, such as Datadog, New Relic, and Netdata, provide
observability across infrastructure, applications, and logs,
while distributed tracing systems, such as Jaeger, and Zipkin,
visualize the timing and duration of requests in complex
distributed systems. Some tools, such as AppDynamics and
Dynatrace, offer both monitoring and distributed tracing
capabilities.

4. Discussion

The discussion puts the literature that was reviewed in
Section 3 in the context of the objective of this literature
study: developing a framework for a process that creates
and validates a network delay model given the context of
DSE for dCPS. In Section 4.1 it will be discussed how a
network model for DSE for dCPS may be created. Finally,



Section 4.2 discusses a validation approach for such a
network model.

4.1. Network Modeling

From the literature, we can conclude that the analytical
models on their own are not suitable for evaluation of large-
scale dCPS networks due to their high complexity nature.
However, the presented analytical models can be enhanced
to model complex systems by using them in a computer
simulation context. We will choose the OMNeT++ discrete-
event simulation platform [23], because it is academically
backed, it is open-source, and it includes several convenient
libraries and frameworks that allow for the simulation of
complex hardware, such as the INET framework [12]. Nev-
ertheless, the findings of this literature study are expected
to be applicable to any comparable discrete-event simulation
platform (see: Table 1 in the appendix).

The objective of this literature study will be accom-
plished by developing network models at different levels
of abstraction, and evaluating their speed-accuracy tradeoff
to select a model for a given network configuration that is
both fast and accurate enough to be used in the context of
DSE for dCPS. The models that will be created fall into
three different categories:

• Functions: Some fundamental, simple representa-
tions of any network. Some examples might be:
return a constant delay, or return a delay that is
correlated with the message size. The expectation
for this model type is that they are relatively fast
but inaccurate.

• Analytical models in a simulation context: Be-
cause of the limitations discussed in the related
work section (mainly: complexity concerns and as-
sumptions about network arrival patterns that do not
hold in the real-world systems), we cannot rely on
Markov Chains, Queuing Networks, Petri Nets to
build a network delay simulation model of dCPS.
However, the Latency-Rate Servers abstraction is
relatively simple. It only has two parameters, thus
it does not suffer from the complexity problems
that the other analytical models have. Besides that,
it is not stochastic in nature, which means it does
not depend on some given arrival pattern. Further-
more, the requested service curve in Figure 5 can
be generated from traces of actual network traffic,
enabling researchers to evaluate the delay of that
network traffic trace for different service latencies
(Θ) and guaranteed service rates (ρ). The expectation
for this model type is that they are moderately fast
and moderately accurate.

• Pure simulation models: The discrete-event simula-
tion platform will be used to create simulation mod-
els that are not necessarily based on any analytical
models. These simulation models will range from
“two nodes with a single link connecting them” to
“the entire network topology closely emulated using

the INET library”, with some undefined abstraction
steps in between. The expectation for this model type
is that they are relatively slow but accurate.

These model types span the spectrum of model com-
plexity, from the most simple, abstract, and fast model
possible, to the most complex, representational, and slow
model possible. It should be noted that this network model
is only meant to capture the delay of messages between
dCPS subsystems, not the actual functional behavior. This
is why a very abstract model would suffice if it proves
to be accurate enough. Even though we hypothesize that
the network delay model becomes more accurate by adding
more complex function elements to the simulation model, it
is also possible that the delay model becomes less accurate
if it is made with too much detail and complexity due to a
heightened susceptibility to simulation errors. This is also
why the model types are divided into these three categories,
because it is interesting to include models in the speed-
accuracy analysis that are both simpler and more complex
than the analytical models discussed in the related work.

We will evaluate the created models using the following
KPIs to measure the speed-accuracy tradeoff: the Root Mean
Squared Error (per message transferred), the Total Error
(all messages), and time to evaluate a design point. The
former two KPIs are found by comparing the trace-driven
simulation results to the actual traces of the real system. The
latter KPI is calculated by evaluating a large number (i.e.
1000) of design points and taking the mean execution time.

4.2. Network Model Validation

Continuously during the model creation process, valida-
tion will play an active part of the process. We will largely
follow the validation approach outlined by Robert G. Sargent
(1991) [18]:

1) An agreement should be made between the model
developing party and the model using party on the
basic validation approach prior to developing the
model.

2) In each model iteration, at least a face validity test
should be performed. This step is used to determine
if the logic of the conceptual model is correct, as
well as validating the input-output relationships,
covering all three bases of the Naylor and Finger
validation approach [15].

3) In at least the last model iteration, comparisons
should be made between the model and system
behavior data for at least two sets of experimental
conditions.

4) The validation approach and results should be de-
scribed in the model documentation.

Within the process of validation, we are limited by the
real-world data we are able to capture. Network topology
data will be acquired using Open-AudIT, because it is open-
source, works across platforms, is well documented, and it
is possible to extend the tool with scripts to account for



possible edge cases in the dCPS network. For obtaining
network measurements, Jaeger or Zipkin will be used. Both
of these tools are open-source distributed tracing systems
that are designed to visualize the timing and duration of
requests in complex distributed systems. Similarly to the
discrete-event simulation tool, the contributions of this lit-
erature study are applicable for any set of similar network
discovery and network measurement tools (see Tables 2 and
3, respectively).

5. Conclusion

This literature study discussed a possible solution out-
line that engages with one of the major challenges for
applying DSE in the context of dCPS: modeling the delay
of complex network interactions between distributed sub-
systems. Related work about analytical network modeling,
discrete-event simulation and network model validation was
reviewed. A framework was created that approaches the
network model creation step at multiple levels of abstraction
to find the optimal speed-accuracy tradeoff balance, given
a set of predetermined KPI goals. This framework also
incorporates validation steps in every model iteration, for
which network topology data and network measurements
need to be collected.
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Appendix

Name Description URL
AnyLogic Simulation software used in various industries such as logistics,

manufacturing, mining, healthcare, and more.
https://www.anylogic.com/

Cnet Open-source network simulator for wired and wireless commu-
nication networks.

https://www.csse.uwa.edu.au/cnet/

EstiNet Commercial network simulator with advanced features for mod-
eling and simulating communication networks.

https://www.estinet.com/

J-Sim Open-source network simulator with a focus on modeling and
simulating wired and wireless communication networks.

https://www.kiv.zcu.cz/j-sim/

NCTUns Open-source network simulator that supports various types of
networks, including wired, wireless, and mobile.

http://nsl.cs.nctu.edu.tw/NSL/nctuns.html

NetSim Commercial network simulator with a wide range of features for
modeling and simulating communication networks.

https://www.boson.com/netsim-cisco-network-simulator

NS-2 Popular open-source network simulator for wired and wireless
communication networks.

https://nsnam.sourceforge.net/wiki

NS-3 Open-source network simulator with a focus on modeling and
simulating Internet systems.

https://www.nsnam.org/

OMNeT++ Extensible open-source network simulator with a modular archi-
tecture for modeling and simulating various types of networks.

https://omnetpp.org/

OPNET Commercial network simulator with a wide range of features for
modeling and simulating communication networks.

https://opnetprojects.com/opnet-network-simulator/

Riverbed Modeler Commercial network simulator with a comprehensive set of fea-
tures for modeling and simulating communication networks.

https://www.riverbed.com/products/riverbed-modeler/

QualNet Commercial network simulator with a wide range of features for
modeling and simulating communication networks.

https://www.keysight.com

SENSE Open-source network simulator that focuses on modeling and
simulating wireless sensor networks.

https://www.ita.cs.rpi.edu/

SimEvents Discrete-event network simulator specifically designed for mod-
eling and simulating event-driven systems.

https://www.mathworks.com/products/simevents.html

SimPy Open-source discrete-event network simulator for modeling and
simulating complex systems.

https://simpy.readthedocs.io/en/latest/

SIMUL8 Commercial simulation software for modeling and simulating
various types of systems, including networks.

https://www.simul8.com/

SSFNet Open-source network simulator with a focus on modeling and
simulating wired and wireless communication networks.

http://helper.ipam.ucla.edu/publications/cntut/cntut 1501.pdf

SWANS Open-source network simulator for wireless ad hoc networks with
a focus on mobility and energy-awareness.

http://jist.ece.cornell.edu/

TABLE 1. A HIGH-LEVEL OVERVIEW OF THE STATE-OF-THE-ART IN DISCRETE-EVENT SIMULATORS
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Name Description URL
Advanced IP Scanner A free, fast, and easy-to-use network scanner that allows you

to scan and analyze local and remote networks.
https://www.advanced-ip-scanner.com/

Angry IP Scanner A popular open-source network scanner that scans IP ad-
dresses and ports to detect live hosts and obtain information
about connected devices.

https://angryip.org/

Device42 A comprehensive network discovery and asset management
software that provides automated network mapping, inven-
tory management, and IT documentation.

https://www.device42.com/

Fing A network scanning and monitoring tool that provides a
comprehensive view of your network, including device dis-
covery, network mapping, and troubleshooting capabilities.

https://www.fing.com/

Lansweeper An all-in-one network discovery and asset management so-
lution that scans and audits all devices on your network,
providing detailed information about hardware, software,
and licenses.

https://www.lansweeper.com/

LanTopoLog A network discovery tool that provides network mapping and
topology visualization features for managing and monitoring
your network.

http://www.lantopolog.com/

Nagios A powerful open-source network monitoring tool that pro-
vides comprehensive monitoring and alerting capabilities for
networks, servers, and services.

https://www.nagios.org/

NetBrain A network automation and documentation tool that offers
network discovery, mapping, and troubleshooting capabili-
ties, as well as automation for network tasks.

https://www.netbraintech.com/

NetCrunch A comprehensive network monitoring and management solu-
tion that provides network discovery, mapping, monitoring,
alerting, and reporting features for networks of all sizes.

https://www.adremsoft.com/netcrunch/

NetScanTools A suite of network scanning and troubleshooting tools that
provides a range of network discovery, mapping, and diag-
nostic capabilities for network administrators.

https://www.netscantools.com/

Nmap A popular open-source network exploration and security
auditing tool that provides host discovery, port scanning, and
version detection capabilities.

https://nmap.org/

Open-AudIT An open-source network auditing and inventory management
tool that provides network discovery, mapping, and asset
management features for IT professionals.

https://www.open-audit.org/

OpenNMS An open-source enterprise-grade network management and
monitoring platform that provides network discovery, map-
ping, monitoring, alerting, and reporting capabilities.

https://www.opennms.com/

PRTG Network Monitor A powerful network monitoring and management tool that
provides comprehensive network monitoring, alerting, and
reporting features for networks of all sizes.

https://www.paessler.com/prtg

Solarwinds A popular network management and monitoring suite that
provides network discovery, mapping, monitoring, alerting,
and reporting capabilities for IT professionals.

https://www.solarwinds.com/

SoftPerfect Network Scanner A lightweight network scanning tool that provides host
discovery, port scanning, and network mapping features for
network administrators.

https://www.softperfect.com/products/networkscanner/

Spiceworks An IT management and monitoring solution that provides
network discovery, inventory management, help desk, and
reporting features for IT professionals.

https://www.spiceworks.com/

Total Network Inventory A network inventory and asset management tool that pro-
vides network scanning, software/hardware inventory, and
reporting capabilities for IT administrators.

https://www.total-network-inventory.com/

TABLE 2. A HIGH-LEVEL OVERVIEW OF THE STATE-OF-THE-ART IN NETWORK DISCOVERY TOOLS
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Name Description URL
AppDynamics A commercial application performance monitoring (APM) tool that provides visibility into

distributed systems.
https://www.appdynamics.com/

AWS X-Ray A distributed tracing service that can be used to analyze and debug production environments. https://aws.amazon.com/xray/
Datadog A cloud-based monitoring platform that provides observability across infrastructure, appli-

cations, and logs.
https://www.datadoghq.com/

Dynatrace A commercial APM tool that provides distributed tracing, metrics, and logs, as well as AI-
powered root cause analysis and automatic problem detection.

https://www.dynatrace.com/

Google Cloud Trace A distributed tracing service that can be used to monitor and troubleshoot distributed systems. https://cloud.google.com/trace
Graphite An open-source tool for collecting, storing, and visualizing time-series data. https://graphiteapp.org/
Honeycomb A distributed tracing and observability platform that provides real-time visibility into

complex systems.
https://www.honeycomb.io/

Instana A commercial APM tool that provides real-time monitoring and tracing of microservices-
based architectures.

https://www.instana.com/

Jaeger A popular open-source distributed tracing system that visualizes the timing and duration of
requests in complex distributed systems to identify performance bottlenecks and optimize
high-traffic environments.

https://www.jaegertracing.io/

LightStep A distributed tracing system that provides real-time visibility into microservices-based
architectures.

https://lightstep.com/

Netdata An open-source monitoring tool that provides real-time metrics and visualizations of system
performance.

https://www.netdata.cloud/

New Relic A commercial APM tool that provides distributed tracing, metrics, and logs. https://newrelic.com/
OpenTelemetry A set of open-source tools and APIs for collecting, processing, and exporting telemetry data

such as traces, metrics, and logs.
https://opentelemetry.io/

Zipkin An open-source distributed tracing system that can be used to monitor and troubleshoot
microservices-based architectures.

https://zipkin.io/

TABLE 3. A HIGH-LEVEL OVERVIEW OF THE STATE-OF-THE-ART IN DISTRIBUTED NETWORK MEASUREMENT TOOLS
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